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Preface

It seems a reasonable expectation that every student receiving a university
degree in physics will have had a course in one of the most important devel-
opments in modern physics: Einstein’s general theory of relativity. Also, given
the exciting discoveries in astrophysics and cosmology of recent years, it is
highly desirable to have an introductory course whereby such subjects can be
presented in their proper framework. Again, this is general relativity (GR).

Nevertheless, a GR course has not been commonly available to undergradu-
ates, or even for that matter, to graduate students who do not specialize in GR or
field theory. One of the reasons, in my view, is the insufficient number of suitable
textbooks that introduce the subject with an emphasis on physical examples and
simple applications without the full tensor apparatus from the very beginning.
There are many excellent graduate GR books; there are equally many excellent
“popular” books that describe Einstein’s theory of gravitation and cosmology
at the qualitative level; and there are not enough books in between. I am hopeful
that this book will be a useful addition at this intermediate level. The goal is
to provide a textbook that even an instructor who is not a relativist can teach
from. It is also intended that other experienced physics readers who have not
had a chance to learn GR can use the book to study the subject on their own.
As explained below, this book has features that will make such an independent
study particularly feasible.

Students should have had the usual math preparation at the calculus level,
plus some familiarity with matrices, and the physics preparation of courses on
mechanics and on electromagnetism where differential equations of Maxwell’s
theory are presented. Some exposure to special relativity as part of an intro-
ductory modern physics course will also be helpful, even though no prior
knowledge of special relativity will be assumed. Part I of this book concen-
trates on the metric description of spacetime: first, the flat geometry as in
special relativity, and then curved ones for general relativity. Here I discuss the
equation of motion in Einstein’s theory, and many of its applications: the
three classical tests, black holes, and gravitational lensing, etc. Part II contains
three chapters on cosmology. Besides the basic equations describing a homoge-
neous and isotropic universe, I present a careful treatment of distance and time
in an expanding universe with a space that may be curved. The final chapter
on cosmology, Chapter 9 provides an elementary discussion of the inflationary
model of the big bang, as well as the recent discovery that the expansion of our
universe is accelerating, implying the existence of a “dark energy.” The tensor
formulation of relativity is introduced in Part III. After presenting special rela-
tivity in a manifestly covariant formalism, we discuss covariant differentiation,
parallel transport, and curvature tensor for a curved space. Chapter 12 contains
the full tensor formulation of GR, including the Einstein’s field equation and its
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solutions for various simple situations. The subject of gravitational waves can be
found in the concluding chapter.

The emphasis of the book is pedagogical. The necessary mathematics will
be introduced gradually. Tensor calculus is relegated to the last part of the
book. Discussion of curved surfaces, especially the familiar example of a
spherical surface, precedes that of curved higher dimensional spaces. Parts I
and II present the metric description of spacetime. Many applications (including
cosmology) can already be discussed at this more accessible level; students can
reach these interesting results without having to struggle through the full tensor
formulation, which is presented in Part III of the book. A few other pedagogical
devices are also deployed:

• a bullet list of topical headings at the beginning of each chapter serves as
the “chapter abstracts,” giving the reader a foretaste of upcoming material;

• matter in marked boxes are calculation details, peripheral topics,
historical tit-bits that can be skipped over depending on the reader’s
interest;

• Review questions at the end of each chapter should help beginning
students to formulate questions on the key elements of the chapter1; brief1We find that the practice of frequent quizzes

based on these review questions are an effec-
tive means to make sure that each member is
keeping up with the progress of the class.

answers to these questions are provided at the back of the book;
• Solutions to selected problems at the end of the book also contains some

extra material that can be studied with techniques already presented in
the text.

Given this order of presentation, with the more interesting applications
coming before the difficult mathematical formalism, it is hoped that the
book can be rather versatile in terms of how it can be used. Here are some
of the possibilities:

1. Parts I and II should be suitable for an undergraduate course. The tensor
formulation in Part III can then be used as extracurricular material for
instructors to refer to, and for interested students to explore on their own.
Much of the intermediate steps being given and more difficult problems
having their solutions provided, this section can, in principle, be used as
self-study material by a particularly motivated undergraduate.

2. The whole book can be used for a senior-undergraduate/beginning-
graduate course. To fit into a one-semester course, one may have to leave
some applications and illustrative examples to students as self-study
topics.

3. The book is also suitable as a supplemental text: for an astronomy
undergraduate course on cosmology, to provide a more detailed discus-
sion of GR; for a regular advanced GR and cosmology course, to ease
the transition for those graduate students not having had a thorough
preparation in the relevant area.

4. The book is written keeping in mind readers doing independent study of
the subject. The mathematical accessibility, and the various “pedagogical
devices” (chapter headings, review questions, and worked-out solutions,
etc.) should make it practical for an interested reader to use the book to
study GR and cosmology on his or her own.

An updated list of corrections to the book can be found at the website
http://www.umsl.edu/∼tpcheng/grbook.html

http://www.umsl.edu/~tpcheng/grbook.html
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Introduction and
overview 1

1.1 Relativity as a coordinate
symmetry 5

1.2 GR as a gravitational field
theory 8

Review questions 12

• Relativity means that physically it is impossible to detect absolute
motion. This can be stated as a symmetry in physics: physics equations
are unchanged under coordinate transformations.

• Special relativity (SR) is the symmetry with respect to coordinate
transformations among inertial frames, general relativity (GR) among
more general frames, including the accelerating coordinate systems.

• The equivalence between the physics due to acceleration and to gravity
means that GR is also the relativistic theory of gravitation, and SR is
valid only in the absence of gravity.

• Einstein’s motivations to develop GR are reviewed, and his basic idea
of curved spacetime as the gravitation field is outlined.

• Relativity represents a new understanding of space and time. In SR we
first learn that time is also a frame-dependent coordinate; the arena for
physical phenomena is the four dimensional spacetime. GR interprets
gravity as the structure of this spacetime. Ultimately, according to
Einstein, space and time have no independent existence: they express
relation and causal structure of physics processes in the world.

• The proper framework for cosmology is GR. The solution of the GR
field equation describes the whole universe because it describes the
whole spacetime.

• The outline of our presentation: Part I concentrates on the description
of spacetime by the metric function. From this we can discuss many
GR applications, including the study of cosmology in Part II. Only in
Part III do we introduce the full tensor formulation of the GR field
equations and the ways to solve them.

Einstein’s general theory of relativity is a classical field theory of gravitation.
It encompasses, and goes beyond, Newton’s theory, which is valid only for
particles moving with slow velocity (compared to the speed of light) in a weak
and static gravitational field. Although the effects of general relativity (GR)
are often small in the terrestrial and solar domains, its predictions have been
accurately verified whenever high precision observations can be performed.
Notably we have the three classical tests of GR: the precession of a planet’s
perihelion, the bending of star light by the sun, and redshift of light’s frequency
in a gravitational field. When it comes to situations involving strong gravity,
such as compact stellar objects and cosmology, the use of GR is indispens-
able. Einstein’s theory predicted the existence of black holes, where the gravity
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is so strong that even light cannot escape from them. We must also use GR
for situations involving time-dependent gravitational fields as in emission and
propagation of gravitational waves. The existence of gravitational waves as
predicted by GR has been verified by observing the rate of energy loss, due to
the emission of gravitational radiation, in a relativistic binary pulsar system.
GR can naturally accommodate the possibility of a constant “vacuum energy
density” giving rise to a repulsive gravitational force. Such an agent is the
key ingredient of modern cosmological theories of the big bang (the inflationary
cosmology) and of the accelerating universe (having a dark energy).

Creating new theories for the phenomena that are not easily observed on earth
poses great challenges. We cannot repeat the steps that led to the formulation
of Maxwell’s theory of electromagnetism, as there are not many experimental
results one can use to deduce their theoretical content. What Einstein pioneered
was the elegant approach of using physics symmetries as a guide to the new
theories that would be relevant to the yet-to-be-explored realms. As we shall
explain below, relativity is a coordinate symmetry. Symmetry imposes restric-
tion on the equations of physics. The condition that the new theory should
be reduced to known physics in the appropriate limit often narrows it further
down to a very few possibilities. The symmetry Einstein used for this purpose
is the coordinate symmetries of relativity, and the guiding principle in the for-
mulation of GR is the “principle of general covariance.” In Section 1.1 we
shall explain the meaning of a symmetry in physics, as well as present a brief
historical account of the formulation of relativity as a coordinate symmetry.
In Section 1.2 we discuss the motivations that led Einstein to his geometric
view of gravitation that was GR.

Besides being a theory of gravitation, GR, also provides us with a new
understanding of space and time. Starting with special relativity (SR), we
learnt that time is not absolute. Just like spatial coordinates, it depends on
the reference frame as defined by an observer. This leads to the perspective of
viewing physical events as taking place in a 4D continuum, called the spacetime.
Einstein went further in GR by showing that the geometry of this spacetime was
just the phenomenon of gravitation and was thus determined by the matter and
energy distribution. Ultimately, this solidifies the idea that space and time do
not have an independent existence; they are nothing but mirroring the relations
among physical events taking place in the world.

General relativity is a classical theory because it does not take into account
quantum effects. GR being a theory of space and time means that any
viable theory of quantum gravity must also offer a quantum description
of space and time. Although quantum gravity1 is beyond the scope of this1Currently the most developed study of quan-

tum gravity is the string theory. For a recent
textbook exposition see (Zwiebach, 2004).

book, we should nevertheless mention that current research shows that such
a quantum theory has rich enough structure as to be the unified theory of
all matter and interactions (gravitation, strong and electroweak, etc.). Thus
the quantum generalization of GR should be the fundamental theory in
physics.

In this introductory chapter, we shall put forward several “big motifs”
of relativity, without much detailed explanation. Our purpose is to provide
the reader with an overview of the subject—a roadmap, so to speak. It is
hoped that, proceeding along the subsequent chapters, the reader will have
occasion to refer back to this introduction, to see how various themes are
substantiated.
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1.1 Relativity as a coordinate symmetry

We are all familiar with the experience of sitting in a train, and not able to “feel”
the speed of the train when it is moving with a constant velocity, and, when
observing a passing train on a nearby track, find it difficult to tell which train is
actually in motion. This can be interpreted as saying that no physical measure-
ment can detect the absolute motion of an inertial frame. Thus we have the basic
concept of relativity, stating that only relative motion is measurable in physics.

In this example, the passenger is an observer who determines a set of coord-
inates (i.e. rulers and clocks). What this observer measures is the physics with
respect to this coordinate frame. The expression “the physics with respect to
different coordinate systems” just means “the physics as deduced by different
observers.” Physics should be independent of coordinates. Such a statement
proclaims a symmetry in physics: Physics laws remain the same (i.e. physics
equations keep the same form) under some symmetry transformation, which
changes certain conditions, for example, the coordinates. The invariance of
physics laws under coordinate transformation is called symmetry of relativity.
This coordinate symmetry can equivalently be stated as the impossibility of any
physical measurement to detect a coordinate change. Namely, if the physics
remains the same in all coordinates, then no experiment can reveal which
coordinate system one is in, just as the passenger cannot detect the train’s
constant-velocity motion.

Rotational symmetry is a familiar example of coordinate symmetry. Physics
equations are unchanged when written in different coordinate systems that are
related to each other by rotations. Rotational symmetry says that it does not
matter whether we do an experiment facing north or facing southwest. After
discounting any peculiar local conditions, we should discover the same physics
laws in both directions. Equivalently, no internal physical measurement can
detect the orientation of a laboratory. The orientation of a coordinate frame is
not absolute.

1.1.1 From Newtonian relativity to aether

Inertial frames of reference are the coordinate systems in which, according to
Newton’s First Law, a particle will, if no external force acts on it, continue
its state of motion with constant velocity (including the state of rest). Galileo
and Newton taught us that the physics description would be the simplest when
given in these coordinate systems. The First Law provides us the definition of an
inertial system (also called Galilean frames of reference). Its implicit message
that such coordinate systems exist is its physical content. Nevertheless, the First
Law does not specify which are the inertial frames in the physical universe. It is
an empirical fact2 that these are the frames moving at constant velocities with 2That there should be a physical explanation

why the distant matter defines the inertial
frames was first emphasized by Bishop
George Berkeley in the eighteenth century,
and by Ernst Mach in the nineteenth. A brief
discussion of Mach’s principle can be found
in Box 1.1.

respect to the fixed stars—distant galaxies, or, another type of distant matter,
the cosmic microwave background (CMB) radiation (see Section 8.5). There
are infinite sets of such frames: differing by their relative orientation, displace-
ment, and relative motion with constant velocities. For simplicity we shall
ignore the transformations of rotation and displacement of coordinate origin,
and concentrate on the relation among the rectilinear moving coordinates—the
boost transformation.
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Physics equations in classical mechanics are invariant under such boost
transformations. Namely, no mechanical measurement can detect the moving
spatial coordinates. The familiar example of not being able to feel the speed of
a moving train cited at the beginning of this section is a simple illustration of
this principle of Newtonian relativity: “physics laws (classical mechanics) are
the same in all inertial frames of reference.” In this sense, there is no absolute
rest frame in Newtonian mechanics. The situation changed when electromag-
netism was included. Maxwell showed a light speed being given by the static
parameters of electromagnetism. Apparently there is only one speed of light c
regardless of whether the observer is moving or not. Before Einstein, just about
everyone took it to mean that the Maxwell’s equations were valid only in the
rest frame of the aether, the purported medium for electromagnetic wave pro-
pagation. In effect this reintroduced into physics the notion of absolute space
(the aether frame).

Also, in Newtonian mechanics the notion of time is taken to be absolute,
as the passage of time is perceived to be the same in all coordinates.

1.1.2 Einsteinian relativity

It is in this context that one must appreciate Einstein’s revolutionary proposal:
All motions are relative and there is no need for concepts such as absolute space.
Maxwell’s equations are valid in every inertial coordinate system.3 There is no3While emphasizing Einstein’s role, we must

also point out the important contribution
to SR by Henri Poincaré. In fact the full
Lorentz transformation was originally writ-
ten down by Poincaré (who named it in
Lorentz’s honor). Poincaré was the first one to
emphasize the view of relativity as a physics
symmetry. For an accessible account of
Poincaré’s contribution, see Logunov (2001).

aether. Light has the peculiar property of propagating with the same speed c
in all (moving) coordinate systems—as confirmed by the Michelson–Morley
experiment.4 Furthermore, the constancy of the light speed implies that, as

4Michelson and Morley, using a Michelson
interferometer, set out to measure a possible
difference in light speeds along and transverse
to the orbit motion of the earth around the sun.
Their null result confirmed the notion that
light speed was the same in different inertial
frames.

Einstein would show, there is no absolute time.
Einstein generalized the Newtonian relativity in two stages:

1905 Covariance of physics laws under boost transformations were
generalized from Newtonian mechanics to include electromagnetism.
Namely, the laws of electricity and magnetism, as well as mechanics,
are unchanged under the coordinate transformations that connect different
inertial frames of reference. Einstein emphasized that this generalization
implied a new kinematics: not only space but also time measurements are
coordinate dependent. It is called the principle of special relativity because
we are still restricted to the special class of coordinates: the inertial frames
of reference.

1915 The generalization is carried out further; General relativity is
the physics symmetry allowing for more general coordinates, includ-
ing the accelerating frames as well. Based on the empirical observation that
the effect of an accelerating frame and gravity is the same, GR is the field
theory of gravitation; SR is special because it is valid only in the absence of
gravity. GR describes gravity as the curved spacetime, which, in SR, is flat.

To recapitulate, relativity is a coordinate symmetry. It is the statement that
physics laws are the same in different coordinate systems. Thus, physically
it is impossible to detect absolute motion and orientation because physics
laws are unchanged under coordinate transformations. For SR, these are the
transformations among Galilean frames of reference (where gravity is absent);
for GR, among more general frames, including the accelerating coordinate
systems.
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1.1.3 Coordinate symmetry transformations

Relativity is the symmetry describing the covariance of the physics equation
(i.e. invariance of the equation form) under coordinate transformations. We need
to distinguish among several classes of transformations:

Galilean transformation. In classical (nonrelativistic) mechanics, inertial
frames are related to each other by this transformation. Thus, by Newtonian
relativity, we mean that laws of Newtonian mechanics are covariant under
Galilean transformations. From the modern perspective, Galilean transforma-
tions such as t′ = t are valid only when the relative velocity is negligibly small
compared to c.

Lorentz transformation. As revealed by SR, the transformation rule con-
necting all the inertial frames, valid for all relative speed < c, is the
Lorentz transformation. Namely, Galilean is the low-speed approximation of
Lorentz transformation. Maxwell’s equations are first discovered to possess
this symmetry—they are covariant under the Lorentz transformation. It then
follows that Newtonian (nonrelativistic) mechanics must be modified so that
the relativistic mechanics, valid for particles having arbitrary speed up to c,
can also have this Lorentz symmetry.

General coordinate transformation. The principle that physics equations
should be covariant under the general transformations that connect different
coordinate frames, including accelerating frames, is GR. Such a general sym-
metry principle is called the principle of general covariance. This is the basic
principle guiding the construction of the relativistic theory of gravitation.

Thus, in GR, all sorts of coordinates are allowed—there is a “democracy of
coordinate systems.” All sorts of coordinate transformations can be used. But
the most fruitful way of viewing the transformations in GR is that they are local
(i.e. an independent one at every space–time point) Lorentz transformations,
which in the low-velocity limit are Galilean transformations.

1.1.4 New kinematics and dynamics

Einstein’s formulation of the relativity principle involves a sweeping change
of kinematics: not only space, but also the time measurements, may differ in
different inertial frames. Space and time are on equal footing as coordinates of
a reference system. We can represent space and time coordinates as the four
components of a (spacetime) position vector xµ (µ = 0, 1, 2, 3), with x0 being
the time component, and the transformation for coordinate differentials is now
represented by a 4× 4 matrix [A],

dxµ → dx′µ =
∑

ν

[A]µν dxν , (1.1)

just as rotational coordinate transformation is represented by a 3 × 3 matrix.
The Galilean and Lorentz transformations are linear transformations; that
is, the transformation matrix elements do not themselves depend on the
coordinates [A] �= [A(x)]. The transformation matrix being a constant with
respect to the coordinates means that one makes the same transformation
at every coordinate point. We call this a global transformation. By con-
trast, the general coordinate transformations are nonlinear transformations.
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Recall, for example, the transformation to an accelerating frame, x → x′ =
x + vt + at2/2, is nonlinear in the time coordinate. Here the transformations
are coordinate-dependent, [A] = [A(x)]—a different transformation for each
coordinate space–time point. We call this a local transformation, or a gauge
transformation. Global symmetry leads to kinematic restrictions, while local
symmetry dictates dynamics as well. As we shall see, the general coordinate
symmetry (GR) leads to a dynamical theory of gravitation.55Following Einstein’s seminal work, physi-

cists learned to apply the local symmetry idea
also to the internal charge–space coordinates.
In this way, electromagnetism as well as other
fundamental interactions among elementary
particles (strong and weak interactions) can
all be understood as manifestation of local
gauge symmetries. For respective references
of gauge theory in general and GR as a gauge
theory in particular, see for example (Cheng
and Li, 1988 and 2000).

1.2 GR as a gravitational field theory

The problem of noninertial frames of reference is intimately tied to the physics
of gravity. In fact, the inertial frames of reference should properly be defined as
the reference frames having no gravity. GR, which includes the consideration
of accelerating coordinate systems, represents a new theory of gravitation.

The development of this new theory is rather unique in the history of physics:
it was not prompted by any obvious failure (crisis) of Newton’s theory, but
resulted from the theoretical research, “pure thought,” of one person—Albert
Einstein. Someone put it this way: “Einstein just stared at his own navel, and
came up with general relativity.”66The reader of course should not take this

description to imply that the discovery was
in any sense straightforward and logically
self-evident. In fact, it took Einstein close to
10 years of difficult research, with many false
detours, to arrive at his final formulation.
To find the right mathematics of Riemannian
geometry, he was helped by his friend and
collaborator Marcel Grossmann.

1.2.1 Einstein’s motivations for the general theory

If not prompted by experimental crisis, what were Einstein’s motivations in his
search for this new theory? From his published papers,7 one can infer several

7Einstein’s classical papers in English trans-
lation may be found in the collected work
published by Princeton University Press
(Einstein, 1989). A less complete, but more
readily available, collection may be found in
(Einstein et al., 1952).

interconnected motivations (Uhlenbeck, 1968):

1. To have a relativistic theory of gravitation. The Newtonian theory of
gravitation is not compatible with the principle of (special) relativity
as it requires the concept of “action-at-a-distance” force, which implies
instantaneous transmission of signals.

2. To have a deeper understanding of the empirically observed equality
between inertial mass and gravitational mass.

3. “Space is not a thing.” Einstein phrased his conviction that physics laws
should not depend on reference frames, which express the relationship
among physical processes in the world and do not have independent
existence.

Comments on this list of motivations

1. The Newtonian theory is nonrelativistic. Recall that Newton’s theory of
gravitation resembles Coulomb’s law of electrostatics. They are static field
theories with no field propagation. Eventually, the electromagnetic theory is
formulated as a dynamical field theory. The source acts on the test charge
not through the instantaneous action-at-a-distance type of force, but instead
by the creation of electromagnetic fields which propagate out with a finite
speed, the speed of light c. Thus the problem is how to formulate a field theory
of gravitation with physical influence propagating at finite speed. More broadly
speaking, one would like to have a new theory of gravity in which space and
time are treated on more equal footing.
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2. In the course of writing a review paper on relativity in 1907 Einstein
recalled the fundamental experimental result (almost forgotten since Newton’s
days) that the gravitational mass and the inertial mass are equal

mG = mI. (1.2)

This is the essence of Galileo’s observation in the famous “Leaning Tower
experiment”: all objects fall with the same acceleration. Inserting the grav-
itational force mGg (where g is the gravitational acceleration) into Newton’s
Second Law F = mIa,

mGg = mIa, (1.3)

we see that the empirical result:

a = g same for all objects (1.4)

leads to the conclusion in (1.2). This equality mI = mG is rather remarkable.
While inertial mass mI is the response of an object to all forces as it appears in
F = mIa, the gravitational mass mG is the response to (as well as the source
of ) a specific force: gravity—we can think mG as the “gravitational charge”
of an object. Viewed this way, we see the unique nature of gravitational force.
No other fundamental force has this property of its response, the acceleration as
shown in (1.4), being independent from any attribute of the test particle. On the
other hand, such a property reminds us of the “fictitious forces,” for example,
centrifugal and Coriolis forces, etc.; the presence of such forces are usually
attributed to a “bad choice” of frames (i.e. accelerating frames of reference).
To highlight the importance of this experimental fact, Einstein elevated this
equality (1.2) into the equivalence principle (EP):




an inertial frame with gravity “g”
is equivalent to

an accelerated frame with an acceleration of “−g”


.

This means that gravity and accelerated motion are indistinguishable. Once
gravity is included in this framework, all frames of reference, whether in
constant or accelerated motion, are now on equal footing. All coordinate trans-
formations can be taken into consideration at the same time. Furthermore, with
the problem stated in this way, Einstein was able to generalize this equivalence
beyond mechanics. By considering the various links between gravity and accel-
erated motion, Einstein came up with the idea that gravity can cause the fabric
of space (and time) to warp. Namely, the shape of space responds to the matter
in the environment.

3. Einstein was dissatisfied with the prevailing concept of space. SR confirms
the validity of the principle of special relativity: physics is the same in every
Galilean frame of reference. But as soon one attempts to describe physical
phenomena from a reference frame in acceleration with respect to an inertial
frame, the laws of physics change and become more complicated because of
the presence of the fictitious inertial forces. This is particularly troublesome
from the viewpoint of relative motion, since one could identify either frame
as the accelerating frame. (The example known as Mach’s paradox is discussed
in Box 1.1.) The presence of the inertial force is associated with the choice
of a noninertial coordinate system. Such coordinate-dependent phenomena can
be thought as brought about by space itself. Namely, space behaves as if it is
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the source of the inertial forces. Newton was compelled thus to postulate the
existence of absolute space, as the origin of these coordinate-dependent forces.
The unsatisfactory feature of such an explanation is that, while absolute space is
supposed to have an independent existence, yet no object can act on this entity.
Being strongly influenced by the teaching of Ernst Mach (Box 1.1), Einstein
emphasized that reference frames were human construct and true physics laws
should be independent of coordinate frames. Space and time should not be like
a stage upon which physical events take place, and thus have an existence even
in the absence of physical interactions. In Mach’s and Einstein’s view, space
and time are nothing but expressing relationships among physical processes
in the world—“space is not a thing.” Such considerations, together with the
idea of the principle of equivalence between gravitation and inertial forces, led
Einstein to the belief that the laws of physics should have the same form in all
reference forms, thus abolishing the concept of space as a thing. If one knows
the laws of physics in an inertial frame of reference having a gravitational field,
and carries out a transformation to a frame accelerating with respect to the first
one, then the effect of acceleration must be the same as that due to gravity in the
first. In Chapter 3, we shall provide several examples showing how to extract
physical consequences from applications of this EP.

Fig. 1.1 Mach’s paradox: Two identical
elastic spheres, one at rest, and the other
rotating, in an inertial frame of reference.
The rotating sphere is observed to bulge
out in the equatorial region, taking on an
ellipsoidal shape. (For proper consideration,
the two spheres should be separated by
a distance much larger than their size.)

Box 1.1 Mach’s principle

At the beginning of his 1916 paper on general relativity, Einstein dis-
cussed Mach’s paradox (Fig. 1.1) to illustrate the unsatisfactory nature of
Newton’s conception of space as an active agent. Consider two identical
elastic spheres separated by a distance much larger than their size. One is
at rest, and the other rotating around the axis joining these two spheres in
an inertial frame of reference. The rotating body takes on the shape of an
ellipsoid. Yet if the spheres are alone in the world, each can be regarded as
being in rotation with respect to the other. Thus there should be no reason
for dissimilarity in shapes.

Mach had gone further. He insisted that it is the relative motion of
the rotating sphere with respect to the distant masses that was respons-
ible for the observed bulging of the spherical surface. The statement that
the “average mass” of the universe gives rise to the inertia of an object
has come to be called Mach’s principle. The question of whether Einstein’s
final formulation of GR actually incorporates Mach’s principle is still being
debated. For a recent discussion see, for example, Wilczek (2004), who
emphasized that even in Einstein’s theory not all coordinate systems are
on equal footing.8 Thus the reader should be aware that there are subtle
points with respect to the foundation questions of GR that are still topics
in modern theoretical physics research.

8This is related to the fact that Einstein’s
theory is a geometric theory restricted to a
metric field, as to be discussed below.

1.2.2 Geometry as gravity

Einstein, starting with the EP, made the bold inference that the proper math-
ematical representation of the gravitational field is a curved spacetime (see
Chapter 5). As a result, while spacetime has always played a passive role in
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our physics description, it has become dynamic quantity in GR. Recall our
experience with electromagnetism; a field theoretical description is a two-step
description: the source, i.e. a proton, gives rise to field everywhere, as described
by the field equations (e.g. the Maxwell’s equations); the field then acts locally
on the test particle, i.e. an electron, to determine its motion, as dictated by the
equation of motion (Lorentz force law).

source −→ field −→ test particle

GR as a field theory of gravity with curved spacetime as the gravitational
field offers the same two-step description. Its essence is nicely captured in
an aphorism (by John A. Wheeler):

Spacetime tells matter how to move
Matter tells spacetime how to curve

Since a test particle’s motion in a curved space follows “the shortest possible and
the straightest possible trajectory” (called the geodesic curve), the GR equation
of motion is the geodesic equation (see Sections 4.2, 5.2, and 12.1). The GR
field equation (the Einstein equation) tells us how the source of mass/energy
can give rise to a curved space by fixing the curvature of the space (Sections 5.3
and 12.2). This is what we mean by saying that “GR is a geometric theory of
gravity,” or “gravity is the structure of spacetime.”

1.2.3 Mathematical language of relativity

Our presentation will be such that the necessary mathematics are introduced as
they are needed. Ultimately what is required for the study of GR is Riemannian
geometry.

Tensor formalism Tensors are mathematical objects having definite trans-
formation properties under coordinate transformations. The simplest examples
are scalars and vector components. The principle of relativity says that physics
equations should be covariant under coordinate transformation. To ensure that
this principle is automatically satisfied, all one needs to do is to write physics
equations in terms of tensors. Because each term of the equation transforms
in the same way, the equation automatically keeps the same form (its covari-
ant) under coordinate transformations. Let us illustrate this point by the familiar
example of Fi = mai as a rotational symmetric equation. Because every term of
the equation is a vector, under a rotation the same relation F ′i = ma′i holds in the
new coordinate system. The physics is unchanged. We say this physics equation
possesses the rotational symmetry. (See Section 2.1.1 for more detail.) In rel-
ativity, we shall work with tensors that have definite transformation properties
under the ever more general coordinate transformations: the Lorentz trans-
formations and general coordinate transformations (see Chapters 10 and 11).
If physics equations are written as tensor equations, then they are automatically
relativistic. This is why tensor formalism is needed for the study of relativity.

Our presentation will be done in the coordinate-based component formalism.
Although, this is somewhat more cumbersome than the coordinate-independent
formulation of differential geometry. This choice is made so that the reader can
study the physics of GR without overcoming the hurdle of another layer of
abstraction.
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Metric description vs. full tensor formulation Mathematically understand-
ing the structure of the Einstein equation is more difficult because it involves the
Riemannian curvature tensor. A detailed discussion of the GR field equation
and the ways of solving it in several simple situations will be postponed till
Part III. In Part I, our presentation will be restricted mainly to the description
of the space and time in the form of the metric function, which is a mathemat-
ical quantity that (for a given coordinate system used to label the points in the
space) describes the shape of the space through length measurements. From the
metric function one can deduce the corresponding geodesic equation required
for various applications (including the study of cosmology in Part II). We will
demonstrate in Part III that the metric functions used in Parts I and II are the
solutions of Einstein field equation.

In this introductory chapter, we have emphasized the viewpoint of relativity
as the coordinate symmetry. We can ensure that physics equations are covariant
under coordinate transformations if they are written as tensor equations. Since
the tensor formalism will not be fully explicated until Part III, this also means
that the symmetry approach will not be properly developed until later in the
book, in Chapters 10–12.

1.2.4 GR is the framework for cosmology

The universe is a huge collection of matter and energy. The study of its structure
and evolution, the subject of cosmology, has to be carried out in the framework
of GR. The large collection of matter and field means we must deal with strong
gravitational effects, and to understand its evolution, the study cannot be carried
out in the static field theory. The Newtonian theory for a weak and static grav-
itational field will not be an adequate framework for modern cosmology. In fact,
the very basic description of the universe is now couched in the geometric
language of general relativity. A “closed universe” is the one having positive
spatial curvature, an “open universe” is negatively curved, etc. Thus for a proper
study of cosmology, we must first learn GR.

Review questions

1. What is relativity? What is the principle of special relativity?
What is general relativity?

2. What is a symmetry in physics? Explain how the statement
that no physical measurement can detect a particular phys-
ical feature (e.g. orientation, or the constant velocity of a
lab), is a statement about a symmetry in physics. Illustrate
your explanation with the examples of rotation symmetry,
and the coordinate symmetry of SR.

3. In general terms, what is a tensor? Explain how a physics
equation, when written in terms of tensors, automatically
displays the relevant coordinate symmetry.

4. What are inertial frames of reference? Answer this in
three ways.

5. Equations of Newtonian physics are unchanged when we
change the coordinates from one to another inertial frame.
What is this coordinate transformation? Equations of electro-
dynamics are unchanged under another set of coordinate
transformations. How are these two sets of transformations
related? (Need only to give their names and a qualitative
description of their relation.)

6. What is the key difference between the coordinate transfor-
mations in special relativity and those in general relativity?
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7. What motivated Einstein to pursue the extension of special
relativity to general relativity?

8. In the general relativistic theory of gravitation, what is iden-
tified as the gravitational field? What is the general relativity

field equation? The general relativity equation of motion?
(Again, only the names.)

9. How does the concept of space differ in Newtonian physics
and in Einsteinian (general) relativistic physics?
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• We follow the historical introduction of special relativity (SR) as the
symmetry of Maxwell’s theory of electromagnetism.

• Einstein proposed a new kinematics: passage of time is different
in different inertial frames. The constancy of the speed of light in
every inertial frame implies a new invariant spacetime interval.

• A new geometric description interprets the new invariant interval as the
length in the 4D pseudo-Euclidean flat manifold, called Minkowski
spacetime.

• Transformations among inertial frames can be interpreted as “rota-
tions” in the 4D spacetime, and the explicit form of Lorentz
transformations derived.

• Time-dilation and length contraction are the physics consequence of
a spacetime manifold with a metric matrix equal to diag(−1,1,1,1).

In this chapter, a brief discussion of special relativity (SR) is presented. We
clarify its conceptual foundation and introduce the geometric formalism in
terms of flat spacetime. This prepares us for the study of the larger framework
of curved spacetime in general relativity (GR).

1Under a transformation, an “invariant” quan-
tity does not change; a “covariant” quantity
‘changes in the same way’. Thus, if all
terms in an equation are covariant, their rela-
tion, hence the equation, is unchanged. The
equation is said to be “covariant under the
transformation”.

2.1 Coordinate symmetries

In Chapter 1 we have already introduced the concept of a symmetry in physics.
It is the situation when physics equations, under some transformation, are
unchanged in their form (i.e. they are “covariant”).1 Here we shall first review
the familiar case of rotational symmetry, in preparation for our discussion of
Galilean symmetry of classical mechanics, and Lorentz symmetry of electro-
dynamics. We shall discuss the distinction between Galilean and Lorentz
transformations, first their formal aspects in this section, then their physical
basis in Section 2.2. In particular, we first introduce the Lorentz symmetry as
some mathematical property of the electrodynamics equation. Only afterwards
do we, following Einstein’s teachings, discuss the physics as implied by such
a coordinate symmetry.

2.1.1 Rotational symmetry

We shall illustrate the statement about symmetry with the familiar example
of rotational invariance. To have rotational symmetry means that physics is
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unchanged under a rotation of coordinates (NB, not a rotating coordinate). Take
the equation of Fi = mai (i = 1, 2, 3), which is the familiar F = ma equation
in the component notation, see Box 2.1. The same equation holds in different
coordinate frames which are rotated with respect to each other. Namely, the
validity of Fi = mai in a system O implies the validity of F ′i = m′a′i in any
other systems O′ which are related to O by a rotation. Mass m being a scalar,
while ai and Fi being vector components of the acceleration and force, we have

m′ = m, a′i =
∑

j

[R]ij aj, F ′i =
∑

j

[R]ij Fj, (2.1)

where [R]ij are the elements of the rotational matrix. (See Box 2.1 for details.)
Thus the validity F ′i − m′a′i = 0 follows from Fi − mai = 0 because the
transformation matrix [R] is the same for each set of vector components
(Fi and ai):

F ′i − m′a′i =
∑

j

[R]ij
(
Fj − maj

) = 0. (2.2)

That each term in this physics equation Fi = mai transforms in the same way
under the rotational transformation is displayed in Fig. 2.1. Under a trans-
formation, the different components of force and acceleration do change values
but their relations are not changed as the physics equation keeps the same form.
F = ma is a vector equation (or, more generally, a tensor equation) as each
term of the equation has the same transformation property (as a vector) under
rotation. We see that if the physics equation can be written as a vector equation,
it automatically respects rotation symmetry.

u

e92 e2

e91

e1

a92

a1

aa2

a91

u

e92 e2

e91

e1

F92

F1

FF2

F91

(a)

(b)

Fig. 2.1 Coordinate change of a vector under
rotation. A change of the basis vectors means
that components of different vectors, whether
acceleration vector as in (a) or force vector as
in (b), all transform in the same way, as in
(2.1).

Box 2.1 Coordinate transformation in the component notation

For a given coordinate system with basis vectors {ei}, a vector—for
example, the position vector x—can be represented by its components
x1, x2, and x3, with {xi} being the coefficients of expansion of x with respect
to the basis vectors:

x =
3∑

i=1

xiei = x1e1 + x2e2 + x3e3. (2.3)

With a change of the coordinate system {ei} → {e′i}, the same vector would
be represented by another set of components (Fig. 2.1):

x =
3∑

i=1

x′ie′i. (2.4)

For the example of the coordinate transformation being a rotation by an
angle of θ around the z-axis, the new position components are related to
the original ones by the relation as can be worked out geometrically from
Fig. 2.1:

x′1 = cos θx1 + sin θx2,

x′2 = − sin θx1 + cos θx2, (2.5)

x′3 = x3.



16 Special relativity and the flat spacetime

This set of equations can be written compactly as a matrix (the rotation
transformation matrix) multiplying the original vector to yield the new
position components:




x′1
x′2
x′3


 =




cos θ sin θ 0
− sin θ cos θ 0

0 0 1






x1

x2

x3


. (2.6)

This matrix equation can be expressed in component notation as

x′i =
3∑

j=1

[R]ij xj = [R]i1 x1 + [R]i2 x2 + [R]i3 x3, (2.7)

where [R]11 = cos θ and [R]12 = sin θ , etc. Such a transformation
holds for all the vector components. For example, the components of the
acceleration vector a and force vector F transform in the same way:

a′i =
∑

j

[R]ij aj, F ′i =
∑

j

[R]ij Fj (2.8)

—with the same rotation matrix [R] as in (2.6). In fact this is the definition
of vector components. Namely, they are a set of numbers {Vi}, which,
under a rotation, changes according to the transformation rule given in
(2.7) and (2.8):

V ′i =
∑

j

[R]ij Vj. (2.9)

2.1.2 Newtonian physics and Galilean symmetry

One of the most important lessons Galileo and Newton have taught us is that
description of the physical world (hence the physics laws) is simplest when
using the inertial frames of reference. The transformation that allows us to go
from one inertial frame O with coordinates xi to another inertial frame O′ with
coordinates x′i is the Galilean transformation: if the relative velocity of the two
frames is given to be v (a constant) and their relative orientation are specified
by three angles α, β, and γ , the new coordinates are related to the old ones by
xi −→ x′i = [R]ijxj − vit, where [R] = [R(α, β, γ )] is the rotation matrix.
In Newtonian physics, the time coordinate is assumed to be absolute, that is,
it is the same in every coordinate frame. In the following we shall be mainly
interested in coordinate transformations among inertial frames with the same
orientation, [R(0, 0, 0)]ij = δij (see Fig. 2.2). Such a transformation is called
a (Galilean) boost:

x −→ x′ = x − vt, (2.10)

t −→ t′ = t.

v

y

vt

y�

x�O�O

P

x

Fig. 2.2 The point P is located at (x, y) in the
O system and at (x′, y′) in the O′ system which
is moving with velocity v in the x direction.
We have x′ = x − vt, and y′ = y.

Newtonian relativity says that the physics laws (mechanics) are unchanged
under the Galilean transformation (2.10). Physically this implies that no
mechanical experiment can detect any intrinsic difference between the two
inertial frames. It is easy to check that a physics equation such as Gmr̂/r2 = a
does not change its form under the Galilean transformation as the coordinate
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separation r = x1 − x2 and the acceleration a are unchanged under this
transformation. In contrast to these invariant quantities, the velocity vector,
u = dx/dt, will change: it obeys the velocity addition rule:

u −→ u′ = u− v, (2.11)

which is obtained by a differentiation of (2.10).

2.1.3 Electrodynamics and Lorentz symmetry

One can show that Maxwell’s equations are not covariant under Galilean
transformation. The easiest way to see this is by recalling the fact that the
propagation speed of the electromagnetic wave is a constant

c =
√

1

µ0ε0
(2.12)

with ε0 and µ0, the permittivity and permeability of free space, being the
constants appearing in the Coulomb’s and Ampere’s laws. Clearly, c is the same
in all inertial frames. This constancy violates the Galilean velocity addition
rule of (2.11). Two alternative interpretations can be drawn from this apparent
violation:

1. Maxwell’s equations do not obey the principle of (Newtonian) relativity.
By this we mean that Maxwell’s equations are valid only in one inertial frame.
Hence the relativity principle is not applicable. It was thought that, like all
mechanical waves, an electromagnetic wave must have an elastic medium for
its propagation. Maxwell’s equations were thought to be valid only in the rest
frame of the aether medium. The constant c was interpreted to be the wave
speed in this aether—the frame of absolute rest. This was the interpretation
accepted by most of the nineteen century physicists.

2. Maxwell’s equations do obey the principle of relativity but the relation
among inertial frames are not correctly given by the Galilean transformation.
Hence the velocity addition rule of (2.11) is invalid; the correct relation should
be such that c can be the same in every inertial frame. The modification
of velocity addition rule must necessarily bring about a change of the time
coordinate t′ �= t.

The second interpretation turned out to be correct. The measurement made
by Michelson and Morley showed that the speed of light is the same in different
moving frames. It had been discovered by Poincaré, independent of Einstein’s
1905 work, that Maxwell’s equations were covariant under a new boost trans-
formation, “the Lorentz transformation” (see Box 2.2). Namely, Maxwell’s
equations keep the same form if one makes the formal change, including the
time variable, from (t, x, y, z) to (t′, x′, y′, z′), representing the coordinates of
two frames moving with a relative velocity v = vx̂:

x′ = γ (x − vt), y′ = y, z′ = z, t′ = γ
(

t − v

c2
x
)

, (2.13)

where the parameter γ depends on the relative speed of the two reference
frames as

γ = 1√
1− β2

, β = v

c
. (2.14)
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We have in general β ≤ 1 and γ ≥ 1. We note that the spatial transformation
is just the Galilean transformation (2.10) multiplied by the γ factor and is thus
reduced to (2.10) in the low velocity limit of β → 0, hence γ → 1.

Box 2.2 Maxwell’s equations and Lorentz transformation

An electric charge at rest gives rise to an electric, but not a magnetic,
field. However, the same situation when seen by a moving observer is a
charge in motion, which produces both electric and magnetic fields. This
shows that the electric and magnetic fields will change into each other in
moving coordinates. When we say Maxwell’s equation is covariant under
the Lorentz transformation we must also specify the Lorentz transformation
properties of the fields E and B as well as the current and charge densities,
j and ρ. Namely, under Lorentz transformation, not only the space and
time coordinates will change, but also the electromagnetic fields and source
charge and currents. However, the relation among these changed quantities
remain the same, as those given by the Maxwell’s equations as in the
original frame of reference.

The transformation formulae for these electromagnetic quantities are
somewhat simpler when written in the Heaviside–Lorentz system of units,2

in which the measured parameter is taken, instead of (ε0, µ0), to be c, the
velocity of EM wave. In this system, the Lorentz force law reads

F = q

(
E+ 1

c
v × B

)
, (2.15)

while the Maxwell equations take the form

∇ · B = 0, ∇ × E+ 1

c

∂B
∂t
= 0, (2.16)

∇ · E = ρ, ∇ × B− 1

c

∂E
∂t
= j

c
. (2.17)

In this unit system, the Lorentz transformation properties of the electro-
magnetic fields are given by

E′1 = E1, E′2 = γ (E2 − βB3), E′3 = γ (E3 + βB2),

B′1 = B1, B′2 = γ (B2 + βE3), B′3 = γ (B3 − βE2)

(2.18)

and those of the charge and current densities are given by

j′1 = γ ( j1 − vρ) , j′2 = j2, j′3 = j3, ρ′ = γ
(
ρ − v

c2
j1
)

. (2.19)

Using these transformation rules, as well as those for the space and time
coordinates (2.13), we can check in a straightforward manner (as in
Problem 2.4) that equations of electromagnetism are unchanged in their
form (i.e. they are covariant) under Lorentz transformation.

2Conversion table from mks unit system to
that of Heaviside–Lorentz:

mks Heaviside–Lorentz

√
ε0 E −→ E

√
1/µ0 B −→ B

√
1/ε0(ρ, j) −→ (ρ, j)

2.1.4 Velocity addition rule amended

Maxwell’s equations respect the Lorentz symmetry, and they must be compat-
ible with the physical phenomenon of the electromagnetic wave propagating
with the same velocity c in all the moving frames. The Lorentz transformation
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must imply a new velocity addition rule which allows for a constant c in every
inertial frame. Writing (2.13) in differential form

dx′ = γ (dx − vdt), dy′ = dy, dz′ = dz, dt′ = γ
(

dt − v

c2
dx
)

, (2.20)

we obtain the velocity transformation rule by simply constructing the appropri-
ate quotients:

u′x =
dx′

dt′
= dx − vdt

dt − (v/c2)dx
= ux − v

1− (vux/c2)
, (2.21)

u′y =
dy′

dt′
= dy

γ (dt − (v/c2)dx)
= uy

γ (1− (vux/c2))
, (2.22)

u′z =
dz′

dt′
= uz

γ (1− (vux/c2))
. (2.23)

For the special case of two frames moving with a relative velocity v = vx̂
parallel to the velocity under study: ux = u and uy = uz = 0, we have

u′ = u− v

1− ((uv)/c2)
, (2.24)

while the y and z components remain unchanged (u′y = u′z = 0). Namely, it
is just the familiar velocity addition (2.11), but with the right-hand side (RHS)
divided by an extra factor of (1− uv/c2). It is easy to check that an input of
u = c leads to an output of u′ = c—thus the constancy of the light velocity in
every inertial frame of reference.

The Michelson–Morley experiment confirmed the notion that speed of light c
is the same in different inertial frames. Namely, the Galilean velocity addition
rule Eq. (2.11) is not obeyed. But historically, because Einstein had already
been convinced of the physical validity of a constant c, this experimental result
per se did not play a significant role in Einstein’s thinking when he developed
the theory of SR.

2.2 The new kinematics of space and time

The covariance under Lorentz transformation, that is, the coordinate inde-
pendent nature, of electromagnetism equations was independently discovered
by Poincaré. But it was Einstein who had first emphasized the physical basis of
a new kinematics that was required to fully implement the new symmetry—in
particular the necessity of having different time coordinates in different iner-
tial frames when the speed of signal transmission was not infinite. He had
emphasized that the definition of time was ultimately based on the notion of
simultaneity because the requirement of clock synchronization, etc., but simul-
taneity (�t = 0, actually any definite time interval �t) is not absolute, when
the speed of signal transmission is finite. Namely, a time interval measured by
one inertial observer will differ from that by another who is in relative motion
with respect to the first observer. Simultaneity is also a relative concept.

A coordinate system is a reference system with a coordinate grid (to determine
the position) and a set of clocks (to determine the time of an event). We require
all the clocks to be synchronized (say, against the master clock located at the
origin). The synchronization of a clock, located at a distance r from the origin,
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can be accomplished by sending out light flashes from the master clock at
t = 0. When the clock receives the light signal, it should be set at t = r/c.
Equivalently, synchronization of any two clocks can be checked by sending out
light flashes from these two clocks at a given time. If the two flashes arrive at
their midpoint at the same time, they are synchronized.

2.2.1 Relativity of spatial equilocality

To describe a certain quantity as being relative means that it is not invariant under
coordinate transformations. In this section, we shall consider the various invari-
ants (and noninvariants) under different types of coordinate transformations.

Two events happening at the same spatial location are termed to be “equi-
local.” If two events (x, t1) and (x, t2) do not take place at the same time,
�t = t2 − t1 �= 0, equilocality for these two events is already a relative notion
even under Galilean transformation (2.10),

�x′ = v�t �= 0, even though �x = 0. (2.25)

It is useful to have a specific illustration: a light bulb at a fixed position on a
moving train emits two flashes of light. To an observer on the train these two
events are spatially equilocal but not simultaneous. Clearly this equilocality is
a relative concept, because, to an observer standing on the rail platform as the
train passes by, they appear as two flashes emitted at two different locations.
See Fig. 2.3.

2.2.2 Relativity of simultaneity—the new kinematics

Einstein pointed out that, in reality where the signal transmission could not
be carried out at infinite speed, simultaneity of two events would be a relative
concept: two events, observed by one observer to be simultaneous, would be
seen by another observer in relative motion to occur at different times.

First we need a commonly agreed-upon definition of simultaneity. For
example, we can mark off the midpoint between two locations. Two events that
take place at these two locations are said to be simultaneous if they are “seen”
by the observer at the midpoint to take place at the same time. The operation

v
x91 = x92

x1 ≠ x2

x92

x91

x2

x1

Fig. 2.3 Spatial congruity of two events is relative if they take place at different times. A light bulb
at a fixed position on a moving train flashes twice. To the observer on the train, these two events
(x′1, t′1) and (x′2, t′2) are spatially congruous x′1 = x′2; but to another observer standing on the rail
platform, these two events (x1, t1) and (x2, t2) take place at two different locations x1 �= x2.
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vt91 = t92

t1 ≠ t2

Fig. 2.4 Simultaneity is relative when light is not transmitted instantaneously. Two events (x′1, t′1)
and (x′2, t′2) corresponding to lights flashed at opposite ends of a moving train are seen as simul-
taneous t′1 = t′2 by an observer on the train (e.g. with the observer receiving the signal simultaneously
when standing at the midpoint). But to another observer standing on the rail platform, these two
events (x1, t1) and (x2, t2) are not simultaneous, t1 �= t2, because the light signals reach her at
different times.

of “seeing” these two events involves receiving light signals from these two
events. Apply this operational definition of simultaneity to the following case.
Two light bulbs are located certain distance apart �x′. If an observer stand-
ing midway receives light signals from these two bulbs at the same time, this
observer will regard the emissions from these two light bulbs as simultane-
ous events. Namely, the observer would deduce that these two events of light
emission took place at two equal intervals ago: t′1 = t′2 = �x′/2c.

We now illustrate the relativity of simultaneity for two observers in relative
motion (Fig. 2.4). Let these two light bulbs be located at the two ends of a rail car.
One observer is at the midpoint on the moving car, another observer at midpoint
on the rail platform. (One can pre-arrange triggers on the rail so that the bulbs
emit their light signals when the rail car’s middle just line up with the platform
observer. Namely, the lights originate at equal distance from the observer).
As a result of the moving car and the finite light speed, the emissions, seen by
the rail car observer to be simultaneous, will no longer be seen by the platform
observer to be simultaneous. When the light pulses arrive at the observer, this
would no longer be the midpoint: one bulb would have moved further away and
the other closer. It would then take different amounts of time to cover these two
different distances, resulting in different arrival times at the platform observer.
To this observer these two emission events are not simultaneous.

Let us calculate the deviation from simultaneity as seen by the platform
observer. For an observer, the time interval it takes light to travel the distance
from the bulb to the observer is their distance separation (at the time of light
arrival) divided by the speed of light. The initial separation between the two
bulbs being the rail-car length Lp as seen by the platform observer,3 the dis- 3We simplify the kinematics to an 1D prob-

lem by assuming negligibly small transverse
lengths.

tance at the arriving time between the “approaching bulb” and the observer is
1
2 Lp − vt, and the distance to the “receding bulb” is 1

2 Lp + vt. Divided by c,
they give rise to two different time intervals t1 and t2. Their difference is the
amount of nonsimultaneity:

t2 − t1 = Lp

2c

(
1

1− β
− 1

1+ β

)
= γ 2 β

c
Lp, (2.26)

where we have used the expression of β and γ of (2.14). Namely two events,
seen in one frame to be simultaneous �t′ = 0, are observed by a moving
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observer to take place at two instances apart, by

�t = γ 2 β

c
Lp. (2.27)

Further calculations relating to the issue of simultaneity can be found in
Section 2.3.4, as well as in Problem 2.15.

The reason why one reached the erroneous conclusion in Newtonian physics
(that the rail platform observer also sees these as two simultaneous events) is
related to the fact that the train speed is extremely small compared to the speed
of light signal propagation, v 	 c. Namely, the nonsimultaneity in the rail
platform frame is so small, of the order of v/c, as to be unobservable. The true
transformation rule can in the low-speed limit be approximated by taking the
limit of v/c → 0 (namely, c →∞). This of course reduces the transformation
(2.13) to the Galilean form (2.10).

2.2.3 The invariant space–time interval

Now if �x and �t are no longer absolute to different observers, is there any
invariant left? It turns out that there is still one invariant—a certain combination
of �x and �t remains to be absolute even though space and time measurements
are all relative.

To find this new invariant, we first need to state the basic postulates of SR:

Principle of relativity. Physics laws have the same form in every iner-
tial frame of reference. No physical measurement can reveal the absolute
motion of an inertial frame of reference.

Constancy of the light speed. This second postulate is certainly consistent
with the first one. The constancy of light speed is a feature of electro-
dynamics and the principle of relativity would lead us to expect it to hold
in every frame.

We shall show that the following space–time interval is absolute, that is, it has
the same value in every inertial frame (Landau and Lifshitz, 1975).

�s2 = �x2 +�y2 +�z2 − c2�t2, (2.28)

where �x = x2 − x1, etc. (Table 2.1). Ultimately this invariance comes about
because of the constancy of c in every reference frame: �s is absolute because
c is absolute.

First consider the special case when the two events (x1, t1) to (x2, t2) are
connected by a light signal. The interval �s2 must vanish because in this case
(�x2 + �y2 + �z2)/�t2 = c2. When observed in another frame O′, this
interval also has a vanishing value �s′ 2 = 0, because the velocity of light
remains the same in the new frame O′. From this, we conclude that any interval
connecting two events (not necessarily by a light signal) when viewed in two
different coordinates must always be proportional to each other because, if �s2

vanishes, so must �s′ 2:
�s′ 2 = F�s2, (2.29)

where F is the proportional factor, and it can in principle depend on the coord-
inates and the relative velocity of these two frames: F = F(x, t, v). However,
the requirement of space and time being homogeneous (i.e. there is no privileged
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point in space and in time) implies that there cannot be any dependence of x and t.
That space is isotropic means that the proportional factor cannot depend on the
direction of their relative velocity v. Thus we can at most have it to be dependent
on the magnitude of the relative velocity, F = F(v). We are now ready to show
that, in fact, F(v) = 1.

Besides the system O′, which is moving with velocity of v with respect to
system O, let us consider yet another inertial system O′′ which is moving with
a relative velocity of −v with respect to the O′ system.

O
v−→ O ′ −v−→ O ′′. (2.30)

From the above consideration, and applying (2.29) to these frames:

�s′ 2 = F(v)�s2,

�s′′ 2 = F(v)�s′ 2 = [F(v)]2�s2. (2.31)

However, it is clear that the O′′ system is in fact just the O system. This requires
[F(v)]2 = 1. The solution F(v) = −1 being nonsensical, we conclude that this
interval �s is indeed an invariant: �s′′ = �s′ = �s. Namely every inertial
observer, who always sees the same light velocity, would obtain the same value
for this particular combination of space and time interval.

That the space–time combination s2 = x2 + y2 + z2 − c2t2 is invariant
under Lorentz transformation can be checked by using the explicit form of the
transformation rule as given in Eq. (2.13).

Proper time This interval �s has the physical significance of being directly
related to the time interval in the rest frame of the particle: rest frame means
there is no spatial displacement �x =0,

�s2 = −c2�τ 2. (2.32)

The rest-frame time coordinate τ is called the proper time. Since there is only
one rest-frame, its time interval must be unique—all observers should agree on
its value. This is the physical basis for the invariance of this quantity.

New kinematics and dynamics In Section 2.3 we shall present the new kin-
ematics in which the invariance of the space–time interval �s plays a key role.
The new kinematics is the setting for the coordinate symmetry showing that
physics is unchanged under coordinate transformations that have an invari-
ant �s. Such transformations, the Lorentz transformations, can be thought as
“rotations” in the 4D space of three spatial, and one time, coordinates, with a
length given by �s. Maxwell’s electrodynamics already has this new relativity

Table 2.1 Intervals that are invariant (marked by �)
under the respective transformations vs. those that are

not

Intervals Galilean Lorentz
transformation transformation

�t for �x �= 0 � ×
�x for �t �= 0 × ×
�x2 − c2�t2 �



24 Special relativity and the flat spacetime

symmetry, but Newton’s laws of mechanics do not. They will have to be gen-
eralized so as to be compatible with this coordinate symmetry. However, this
discussion of the relativistic dynamics will be postponed till Chapter 10, when
we present tensor formalism of the 4D spacetime.

2.3 Geometric formulation of SR

Maxwell’s equations for electrodynamics are not compatible with the principle
of Newtonian relativity. Most notably, the constancy of electromagnetic wave
velocity in every inertial frame violates the familiar velocity addition rule of
(2.11). Consequently it is difficult to formulate a consistent electrodynamic
theory for a moving observer. Einstein’s resolution of these difficulties was
stated in an all-embracing new kinematics.4 In other words, an understanding4The famous 1905 paper by Einstein had

the title, “On the electrodynamics of moving
bodies.”

of the physics behind the Lorentz covariance, as first discovered in Maxwell’s
equations, would involve a revision of our basic notions of space and time. This
would have fundamental implications for all aspects of physics, far and beyond
electromagnetism.

The new kinematics can be expressed elegantly in a geometric formalism
of 4D spacetime as first formulated by Herman Minkowski. The following are
the opening words of an address he delivered at the 1908 Assembly of German
National Scientists and Physicians held in Cologne.

The views of space and time which I wish to lay before you have sprung
from the soil of experimental physics, and therein lies their strength. They
are radical. Henceforth space by itself, and time by itself, are doomed to
fade away into mere shadows, and only a kind of union of the two will
preserve an independent reality.

Special relativity emphasizes the symmetry between space and time. But
spatial length and time interval have different measurement units. One way
to see the significance of light speed c is that it is the conversion factor con-
necting the space and time coordinates. Thus the dimensionful number c is of
fundamental importance to relativity, because without it we would not be able
to discuss the symmetry of physics with respect to transformations between
space and time.

2.3.1 General coordinates and the metric tensor

We will interpret the new spacetime invariant in (2.28) as the expression of
a length in a 4D space with ct being the fourth coordinate. In a 4D Euclidean
space with Cartesian coordinates (w, x, y, z), the invariant length is given as
s2 = w2 + x2 + y2 + z2. One the other hand, what we have in SR is
s2 = −c2t2 + x2 + y2 + z2. The minus sign in front of the c2t2 term means
that if we choose to think ct being the fourth dimension, we must work with a
pseudo-Euclidean space, and consider coordinates different from the familiar
Cartesian coordinates. In this section, we shall introduce the topic of generalized
coordinates and distance measurements (via the metric). The same formalism
is applicable to coordinates in a warped space, which we will need to use in
later discussions.
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Basis vectors define the metric
To set up a coordinate system for an n-dimensional space means to chose a set
of basis vectors {ei} where i = 1, 2, . . ., n. In general this is not an orthonormal
set ei · ej �= δij, where δij is the Kronecker delta: it equals 1 when i = j and 0
when i �= j. Nevertheless we can represent it as a symmetric matrix, called the
metric, or the metric tensor:

ei · ej ≡ gij, (2.33)

which can be viewed as the elements of a matrix

[g] =




g11 g12 . . .

g21 g22 . . .
...

...


 =




e1 · e1 e1 · e2 . . .

e2 · e1 e2 · e2 . . .
...

...


. (2.34)

Thus the diagonal elements are the (squared) length of the basis vectors:
|e1|2, |e2|2, etc., while the off-diagonal elements represent their deviations
from orthogonality. Namely, any set of mutually perpendicular bases would be
represented by a diagonal metric matrix, even though the bases may not have
unit lengths.

Given the definition (2.33), it is clear that metric for a curved space must
be position-dependent gij(x) as in such a space the bases vectors {ei} must
necessarily change from point to point. This means that a flat space is the
one in which it is possible to find a coordinate system so that the metric is
position independent, that is, all elements of the metric matrix for a flat space
are constants. For an Euclidean space, we can have the Cartesian coordinates
with a set of orthonormal bases ei · ej = δij. Namely, the metric is simply given
by the identity matrix, [g] = 1.

We can expand any vector in terms of the basis vectors

V =
∑

i

V iei, (2.35)

where the coefficients of expansion {Vi} are labeled with superscript indices.5 5Such a convention is adopted here in
preparation for our discussion of tensors in
Chapters 10 and 11, where upper-indexed
components are identified as the contravari-
ant components of a vector (or tensor), while
the lower-indexed ones are the covariant
components.

Consider the scalar product of two vectors

V · U =
(∑

i

V iei

)
·

∑

j

U jej




=
∑
i, j

ei · ejV
iU j =

∑
i, j

gijV
iU j. (2.36)

Making it more explicit

V · U =
(

V1, V2, . . .
)



g11 g12 . . .

g21 g22 . . .
...

...







U1

U2

...


. (2.37)

The metric is needed to relate the scalar product to the vector components. For
the case V = U, the above equation is an expression for the (squared) length of
the vector. Thus the metric relates the length to the vector components. In fact, a
common practice is to define the metric through this relation between the length
and coordinates, cf. (2.48).
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The summation of an upper index with a lower index is called a “contraction.”
At this point we also introduce the “Einstein summation convention”—we omit
the display of summation signs, whenever there is a pair of repeated (upper and
lower) indices: it is understood that they are being summed over. For example

gijV
iU j ≡

∑
i, j

gijV
iU j. (2.38)

u

e92 e2

e91

e1

V92

V1

VV2

V91

Fig. 2.5 Changing a system (e1, e2) to
another (e′1, e′2) in a coordinate transforma-
tion.

Coordinate transformations
Let us now consider a coordinate transformation {ei} → {e′i}. Namely, the basis
vectors change while the vector quantity, say, V is unchanged, see Fig. 2.5.
On the other hand the vector components {Vi}, being the projections onto the
coordinate bases, would change {Vi} → {V ′i} along with the coordinates. They
are related by the transformation matrix elements [R]ij so that

V ′i = [R]ijV j, Vi = [R̄]ijV ′j, (2.39)

where [R̄] is the inverse transformation [R̄] = [R]−1 Rotation transformation
as an example has already been discussed in (2.8). NB we have used Einstein’s
convention so that the summation of “dummy indices” j is understood. A scalar
product being an invariant, we must have, using (2.36),

gijV
iU j = g′klV

′kU ′l. (2.40)

(Namely, we restrict ourselves to length preserving transformations.) Substitute
in the transformation rule of (2.39) on the left-hand side (LHS), we have66NB while matrix multiplication is in general

noncommutative [A][B] �= [B][A], matrix
elements, such as [A] j

i and [B]kj , being ordi-
nary numbers, can be written in whatever
order we wish: [A] j

i [B]kj = [B]kj[A] j
i .

gij[R̄]ik[R̄] j
lV
′kU ′l = g′klV

′kU ′l. (2.41)

Since the vector components V ′k and U ′l are completely arbitrary, in order for
the above equality to hold for all possible values of V ′k and U ′l, their coefficients
must equal:

gij[R̄]ik[R̄] j
l = g′kl. (2.42)

A multiplication of two matrices involves a summation of the column index of
the first matrix and the row index of the second. Namely, the summed index
pair must stand next to each other. In the above expression (2.42), while the pair
of j indices satisfy this condition and there is the multiplication of the metric
matrix [g] and the transformation matrix [R̄]

gij[R̄] j
l = ([g][R̄])il, (2.43)

the i-pair indices are out of order. For this to represent a matrix multiplication,
we must flip the order of the two indices (i, k)—interchange the row and column
of the [R̄] matrix:

gij[R̄]ik = [R̄]ikgij =
[
R̄�
] i

k gij, (2.44)

where [R̄�] is the transpose of [R̄]. In this way, (2.42) may be written as a
matrix equation,

[R̄�][g][R̄] = [g′], (2.45)

representing the condition for the invariance of scalar products (such as V ·U).
Namely, this equation shows how the metric tensor [g] must change under the
coordinate transformation (2.39) that keeps the length of a vector invariant.
That it is the inverse transformation [R̄] that should appear here will be further
explained in the tensor chapters (10 and 11). For the Euclidean space with
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Cartesian coordinates we have orthonormal bases so that [g′] = [g] = 1. (2.45)
is reduced to the familiar orthogonality condition [R̄�][R̄] = [R�][R] = 1.
Namely, the length preserving transformation in a Euclidean flat space must be
an orthogonal transformation—a rotation. See Section 2.3.2. In a generalized
flat space, such as the Minkowski space of SR, while [g] �= 1, we still have an
invariant metric [g′] = [g]. The generalized orthogonality condition of a length
preserving transformation becomes

[R][g][R�] = [g], (2.46)

which is equivalent to [R̄][g][R̄�] = [g].

Minkowski space and its metric
That measurement results for time, as well as space, are coordinate-frame-
dependent means that time can be treated on the same footing as space
coordinates. The unification of space and time can be made explicit when space
and time coordinates appear in the same vector. We shall reiterate the above
discussion, now explicitly for the Minkowski spacetime. This four-dimensional
space has coordinates {xµ} where the index µ = 0, 1, 2, 3. Namely,

xµ = (x0, x1, x2, x3) = (ct, x, y, z). (2.47)

For the scalar product V · U = gijV iU j we consider in particular the infinites-
imal interval ds2 = dx · dx = −c2dt2 + dx2 + dy2 + dz2, where dx is a vector
in 4D Minkowski space, i.e. a 4-vector. We can interpret the Lorentz transfor-
mation geometrically as a “rotation” in the Minkowski space that preserves the
length ds′ 2 = ds2,

ds2 = (dx0, dx1, dx2, dx3)



−1

1
1

1







dx0

dx1

dx2

dx3




≡ ηµνdxµdxν , (2.48)

where we have used the Einstein summation convention in writing the last line.
Thus the Minkowski space has a metric

gµν = diag(−1, 1, 1, 1) ≡ ηµν . (2.49)

Because the metric is a constant, we say Minkowski spacetime is flat space.7 7This is a sufficient but not necessary condi-
tion for a flat space. As we shall discuss further
in Chapter 4 (see specially Box 4.1), only in
a flat space we can find a coordinate system
with a position independent metric. Consider
the example of a flat plane, where the metric is
constant in the Cartesian coordinates but not
so in the polar coordinate system.

It differs from the familiar Euclidean space only by having a negative value
for the metric component η00 = −1. As we shall discuss, spacetime manifold
is warped in the presence of matter and energy. In fact, in Einstein’s general
theory of relativity, the curved spacetime is the gravitational field and the metric
gµν(x) is necessarily position-dependent. The pseudo-Euclidean flat spacetime
is obtained only in the absence of gravity. This is the limit of SR.

Lorentz coordinate transformation dx′ = [L]dx may be written in the
matrix form as (2.39):

dx′µ = [L]µν dxν , (2.50)

where dx is a 4-vector and [L] is the 4 × 4 Lorentz transformation matrix. It
may be regarded as a rotation in Minkowski space. Elements of [L] can be fixed
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by the length-invariance condition (2.46), now written as

[L][η][L]� = [η]. (2.51)

where [η] is the Minkowski metric matrix of (2.49).

2.3.2 Derivation of Lorentz transformation

In the following we shall demonstrate how the pseudo-Euclidean metric of
Eq. (2.49) determine, through Eq. (2.51), the form of the length preserving
coordinate transformations in the Minkowski spacetime.

The rotation transformation
We start with a rotation around the z-axis by an angle θ that leaves the (z, t)
coordinates unchanged. Suppressing such unchanged coordinates, Eq. (2.50) is
represented by an effective 2× 2 rotation matrix:

(
dx′
dy′
)
=
(

a b
c d

)(
dx
dy

)
, (2.52)

with Eq. (2.51) written out as
(

a b
c d

)(
1 0
0 1

)(
a c
b d

)
=
(

1 0
0 1

)
. (2.53)

The diagonal conditions of a2 + b2 = c2 + d2 = 1 can be solved by the
parametrization of a = cos φ, b = sin φ and c = sin φ′, d = cos φ′; while
the off-diagonal condition of ac + bd = sin(φ + φ′) = 0 implies φ = −φ′.
In terms of the actual rotation angle θ , we have the identification φ = −θ .

(
dx′
dy′
)
=
(

cos θ − sin θ

sin θ cos θ

)(
dx
dy

)
. (2.54)

Or, dx′ = [R(θ)]dx and the rotational matrix [R(θ)] can be deduced from the
length preserving condition (2.51).

The boost transformation
We now consider the relation between two inertial frames connected by a boost
(with velocity v) in the +x direction. This coordinate transformation matrix
can be similarly fixed by (2.51). Since the ( y, z) coordinates are not affected,
we again have effectively a two-dimensional problem. Equation (2.50) takes on
the form: (

cdt′
dx′
)
=
(

a b
c d

)(
cdt
dx

)
(2.55)

and the length invariant condition of (2.51) is written out now as
(

a b
c d

)(−1 0
0 1

)(
a c
b d

)
=
(−1 0

0 1

)
. (2.56)

The conditions of a2−b2 = −c2+d2 = 1 can be solved by the parametrization
of a = cosh ψ , b = sinh ψ and c = sinh ψ ′, d = cosh ψ ′; while the off-
diagonal condition of −ac + bd = − cosh ψ sinh ψ ′ + sinh ψ cosh ψ ′ =
sinh(ψ −ψ ′) = 0 yields ψ = ψ ′. Thus a Lorentz boost transformation has the
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matrix form of

[L(ψ)] ≡
(

a b
c d

)
=
(

cosh ψ sinh ψ

sinh ψ cosh ψ

)
. (2.57)

To relate the parameter ψ to the boost velocity v, we note that the coordinate
origin x′ = 0 of the O′ system (x′ = ct sinh ψ + x cosh ψ = 0) moves with
velocity v = x/t along the x-axis of the O system.

x

t
= −c

sinh ψ

cosh ψ
= v or

sinh ψ

cosh ψ
= −β. (2.58)

Rewriting the identity cosh2 ψ − sinh2 ψ = 1 as

cosh ψ

√√√√1−
(

sinh2 ψ

cosh2 ψ

)
= 1,

we find

cosh ψ = γ and sinh ψ = −β cosh ψ = −βγ , (2.59)

where β and γ are defined in (2.14). The coordinate transformation (2.55) is
found to be

(
cdt′
dx′
)
= γ

(
1 −β

−β 1

)(
cdt
dx

)
, (2.60)

which is just the Lorentz transformation stated in (2.13).
Thus we see that dxµ = (dx0, dx1, dx2, dx3) = (cdt, dx, dy, dz) form

a 4-vector. Namely, these four components transform in a definite way under
Lorentz transformation: observers in relative motion see different space and
time components, or, as we say, space and time can transform into each other.
Maxwell’s electrodynamics equations have Lorentz symmetry because they
are covariant under such transformations (instead of Galilean transformations).
Thus, in order for Newtonian mechanics to be relativistic, that is, Lorentz
symmetric, they must be generalized and reformulated. As we shall discuss
in Chapter 10, we need to generalize the momentum from the familiar nonrel-
ativistic expression of pNR = mv to the relativistic momentum of p = γ mv with
γ again being the expression given in Eq. (2.14). In fact, observers in relative
motion see different energy and momentum components. The three com-
ponents of relativistic momentum, together with relativistic energy E = γ mc2

form a 4-vector

pµ = (γ mc, γ mvx, γ mvy, γ mvz) (2.61)

= ( p0, p1, p2, p3) ≡
(

E

c
, p
)

. (2.62)

They transform into each other under Lorentz transformation in exactly the
same manner as (cdt, dx, dy, dz) transform into each other. Just as the “length”
of the 4-vector differential dxµ is an Lorentz invariant ds2 (cf. (2.48)), so is the
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length of the momentum 4-vector

ηµνpµpν = −E2

c2
+ p2 = −m2c2. (2.63)

Namely, the Lorentz invariant is −m2c2 with m being the rest mass, leading to
the well-known relativistic energy–momentum relation

E =
√

p2c2 + (mc2)2. (2.64)

More will be discussed of this relation in Chapter 10.
Given that Lorentz transformations may be viewed as “rotations” in the

4D spacetime, the physics equations written in terms of 4-vectors and 4-tensors,
for example, as in (2.47) and (2.48), will automatically not change their
form under Lorentz transformation—these equations will be, manifestly,
relativistic. Tensors for such manifestly covariant formalism will be developed
in Chapter 10 of Part III.

2.3.3 The spacetime diagram

Space and time coordinates are labels of physical processes taking place in the
world. In this section, we discuss a particularly useful tool, the space–time
diagram, to visualize this causal structure. To have the same length dimension
for all coordinates, the temporal axis is represented, after using the conversion
factor of light speed, by ct. The spacetime manifold is a representation of the
relations among physical processes taking place in the world. In particular, with
time being a coordinate, it reflects the causal structure of events taking place
in the universe. The flat geometry of the spacetime in SR reflects the nature of
physical relations that can be observed.

x

ct

458

Worldline of
a light
signal

[timelike]

[spacelike]

Worldline

= a history of events

Worldpoint

= an event (ct,x)

Fig. 2.6 Basic elements of a spacetime
diagram, with two spatial coordinates
suppressed.

ct

x
y

Timelike

Spacelike

Spacelike
Lightlike
(lightcone)

Fig. 2.7 Invariant regions in the spacetime
diagram, with one spatial coordinates sup-
pressed.

Basic features and invariant regions
An event with coordinates (t, x, y, z) is represented by a worldpoint in the space-
time diagram. The history of events becomes a line of worldpoints, called a
worldline. In Fig. 2.6 the three-dimensional space is represented only by an
one-dimensional x-axis. In particular, a light signal passing through the origin
�x = c�t is represented by a straight worldline at a 45◦ angle with respect to
the axes.

Since �s2 = �x2 + �y2 + �z2 − c2�t2 is invariant, it is meaningful to
divide the spacetime diagram into regions, as in Fig. 2.7, corresponding to

�s2 < 0 timelike
�s2 = 0 lightlike
�s2 > 0 spacelike

The coordinate intervals being �t = t2 − t1, �x = x2 − x1, etc., consider
the separation of two events: one at the origin (t1, x1) = (0, 0), the other at a
point in one of the regions (t2, x2) = (t, x):

1. The lightlike region has all the events which are connected to the origin
with a separation of �s2 = 0 hence for light signals. The 45◦ incline, called
the lightcone, has a slope of unity which reflects the light speed being c.
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2. The spacelike region has all the events which are connected to the origin
with a separation of �s2 > 0. Namely, it will take a signal traveling at a speed
greater than c in order to connect it to the origin. Thus, an event taking place
at any point in this region cannot influence causally (in the sense of cause-
and-effect) the event at origin, and vice versa. We can alternatively explain it
by going to another frame S′ resulting in a different spatial and time intervals
�x′ �= �x and �t′ �= �t. However, the spacetime interval is unchanged
�s′ 2 = �s2 > 0. The form of (2.28) suggests that we can always find an S′
frame such that this event would be viewed as taking place at the same time
�t′ = 0 as the event at the origin but at different locations �x′ �= 0. This makes
it clear that such a worldpoint (an event) cannot be causally connected to the
origin.

3. The timelike region has all the events, which are connected to the origin
with a separation of �s2 < 0. One can always find a frame S′ such that such an
event takes place at the same locations x′ = 0 but at different time t′ �= 0. This
makes it clear that it can be causally connected with the origin. In fact, all the
worldlines passing through the origin will be confined in this region, inside the
lightcone. (Remark: The worldline of an inertial observer must be a straight line
because of constant velocity inside the lightcone. These straight lines are just
the time axes of the coordinate systems in which the inertial observer is at rest.)

ct

0
x

Incoming light worldlines

P1

P2 P3

Outgoing light
worldlines

Fig. 2.8 Lightcones with respect to different
worldpoints, P1, P2, . . . , etc.

In Fig. 2.7 we have displayed the lightcone structure with respect to the origin
of the spacetime coordinates (t = 0, x = 0). It should be emphasized that each
point in a spacetime diagram has a lightcone. The timelike regions with respect
to worldpoints P1, P2, . . . as represented by the lightcones at P1, P2, . . . are
shown in Fig. 2.8.

Lorentz transformation in the spacetime diagram
The nontrivial parts of the Lorentz transformation of intervals (taken with
respect to the origin) being

�x′ = γ (�x − βc�t), c�t′ = γ (c�t − β�x) (2.65)

the transformed axes are:

1. The x′-axis corresponds to the ct′ = 0 line. Hence it is a straight line
in the (x, ct) plane with a slope of β.

2. The ct′-axis corresponds to the x′ = 0 line. Hence it is a straight line
with a slope of β−1. ct

P

ct9

x

x9

u

u

Fig. 2.9 Lorentz rotation in the spacetime
diagram. The space and time axes rotate for
the same amount, in opposite directions, so
that the lightcone (the dashed line) remains
unchanged. The shaded grid represents lines
of fixed x′ and t′. What’s displayed is for
β > 0 with axes “closing-in.”

Depending on whether β is positive or negative, the new axes “close-in” or
“open-up” from the original perpendicular axes. Thus we have the opposite-
angle rule: the two axes make opposite-signed ±θ rotations, Fig. 2.9. (The
x-axis rotates by +θ to the x′-axis; the ct-axis by −θ to the ct′-axis.) The
physical basis for this rule is the requirement to maintain the same slope (=1,
that is, equal angles with respect to the two axes) for the lightcone in every
inertial frame.

Another important feature of the diagrammatic representation of the Lorentz
transformation is that the new axes will have a scale different from the original
one. Namely, the unit-length along the axes of the two systems are different.
Let us illustrate this by an example.
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Consider the separation (from origin O) of an event A on the ct′ axis, which
has O′ system coordinates (ct′ = 1, x′ = 0), see Fig. 2.10. What O system
coordinates (ct, x) does the worldpoint have?

x′ = γ (x − βct) = 0 ⇒ x = βct,

ct′ = γ (ct − βx) = ctγ (1− β2) = ct

γ
= 1.

Hence this event has (ct = γ , x = γβ) coordinates in the O system. Evidently,
as γ > 1, a unit vector along the ct′ direction has the “projection” on the ct-axis
that is longer than unit length. This is possible only if there is a scale change
when transforming from one reference system to another.

Consider another separation of an event B on the x-axis, which has O coord-
inates (ct = 0, x = 1). It is straightforward to check that it has O′ system
coordinates (ct′ = −γβ, x′ = γ ), again showing a difference in scales of the
two systems.

ct

A

B

1

ct9

x

x9
g

g

1

g
bg bg

Fig. 2.10 Scale change in a Lorentz rotation.
For example, a unit length on the ct′ axis has a
longer projection γ onto the ct axis. Namely,
the event A (ct′ = 1, x′ = 0) is observed
by O to have the coordinates (ct = γ , x =
γβ). Similarly, the event B with (ct = 0, x =
1) has the coordinates (ct′ = γβ, x′ = γ ).
The two sets of dotted lines passing through
worldpoints A and B are parallel lines to the
axes of (ct, x) and to (ct′, x′), respectively.

2.3.4 Time-dilation and length contraction

What is the physics behind the above-discussed scale changes? The answer,
to be presented in the following subsections, is time-dilation and length-
contraction:

A moving clock appears to run slow,
a moving object appears to contract.

ct

ct9

ct9

x

x9

x9

Fig. 2.11 Worldline of a clock, ticking at
equal intervals: viewed in the rest frame of
the clock, the O′ system, and viewed in the
moving frame, the O-coordinate system.

These physical features underscore the profound change in our conception
about space and time brought on by relativity. We must give up our belief
that measurements of space and time give the same results for all observers.
Special relativity makes the strange claim that observers in relative motion will
have different perceptions of distance and time. This means that two identical
watches worn by two observers in relative motion will tick at different rates
and will not agree on the amount of time that has elapsed between two given
events. It is not that these two watches are defective. Rather, it is a fundamental
statement about the nature of time.

While the algebra involved in deriving these results (from Lorentz trans-
formation) is simple, to obtain the correct result, one has to be very clear in
what measurements precisely are being compared in two different frames.

Time-dilation
A clock, ticking away in its own rest frame O′ (also called the comoving
frame), is represented by a series of worldpoints (the ticks) equal-spaced on
a vertical worldline (�x′ = 0) in the ct′-x′ spacetime diagram. These same
worldpoints when viewed in another inertial frame O in which the O′ system
moves with +v along the x-axis will appear as lying on an inclined worldline,
Fig. 2.11.

From (2.65), as well as our previous discussion of the scale change under
Lorentz rotation (also see Fig. 2.13), it is clear that these intervals will be
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measured to have interval

�t = γ�t′ γ > 1. (2.66)

Thus, we say that a moving clock (i.e. moving with respect to the O system)
appears (�t) to run slow. (NB: Keep in mind that the comoving frame has
�x′ = 0 while the moving frame �x �= 0.)

Physically there is an easy way to understand this phenomenon of time
dilation. Stripping away all extraneous mechanisms, consider the most
basic of clocks8: a light-pulse clock. It ticks away the time by having a 8Different clocks—mechanical clocks,

biological clocks, atomic clocks, or
particle decays via strong or weak
interactions—simply represent different
physical phenomena that can be used to mark
time. A “basic clock” rests on some physical
phenomenon that has a direct connection to
the underlying physics laws.

light-pulse bouncing back and forth between a fixed distance d (Fig. 2.12).

d

v

D

(a)

(b)

Fig. 2.12 Light-pulse clock at rest (a) and in
motion (b).

For a comoving observer, one has

�t′ = d

c
. (2.67)

To an observer with respect to whom the clock is moving with speed v (say,
perpendicular to the light-pulse path) the light-pulse will traverse a diagonal
distance D at a different time interval �t

�t = D

c
=
√

d2 + v2�t2

c
. (2.68)

Collecting �t terms, we have

�t = d/c√
1− v2/c2

= γ�t′ (2.69)

showing the time-dilation result of (2.66).
Time-dilation seems counter-intuitive. This is so because our intuition has

been built up from familiar experience with phenomena having velocity much
less than c. Actually, it is easier to understand such physical results at an extreme
speed regime of v � c. Let us look at this phenomenon in a situation having
v = c. In this case, time is infinitely dilated. Imagine a rocket-ship traveling
at v = c passing a clock tower. The rocket pilot (the observer in O frame) will
see the clock (at rest in the O′ frame) as infinitely dilated (i.e. stopped) at the
instant when the ship passes the tower. This just means that the light image of
the clock cannot catch up with the rocket-ship.

Length contraction
The length of a moving object �x, compared to the �x′ as measured in its own
rest frame O′, appears to be shortened—often called the FitzGerald–Lorentz
contraction in the literature.

To obtain a length �x = x1 − x2 in the O system, we need to measure two
events (t1, x1) and (t2, x2) simultaneously �t = t1 − t2 = 0. (If you want to
measure the length of a moving car, you certainly would not want to measure its
front and back locations at different times!) The same two events, when viewed
in the rest frame of the object�x′ = x′1 − x′2, will be measured according to
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(2.65) to have a different separation (cf. Fig. 2.13)

�x′ = γ�x > �x. (2.70)

(NB: While we have simultaneous measurements in the O-system, �t = 0,
these two events would be viewed as taking place at different times in the
O′-system, �t′ = γ (�t − (v/c2)�x) �= 0. Of course, in the rest frame of
the object, there is no need to perform the measurements simultaneously—
to measure the front and back ends of a parked car it is perfectly all right to
make one measurement, take a lunch break, and come back to measure the
other end.)

t

x

Dt9

Dx9 

Dt = gDt9

Dx = g–1Dx9

x9

t9

Fig. 2.13 Scale change of the Lorentz rota-
tion reflecting the physics phenomena of
time-dilation and length contraction. The
clock and object are moving with respect to
the O-system, but are at rest with respect to
the O′-system.

Length contraction, observed from the O-system, is only in the direction of
relative motion of the frames. Thus the volume contraction is same as length
contraction: V = γ−1V ′, and not γ−3V ′.

Physical interpretation of the terms in the
Lorentz transformation
We have used (2.65) to deduce the phenomena of time-dilation and length
contraction. Now we will revert the reasoning to find the physical interpretation
of the terms in (2.65).

In the space transformation

�x′ = γ (�x − v�t), (2.71)

the (�x − v�t) factor is the same as in the familiar Galilean transforma-
tion. The overall factor γ simply reflects the physics of length contraction. In
particular for the length measurement (thus �t = 0), the relation �x′ = γ�x
says that the O-system length �x is shorter than the O′-system length �x′ by a
factor of γ .

The time transformation

�t = γ
(
�t′ + v

c2
�x′
)

(2.72)
ct
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ct9

x
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Dx9

Dt

Fig. 2.14 Relativity of simultaneity (cf.
Section 2.2.2). Two events A (located at the
origin) and B (located at �x′) are simultane-
ous �t′ = 0 as viewed by the observer O′.
With respect to a moving observer O, they are
no longer simultaneous, their coordinate time
difference is �t. From the scale change as
displayed in Fig. 2.10 we have c�t = γβ�x′.

has two terms. The first term represents the time-dilation effect: �x′ = 0
in the O′-system with �t′ being the proper time interval; the second term
is the amount of nonsynchronization that has developed in the O-system,
between two clocks, located at different positions �x′ �= 0 in the O′ frame.
The two clocks are synchronized (�t′ = 0) in the O′ frame. However, for
the observer in the O system, there will be a lack of simultaneity, accord-
ing to (2.72), equal to �t = γβ�x′/c (Fig. 2.14). This indeed agrees with
the result obtained in Eq. (2.27) when we first discussed relativity of simul-
taneity (in Section 2.2.2 and Fig. 2.4) with the rail-car observer seeing the
distance between the two bulbs (length of the car) as Lc = �x′ while the
same length would appear to the platform observer as being Lp = γ−1�x′ due
to length contraction. NB the distance separation between the two events of
light emissions, as seen by the platform observer, would be �x = γ�x′ (see
Problem 2.15).

Twin paradox We also refer the reader to Section A.1 for a discussion of
the “twin paradox,” which is a particularly instructive example that illuminates
several basic concepts in relativity.
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Review questions

1. Two inertial frames are moving with respect to each other
with velocity v = v x̂. Write out the Lorentz transformation
of coordinates (t, x)? Show that in the low velocity limit it
reduces to Galilean transformation.

2. Under a Lorentz transformation, the electric and magnetic
fields transform into each other. Give a simple physical
explanation of a situation when a static electric field between
two charges gives rise to magnetic field when viewed by
a moving observer.

3. Under Lorentz transformation, not only the spatial interval
(�x for �t �= 0), but also the time interval (�t for �x �= 0),
are relative. What combination of spatial and time intervals
remain to be absolute? What does one mean by relative and
absolute in this context? Give a simple physical explanation
why we expect this combination to be absolute. How can
this statement be interpreted geometrically as showing that
the Lorentz transformation is a generalized rotation in a 4D
pseudo-Euclidean flat manifold?

4. Lorentz transformation was first discovered as some
mathematical property of Maxwell’s equations. What did
Einstein do to provide it with a physical basis?

5. Give the definition of the metric tensor in terms of (a) the
basis vectors, and (b) infinitesimal length separation. When
the metric is displayed as a square matrix, what is the
respective interpretation of its diagonal and off-diagonal
elements? What is the metric for a Cartesian coordinate
system?

6. What is the condition on the rotation matrix [R] that reflects,
for a general coordinate system, the length preserving nature
of a rotation transformation in a flat space (with a metric [g])?
Check that this equation reduces to the familiar orthogonality
condition for the case of Cartesian coordinates.

7. From the condition expressing the invariance of the metric,
derive the explicit form of the Lorentz transformation for
a boost v = +v x̂.

8. In the spacetime diagram, display the timelike, spacelike,
and lightlike regions. Also, draw in the worldline for some
inertial observer.

9. What does one mean by the saying that “simultaneity is
relative”? Illustrate this in a spacetime diagram.

10. The coordinate frame O′ is moving at a constant velocity v
in the +x direction with respect to the O coordinate frame.
Display the transformed axes (x′, ct′) in a two-dimensional
spacetime diagram with axes (x, ct). (You are not asked to
solve the Lorentz transformation equations, but rather to
justify the directions of the new axes.)

11. Length contraction means that the measured length interval
of �x = x1 − x2 is less than the corresponding rest-
frame length �x′ = x′1 − x′2. What is the condition on the
time coordinates of these two events: (t1, t2) and (t′1, t′2)?
Use this condition and the Lorentz transformation to derive
the result of length contraction.

12. Time-dilation means that the measured time interval of �t =
t1 − t2 is longer than the corresponding rest-frame interval
�t′ = t′1 − t′2. What is the condition on the spatial coord-
inates of these two events: (x1, x2) and (x′1, x′2)? Use this
condition and the Lorentz transformation to derive the result
of time-dilation.

13. Draw the lines of simultaneity �t = 0 (i.e. lines on which
all worldpoints have the same time coordinate) and the lines
of spatial congruity �x = 0 in the two-dimensional (x, ct)
spacetime diagram, as well as the �t′ = 0 and �x′ = 0
lines in the same diagram.

Problems

(2.1) Newtonian relativity Consider a few definite examples
of Newtonian mechanics that are unchanged by Galilean
transformation of (2.10) and (2.11):

(a) Show that force as given by the product of
acceleration and mass F = ma, as well as a
force law, for example, Newton’s law of gravity
F = GN(m1m2/r2)r̂, remain the same in every
inertial frame;

(b) Energy and momentum conservation laws
hold in different inertial frames. Consider
the one-dimensional collision having initial
(mass,velocity) of two particles, in some appro-
priate units, being (3, 8) and (5,−4) and final
configuration of (3,−7) and (5, 5). Check that
energy and momentum are conserved when
viewed by observers in both reference frames
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having a relative speed of 2. Also work out
the same conservation law for the general case
of (m1, v1) + (m2, v2) → (m1, v′1) + (m2, v′2)
with u being the relative velocity of the two
observers.

(2.2) Inverse Lorentz transformation The Lorentz trans-
formation of (2.13) may be written in the matrix
form as


ct′
x′
y′
z′


 =




γ −βγ 0 0
−βγ γ 0 0

0 0 1 0
0 0 0 1







ct
x
y
z


. (2.73)

Find the inverse transformation, that is, find the coord-
inates (ct, x, y, z) in terms of (ct′, x′, y′, z′), by the phys-
ical expectation of the inverse being given by changing
the sign of the relative velocity v. Show that the trans-
formation found in this way is indeed inverse to the
matrix in (2.73) by explicit matrix multiplication.

(2.3) Lorentz transformation of derivative operators The
Lorentz transformation as shown in Eq. (2.73) can be
written in component notion as (the Greek indices µ =
0, 1, 2, 3 with x0 = ct).

x′µ =
∑

ν

[L]µν xν . (2.74)

Here we seek the transformation [L̄] for the coordinate
derivatives

∂ ′µ =
∑

ν

[L̄] ν
µ ∂ν , (2.75)

where

∂µ =
(

∂

c∂t

∂

∂x

∂

∂y

∂

∂z

)
.

Show that the coordinate derivative operators
((∂/∂t), (∂/∂xi)) transform oppositely (v → −v)
compared to the coordinate (t, xi) transformation (2.13):

∂

∂t ′
= γ

(
∂

∂t
+ v

∂

∂x

)
,

∂

∂x′
= γ

(
∂

∂x
+ v

c2

∂

∂t

)
, (2.76)

∂

∂y′
= ∂

∂y
,

∂

∂z′
= ∂

∂z
.

Namely, in terms of the transformation matrices,
[L̄] = [L]−1.

(a) Obtain this result by the standard chain rule of
differentiation.

(b) Obtain this result by the observation that
∂xν/∂xµ = δµν is an invariant.

(2.4) Lorentz covariance of Maxwell’s equations Show that
Maxwell’s equation and Lorentz force law are covari-
ant under the Lorentz transformation as given in (2.76),

(2.18), and (2.19). Suggestion: Work with the homo-
geneous and nonhomogeneous parts of the Maxwell’s
equations separately. For example, show that

∇′ · B′ = 0, ∇′ × E′ + 1

c

∂B′

∂t′
= 0, (2.77)

follows, by Lorentz transformation, from

∇ · B = 0, ∇ × E+ 1

c

∂B
∂t
= 0. (2.78)

(2.5) From Coulomb’s to Ampere’s law Just as we can
derive Fy = may and Fz = maz from Fx = max

by rotation transformations, show that, by Lorentz
transformations, one can derive (a) Ampere’s law
(with conduction and displacement currents) from
Coulomb’s/Gauss’s law, and vice versa; (b) Magnetic
Gauss’s law (absence of magnetic monopole) follows
from Faraday’s law of induction, and vice versa.

(2.6) The Lorentz invariant space–time interval Use the
explicit form of the Lorentz transformation given in
(2.13) to show that s2 = x2 + y2 + z2 − c2t2 is an
invariant.

(2.7) Rotation matrix is orthogonal Explicitly demonstrate
that the rotation matrix in Eq. (2.54) satisfies the relation

[R−1(θ)] = [R(−θ)] = [R�(θ)]
hence the orthogonality condition RR� = 1.

(2.8) Group property of Lorentz transformations Use sim-
ple trigonometry to show that the rotation and boost
operators given in (2.54) and (2.57) satisfy the group
property:

[R(θ1)][R(θ2)] = [R(θ1 + θ2)],
[L(ψ1)][L(ψ2)] = [L(ψ1 + ψ2)].

(2.79)

(2.9) Transformation multiplication leads to velocity addition
rule Provide a proof of the velocity addition rule (2.24)
by way of (2.79) in Problem 2.8.

(2.10) Spacetime diagram depicting relativity of simultaneity
Draw two spacetime diagrams (a) one showing the
worldlines of an observer seeing two bolts of lightning
taking place simultaneously, (b) another diagram depict-
ing the viewpoint of a moving observer seeing these two
lightning bolts as taking place at different times. (You
are asked to draw three worldlines in each of these two
diagrams: one for the observer, two for the lightning.)

(2.11) Length contraction and light-pulse clock In
Section 2.3.4 we have used a light-pulse clock to demon-
strate the phenomenon of time-dilation. This same clock
can be used to demonstrate length contraction: the length
of the clock l can be measured through the time interval
�t that takes a pulse to make the trip across the length



Problems 37

of the clock and back: 2l = c�t. Deduce the length
contraction formula (2.70) in this setup. Suggestion: In
the case of time-dilation, we had the clock moving in
the direction perpendicular to the rest-frame light path.
Here you want it to be parallel. Also, you will need to
use the time-dilation formula (2.66) to deduce the final
length contraction result.

(2.12) Pion decay-length in the laboratory In high energy
proton–proton collisions, copious number of (subatomic
particle) pions are produced. Even though pions have a
half life time of τ0 = 1.77 × 10−8 s (they decay into
a final state of a muon and a neutrino via weak inter-
action), they can be collimated to form pion beams for
other high energy physics experiments. This is possi-
ble because the pions produced from pp collisions have
high kinetic energy, hence high velocity. For example,
if the beam of pions has a velocity 0.99c, it can retain
half of its intensity even after traveling a distance close
to 38 m. This may be surprising because a naive cal-
culation of τ0c = (1.77 × 10−8) × (3 × 108) = 5.3 m
would lead one to expect a much shorter decay length.
Explain why the naive calculation is incorrect. Perform
the correct calculations by using (a) time-dilation, and
(b) length contraction. Explain clearly which reference
frame one uses to get these results.

(2.13) Two spaceships passing one another Two spaceships
traveling in opposite directions pass one another at a
relative speed of 1.25 × 108 m/s. The clock on one
spaceship records a time duration of 9.1 × 10−8 s for
it to pass from the front end to the tail end of the other
ship. What is the length of the second ship as measured
in its own rest frame?

(2.14) Invariant spacetime interval and relativity of simul-
taneity Two events are spatially apart �x �= 0 but
simultaneous �t = 0 in one frame. When viewed in
another inertial frame, they are no longer seen as taking
place at the same time �t′ �= 0. Find this time separation

�t′ in terms of �x and �x′ in two ways: (a) using the
invariant spacetime interval, and (b) using the Lorentz
transformation.

(2.15) More simultaneity calculations Work out the space-
time coordinates (x, t)’s of the two light emission events
located at opposite ends of a moving rail-car—as seen
by the observer on the car and by a platform observer as
described in Section 2.2.2, cf. Fig. 2.4.

(a) Let the O′ coordinates be the rail-car observer
system, and O the platform observer system. Given
�t′ = 0, use Lorentz transformation and its
inverse to find the relations between �t and �x,
between �t and �x′, and between �x and �x′.

(b) One of the relations obtained in (a) should be
�x = γ�x′. Is this compatible with the deriva-
tion of length contraction as done in Section 2.4?
Explain.

(c) An observer can locate the time the light emission
took place by calculating the time it took the light
signal to reach the observer. If the interval is t1
then it must be emitted at time −t1. (Namely, we
define the arrival time as being t = 0.) By the
same token, the emission must have taken place
at a location x1 = −ct1. In this way, verify the
relation �x = γ�x′ discussed earlier.

(d) Draw two sets of spacetime diagrams. (i) In one
set show two light bulbs on the x′-axis, equidistant
from origin, emit light pulses, which are received
by the standstill-observer at the origin. Depict
the same events according to a moving observer:
light emitted from two points equidistant on the
x-axis with the light ray not meeting at the same
point on the t′ axis. (ii) In another set of spacetime
diagrams, show the two light emitting events as
seen by one observer to be simultaneous and yet
according to another moving observer, to be not so.
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• After a review of the Newtonian theory of gravitation in terms of its
potential function, we take the first step in general relativity (GR) study
with the introduction of the equivalence principle (EP).

• The Weak EP (the equality of the gravitational and inertial masses) is
extended by Einstein to the Strong EP. This implies the existence of
local inertial frames at every spacetime point. In a sufficiently small
region, the “local inertial observer” will not sense any gravity effect.

• The equivalence of acceleration and gravity means that GR (physics
laws valid in all coordinate systems, including accelerating frames)
must necessarily be a theory of gravitation.

• The strong EP is used to deduce the results of gravitational bending
of a light ray, gravitational redshift, and time dilation.

• Einstein was motivated by EP physics to propose a curved spacetime
description of the gravitational field.

Soon after completing his formulation of special relativity (SR) in 1905,
Einstein started working on a relativistic theory of gravitation. In this chapter,
we cover the period of 1907–1911, when Einstein relied heavily on the equival-
ence principle (EP) to extract some general relativity (GR) results. Not until the
end of 1915 did he work out fully the ideas of GR. By studying the consequences
of EP, he concluded that proper language for GR is Riemannian geometry. The
mathematics of curved space will be introduced in Chapter 4 and the geometric
representation of gravitational field in Chapter 5.

3.1 Newtonian gravitation potential—a review

Newton formulated his theory of gravitation through the concept of action-
at-a-distance force

F(r) = −GN
mM

r2
r̂, (3.1)

where GN is Newton’s constant, the point mass M is located at the origin of the
coordinate system, and m is at position r.

Just as the case of electrostatics F(r) = q′E(r), we can cast this in the form

F(r) = mg(r). (3.2)

This defines the gravitational field g(r) as the gravitational force per unit mass.
Newton’s law, in terms of this gravitational field for a point mass M, is

g(r) = −GN
M

r2
r̂. (3.3)
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Just as Coulomb’s law can be equivalently stated as Gauss’s law for the electric
field, this field Eq. (3.3) can be expressed, for an arbitrary mass distribution, as
Gauss’s law for the gravitational field:

∮
s

g · dA = −4πGNM. (3.4)

The area integral on the left-hand side (LHS) is the gravitational field flux
through any closed-surface S, and M on the right-hand side (RHS) is the total
mass enclosed inside S. This integral representation of Gauss’s law (3.4) can
be converted into a differential equation: we will first turn both sides into volume
integrals by using the divergence theorem on the LHS (the area integral into the
volume integral of the divergence of the field) and by expressing the mass on
the RHS in terms of the mass density function ρ

∫
∇ · g dV = −4πGN

∫
ρ dV .

Since this relation holds for any volume, the integrands on both sides must
also equal:

∇ · g = −4πGNρ. (3.5)

This is Newton’s field equation in differential form. Gravitational potential1 1We have the familiar example of potential
for a spherically symmetric source with total
mass M given by � = −GNM/r.

�(x) being defined through the gravitational field g(x)≡ −∇�(x), the field
Eq. (3.5) becomes

�2
� = 4πGNρ. (3.6)

To obtain the gravitational equation of motion, we insert (3.2) into Newton’s
second law F = mr̈,

r̈ = g, (3.7)

which has the outstanding feature of being totally independent of any properties
(mass, charge, etc.) of the test particle. Expressed in terms of the gravitational
potential, it can now be written as

r̈ = −∇�. (3.8)

We note that the Newtonian field theory of gravitation, as embodied in (3.6)
and (3.8), is not compatible with SR as space and time coordinates are not treated
on equal footings. In fact Newtonian theory is a static field theory. Stated in
another way, these equations are comparable to Coulomb’s law in electromag-
netism. They are not complete, as the effects of motion (i.e. magnetism) are not
included. This “failure” just reflects the underlying physics that only admits
an (instantaneous) action-at-a-distance description, which implies an infinite
speed of signal transmission, incompatible with the principle of relativity.

3.2 EP introduced

In this section, several properties of gravitation will be presented. They all
follow from the empirical principle called by Einstein the principle of the
equivalence of gravitation and inertia. The final formulation of Einstein’s
theory of gravitation, the general theory of relativity, automatically and pre-
cisely contains this EP. Historically, it is the starting point of a series of
discoveries that ultimately led Einstein to the geometric theory of gravity, in
which the gravitation field is the warped spacetime.
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3.2.1 Inertial mass vs. gravitational mass

One of the distinctive features of gravitation field is that its equation of motion
(3.8) is totally independent of the test particle’s properties (mass, charge, etc.).
This comes about because of the cancellation of the mass factors in mg and mr̈.
Actually, these two masses correspond to very different concepts:

• The inertial mass
F = mIr̈ (3.9)

enters into the description of the response of a particle to all forces.
• The gravitational mass

F = mGg (3.10)

reflects the response2 of a particle to a particular force: gravity. The2One should in principle distinguish between
two separate gravitational charges: a
“passive” gravitational mass as in (3.10) is
the response to the gravitational field, and
an “active” gravitational mass is the source
of gravitational field g = −GNmGr/r3.
These two masses can be equated by way of
Newton’s third law.

gravitational mass mG may be viewed as the “gravitational charge” placed
in a given gravitational field g.

Now consider two objects A and B composed of different material, one of
copper and the other of wood. When they are let go in a given gravitational field
g, e.g. “being dropped from the Leaning Tower of Pisa” (see Box 3.1), they
will, according to (3.9) and ( 3.10), obey the equations of motion:

(r̈)A =
(

mG

mI

)

A
g, (r̈)B =

(
mG

mI

)

B
g. (3.11)

Part of Galileo’s great legacy to us is the experimental observation that all
bodies fall with the same acceleration, (r̈)A= (r̈)B, which leads to the equality,

(
mG

mI

)

A
=
(

mG

mI

)

B
. (3.12)

The mass ratio, having been found to be universal for all substances as in (3.12),
can then be set, by appropriate choice of units, equal to unity. This way we can
simply say

mI = mG. (3.13)

Even at the fundamental particle physics level, matter is made up of protons,
neutrons, and electrons (all having different interactions) bound together with
different binding energies, it is difficult to find an a priori reason to expect such
a relation (3.12). As we shall see, this is the empirical foundation underlying
the geometric formulation of relativistic theory of gravity that is GR.

mIa

mGg

T

mIa

mGg

N

(a) (b)

Fig. 3.1 Both the gravitational mass and
inertia mass enter into the phenomena:
(a) sliding object on an inclined plane, and
(b) oscillations of a pendulum.

Box 3.1 A brief history of the EP: from Galileo and Newton to Eötvös

There is no historical record of Galileo having dropped anything from the
Leaning Tower of Pisa. Nevertheless, to refute Aristotle’s contention that
heavier objects would fall faster than light ones, he did report performing
experiments of sliding different objects on an inclined plane, Fig. 3.1(a).
(The slower fall allows for more reliable measurements.) More importantly,
Galileo provided a theoretical argument, “a thought experiment,” in the first
chapter of his “Discourse and Mathematical Demonstration of Two New
Sciences,” in support of the idea that all substances should fall with the same
acceleration. Consider any falling object, without this universality of free
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fall, the tendency of different components of the object to fall differently
would give rise to internal stress and could cause certain objects to undergo
spontaneous disintegration. The nonobservation of this phenomenon could
then be taken as evidence for equal accelerations.

Newton went further by translating this universality of free fall into the
universal proportionality of the inertial and gravitational masses (3.12)
and built the equality mI = mG right into the foundation of mechanics.
Notably, he discussed this equality in the very first paragraph of his great
work “Principia.” Furthermore, he improved upon empirical check of (3.12)
of Galileo by experimenting with a pendulum, Fig. 3.1(b), cf. Problem 3.1,

δAB ≡
∣∣∣∣
(mI/mG)A − (mI/mG)B

(mI/mG)A + (mI/mG)B

∣∣∣∣ ≤ 10−3. (3.14)

The Eötvös experiment and modern limits. At the end of the nineteenth
century, the Hungarian baron Roland von Eötvös pointed out that any pos-
sible nonuniversality of this mass ratio (3.12) would show up as a horizontal
twist τ in a torsion balance, Fig. 3.2(b). Two weights composed of different
substances A and B are hung at the opposite ends of a rod, which is in turn
hung from the ceiling by a fiber at a midpoint, respective distances lA and
lB from the two ends. Because of Earth’s rotation, we are in a noninertial
frame of reference. In order to apply Newton’s laws, we must include the
fictitious force, as represented by the centrifugal acceleration g′, Fig. 3.2(a).
In the vertical direction we have the gravitational acceleration g, and the
(tiny and, for our simplified calculation, negligible) vertical component g′v.
In the horizontal direction the only nonzero torque is due to the horizontal
component g′h. The equilibrium conditions of a vanishing total torque are:

vertical balance: [lA(mG)A − lB(mG)B]g = 0, (3.15)

horizontal balance: [lA(mI)A − lB(mI)B]g′h = τ . (3.16)

The equality of lA(mG)A = lB(mG)B from the equilibrium condition
of (3.15) means that the twist in (3.16) is related to the sought-after
nonuniversality:

τ =
[(

mI

mG

)

A
−
(

mI

mG

)

B

]
g′hlmG. (3.17)

In this way Eötvös greatly improved the limit of (3.14) to δAB ≤ 10−9.
More recent experiments by others, ultimately involving the comparison
of falling earth and moon in the solar gravitational field, have tightened
this limit further to 1.5× 10−13.

B

A

mGg

mIg9

(a)

(b)

GLOBE

Fig. 3.2 Eötvö s experiment to detect any dif-
ference between the ratio of gravitational to
inertial masses of substance A vs. B. The
centrifugal acceleration can be decomposed
into the vertical and horizontal components,
g′ = g′v + g′h.

3.2.2 EP and its significance

While preparing a review article on SR in 1907, Einstein came upon, what he
later termed, “my happiest thought:” “Since all bodies accelerate the same
way, an observer in a freely falling laboratory will not be able to detect
any gravitational effect (on a point particle) in this frame.” Or, “gravity is
transformed away in reference frames in free fall.”

Imagine an astronaut in a freely falling spaceship. Because all objects fall
with the same acceleration, a released object in the spaceship will not be seen
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to fall. Thus, from the viewpoint of the astronaut, gravity is absent; everything
becomes weightless.

To Einstein, this vanishing of the gravitational effect is so significant that
he elevated it (in order to focus on it) to a physical principle: the equivalence
principle.




Physics in a frame freely falling in a gravity field
is equivalent to

Physics in an inertial frame without gravity


 .

Namely, within a freely falling frame, where the acceleration exactly cancels
the uniform gravitational field, no sign of either acceleration or gravitation can
be found by any physical means. Correspondingly,




Physics in a nonaccelerating frame with gravity g
is equivalent to

Physics in a frame without gravity but accelerating with a = −g


 .

Thus according to the EP of gravitation and inertia, accelerating frames of
reference can be treated in exactly the same way as inertial frames. They are
simply frames with gravity. From this we also obtain a physics definition of
an inertial frame, without reference to any external environment such as fixed
stars, as the frame in which there is no gravity. Einstein realized the unique
position of gravitation in the theory of relativity. Namely, he understood that
the question was not how to incorporate gravity into SR but rather how to use
gravitation as a means to broaden the principle of relativity from inertial frames
to all coordinate systems including the accelerating frames.

If we confine ourselves to the physics of mechanics, EP is just a re-statement
of mI = mG. But once it is highlighted as a principle, it allowed Einstein to
extend this equivalence to all physics: (not just to mechanics, but also elec-
tromagnetism, etc.) This generalized version is sometimes called the strong
equivalence principle. Thus the “weak EP” is just the statement of mI = mG,
while the “strong EP” is the principle of equivalence applied to all physics. In the
following, we shall still call the strong equivalence principle as EP, for short.

Ordinarily we expect the gravitational effect to be very small as Newton’s
constant GN is very small. One way to get an order of magnitude idea is by
taking the ratio of the gravitational energy and the (relativistic) rest-energy33We assume that the reader being familiar

with some basic relativistic physics such as
E = mc2, which will be properly derived in
Chapter 10. See Eq. (10.37).

Erel = mIc2

ψ = Egrav

Erel
= mG�

mIc2
= �

c2
= GNM

c2r
, (3.18)

where � = −GNM/r is the gravitational potential for the spherical symmetric
case. Near Earth’s surface, � = gh, the product of gravitational acceleration and
height, we have ψ = gh/c2 = O (10−15) for a typical laboratory distance range
h = O (10 m) in the terrestrial gravity. Such a small value basically reflects the
weakness of gravitational interaction. Only in extraordinary situations of black
hole (extremely compact object) or cosmology (extreme massive system) with
huge M to r ratios will the parameter ψ approach the order of unity. (For further
discussion, see the introductory paragraphs of Chapter 7.)



3.3 Implications of the strong EP 43

3.3 Implications of the strong EP

The strong EP implies, as we shall show in this section, that gravity can bend a
light ray, shift the frequency of an electromagnetic wave, and cause clocks to run
slow. Ultimately, these results suggested to Einstein that the proper framework
to describe the relativistic gravitational effects is a curved spacetime.

To deduce the effect of gravity on certain physical phenomena, we shall use
the following general procedure:

1. One first considers the description by an observer inside a spaceship in
free fall. According to EP there is no gravitational effect in this inertial
frame and SR applies.

2. One then considers the same situation from the viewpoint of an observer
watching the spaceship from outside: there is a gravitational field and the
first (freely falling) observer is seen to be accelerating in this gravitational
field. Namely, this second observer defines an inertial frame, with gravity
being treated as one of the forces F = mg.

3. The combined effects of acceleration and gravity, as seen by the second
observer, must then reproduce the SR description as recorded by the iner-
tial observer in free fall. “Physics should be independent of coordinate
choices.”

Bending of a light ray—a qualitative account
Let us first study the effect of gravity on a light ray traveling (horizontally)
across a spaceship falling in a constant (vertical) gravitational field g. From
the viewpoint of the astronaut in the spaceship, EP informs us, there is no
detectable effect associated either with gravity or with acceleration: the light
travels straight across the spaceship from one side to the other: in this coordinate
frame, the light is emitted at a height h, received at the same height h on
the opposite side of the spaceship, Fig. 3.3(a). But, to an observer outside
the spaceship, there is a gravitational field g and the spaceship is accelerating
(falling) in this gravitational field. The straight trajectory of the light signal in
the freely falling spaceship will appear to bend, Fig. 3.3(b). Thus, to this outside
observer, a light ray is seen to bend in the gravitational field.

We do not ordinarily see such falling of light rays because, for the grav-
itational field and distance scale that we are familiar with, this bending effect
is unobservably small. Consider a lab with a width of 300 m. The duration
for a light ray to travel across the lab would be 1 µs. During this interval, the
distance y that the lab has fallen (amount of the bending) is extremely small:
y = gt2/2 � 5 × 10−12 m = 0.05 Å. (Also cf. (3.18).) This EP consideration
suggests that a light ray would be bent by any massive object. (The quantit-
ative relation between the deflection angle and the gravitational potential will
be worked out in Section 3.3.3.)

3.3.1 Gravitational redshift and time dilation

Gravitational redshift
In Fig. 3.3, we discussed the effect of a gravitational field on a light ray with
its trajectory transverse to the field direction. Now let us consider the situation
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Fig. 3.3 According to EP, a light ray will
“fall” in a gravitational field. (a) To the astro-
naut in the freely falling spaceship (an inertial
observer), the light trajectory is straight.
(b) To an observer outside the spaceship, the
astronaut is accelerating (falling) in a gravita-
tional field. The light ray will be bent so that it
reaches the opposite side of the lab at a height
y = gt2/2 below the initial point.

(b)

(a)

Fig. 3.4 According to EP, the frequency of
a light ray is redshifted when moving up
against gravity. (a) To an inertial observer
in the freely falling spaceship, there is no
frequency shift. (b) To an observer outside
the spaceship, this astronaut is accelerating
in a gravitational field, the null frequency
shift result comes about because of the can-
cellation between a Doppler blueshift and
a gravitational redshift.

h

g g

g g

(a) (b)

when the field direction is parallel (or antiparallel) to the ray direction as in
Fig. 3.4.

Here we have a receiver placed directly at a distance h above the emitter in
a downward-pointing gravitational field g. Just as the transverse case consid-
ered above, we first describe the situation from the viewpoint of the astronaut
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(in free fall), Fig. 3.4(a). EP informs us that the spaceship in free fall is an
inertial frame. Such an observer will not be able to detect any physical effects
associated with gravity or acceleration. In this free-fall situation, the astronaut
should not detect any frequency shift: the received light frequency ωrec is the
same as the emitted frequency ωem.

(�ω)ff = (ωrec − ωem)ff = 0, (3.19)

where the subscript ff reminds us that these are the values as seen by an observer
in free fall.

From the viewpoint of the observer outside the spaceship, there is gravity
and the spaceship is accelerating (falling) in this gravitational field, Fig. 3.4(b).
Assume that this spaceship starts to fall at the moment of light emission.
Because it takes a finite amount of time �t = h/c for the light signal to
reach the receiver on the ceiling, it will be detected by a receiver in motion,
with a velocity �u = g�t (g being the gravitational acceleration). The familiar
Doppler formula4 (in the low-velocity approximation) would lead us to expect 4The reader is assumed to know the Doppler

effect. An abbreviated discussion is also
provided in Chapter 10. See (10.48).

a frequency shift of (
�ω

ω

)

Doppler
= �u

c
. (3.20)

Since the receiver has moved closer to the emitter, the light waves must have
been compressed, this shift must be toward the blue

(�ω)Doppler = (ωrec − ωem)Doppler > 0. (3.21)

We have already learned in (3.19), as deduced by the observer in free fall, that
the received frequency did not deviate from the emitted frequency. This physical
result must hold for both observers, this blueshift in (3.21) must somehow
be cancelled. To the observer outside the spaceship, gravity is also present.
We can recover the nullshift result, if there is another physical effect of light
being redshifted by gravity, with just the right amount to cancel the Doppler
blueshift of (3.20). (

�ω

ω

)

gravity
= −�u

c
. (3.22)

We now express the relative velocity on the RHS in terms of the gravitational
potential difference �� at the two locations

�u = g�t = gh

c
= ��

c
. (3.23)

When (3.22) and (3.23) are combined, we obtain the phenomenon of
gravitational frequency shift

�ω

ω
= −��

c2
. (3.24)

Namely,5 5Whether the denominator is ωrec or ωem,
the difference is of higher order and can be
ignored in these leading order formulae.

ωrec − ωem

ωem
= −�rec −�em

c2
. (3.25)

A light ray emitted at a lower gravitational potential point (�em < �rec) with
a frequency ωem will be received at a higher gravitational field point as a lower
frequency (ωem > ωrec) signal, that is, it is redshifted, even though the emitter
and the receiver are not in relative motion.
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The Pound–Rebka–Snider experiment
In principle, this gravitational redshift can be tested by a careful examination
of the spectral emission lines from an astronomical object (hence large grav-
itational potential difference). For a spherical body (mass M and radius R),
the redshift formula of (3.24) takes on the form of

�ω

ω
= GNM

c2R
. (3.26)

We have already commented on the smallness of this ratio in (3.18). Even
the solar redshift has only a size O (10−6), which can easily be masked by the
standard Doppler shifts due to thermal motion of the emitting atoms. It was first
pointed out by Eddington in the 1920s that the redshift effect would be larger
for white dwarf stars, with their masses comparable to the solar mass and much
smaller radii that the effect could be 10–100 times larger. But in order to obtain
the mass measurement of the star, it would have to be in a binary configuration,
for instance the Sirius A and B system. In such cases the light from the white
dwarf Sirius B suffers scattering by the atmosphere of Sirius A. Nevertheless,
some tentative positive confirmation of the EP prediction had been obtained.
However, conclusive data did not exist in the first few decades after Einstein’s
paper. Surprisingly this EP effect of gravitational redshift was first verified
in a series of terrestrial experiments when Pound and his collaborators (1960
and 1964) succeeded in measuring a truly small frequency shift of a radiation
traveling up h = 22.5 m, the height of an elevator-shaft in the building housing
the Harvard Physics Department:

∣∣∣∣
�ω

ω

∣∣∣∣ =
∣∣∣∣
gh

c2

∣∣∣∣ = O (10−15). (3.27)

Normally, it is not possible to fix the frequency of an emitter or absorber
to a very high accuracy because of the energy shift due to thermal recoils of
the atoms. However, with the Mössbauer effect,6 the emission line-width in a6The Mössbauer effect—When emitting

light, the recoil atom can reduce the energy
of the emitted photon. In reality, since the
emitting atom is surrounded by other atoms
in thermal motion, this brings about recoil
momenta in an uncontrollable way. (We can
picture the atom as being part of a vibrat-
ing lattice.) As a result, the photon energy
in different emission events can vary con-
siderably, resulting in a significant spread of
their frequencies. This makes it impossible
for a measurement of the atomic frequency
to high enough precision for purposes such
as testing the gravitational redshift. But in
1958 Mössbauer made a breakthrough when
he pointed it out, and verified by observation,
that crystals with high Debye–Einstein tem-
perature, that is, having a rigid crystalline
structure, could pick up the recoil by the
entire crystal. Namely, in such a situation,
the emitting atom has an effective mass that
is huge. Consequently, the atom loses no
recoil energy, and the photon can pick up all
the energy-change of the emitting atom, and
the frequency of the emitted radiation is as
precise as it can be.

rigid crystal is as narrow as possible—limited only by the quantum mechanical
uncertainty principle �t�E ≥ �, where �t is given by the lifetime of the
unstable (excited) state. Thus a long-lived state would have a particularly small
energy-frequency spread. The emitting atom that Pound and Rebka chose to
work with is an excited atom Fe∗-57, which can be obtained through the nuclear
beta-decay of cobalt-57. It makes the transition to the ground state by emitting
a gamma ray: Fe∗ → Fe+γ . In the experiment, the γ -ray emitted at the bottom
of the elevator shaft, after climbing the 22.5 m, could no longer be resonantly
absorbed by a sheet of Fe in the ground state placed at the top of the shaft. To
prove that the radiation has been redshifted by just the right amount O (10−15),
Pound and Rebka moved the detector slowly towards the emitter so that the
(ordinary) Doppler blueshift is just the right amount to compensate for the
gravitational redshift. In this way, the radiation is again absorbed. What was
the speed with which they must move the receiver? From (3.24) and (3.20)
we have

gh

c2
=

gravity

�ω

ω
=

Doppler

u

c
(3.28)

with

u = gh

c
= 9.8× 22.5

3× 108
= 7.35× 10−7 m/s. (3.29)
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It is such a small speed that it would take h/u = c/g = O (3× 107 s) � 1 year
to cover the same elevator shaft height. Of course this velocity is just the one
attained by an object freely falling for a time interval that takes the light to
traverse the distance h. This is the compensating effect we invoked in our
derivation of the gravitational redshift at the beginning of this section.

Gravitational time dilation
At first sight, this gravitational frequency shift looks absurd. How can an
observer, stationary with respect to the emitter, receive a different number
of wave crests per unit time than the emitted rate? Here is Einstein’s radical
and yet simple answer: while the number of wave crests does not change, the
time unit itself changes in the presence of gravity. The clocks run at different
rates when situated at different gravitational field points: there is a gravitational
time dilation effect.

Frequency being proportional to the inverse of local proper time rate

ω ∼ 1

dτ
(3.30)

the gravitational frequency shift formula (3.25) can be converted to a time
dilation formula

dτ1 − dτ2

dτ2
= �1 −�2

c2
, (3.31)

or

dτ1 =
(

1+ �1 −�2

c2

)
dτ2. (3.32)

For static gravitational field, this can be integrated to read

τ1 =
(

1+ �1 −�2

c2

)
τ2. (3.33)

Namely, the clock at higher gravitational potential point will run faster. This
is to be contrasted with the special relativistic time dilation effect—clocks in
relative motion run at different rates. Here we are saying that two clocks, even
at rest with respect to each other, also run at different rates if the gravitational
fields at their respective locations are different. Their distinction can be seen
in another way: in SR time dilation each observer sees the other’s clock to
run slow (see the subsection “relativity is truly relative” in Section A.1), while
with gravitational dilation, the observer at a higher gravitational potential point
sees the lower clock to run slow, and the lower observer sees the higher clock
to run fast. For two clocks in a gravitational field and also in relative motion,
we have to combine the gravitational and relative motion frequency-shift results
to obtain

τ1 =
(

1+ 2
��

c2
− u2

c2

)1/2

τ2. (3.34)

Time dilation test by atomic clock The gravitational time dilation effects
have been tested directly by comparing the times kept by two cesium atomic
clocks: one flown in an airplane at high altitude h (about 10 km) in a holding pat-
tern, for a long time τ , over the ground station where the other clock sits. After
the correction of the various background effect (mainly SR time dilations), the
high altitude clock was found to gain over the ground clock by a time interval of
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�τ = (gh/c2)τ in agreement with the expectation given in (3.33) (Hafele and
Keating, 1972).

For an application in the Global Position System, see Problem 3.4.

A more direct derivation of time dilation
Instead of deriving the gravitational time dilation by way of the frequency shift
result, we can obtain (3.33) more directly. Let us drop a clock in the gravitational
field. It passes two locations at gravitational potential of �1 and �2, with
velocities u1 and u2, respectively. The free fall frame being inertial (without
gravity), the familiar SR formulae should apply. The time tff as recorded by this
clock in free fall (the moving frame) to the times τ1 and τ2 as recorded by the
clocks at these two locations (the rest frames) are related by the usual SR time
dilation formulae:

tff
1 = γ1τ1 and tff

2 = γ2τ2 (3.35)

with γ1 = 1/

√
1− u2

1/c2. We are interested in the clock rates dτ1 and dτ2

given that dtff
1 = dtff

2 . The time dilation result of (3.32) can then be derived
from (3.35):

dτ1

dτ2
=
√

1− u2
1/c2

1− u2
2/c2

� 1− 1

2

u2
1 − u2

2

c2
= 1+ �1 −�2

c2
, (3.36)

where, at the second (approximate) equality, we have dropped O(u4/c4) terms in
the Taylor series expansions of the denominator and the square root. At the last
equality we have used the low velocity version (consistent with our presentation)
of the energy conservation relation 1

2 m�u2 = −m��. Thus such gravitational
time dilation effect is entirely compatible with the previously known SR time
dilation effect—just as we have shown its compatibility with Doppler frequency
shift in our first derivation (3.20) of gravitational redshift (3.24).

3.3.2 Light ray deflection calculated

The clocks run at different rates at locations where the gravitational field
strengths are different. Since different clock rates will lead to different speed
measurements, even the speed of light can be measured to have different values!
We are familiar with light speed in different media being characterized by
varying index of refraction. Gravitational time dilation implies that there is
an effective index of refraction even in the vacuum when a gravitational field
is present. Since gravitational field is usually inhomogeneous, this index is
generally a position-dependent function.

Gravity-induced index of refraction in free space
At a given position r with gravitational potential �(r) a determination of the
light speed involves the measurement of a displacement dr for a time interval
dτ as recorded by a clock at rest at this position. The resultant ratio

dr

dτ
= c (3.37)
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is the light speed according to the local proper time. This speed c is a universal
constant. Because of gravitational time dilation, as stated in (3.32), an observer
at another position (with a different gravitational potential) would obtain a
different value for this speed when using a clock located at the second position.
In fact, a common choice of time coordinate is that given by a clock located far
away from the gravitational source. For two positions r1 = r and r2 = ∞, with
r2 being the reference point �(∞) = 0, while τ(r) is the local proper time,
the clock at r = ∞ gives the coordinate time t ≡ τ(∞). Equation (3.36) then
yields the relation between the local time (τ ) and the coordinate time (t) as

dτ =
(

1+ �(r)

c2

)
dt. (3.38)

This implies that the speed of light as measured by the remote observer is
reduced by gravity as

c(r) ≡ dr

dt
=
(

1+ �(r)

c2

)
dr

dτ
=
(

1+ �(r)

c2

)
c. (3.39)

Namely, the speed of light will be seen by an observer (with his coordinate
clock) to vary from position to position as the gravitational potential varies
from position to position. For such an observer, the effect of the gravitational
field can be viewed as introducing an index of refraction in the space:

n(r) ≡ c

c(r)
=
(

1+ �(r)

c2

)−1

� 1− �(r)

c2
. (3.40)

cdt

x d�

c2dt

c1dt

(a) (b)

Fig. 3.5 Wavefronts of a light trajectory.
(a) Wavefronts in the absence of gravity.
(b) Tilting of wavefronts in a medium with
an index of refraction varying in the vert-
ical direction so that c1 > c2. The resultant
light bending is signified by the small angular
deflection dδ.

We will state the key concepts behind this position-dependent speed of light
once more: we are not suggesting that the deviation of c(r) from the constant
c means that the physical velocity of light has changed, or that the velocity of
light is no longer a universal constant in the presence of gravitational fields.
Rather, it signifies that the clocks at different gravitational points run at different
rates. For an observer, with the time t measured by clocks located far from the
gravitational source (taken to be the coordinate time), the velocity of the light
appears to this observer to slow down. A dramatic example is offered by the
case of black holes (to be discussed in Section 6.4). There, as a manifestation
of an infinite gravitational time dilation, it would take an infinite amount of
coordinate time for a light signal to leave a black hole. Thus, to an outside
observer, no light can escape from a black hole, even though the corresponding
proper time duration is perfectly finite.

Bending of light ray—the EP expectation
We can use this position-dependent index of refraction to calculate the bending
of a light ray by a transverse gravitational field via the Huygen’s construction.
Consider a plane light wave propagating in the+x direction. At each time inter-
val �t, a wavefront advances a distance of c�t, see Fig. 3.5(a). The existence
of a transverse gravitational field (in the y-direction) means a nonvanishing
derivative of the gravitational potential d�/dy �= 0. Change of the gravitation
potential means change in c(r) and this leads to tilting of the wavefronts. We can
then calculate the amount of the bending of the light ray by using the diagram
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in Fig. 3.5(b). A small angular deflection can be related to distances as

(dδ) � (c1 − c2)dt

dy
� d[c(r)](dx/c)

dy
. (3.41)

Working in the limit of weak gravity with small �(r)/c2 (or equivalently
n � 1), we can relate d[c(r)] to a change of index of refraction as

d[c(r)] = cd[n−1] = −cn−2dn � −cdn. (3.42)

Namely, Eq. (3.14) becomes

(dδ) � −∂n

∂y
dx. (3.43)

But from (3.40) we have dn(r) = −d�(r)/c2, and thus, integrating (3.43),
obtain the total deflection angle

δ =
∫

dδ = 1

c2

∫ ∞

−∞
∂�

∂y
dx = 1

c2

∫ ∞

−∞
(�� · ŷ)dx. (3.44)

The integrand is the gravitational acceleration perpendicular to the light path.
We shall apply the above formula to the case of the spherical source � =
−GNM/r, and �� = r̂GNM/r2. Although the gravitational field will no longer
be a simple uniform field in the ŷ direction, our approximate result can still be
used because the bending takes place mostly in the small region of r � rmin.
See Fig. 3.6.

δ = GNM

c2

∫ ∞

−∞
r̂ · ŷ
r2

dx = GNM

c2

∫ ∞

−∞
y

r3
dx, (3.45)

where we have used r̂ · ŷ = cos θ = y/r. An inspection of Fig. 3.6 also shows
that, for small deflection, we can approximate y � rmin, hence

r = (x2 + y2)1/2 � (x2 + r2
min)

1/2 (3.46)

leading to

δ = GNM

c2

∫ ∞

−∞
rmin

(x2 + r2
min)

3/2
dx = 2GNM

c2rmin
. (3.47)

With a light ray being deflected by an angle δ as shown in Fig. 3.6, the light
source at S would appear to the observer at O to be located at S′. Since the
deflection is inversely proportional to rmin, one wants to maximize the amount
of bending by having the smallest possible rmin. For a light grazing the surface
of the sun, rmin = R� and M = M�, Eq. (3.47) gives an angle of deflection
δ = 0.875′′. As we shall explain in Section 6.2.1, this is exactly half of the
correct GR prediction for the solar deflection of light from a distant star.

Fig. 3.6 Angle of deflection δ of light by
mass M. A point on the light trajectory (solid
curve) can be labeled either as (x, y) or (r, θ).
The source at S would appear to the observer
at O to be located at a shifted position of S′.

(r,  )   (x,y)u
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3.3.3 Energy considerations of a gravitating light pulse

Erroneous energy considerations
Because light gravitates (i.e. it bends and redshifts in a gravitational field), it is
tempting to imagine that a photon has a (gravitational) mass. One might argue
as follows: from the viewpoint of relativity, there is no fundamental difference
between mass and energy, E = mIc2. The equivalence mI = mG means that
any energy also has a nonzero “gravitational charge”

mG = E

c2
, (3.48)

and hence will gravitate. The gravitational redshift formula (3.24) can be derived
by regarding such a light-pulse losing “kinetic energy” when climbing out of
a gravitational potential well. One can even derive the light deflection result
(3.47) by using the Newtonian mechanics formula7 of a moving mass (having 7Equation (3.49) is quoted in small angle

approximation of a general result that can be
found in a textbook on mechanics. See, for
example, Eq. (4.37) in (Kibble, 1985).

velocity u) being gravitationally deflected by a spherically symmetric mass M
(Fig. 3.6),

δ = 2GNM

u2rmin
. (3.49)

For the case of the particle being a photon with u = c, this just reproduces
(3.47). Nevertheless, such an approach to understand the effect of gravity on
a light ray is conceptually incorrect because

• A photon is not a massive particle, and it cannot be described as a
nonrelativistic massive object having a gravitational potential energy.

• This approach makes no connection to the underlying physics of
gravitational time dilation.

The correct energy consideration
The energetics of gravitational redshift should be properly considered as follows
(Schwinger, 1986; Okun et al., 2000). Light is emitted and received through
atomic transitions between two atomic energy levels of a given atom8: E1−E2 = 8We have used the fact that the energy of

a light ray is proportional to its frequency.
For most of us the quantum relation E =
�ω comes immediately to mind, but this
proportionality also holds in classical electro-
magnetism where the field is pictured as a
collection of harmonic oscillators.

�ω. We can treat the emitting and receiving atoms as nonrelativistic massive
objects. Thus when sitting at a higher gravitational potential point, the receiver
atom gains energy with respect to the emitter atom,

Erec = Eem + mgh.

We can replace the mass by (3.48) so that, to the leading order, Erec =
(1+ gh/c2)Eem. One gets a multiplicative energy shift of the atomic levels.
This implies that all the energy levels (and their differences) of the receiving
atom are “blueshifted” with respect to those of the emitter atom by

(E1 − E2)rec =
(

1+ gh

c2

)
(E1 − E2)em, (3.50)

hence a fractional shift of atomic energy
(

�E

E

)

atom
= gh

c2
= ��

c2
. (3.51)

On the other hand, the traveling light pulse, neither gaining nor losing energy
along its trajectory, has the same energy as the emitting atom. But it will be
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seen by the blueshifted receiver atom as redshifted:
(

�E

E

)

γ

= −��

c2
= �ω

ω
, (3.52)

which is the previously obtained result (3.24). This approach is conceptually
correct as

• Atoms can be treated as nonrelativistic objects having gravitational
potential energy mgh.

• This derivation is entirely consistent with the gravitational time dila-
tion viewpoint: the gravitational frequency shift does not result from
any change of the photon property. It comes about because the stan-
dards of frequency (i.e. time) are different at different locations. This
approach in fact gives us a physical picture of how clocks can run at
different rates at different gravitational field points. An atom is the most
basic form of a clock, with time rates being determined by transition
frequencies. The fact that atoms have different gravitational potential
energies (hence different energy levels) naturally give rise to different
transitional frequencies, hence different clock rates.

The various results called “Newtonian”
The above discussion also explains why the usual erroneous derivations of
treating photons as nonrelativistic massive particles with gravitational potential
energy can lead to the correct EP formulae: the observed change of photon
properties is due to the change in the standard clocks (atoms), which can be
correctly treated as nonrelativistic masses with gravitational energy.

In this connection, we should also clarify the often-encountered practice of
calling results such as (3.47) a Newtonian result. By this it is meant that the
result can be derived in the pre-Einsteinian-relativity framework where particles
can take on any speed we wish them to have. There does not exist the notion of
a “low-velocity nonrelativistic limit.” Consequently, it is entirely correct to use
the mechanics formula (3.49) for a light particle which happens to propagate at
the speed c.

However, one should be aware of the difference between this Newtonian
(pre-relativistic) framework and the proper Newtonian limit, which we shall
specify in later discussion, Sections 5.2.1 and 12.2.2, corresponding to the
situation of nonrelativistic velocity, and static weak gravitational field. In this
contemporary sense, (3.47) is not a result valid in the Newtonian limit.

3.3.4 Einstein’s inference of a curved spacetime

Aside from the principle of relativity, EP is the most important physical princi-
ple underlying Einstein’s formulation of a geometric theory of gravity. Not only
allowing the accelerating frames to be treated on equal footing as the inertial
frames and giving these early glimpses of the GR phenomenology, but also
the study of EP physics led Einstein to propose that a curved spacetime is the
gravitational field. We shall explain this connection in Chapter 5, after learning
some mathematics of curved space in the following chapter.
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Review questions

1. Write out, in terms of the gravitational potential �(x), the
field equation and the equation of motion for Newton’s
theory of gravitation. What is the distinctive feature of this
equation of motion (as opposed to that for other forces)?

2. What is the inertial mass? What is the gravitational mass?
Give the simplest experimental evidence for their ratio
being a universal constant (i.e. independent of material
composition of the object).

3. What is the equivalence principle? What is weak EP?
Strong EP?

4. Give a qualitative argument showing why EP can lead to the
expectation of a gravitational bending of a light-ray.

5. Provide two derivations of the formula for gravitational
frequency shift:

�ω

ω
= −��

c2
.

(a) Use the idea that gravity can be transformed away by
taking a reference frame in free fall; (b) Use the idea that
atomic energy levels will be shifted in a gravitational field.

6. Derive gravitational time dilation formula

�τ

τ
= ��

c2

in two ways: (a) from the gravitational frequency shift
formula; (b) directly from the considerations of a clock in
free fall.

7. Deduce the relation between coordinate time t (defined as
the time measured by a clock located far away from any
gravitational field) and local proper time τ(r) at a position
with gravitational potential �(r):

dt = dτ

(1+ (�/c2))
.

8. The presence of a gravitational field implies the presence of
an effective index of refraction in the free space. How does
one arrive at this conclusion? Does this mean that speed
of light is not absolute? Give an example of the physical
manifestations of this index of refraction.

Problems

(3.1) Inclined plane, pendulum, and EP:

(a) Inclined plane: For the frictionless inclined plane
(with angle θ ) in Fig. 3.1(a), find acceleration’s
dependence on the ratio mI/mG. Thus a violation
of the EP would show up as a material-dependence
in the time for a material block to slide down the
plane.

(b) Pendulum: For a simple pendulum on the surface
of earth, cf. Fig. 3.1(b), find its oscillation period’s
dependence on the ratio mI/mG.

(3.2) Two EP brain-teasers:

(a) Use EP to explain the observation that a helium
balloon leans forward in a (forward-) accelerating
vehicle, see Fig. 3.7(a).

(b) On his 76th birthday Einstein received a gift from
his Princeton neighbor Eric Rogers. It was a “toy”
composed of a ball attached, by a spring, to the
inside of a bowl, which was just the right size to
hold the ball. The upright bowl is fastened to a
broom-stick, see Fig. 3.7(b). What is the surefire
way, as suggested by EP, to pop the ball back into
the bowl each time?

(a)

(b)

Fig. 3.7 Illustrations for the two EP brain-teasers in Problem 3.2.

(3.3) Gravitational time dilation and the twin paradox
Consider the twin paradox given in Section A.1. Just
before the traveling twin (Al) turned around his rocket-
ship, his clock told him that the stay-at-home twin (Bill)
had aged 9 years since his departure. But immediately
after the turn-around, his clock found Bill’s elapsed time
to be 41 years. Use the gravitational time dilation effect
to account for this change of 32 years.
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(3.4) The Global Position System The signals from the 24 GPS
satellites (in six evenly distributed orbit planes) enable
us to fix our location on earth to a high degree of
accuracy. Each satellite is at such an elevation so as
to revolve around the earth every 12 h. In order to
be accurate to within a few meters the satellite clocks
must be highly accurate, as 10 ns time intervals trans-
late into a light distance of 3 m. The atomic clocks
on the satellites indeed have the capability of keeping
time highly accurately, for example, to parts in 1013

over many days. (To be accurate over a long period,
their time displays are remotely adjusted several times
a day.) But in order to synchronize with the clocks on
the ground for rapid determination of distances, we must
take into account relativistic corrections. This calcula-
tion should make it clear that the proper functioning of
the GPS requires our knowledge of relativity, especi-
ally GR. To investigate such relativistic effects we must

first calculate the basic parameters of rs, the satellite’s
radial distance (from the center of the earth), and vs, its
speed.

(a) Given the satellite orbit period being 12 h, calculate
the speed vs and distance rs.

(b) Calculate the fractional change due to special
relativistic time dilation.

(c) Calculate the fractional change due to the grav-
itational time dilation effect as the satellites are at a
different gravitational potential compared to the sur-
face of the earth. Is this GR effect more significant
than the SR dilation?

(d) Calculate the error that can be accumulated in 1 min
because of these relativistic corrections. Do these
two effects change the satellite time in the same
direction, or do they tend to cancel each other?
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• Einstein’s new theory of gravitation is formulated in a geometric
framework of curved spacetime. In this chapter, we make a mathe-
matical excursion into the subject of non-Euclidean geometry by way
of Gauss’s theory of curved surfaces.

• Generalized (Gaussian) coordinates: A systematical way to label
points in space without reference to any objects outside this space.

• Metric function: For a given coordinate choice, the metric determines
the intrinsic geometric properties of a curved space.

• Geodesic equation: It describes the shortest and the straightest pos-
sible curve in a warped space and is expressed in terms of the metric
function.

• Curvature: It is a nonlinear second derivative of the metric. As the
deviation from Euclidean relations is proportional to the curvature, it
measures how much the space is warped.

By a deep study of the physics results implied by the equivalence principle
(Chapter 3), Einstein proposed, as we shall discuss in the next chapter, that
the gravitational field is the curved spacetime. Curved spacetime being the
gravitational field, the proper mathematical framework for general relativity
(GR) is Riemannian geometry and tensor calculus. We shall introduce these
mathematical topics gradually. The key concepts are Gaussian coordinates,
metric functions, and the curvature. Points in space are systematically labeled
by the Gaussian coordinates; the geometry of space can be specified by length
measurements among these points with results encoded in the metric function;
the curvature tells us how much space is warped.

Historically Riemann’s work on the foundation of geometry was based on
an extension of Gauss’s theory of curved surfaces. Since it is much easier
to visualize two-dimensional (2D) surfaces, we shall introduce Riemannian
geometry by first considering various topics in this case of the 2D curved space.
In particular, we study the description of warped surfaces by a 2D metric gab

with a = 1, 2, then suggest how such results can be generalized to higher
n dimensions with a = 1, 2, . . . , n.

Mathematically speaking, the algebraic extension to higher dimensional
spaces, in particular the four-dimensional (4D) spacetime, is relatively
straightforward—in most cases it involves an extension of the range of indices.
Nevertheless, the generalization of the concept “curvature” to higher dimen-
sions is highly nontrivial. A proper study of the curvature in higher dimensional
spaces, called the Riemann curvature tensor, will be postponed until Chapter 11
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when we present tensor analysis of GR. For the material in Parts I and II,
we only need the metric description of the warped spacetime. Knowing the
metric function, which is the relativistic gravitational potential, we can deter-
mine the equation of motion and can discuss many GR applications. In Part III
we present the derivation of Riemann curvature tensor, and this finally allows
us to write down Einstein equation, and to show that the metric functions used
in Parts I and II are solutions to this GR field equation.

4.1 Gaussian coordinates

We first need an efficient way to label points in space. This section presents
the study of the general coordinates in a curved space. For curved surfaces
a position vector x a has two independent components (a = 1, 2), and for
higher dimensional cases, we concentrate particularly on the 4D spacetime
xµ(µ = 0, 1, 2, 3).

Most of us start thinking of curved surfaces in terms of their embedding in
the three-dimensional (3D) Euclidean space, in which the points can be labeled
by Cartesian coordinate system (X, Y , Z). For illustration, we shall often use
the example of a spherical surface, which geometers call a 2-sphere.

A surface in the 3D space is specified by a constraint condition:

f (X, Y , Z) = 0, (4.1)

or equivalently in the form of a relation among the coordinates,

Z = g(X , Y). (4.2)

For the case of 2-sphere with radius R, such constraint conditions are

X2 + Y2 + Z2 = R2 or Z = ±
√

R2 − X2 − Y2. (4.3)

This discussion of a curved surface being embedded in some larger space is an
extrinsic geometric description—the physical space (here, the curved surface)
is described using entities outside to this space. What we are most interested
is an intrinsic geometric description—a characterization of the physical space
without invoking any embedding. Namely, we are interested in the possibility
of a description based solely on the measurement made by an inhabitant who
never leaves the 2D surface. Gauss introduced a generalized parametrization,
having coordinates (x1, x2) that are free to range over their respective domains
without constraint.

X = X(x1, x2), Y = Y(x1, x2), Z = Z(x1, x2). (4.4)

These generalized coordinates (x1, x2) are called the Gaussian coordinates. We
note the employment of Gaussian coordinates avoids such constraint expres-
sions as in (4.2). Using the Gaussian coordinates (their number being the
dimensionality of the space) the geometric description can be purely intrinsic.x
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Fig. 4.1 Gaussian coordinates (r, φ) and
(ρ, φ) for the curved surface of a 2-sphere.
The dashed line is the prime meridian. NB,
the radial coordinate r is taken in reference to
the “north pole” on the surface of the sphere,
rather with respect to the center of the sphere.

For the case of 2-sphere (see Fig. 4.1), we illustrate Gaussian coordinate
choices by two systems:

1. The polar coordinate system: We can set up a Gaussian coordinate
system (x1, x2) = (r, φ) by first picking a point on the surface to be
the origin (the “north pole”) and a longitudinal great circle as the “prime
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meridian.” The radial coordinate r is marked on the spherical surface in
the radial direction and the azimuthal angle φ is measured against the
prime meridian. Thus, r has the range of 0 ≤ r ≤ πR and is related to
the polar angle1 as r = Rθ where 0 ≤ θ ≤ π and 0 ≤ φ ≤ 2π . 1We can of course pick (θ , φ) as our

Gaussian coordinates. But this is essentially
the same system as the polar coordinates being
discussed here.

X = R sin
r

R
cos φ, Y = R sin

r

R
sin φ, Z = R cos

r

R
. (4.5)

2. The cylindrical coordinate system: We can choose another set of
Gaussian coordinates by having a different radial coordinate: instead
of r, we pick the function ρ = R sin θ = R sin(r/R) as our radial
coordinate with a range of 0 ≤ ρ ≤ R. Namely, we now have the
system (x1, x2) = (ρ, φ). If the spherical surface is embedded in a 3D
Euclidean space, ρ is interpreted as the perpendicular distance to the
z-axis as shown in Fig. 4.1.

X = ρ cos φ, Y = ρ sin φ, Z = ±
√

R2 − ρ2. (4.6)

From now on we will no longer use the extrinsic coordinates such as
(X, Y , Z). By coordinates, we shall always mean the Gaussian coordinates
(x1, x2) as the way to label points on a 2D space. Since one could have chosen
any number of coordinate systems, and at the same time expecting geometric
relations to be independent of such choices, a proper formulation of geometry
must be such that it is invariant under general coordinate transformations.

4.2 Metric tensor

The central idea of differential geometry was that an intrinsic description of
space could be accomplished by distance measurements made within physical
space. Namely, one can imagine labeling various points of space (with
a Gaussian coordinate system), then measure the distance among neighboring
points. From the resultant “table of distance measurements,” one obtains
a description of this space. For a given coordinate system, these measurements
are encoded in the metric function.

In fact, we have already used this Gaussian prescription in Chapter 2 when
we first introduced the notion of a metric directly in terms of the basis vectors
{ea} defined within the physical space (cf. (2.33)):

gab = ea · eb. (4.7)

The metric gab relates the (infinitesimal) length measurement ds to the chosen
coordinates {dx a}, as shown in (2.36):

ds2 = gabdx adx b (4.8)

= g11(dx1)2 + g22(dx2)2 + 2g12(dx1dx2), (4.9)

where in (4.8) Einstein’s convention of summing over repeated indices has
been employed. We have also used the symmetry property of the metric,
g12 = g21. The above relation can also be written as a matrix equation,

ds2 = (dx1 dx2)

(
g11 g12

g21 g22

)(
dx1

dx2

)
(4.10)

with the metric being represented by a 2× 2 matrix.
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Metric in polar coordinates To illustrate this for the case of a spherical sur-
face (radius R), one first sets up the latitude/longitude system (i.e. a system
of polar coordinates r and φ) to label points on the globe, then measures the
distances between neighboring points (Fig. 4.2). One finds that the latitudinal
distances dsφ (subtended by dφ between two points having the same r value)
become ever smaller as one approaches the poles dsφ = R sin θdφ =
R sin(r/R)dφ, while the longitudinal distance interval dr between two points
at the same longitude (dφ = 0) can be chosen to have the same value over
the whole range of θ and φ. From such a table of distance measurements,
one obtains a description of this spherical surface. Such distance measurements
can be compactly expressed in terms of the metric tensor elements. Because
we have chosen an orthogonal coordinate grφ = er · eφ = 0,

[ds2](r,φ) = (dsr)
2 + (dsφ)2 (4.11)

= dr2 + R2 sin2 r

R
dφ2. (4.12)

NB an infinitesimally small area on a curved surface can be thought of as
a (infinitesimally small) flat plane. For such a flat surface ds can be calculated
by Pythagorean theorem as in (4.11). A comparison of (4.12) and (4.10) leads
to an expression for the metric tensor for this coordinate system to be

g(r,φ)

ab =
(

1 0
0 R2 sin2(r/R)

)
. (4.13)

Longitudinal
distances

Latitudinal
distances

Fig. 4.2 Using distance measurements
along longitudes and latitudes to specify the
shape of the spherical surface.

Metric in cylindrical coordinates To calculate the metric for spherical
surface with cylindrical Gaussian coordinates (ρ, φ) as shown in (4.6). From
Fig. 4.1 we see that the cylindrical radial coordinate ρ is related to the polar
angle θ = r/R by ρ = R sin(r/R), hence dρ = √1− (ρ2/R2)dr. From this
and from (4.12) we obtain

[ds2](ρ,φ) = R2dρ2

R2 − ρ2
+ ρ2dφ2, (4.14)

corresponding to the metric

g(ρ,φ)

ab =
(

R2/(R2 − ρ2) 0
0 ρ2

)
. (4.15)

We are interested in the cylindrical coordinate system also because this offers,
as we shall show in Section 4.3.2, a rather compact description of all curved
surfaces with constant curvature.

We emphasize it again: the metric gab is an intrinsic geometric quantity
because it can be determined without reference to any embedding—a 2D
inhabitant on the curved surface can, once the Gaussian coordinates {x a} have
been chosen, obtain gab by various length ds-measurements spanned by dx a

and dxb. For the 2D case, we have

g11 = (ds1)
2

(dx1)2
, g22 = (ds2)

2

(dx2)2
, (4.16)

g12 = (ds12)
2 − (ds1)

2 − (ds2)
2

2dx1dx2
, (4.17)
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where ds1 and ds2 are the lengths measured along the 1- and 2-axes having
respective coordinates dx1 and dx2, and ds12 the length of a segment on the
1-2 plane (with coordinate projections dx1 and dx2 along the axes). From the
law of cosines,2 we see that (4.17) just says that g12 is the cosine of the angle 2The flat space geometric relation is

applicable because we are working in an
infinitesimal region, which can always be
described approximately as a flat space,
cf. Section 4.2.2.

subtended by the axes, cf. (4.7) and (4.10). Thus if we had an orthogonal
coordinate system the metric matrix would be diagonal. It should be emphasized
that coordinates {x a} themselves do not measure distance. Only through the
metric as in (4.8) are they connected to distance measurements.

General coordinate transformation
For a description of the spherical surface one can use, for example, either
polar Gaussian coordinates: (x1, x2) = (r, φ), or cylindrical Gaussian coordin-
ates (x′1, x′2) = (ρ, φ). The (intrinsic) geometric properties of the spherical
surface are of course independent of the coordinate choice. For example, the
length should be unchanged ds2 = gabdx adxb = g′abdx′adx′b. Here, these
two coordinate systems are related by ρ = R sin(r/R), or dρ = cos(r/R)dr.
This change of coordinates (r, φ)→ (ρ, φ) can be expressed as a transformation
matrix acting on the coordinate differentials that leaves the infinitesimal length
intervals ds2 unchanged.

(
dρ

dφ

)
=
(

cos(r/R) 0
0 1

)(
dr
dφ

)
. (4.18)

Equation (4.18) can be compared to the similar coordinate transformations of
rotation and boost that we discussed previously, for example, in Section 2.3.2.
We note an important difference: the elements of the transformation matrices
in (2.54) and (2.60) are not position-dependent—the same rotation angle θ

and the same boost velocity v for every point in space. The matrix in (4.18)
has position-dependent elements. Namely, we make a different transformation
(from the polar to the cylindrical system) at each position having a different
radial coordinate r. This is a key difference between the coordinate transforma-
tion in a flat space and those in curved space. To have coordinate changes being
dependent on coordinates themselves means that the transformation is nonlin-
ear. This will be discussed extensively in Part III (Chapters 10 and 11) when
we present the tensor calculus in SR (flat spacetime) vs. that in GR (curved
spacetime).

4.2.1 Geodesic as the shortest curve

So far in our introductory discussion of the metric we have used known curved
surfaces such as sphere to show that its shape can be specified by the metric
function. This justifies our subsequent application that a curved space can be
represented, for a given coordinate system, by a metric tensor. Once we have the
metric, other geometric quantities can then be computed. For example, angles
can be determined:

cos θ = A · B
AB

= gabA aBb

√
gcdAcAd

√
gef BeB f

. (4.19)

Our main task here is to show that the curve having the extremum length,
called the geodesic line, can be specified in terms of the metric function.
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Any curve can be represented by a set of coordinates x a(σ ) depending on a
single parameter σ , which has some definite range.3 In a curved space the3For a concrete example, one can think of the

trajectory of a particle as a curve x(t) with
the curve parameter being the time variable.

metric only determines the infinitesimal length:

ds =
√

gabdx adxb. (4.20)

For a finite length, we must perform the line-integration,

s =
∫

ds =
∫

ds

dσ
dσ =

∫ √(
ds

dσ

)2

dσ =
∫

L dσ , (4.21)

where L is the “Lagrangian”:

L =
√

gab
dx a

dσ

dxb

dσ
= L(x, ẋ) (4.22)

with ẋ = dx/dσ . To determine the shortest (i.e. the extremum) line in the
curved space, we impose the extremization condition for variation of the path
with end points fixed:

δs = δ

∫
L(x, ẋ)dσ = 0, (4.23)

which can be translated, by calculus of variation, into a partial differential
equation—the Euler–Lagrange equation:

d

dσ

∂L

∂ ẋ a
− ∂L

∂x a
= 0. (4.24)

To aid the reader in recalling this connection, which is usually learnt in an
intermediate mechanics course, we provide a brief derivation for the simple one-
dimensional (1D) case. We set out to minimize the 1D integral s with respect to
the variation, not of one variable or several variables as in the usual minimization
problem, but of a whole function x(σ ) with initial and final values fixed:

δx(σ ) with δx(σi) = δx(σf ) = 0. (4.25)

The variation of the integrand being

δL(x, ẋ) = ∂L

∂x
δx + ∂L

∂ ẋ
δẋ, (4.26)

we have

0 = δs = δ

∫ σf

σi

L(x, ẋ)dσ =
∫ σf

σi

(
∂L

∂x
δx + ∂L

∂ ẋ

d

dσ
δx

)
dσ

=
∫ σf

σi

(
∂L

∂x
− d

dσ

∂L

∂ ẋ

)
(δx)dσ . (4.27)

To reach the last expression we have performed an integration-by-parts on the
second term, and used the condition in (4.25) to discard the integrated term
[(∂L/∂ ẋ)δx]σf

σi . Since δs must vanish for arbitrary variations δx(σ ), the expres-
sion in the parenthesis must vanish. This is the one-dimension version of the
Euler–Lagrange Eq. (4.24). In mechanics, the curve parameter is time σ = t
and Lagrangian L is simply the difference between kinetic and potential energy.
For the simplest case of L = 1

2 mẋ2−V(x), the Euler–Lagrange equation is just
the familiar F = ma equation.
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As a mathematical exercise, one can show that the same Euler–Lagrange
Eq. (4.24) follows from, instead of (4.22), a Lagrangian of the form:

L(x, ẋ) = gabẋ aẋb, (4.28)

which without the square-root is much easier to work with than (4.22). With
L in this form, the derivatives become

∂L

∂ ẋ a
= 2gabẋb,

∂L

∂x a
= ∂gcd

∂x a
ẋcẋd , (4.29)

where we have used the fact that the metric function gab depends on x,
but not ẋ. Substituting these relations back into Eq. (4.24), we obtain the
geodesic equation,

d

dσ
gabẋb − 1

2

∂gcd

∂x a
ẋcẋd = 0, (4.30)

which determines the trajectory of the “shortest curve.” One can easily use
this equation to check the geodesic lines in simple surfaces of flat plane and
spherical surface (Problem 4.4).

4.2.2 Local Euclidean coordinates

We are familiar with the idea that at any point on a curved surface there exists
a plane, tangent to the curved surface. The plane in its Cartesian coordin-
ates, can have a metric δab. But this is true only at this point (call it the
origin). Namely, ḡab(0) = δab. If we are interested in the metric function,
we have to be more careful. A more complete statement is given by the flatness
theorem.

The flatness theorem: In a curved space with a general coordinate system
x a and a metric value gab at a given point P, we can always find a coord-
inate transformation x a → x̄ a and gab → ḡab so that the metric is flat at this
point: ḡab = δab and ∂ ḡab/∂ x̄c = 0,

ḡab(x̄) = δab + γabcd(0)x̄cx̄d + · · · . (4.31)

Namely the metric in the neighborhood of the origin will differ from δab by
the second order derivative. This is simply a Taylor series expansion of the
metric at the origin—there is the constant ḡab(0) plus higher order derivative
terms (γabcd(0)x̄cx̄d being simply the second derivative). The nontrivial content
of (4.31) is the absence of the first derivative. That ḡab(0) = δab should be
less surprising: it is not difficult to see that for a metric value at one point
one can always find an orthogonal system so that ḡab(0) = 0 for a �= b and
the diagonal elements can be scaled to unity so that the new coordinate bases
all have unit length and the metric being an identity matrix. If the original
metric has negative determinant, this reduces to the pseudo-Euclidean metric
ηab = diag(1,−1) (cf. Problem 4.5). Such a coordinate system {x̄ a} is called
the locally Euclidean frame (LEF).

The theorem can be generalized to n-dimensional space, in particular the
4D spacetime. (The proof will be provided in Box 11.1.) It informs us that the
general spacetime metric gab(x) is characterized at a point (P) not so much by
the value gab|P since that can always be chosen to be flat, ḡab|P = δab, nor by
its first derivative which can always be chosen to vanish ∂ ḡab/∂xc|P = 0, but
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by the second derivative of the metric ∂2gab/∂xc∂xd , which are related to the
curvature to be discussed in Section 4.3.

dy
ds

dx

ds

dr
rd�

�

(a) (b)

Fig. 4.3 Two coordinate systems in a flat
plane: (a) Cartesian coordinates, and (b) polar
coordinates.

dz
ds

R

Rd�

P

(a)

(b)

Fig. 4.4 (a) Cylindrical coordinates on a
cylindrical surface. (b) A straight line on
a cylindrical surface can return to the
originating point.

Box 4.1 More illustrative calculations of metric tensors for simple
surfaces

Here are further examples of metric tensors for 2D surfaces, calculated
by using the fact that any surface in the small can be approximated by a
plane having Cartesian coordinates. We also take this occasion to discuss
the possibility of using the metric tensor to determine whether a surface
is curved or not. For a flat surface, we can find a set coordinate so that
the metric tensor is position-independent; this cannot be done in a curved
surface as gab = ea · eb must change from point to point.

1. A plane surface with Cartesian coordinates: For the coordinates
(x1, x2) = (x, y), we have the infinitesimal length ds2 = dx2 + dy2,
Fig. 4.3(a). Comparing this to the general expression in (4.8), we see that
the metric must be

gab =
(

1 0
0 1

)
, (4.32)

which is, of course, position-independent. This is possible only if the space
is not curved.

2. A plane surface with polar coordinates: For the coordinates
(x1, x2) = (r, φ), we have the infinitesimal length ds2 = (dr)2 + (rdφ)2,
Fig. 4.3(b), thus according to (4.8), a metric

gab =
(

1 0
0 r2

)
, (4.33)

which is position-dependent! But we can find a coordinate transformation
(x1, x2) → (x′1, x′2) so that the metric in the new coordinate is position-
independent, g′ab = δab. Of course, the new coordinates are just the
Cartesian coordinates (x′1, x′2) = (x, y):

x = r cos φ, y = r sin φ. (4.34)

3. A cylindrical surface with cylinder coordinates: Let R be the radius
of the cylinder (see Fig. 4.4(a)), the infinitesimal length for cylinder coord-
inates (x1, x2) = (z, Rφ) is then ds2 = dz2 + R2dφ2 = (dx1)2 + (dx2)2.
This shows that we have a constant metric gab = δab. Thus locally this
is a flat surface, even though globally and topologically it is different
from a plane surface. For example, a straight line can close onto itself
in such a cylindrical surface (see Fig. 4.4(b)).

4. A spherical surface with spherical coordinates: For a spherical sur-
face with radius R, we have already calculated the metric: for the polar
coordinates (r, φ) in (4.13) and for cylindrical coordinates (ρ, φ) in (4.15).
They are all position-dependent. Furthermore, such position dependence
cannot be transformed away by going to any other coordinate system.
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4.3 Curvature

From the above discussion, we see that the metric value cannot represent the
essence of a curved space because it is coordinate-dependent and can always, at
a given point, be transformed to a flat space metric. However, this replacement
can only be done locally—in an infinitesimally small region. A general metric
equates to the flat space metric up to corrections given by the second derivative
of the metric function, as shown in (4.31). This suggests that it is the second
derivatives that really tell us how curved a curved space is.

(a) (b)

(c)

Fig. 4.5 Three kinds of surfaces: (a) flat
plane, (b) sphere, and (c) cylindrical surface.

4.3.1 Gaussian curvature

Consider the three surfaces in Fig. 4.5. We usually can tell whether a surface
is curved by an examination of its relation to the embedding space. Thus the
sphere is curved in a fundamental way. By contrast, the curvature of the cylinder
is less fundamental as we can cut and unroll it into a plane without internal
deformation—we say it has zero intrinsic curvature (although such a cylinder
has global curvature), cf. Box 4.1, item 3. We are interested in finding a simple
intrinsic method to determine whether a space is warped or not.

For a flat space we can find a coordinate system such that the metric is
position-independent, while such coordinates do not exist in the case of a
curved space. Using the metric in this way to determine whether a surface
is curved or not, as in Box 4.1, is rather unsatisfactory. How can we be sure to
have exhausted all possible coordinate systems, none of which have a constant
metric? Is there a better way?

Theorema Egregium (a very beautiful theorem): This is the title of the paper
in which Gauss presented his answer to the above questions: he showed that it
was possible to define an unique invariant second derivative of the metric tensor
(∂2g) called the curvature K , such that, independent of the coordinate choice,
K = 0 for a flat and K �= 0 for curved surfaces.

With no loss of generality we shall quote Gauss’s result for a diagonalized
metric gab = diag (g11, g22):

K = 1

2g11g22

{
− ∂2g11

(∂x2)2
− ∂2g22

(∂x1)2
+ 1

2g11

[
∂g11

∂x1

∂g22

∂x1
+
(

∂g11

∂x2

)2]

+ 1

2g22

[
∂g11

∂x2

∂g22

∂x2
+
(

∂g22

∂x1

)2]}
. (4.35)

Since this curvature is expressed entirely in terms of the metric and its deriv-
atives, it is also an intrinsic geometric object. This one quantity determines
the curvature of a surface—in contrast to the embedded viewpoint, which may
lead one to expect that it would take two numbers to characterize the curvature
of a 2D space. In fact, there is no curvature for an 1D space; an inhabitant
on a line cannot detect any intrinsic curvature. To describe such curvature of a
2D surface, it only takes one number. We will not present the derivation of (4.35)
since it is contained in the more general result to be discussed in Section 11.3.1
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(Problem 11.11). But, let us check that it indeed has the property as a simple
indicator as whether a surface is warped or not.

• For a position-independent metric we automatically have K = 0 because
the derivatives of the metric vanish. Thus for the plane surface with
Cartesian coordinates and the cylindrical surface with cylindrical coord-
inates we can immediately conclude that they are intrinsically flat
surfaces.

• For a plane surface with polar coordinates (x1, x2) = (r, φ), we have
a position-dependent metric g11 = 1 and g22 = r2 = (x1)2 with
(∂g22/∂x1) = 2x1 and (∂2g22/∂(x1)2) = 2. However, the curvature
vanishes:

K = 1

2(x1)2

{
−2+ 1

2(x1)2

[
4(x1)2]

}
= 0 (4.36)

indicating that it is a flat space, even though the corresponding metric
(4.33) is position-dependent.

• For a spherical surface with polar coordinates (x1, x2) = (r, φ), we have
Eq. (4.13) having g11 = 1 and g22 = R2 sin2(x1/R) with ∂g22/∂x1 =
R sin(2x1/R) and ∂2g22/(∂x1)2 = 2 cos(2x1/R). This leads to

K = 1

2R2 sin2(x1/R)

{
2 sin2 x1

R
− 2 cos2 x1

R

+ 4R2 sin2(x1/R) cos2(x1/R)

2R2 sin2(x1/R)

}
= 1

R2
. (4.37)

One can easily check that this result holds for the cylindrical coordinates
of (4.15) as well, indicating that K = R−2 is the curvature for a spherical
surface, independent of coordinate choices.

4.3.2 Spaces with constant curvature

In Chapter 7 we shall start our discussion of cosmology with the basic assump-
tion (called the cosmological principle) that the space, at given instant of cosmic
time, is homogeneous and isotropic. Not surprisingly, this corresponds to a 3D
space of constant curvature. Since it is difficult to visualize a warped 3D space,
we shall first discuss the 2D surface with constant curvature. The generalization
of this result to 3D space will then be presented afterward.

2D surfaces with constant curvature
While the Gaussian curvature in (4.35) is generally a position-dependent
function, we have seen in (4.37) that the sphere has a constant K = 1/R2.
Obviously, a flat plane is a surface of constant curvature, K = 0. In fact there
are three surfaces having constant curvatures:

K = k

R2
, (4.38)

with the curvature signature k = +1, 0, and −1. Namely, besides the two
familiar surfaces of 2-sphere and flat plane, there is another surface, called
a 2-pseudosphere, with a negative curvature K = −1/R2.

What should be the metric for pseudosphere so that (4.35) can yield a neg-
ative curvature? An inspection of the calculation in (4.37) shows that, in order to
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obtain a result of −1/R2, we would want the first term in the curly parenthesis
to change sign (since the next two terms cancel each other). This first term
originates from cos(2x1/R) = − sin2(x1/R)+cos2(x1/R) in the second derivat-
ive of g22. This suggests that, to go from the positive curvature for a sphere to
a negative curvature for a pseudosphere, the metric term g22 = R2 sin2(x1/R)

should be changed to g22 = R2 sinh2(x1/R) so that the second derivative of the
new g22 would have a factor of cosh(2x1/R) = + sinh2(x1/R)+ cosh2(x1/R).
Making such a change in Eq. (4.13), we have the metric for the pseudosphere

g(r,φ)

ab =
(

1 0
0 sin h2(r/R)

)
. (4.39a)

which leads to the curvature:

K = 1

2R2 sinh2(x1/R)

{
− 2 sinh2 x1

R
− 2 cosh2 x1

R

+ 4R2 sinh2(x1/R) cosh2(x1/R)

2R2 sinh2(x1/R)

}
= −1

R2
. (4.39)

Such a negative curvature space is also referred to as a hyperbolic space.
In this way the infinitesimal separation for the three surfaces with constant

curvature in the polar coordinates as shown in (4.13), (4.33), and (4.39a), can
be expressed as

[ds2](k)
2D,χ =




R2(dχ2 + sin2 χdφ2) for k = +1,

R2(dχ2 + χ2dφ2) for k = 0,

R2(dχ2 + sinh2 χdφ2) for k = −1,

(4.40)

where we have factored out the overall scale R by introducing a dimensionless
radial coordinate χ ≡ r/R. Unlike the plane and sphere cases, there is no simple
way to visualize this whole pseudosphere because the natural embedding is
not into a flat space with Euclidean metric of gij = diag(1, 1, 1) but into a
flat space with a pseudo-Euclidean metric of gij = diag(−1, 1, 1). Compared
to the embedding of a sphere in a Euclidean space as (4.3), it can be worked
out (see Problem 4.7) to show that the embedding of the k = −1 surface in
such a pseudo-Euclidean space with coordinate (W , X, Y) corresponds to the
condition

−W2 + X2 + Y2 = −R2. (4.41)

While we cannot draw the whole pseudosphere in an ordinary 3D Euclidean
space, the central portion of a saddle surface does represent a negative curvature
surface, see Fig. 4.6(b).

In the cylindrical coordinates (x1, x2) = (ρ, φ), the metric for these three
surfaces can be written in a particular compact form:

[ds2](k)
2D,ρ =

R2dρ2

R2 − kρ2
+ ρ2dφ2. (4.42)

We can easily check that for k = 0 the metric (4.42) yields ds2 = dρ2+ρ2dφ2,
which is the infinitesimal separation for a flat surface with the familiar polar
coordinates, cf. (4.33). For the positive curvature k = +1, the metric (4.42) is
just the metric (4.15) of spherical surface in the cylindrical coordinate system.
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3D spaces with constant curvature
The 2D spaces with constant curvature have metrics of (4.42) in the cylindrical
coordinates and metrics of (4.40) in polar coordinates. We now make a heuristic
argument for their generalization to 3D constant curvature spaces. Compared to
the 2D coordinates (r, φ) or (ρ, φ), the 3D spherical coordinate system (r, θ , φ)

or (ρ, θ , φ) involves an additional (polar) angle coordinate. Specifically for the
k = 0 cases, we have the polar coordinate for a flat 2D surface, and the spherical
coordinates for an Euclidean 3D space. Their respective metric relations are
well-known:

[ds2](0)
2D = dr2 + r2dφ2 (4.43)

and
[ds2](0)

3D = dr2 + r2d�2. (4.44)

Namely, we replace the angular factor dφ2 by the solid angle factor d�2 =
(dθ2 + sin2 θdφ2). Here we suggest that, even for the k �= 0 spaces, we can
obtain the 3D expressions in the same manner. From (4.40), we have the metric
for 3D spaces in the spherical polar coordinates (χ , θ , φ)

[ds2](k)
3D,χ =




R2(dχ2 + sin2 χd�2) for k = +1,
R2(dχ2 + χ2d�2) for k = 0,
R2(dχ2 + sinh2 χd�2) for k = −1.

(4.45)

Similarly, if we replace the radial coordinate ρ by a dimensionless ξ ≡ ρ/R, we
have, from (4.42), the metric for the (ξ , θ , φ) “cylindrical” coordinate system

[ds2](k)
3D,ξ = R2

(
dξ2

1− kξ2
+ ξ2d�2

)
. (4.46)

Eqs (4.45) and (4.46) reduce to the respective 2D metric expressions (4.40) and
(4.42) when we take a 2D slice of the 3D space with either dθ = 0 or dφ = 0.
This means that all the 2D subspaces are appropriately curved.

A rigorous derivation of these results would involve the mathematics of sym-
metric spaces, Killing vectors, and isometry. However, our heuristic deduction
will be buttressed in Section 12.4.1 by a careful study of the properties of
curvature tensor for a 3D space with the help of the Einstein equation.

The metrics in (4.45) and (4.46) with k = +1 describes a 3-sphere, k = −1
a 3-pseudosphere, and the overall distance scale R′s are identified with the
respective radii of these spheres. See Problem 4.6 for embedding of such
3D spaces in a 4D (pseudo-) Euclidean space—as generalizations of (4.3)
and (4.41):

±W2 + X2 + Y2 + Z2 = ±R2 (4.47)

with the plus sign for the space of 3-sphere, and negative sign the
3-pseudosphere. In Part II, we shall study cosmology based on the cosmo-
logical principle. The geometry of the cosmic spaces are the ones with constant
curvature: k = 0 is the flat, k = +1 the closed, and k = −1 the open universes.

4.3.3 Curvature measures deviation from
Euclidean relations

On a flat surface, the familiar Euclidean geometrical relations hold. For
example, the circumference of a circle with radius r is S = 2πr, and the
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angular excess for any polygon equals to zero ε = 0. The angular excess ε is
defined to be the sum of the interior angles in excess of their flat space Euclidean
value. For example, in the case of a triangle with angles α, β, and γ , the angular
excess is defined as

ε ≡ α + β + γ − π . (4.48)

The curvature measures how curved a surface is because it is directly propor-
tional to the violation of Euclidean relations. In Fig. 4.6 we show two pictures
of circles with radius r drawn on surfaces with nonvanishing curvature. It can
be shown (Problem 4.9) that the circular circumference S differs from the flat
surface value of 2πr by an amount controlled by the Gaussian curvature, K :

lim
r→0

2πr − S

r3
= π

3
K . (4.49)

For a positively curved surface the circumference is smaller than, for a
negatively curved surface larger than, that on a flat space.

Pr

� R

P r

(a)

(b)

Fig. 4.6 A circle with radius r centered on
point P, (a) on a spherical surface with curva-
ture K = 1/R2, (b) on the middle portion of
a saddle shaped surface, which has negative
curvature K = −1/R2.

Angular excess and curvature
We shall also show that the angular excess ε is directly proportional to the area
of the polygon σ with the proportional constant being the curvature K :

ε = Kσ . (4.50)

This relation will be used in Chapter 11 to extract the general curvature, the
Riemann curvature tensor, for a space of arbitrary dimensions. The contracted
form of this Riemann tensor (called the Einstein tensor) enters directly in the
GR field equation (the Einstein equation).
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(b)
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Fig. 4.7 (a) A triangle with two 90◦ interior
angles on a spherical surface. (b) Three great
circles ACA′C′, BCB′C′, and ABA′B′ inter-
sect pairwise at points (A and A′), (B and B′),
and (C and C′). The two identical triangles
are ABC with angles α, β, γ on the front-
hemisphere and A′B′C′ with angles α′, β ′, γ ′
on the back-hemisphere.

Here we shall explicitly prove (4.50) for the case of a spherical surface
(K = 1/R2). Let us first illustrate the validity of this relation for a particularly
simple example of a triangle with two 90◦ interior angles and the third one
being θ , as shown in Fig. 4.7(a). Clearly according to the definition of angular
excess given in (4.48) we have ε = θ . The triangular area σ is exactly one-half
of a lune with θ as its vertex angle. A lune is the area in between two great
semi-circles, with an angle θ subtended between them, having an area value

σθ = 2θR2 (area of a lune with angle θ), (4.51)

as θ = 2π corresponds to the whole spherical surface. Thus area of this triangle
is σ = 1

2σθ = θR2, which is just the relation (4.50) with K = 1/R2.
The proof of (4.50) for a general triangle goes as follows. Draw three great

circles (ABA′B′), (ACA′C′), and (BCB′C′) as in Fig. 4.7(b). Now consider
the three lunes marked out by these geodesic lines, and record their respective
areas according to (4.51):

σα = 2αR2 (lune AA′ with angle α),

σβ = 2βR2 (lune BB′ with angle β),

σγ = 2γ R2 (lune CC′ with angle γ ).

Their sum is
σα + σβ + σγ = 2(α + β + γ )R2. (4.52)

However, an inspection of the diagram in Fig. 4.7(b) shows that the sum of these
three lunes covers the entire front hemisphere, in addition to the triangular areas
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of (ABC) and (A′B′C′). Thus another expression for the area sum is

σα + σβ + σγ = 2πR2 + σABC + σ ′ABC. (4.53)

For spherical triangles, congruity of angles implies congruity of triangles
themselves. Hence the angular equalities α = α′, β = β ′, and γ = γ ′ imply
the area equality of σABC = σ ′ABC. Equations (4.52) and (4.53) then lead to

α + β + γ = π + σABC/R2. (4.54)

Namely,
α + β + γ − π = ε = KσABC, (4.55)

which is the claimed result (4.50) with K = 1/R2.
Having demonstrated the validity of (4.50) for an arbitrary spherical triangle,

it is not difficult to prove its validity for any spherical polygon (Problem 4.10).
Furthermore, because a sufficiently small region on any curved 2D surface can
be approximated by a spherical surface, (4.50) must hold for any infinitesimal
polygon on any warped 2D space. In Section 11.3, this non-Euclidean relation
will be used to generalize the notion of curvature (K) of a 2D space to that of
an n-dimensional curved space.

From Gauss to Riemann
From Gauss’s theory of curved surface, his student Bernhard Riemann showed
that this algebraic approach to geometry can be extended to higher dimen-
sional curved spaces when the spatial index ranges over n = 1, 2, . . . , n for
an n-dimensional space. The virtue of this algebraic method is to make the
study of higher dimensional non-Euclidean geometry, which by and large
is impossible to visualize, more accessible. A few years before Riemann’s
presentation of his result in 1854, Bólyai and Lobachevsky had already intro-
duced non-Euclidean geometry—the geometry without the parallelism axiom.
However, their work remained unappreciated until Riemann showed that his
larger framework encompassed the Bólyai and Lobachevsky results. This just
shows the power of the Riemannian approach.

Our interest will mostly be the 4D spacetime with the index µ = 0, 1, 2, 3.
For such a 1 + 3-dimensional manifold, the flat metric corresponds to gµν =
ηµν = diag(−1, 1, 1, 1). We should also mention that the extension to higher
dimensional space is nontrivial, because, beyond two dimensions, the curvature
of the space can no longer be described by a single function.

Review questions

1. What does it mean to have an “intrinsic geometric descrip-
tion” (vs. “extrinsic description”)?

2. Provide a description of the intrinsic geometric operations
to fix the metric elements.

3. How does the geodesic equation represent the curve xα(σ )

having an extremum length? (Just say it in words the

relation of the geodesic equation to the extremum length
condition.)

4. In what sense does the metric function describe all the
intrinsic geometric properties of a space? Namely, is the
metric an intrinsic quantity? What is the relation between
other intrinsic geometric quantities and the metric?
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5. Curved surfaces necessarily have a position-dependent
metric. But it is not a sufficient condition. Illustrate this
point with an example.

6. What is the fundamental difference between the coordinate
transformations in a curved space and those in flat space
(e.g. Lorentz transformations in the flat Minkowski space)?

7. What is the “flatness theorem”?

8. In what sense is the Gaussian curvature K a good criterion
for finding out whether a surface is curved or not?

9. What are the three surfaces of constant curvature?

10. Write out its embedding equation in a 4D space of a 3-
sphere as well as the equation of a 3-pseudosphere. Is the
embedding space for the latter an Euclidean space?

11. The curvature measures how curved a space is because it
controls the amount of deviation from Euclidean relations.
Give an example of such a non-Euclidean relation, show-
ing the deviation from flatness being proportional to the
curvature.

12. What is angular excess? How is it related to the Gaus-
sian curvature? Give a simple example of a polygon on a
spherical surface that clearly illustrates this relation.

Problems

(4.1) Metric for the spherical surface in cylindrical
coordinates Show that the metric for the spherical
surface with “cylindrical coordinates” of (4.15) fol-
lows from (4.6) and the Pythagorean relation ds2 =
dX2 + dY2 + dZ2 in the embedding space.

(4.2) Basis vectors on a spherical surface Equations (4.7)
and (4.9) are, respectively, two equivalent and closely
related definitions of the metric. In the text we use (4.9)
to deduce the metric matrix (4.13) for a spherical surface.
What are the corresponding basis vectors for this coor-
dinate system? Check that they yield the same matrix
through the definition of (4.7).

(4.3) Coordinate transformation of the metric Use (2.45)
to show explicitly that the transformation (4.18) relates
the metric tensors of the two coordinate systems as given
in (4.13) and (4.15).

(4.4) Geodesics on simple surfaces Use the geodesic
Eq. (4.30) to confirm the familiar results that the
geodesic is (a) a straight line on a flat plane and (b) a great
circle on a spherical surface.

(4.5) Locally flat metric Explicitly display a transforma-
tion that turns a general 2D metric at a point to the
Euclidean metric ḡab = δab, the Kronecker delta, or
the pseudo-Euclidean metric ḡab = ηab, where ηab =
diag(1,−1). (There are an infinite number of such
transformations, just display one.)

(4.6) Checking the Gaussian curvature formula Checking
the connection of the metric and the curvature for the
three surfaces with constant curvature K = k/R2 by
plugging (4.42) and (4.40) into the expression for the
curvature in (4.35).

(4.7) 3-sphere and 3-pseudosphere

(a) 3D flat space Express Cartesian coordinates
(x, y, z) in terms of polar coordinates (r, θ , φ).

Show that the solid angle factor in polar coordinate
expression for the infinitesimal separation satisfies
the relation r2d�2 = dx2 + dy2 + dz2 − dr2.

(b) 3-sphere Consider the possibility of embedding
a 3-sphere in a 4D Euclidean space with Cartesian
coordinates (W , X, Y , Z). From (4.45) for 3-sphere
(k = +1) and an expression relating Cartesian
coordinates to solid angle differential d�2 as
suggested by the equation shown in part (a) to find
the differential for the new coordinate dW . This
result should suggest that the 4D embedding space
is indeed Euclidean with W = R cos(r/R). From
this, display the entire expression for (W , X, Y , Z)

in terms of polar coordinates (r, θ , φ). Further-
more, verify that the 3-sphere is a 3D subspace
satisfying the constraint

W2 + X2 + Y2 + Z2 = R2.

(c) 3-pseudosphere Now the fourth coordinate
should be W = R cosh(r/R). Show that
the 4D embedding space is pseudo-Euclidean
with a metric ηµν = diag(−1, 1, 1, 1) and
the 3-pseudosphere is a 3D subspace satisfying
the condition

−W2 + X2 + Y2 + Z2 = −R2.

(4.8) Volume of higher dimensional space The general
expression for the differential volume is the product
of coordinate differentials and the square root of the
metric determinant:

dV=√det g
∏

i

dxi. (4.56)

(a) Verify that for 3D flat space this reduces to the
familiar expression for volume element dV =
dx dy dz in the Cartesian coordinates, and dV =
r2 sin θdrdθdφ in the spherical coordinates.
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(b) Work out the volume element for a 3-sphere, and
integrate it to obtain the result of V (+1)

3 = 2π2R3.
Thus 3-sphere, much like the familiar spherical
surface, is a 3D space having no boundary yet
with a finite volume. When applied to cosmology
this is a “closed universe” with R being referred to
as “the radius of the universe.”

(4.9) Non-Euclidean relation between radius and circumfer-
ence of a circle On a curved surface the circumference
S of a circle is no longer related to its radius r by

S = 2πr. The deviation from this flat space relation
is proportional to the curvature, as shown in (4.49).
Derive this relation for the simple cases (a) a sphere
and (b) a pseudosphere.

(4.10) Angular excess and polygon area Generalize the
proof of (4.50) to the case of an arbitrary polygon.
Namely, one still has ε = σK with ε being the angu-
lar excess over the Euclidean sum of the polygon and
σ being the area of the polygon.
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• We first present a geometric description of equivalence principle (EP)
physics of gravitational time dilation. In this geometric theory, the
metric gµν(x) plays the role of relativistic gravitational potential.

• Curved spacetime being the gravitational field, geodesic equation in
spacetime is the GR equation of motion, which is checked to have the
correct Newtonian limit.

• At every spacetime point, one can construct a free-fall frame in which
gravity is transformed away. However, in a finite-sized region, one
can detect the residual tidal force which are second derivatives of
gravitational potential. It is the curvature of spacetime.

• The GR field equation directly relates the mass/energy distribution to
spacetime’s curvature. Its solution is the metric function gµν(x),
determining the geometry of spacetime.

In Chapter 3 we have deduced several pieces of physics from the empirical
principle of equivalence of gravity and inertia. In Chapter 4, elements of the
mathematical description of a curved space have been presented. In this chapter,
we shall show how some of equivalence principle (EP) physics can be inter-
preted as the geometric effects of curved spacetime. Such study motivated
Einstein to propose his general theory of relativity, which is a geometric theory
of gravitation, with equation of motion being the geodesic equation, and field
equation in the form of the curvature being proportional to the mass/energy
source fields.

5.1 Geometry as gravity

By a geometric theory, or a geometric description, of any physical phenomenon
we mean that the physical measurement results can be attributed directly to the
underlying geometry of space and time. This is illustrated by the example
we discussed in Section 4.2 in connection with a spherical surface as shown
in Fig. 4.2. The length measurements on the surface of earth are different in
different directions: the east and west distances between any pairs of points
separated by the same azimuthal angle �φ become smaller as they move
away from the equator, while the lengths in the north and south directions for
a fixed φ remain the same, we could, in principle, interpret such results in two
equivalent ways:

1. Without considering that the 2D space is curved, we can say that physics
(i.e. dynamics) is such that the measuring ruler changed scale when
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pointing in different directions—much in the same manner FitzGerald–
Lorentz length contraction was originally interpreted by physicists in
this manner.

2. The alternative description (the “geometric theory”) is that we use a
standard ruler with a fixed scale (defining the coordinate distance) and the
varying length measurements are attributed to the underlying geometry
of a curved spherical surface. This is expressed mathematically in the
form of a position-dependent metric tensor gab(x) �= δab.

Einstein’s general theory of relativity is a geometric theory of gravity—
gravitational phenomena are attributed as reflecting the underlying curved
spacetime. An invariant (with respect to coordinate transformations) interval
is related to coordinates of the spacetime manifold through the metric in the
form of

ds2 = gµνdxµdxν . (5.1)

The Greek indices range over (0, 1, 2, 3) with x0 = ct and the metric gµν is
a 4× 4 matrix. Observers measure with rulers and clocks. Thus the spacetime
manifold not only expresses the spatial relations among events but also their
causal structure. For special relativity (SR) we have the geometry of a flat
spacetime with a position-independent metric gµν = ηµν = diag(−1, 1, 1, 1).
GR as a geometric theory of gravity posits that matter and energy cause space-
time to warp gµν �= ηµν , and gravitational phenomena are just the effects of
a curved spacetime on a test object.

How did the study of the physics as implied by the equivalence principle
(EP) motivate Einstein to propose that the relativistic gravitational field was
the curved spacetime? We have already discussed the EP physics of gravita-
tional time dilation—clocks run at different rates at positions having different
gravitational potential values �(x), as summarized in (3.32). This variation
of time rate follows a definite pattern. Instead of working with a complicated
scheme of clocks running at different rates, this physical phenomenon can be
given a geometric interpretation as showing a nontrivial metric, gµν �= ηµν .
Namely, a simpler way of describing the same physical situation is by using a
stationary clock at � = 0 as the standard clock. Its fixed rate is taken to be the
time coordinate t. One can then compare the time intervals dτ(x) measured by
clocks located at other locations (the proper time interval at x) to this coordinate
interval dt. According to EP as stated in (3.38), we should find

dτ(x) =
(

1+ �(x)

c2

)
dt. (5.2)

The geometric approach says that the measurement results can be interpreted
as showing a spacetime with a warped geometry having a metric element of

g00 = −
(

1+ �(x)

c2

)2

� −
(

1+ 2�(x)

c2

)
. (5.3)

This comes about because (5.1) reduces down to ds2 = g00dx0dx0 for dx = 0,
as appropriate for proper time interval (rest frame time interval) and the know-
ledge that the invariant interval is just the proper time interval ds2 = −c2dτ 2,
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leading to the expression

(dτ)2 = −g00(dt)2. (5.4)

The result in (5.3) states that the metric element g00 in the presence of gravity
deviates from the flat spacetime value of η00 = −1 because of the presence of
gravity. Thus the geometric interpretation of the EP physics of gravitational time
dilation is to say that gravity changes the spacetime metric element g00 from
−1 to an x-dependent function. Gravity warps spacetime—in this case warps
it in the time direction. Also, since g00 is directly related to the Newtonian
gravitational potential �(x) as in (5.3), we can say that the ten independent
components of the spacetime metric gµν(x) are the “relativistic gravitational
potentials.”

5.1.1 EP physics and a warped spacetime

Adopting a geometric interpretation of EP physics, we find that resultant geo-
metry has all the characteristic features of a warped manifold of space and time:
a position-dependent metric, deviations from Euclidean geometric relations,
and at every location we can always transform gravity away to obtain a flat
spacetime, just as one can always find a locally flat region in a curved space.

Position-dependent metrics
As we have discussed in Section 4.2, the metric tensor in a curved space is
necessarily position-dependent. Clearly, (5.3) has this property. In Einstein’s
geometric theory of gravitation, the metric function is all that we need to
describe the gravitational field completely. gµν(x) plays the role of relativistic
gravitational potentials, just as �(x) is the Newtonian gravitational potential.

Non-Euclidean relations
In a curved space Euclidean relations no longer hold (cf. Section 4.3.3),
for example, the sum of interior angles of a triangle on the surface of spherical
surface deviates from π , the ratio of circular circumference to the radius is dif-
ferent from the value of 2π . As it turns out, EP does imply non-Euclidean
relation among geometric measurements. We illustrate this with a simple
example. Consider a cylindrical room in high speed rotation around its axis. This
acceleration case, according to EP, is equivalent to a centrifugal gravitational
field. (This is one way to produce “artificial gravity.”) For such a rotating frame,
one finds that, because of special relativistic (longitudinal) length contraction,
2π times the radius, which is not changed because velocity is perpendicular
to the radial direction, will no longer equal the circular circumference of the
cylinder, cf. Fig. 5.1 and Problem 5.3. Thus Euclidean geometry is no longer
valid in the presence of gravity. We reiterate this connection: the rotating frame,
according to EP, is a frame with gravity; the rotating frame, according to SR
length contraction, has a relation between its radius and circumference that
is not Euclidean. Hence, we say the presence of gravity brings about non-
Euclidean geometry. (Distance measurement in a curved spacetime is discussed
in Problem 5.2.)

�t

Fig. 5.1 Rotating cylinder with length
contraction in the tangential direction but not
in the radial direction, resulting in a non-
Euclidean relation between circumference
and radius.
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Local flat metric and local inertial frame
In a curved space a small local region can always be described approximately
as a flat space. A more precise statement is given by the flatness theorem of
Section 4.2.2. Now, if we identify our spacetime as the gravitational field, is the
corresponding flatness theorem valid? The answer is in the affirmative. Actually
this is the essence of EP, stating that we can always transform gravity away in
a local region. In this region, because of the absence of gravity, SR is valid and
the metric is the flat Minkowski metric. General relativity (GR) has the same
local lightcone structure as SR: ds2 < 0 being timelike, ds2 > 0 spacelike,
and ds2 = 0 lightlike. The relation between local flat and local inertial frames
will be further explored in Section 5.3, where we show that the spacetime
curvature is the familiar tidal force.

5.1.2 Curved spacetime as gravitational field

Recall that a field theoretical description of the interaction between a source
and a test particle is a two-step description:

Source particle −−→
Field

equation

Field −−→
Equation of

motion

Test particle

Instead of the source particle acting directly on the test particle through some
instantaneous action-at-a-distance force, the source creates a field everywhere,
and the field then acts on the test particle locally. The first-step is given by
the field equation which, given the source distribution, determines the field
everywhere. In the case of electromagnetism it is Maxwell’s equation. The
second-step is provided by the equation of motion, which allows us to find the
motion of the test particle, once the field function is known. The electromagnetic
equation of motion follows directly from the Lorentz force law.

Newtonian gravitational field
The field equation in Newton’s theory of gravity, when written in terms of the
gravitational potential �(x), is given by (3.6)

�2� = 4πGNρ, (5.5)

where GN is Newton’s constant, and ρ is the mass density function. The
Newtonian theory is not a dynamic field theory as it does not provide a descrip-
tion of time evolution. Namely, it is the static limit of some field theory, thus
has no field propagation. The Newtonian equation of motion is Eq. (3.8)

d2r
dt2

= −∇�. (5.6)

The task Einstein undertook was to find the relativistic generalizations
of these two sets of Eqs (5.5) and (5.6). Since in relativity, space and time are
treated on equal footing, a successful relativistic program will automatically
yield a dynamical theory as well.
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Relativistic gravitational field
The above discussion suggests that the EP physics can be described in geometric
language. The resultant mathematics coincides with that describing a warped
spacetime. Thus it is simpler, and more correct, to say that relativistic gravita-
tional field is the curved spacetime. The effect of the gravitational interaction
between two particles can be described as the source mass giving rise to a
curved spacetime which in turn influences the motion of the test mass. Or, put
more strongly, EP requires a metric structure of spacetime and particles follow
geodesics in such a curved spacetime.

Fig. 5.2 Two particle trajectories with
decreasing separation can be interpreted
either as resulting from an attractive force
or as reflecting the underlying geometry of
a spherical surface.

The possibility of using a curved space to represent a gravitational field can
be illustrated with the following example involving a 2D curved surface. Two
masses on a spherical surface start out at the equator and move along two
geodesic lines as represented by the longitudinal great circles. As they move
along, the distance between them decreases (Fig. 5.2). We can attribute this
to some attractive force between them, or simply to the curved space causing
their trajectory to converge. That is to say, this phenomenon of two convergent
particle trajectories can be thought of either as resulting from an attractive tidal
force, or from the curvature of the space.1 Eventually we shall write down 1Further reference to gravitational tidal forces

vs. curvature description of the relative sep-
aration between two particle trajectories can
be found in Section 5.3.1 when we discuss the
Newtonian deviation equation for tidal forces,
which has its GR generalization “equation
of geodesic deviation,” given in Chapter 12,
cf. Problems 12.4 and 12.5.

the relativistic gravitational equations. In Einstein’s approach these differential
equations can be thought of as reflecting an underlying warped spacetime.

Based on the study of EP phenomenology, Einstein made the conceptual
leap (a logical deduction, but a startling leap nevertheless) to the idea that
curved spacetime is the gravitational field:

Source −−→
Einstein field

equation

Curved spacetime −−→
Geodesic
equation

Test particle

The mass/energy source gives rise to a warped spacetime, which in turn dictates
the motion of the test particle. Plausibly the test particle moves along the shortest
and straightest possible curve in the curved manifold. Such a line is the geodesic
curve. Hence the GR equation of motion is the geodesic equation (Section 5.2).
The GR field equation is the Einstein equation, which relates the mass/energy
distribution to the curvature of spacetime (Section 5.3).

In this way GR fulfills Einstein’s conviction that “space is not a thing”: the
ever changing relation of matter and energy is reflected by an ever changing
geometry. Spacetime does not have an independent existence; it is nothing but
an expression of the relations among physical processes in the world.

5.2 Geodesic equation as GR equation of motion

The metric function gµν(x) in (5.1) describes the geometry of curved space-
time. In GR the mass/energy source determines the metric function through
the field equation. Namely, gµν(x) is the solution of the GR field equation.
Knowing gµν(x) one can write down the equation of motion, which fixes the
trajectory of the test particle. It is natural to expect the test particle to follow
in this spacetime the shortest and straightest possible trajectory, the geodesic
curve. Thus, GR equation of motion should coincide with the geodesic equation.
In Section 4.2.1, we have derived the geodesic equation from the property of
the geodesic line as the curve with extremum length. We also recall that a point
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in spacetime is an event and that the trajectory is a worldline (cf. Box 5.1).
The geodesic equation determines the worldline that a test particle will follow
under the influence of gravity. The geodesic equation in spacetime is Eq. (4.30)
with its Latin indices a = 1, 2 changed into Greek indices µ = 0, 1, 2, 3 with
x0 = ct.

d

dσ
gµν ẋν − 1

2

∂gλρ

∂xµ
ẋλẋρ = 0, (5.7)

where xµ = xµ (σ ) with σ being the curve parameter, and ẋµ ≡ dxµ/dσ .
We can cast (5.7) into a more symmetric form which will also facilitate

our later interpretation (in Section 11.2.2) of the geodesic as the straightest
possible curve. Carrying out the differentiation of the first term and noting that
the metric’s dependence on σ is entirely through xµ(σ ):

gµν

d2xν

dσ 2
+ ∂gµν

∂xλ

dxλ

dσ

dxν

dσ
− 1

2

∂gλρ

∂xµ

dxλ

dσ

dxρ

dσ
= 0. (5.8)

Since the product (dxλ/dσ)(dxν/dσ) in the second term is symmetric with
respect to the interchange of indices λ and ν, only the symmetric part of its
coefficient:

1

2

(
∂gµν

∂xλ
+ ∂gµλ

∂xν

)

can enter. In this way the geodesic Eq. (5.7) can be cast (after relabeling some
repeated indices) into the form,

d2xν

dσ 2
+ �ν

λρ

dxλ

dσ

dxρ

dσ
= 0, (5.9)

where

gµν�
ν
λρ =

1

2

[
∂gλµ

∂xρ
+ ∂gρµ

∂xλ
− ∂gλρ

∂xµ

]
. (5.10)

�ν
λρ , being this particular combination of the first derivatives of the metric

tensor, is called the Christoffel symbol (also known as the connection). The
geometric significance of this quantity will be studied in Chapter 11. From now
on we will use the geodesic equation in the form as given in (5.9). To reiterate,
the geodesic equation is the equation of motion in GR because it is the shortest
curve in a warped spacetime. By this we mean that once the gravitation field is
given, that is, spacetime functions gµν(x) and �

µ
νλ(x) are known, (5.9) tells us

how a test particle will move in such a field: it will always follow the shortest
and the straightest possible trajectory in this spacetime. A fuller justification
of using the geodesic equation as the GR equation of motion will be given
in Section 12.1.1.

5.2.1 The Newtonian limit

Here we shall show that the geodesic Eq. (5.9) as the GR equation of motion,
reduces to the Newtonian equation of motion (5.6) in the “Newtonian limit” of
a test particle moving with nonrelativistic velocity v 	 c in a static and weak
gravitational field.
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Nonrelativistic speed (dxi/dt)	 c. This inequality dxi 	 cdt implies that

dxi

dσ
	 c

dt

dσ
= dx0

dσ
. (5.11)

Keeping only the dominant term (dx0/dσ)(dx0/dσ) in the double sum over
indices λ and ρ of the geodesic Eq. (5.9), we have

d2xµ

dσ 2
+ �

µ
00

dx0

dσ

dx0

dσ
= 0. (5.12)

Static field (∂gµν/∂x0) = 0. Because all time derivatives vanish, the
Christoffel symbol of (5.10) takes a simpler form

gνµ�
µ
00 = −

1

2

∂g00

∂xν
. (5.13)

Weak field hµν 	 1. We assume that the metric is not too different from the
flat spacetime metric ηµν = diag(−1, 1, 1, 1)

gµν = ηµν + hµν , (5.14)

where hµν(x) is a small correction field. Keeping in mind that flat space has
a constant metric ηµν , we have ∂gµν/∂xλ = ∂hµν/∂xλ and the Christoffel
symbol is of order hµν . To the leading order, (5.13) is

ηνµ�
µ
00 = −

1

2

∂h00

∂xν
, (5.15)

which because ηνµ is diagonal has, for a static h00, the following components

−�0
00 = −

1

2

∂h00

∂x0
= 0 and �i

00 = −
1

2

∂h00

∂xi
. (5.16)

We can now evaluate (5.12) by using (5.16): the µ = 0 part leads to

dx0

dσ
= constant (5.17)

and the µ = i part is

d2xi

dσ 2
+ �i

00
dx0

dσ

dx0

dσ
=
(

d2xi

c2dt2
+ �i

00

)(
dx0

dσ

)2

= 0, (5.18)

where we have used (5.17) to go from (d2xi/dσ 2) to (d2xi/dx0 2)(dx0/dσ)2.
The above equation, together with (5.16), implies

d2xi

c2dt2
− 1

2

∂h00

∂xi
= 0, (5.19)

which is to be compared with the Newtonian equation of motion (5.6).
Thus h00 = −2�/c2 and using the definition of (5.14) we recover (5.3) first
obtained heuristically in Section 5.1:

g00 = −
(

1+ 2�(x)

c2

)
. (5.20)

We can indeed regard the metric tensor as the relativistic generalization of
the gravitational potential. This expression also provides us with a criterion to



78 GR as a geometric theory of gravity - I

characterize a field being weak as in (5.14):

[|h00| 	 |η00|
]⇒

[ |�|
c2
	 1

]
. (5.21)

Consider the gravitational potential at earth’s surface. It is equal to the grav-
itational acceleration times earth’s radius, �⊕ = g× R⊕ = O (107m2/s2), or
�⊕/c2 = O (10−10). Thus a weak field is any gravitational field being less
than 10 billion g′s.

Box 5.1 The geodesic is the worldline of a test-particle

It may appear somewhat surprising to hear that a test particle will follow
a “straight line” in the presence of a gravitational field. After all, our experi-
ence is just the opposite: when we throw an object, it follows a parabolic
trajectory. Was Einstein saying that the parabolic trajectory is actually
straight? All such paradoxes result from confusing the 4D spacetime with
the ordinary 3D space. The GR equation of motion tells us that a test par-
ticle will follow a geodesic line in spacetime, which is not a geodesic line
in the 3D space. Namely, the worldline of a particle should be a geodesic,
which generally does not imply a straight trajectory in the spatial subspace.
A simple illustration using the space–time diagram should make this clear.

Let us consider the case of throwing an object to a height of 10 m over
a distance of 10 m. Its spatial trajectory is displayed in Fig. 5.3(a). When we
represent the corresponding worldline in the spacetime diagram we must
plot the time-axis ct also, see Fig. 5.3(b). For the case under consideration,
this object takes 1.4 s to reach the highest point and another 1.4 s to come
down. But a 2.8-s interval will be represented by almost 1 million kilometers
of ct in the spacetime diagram (more than the round trip distance to the
moon). When the time axis is stretched out in this way, one then realizes
this worldline is very straight indeed, see Fig. 5.3(c). The straightness of
this worldline reflects the fact that the terrestrial gravity is a very weak
field (recall �⊕/c2 � 10−10)—it curves the spacetime only a tiny amount.
Namely, in this case the spacetime is practically flat, and thus the geodesic
is very close to a straight line.

y

x
o

ct

o y

x

ct

o y

x

(b)

(a)

(c)

Fig. 5.3 (a) Particle trajectory in the (x, y)
plane. (b) Particle worldline with projec-
tion onto the (x, y) plane as shown in (a).
(c) Spacetime diagram with the time axis
stretched a great distance.

5.2.2 Gravitational redshift revisited

Previously in Chapter 3 we have shown that the strong EP implied a gravitational
redshift (in a static gravitational field) of frequency ω

�ω

ω
= −��

c2
. (5.22)

From this result we heuristically deduced that, in the presence of nonzero
gravitational potential, the metric must deviate from the flat space value.
Now in this chapter, we have seen that Einstein’s theory based on a curved
spacetime has the result (5.20) in the Newtonian limit. This, as shown in (5.2),
can be stated as a relation between the proper time τ and the coordinate time t
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t
Emitter
worldline

dtem

dtrec

Receiver
worldline

x

Fig. 5.4 Worldlines for two light wavefronts
propagating from emitter to receiver in a static
curved spacetime.

as follows:

dτ = √−g00 dt with g00 = −
(

1+ 2
�

c2

)
. (5.23)

Here we wish to see how the gravitational frequency shift result of (5.22)
emerges in this curved spacetime description.

In Fig. 5.4, the two curved lines are the lightlike worldlines of two wave-
fronts emitted at an interval dtem apart. They are curved because in presence
of gravity the spacetime is curved. (In the flat spacetime, they would be
two straight 45◦-lines.) Because we are working with static gravitational field
(hence a time-independent spacetime curvature), this dtem time interval between
the two wavefronts is maintained throughout the trip until they are received.
Namely, these two wavefronts trace out two congruent worldlines. In particular,
the coordinate time separations at emission and reception are identical,

dtem = dtrec. (5.24)

On the other hand, the frequency being inversely proportional to the proper
time interval ω = 1/dτ , we can then use (5.23) and (5.24) to derive:

ωrec

ωem
= dτem

dτrec
=
√−(g00)em dtem√−(g00)rec dtrec

=
(

1+ 2(�em/c2)

1+ 2(�rec/c2)

)1/2

= 1+ �em −�rec

c2
+ O

(
�2

c4

)
, (5.25)

which is the claimed result of (5.22):

ωrec − ωem

ωem
= �em −�rec

c2
. (5.26)

5.3 The curvature of spacetime

We have already discussed in Chapter 4 (see especially Section 4.2.3) that
in a curved space each small region can be approximated by a flat space,
that is, locally a metric can always be approximated by a flat space metric.
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This coordinate-dependence of the metric shows that the metric value cannot
represent the essential feature of a curved space. However, as shown in
Section 4.3 (and further discussion in Section 11.3), there exits a mathemat-
ical quantity involving the second derivative of the metric, called the curva-
ture, which does represent the essence of a curved space: the space is curved if
and only if the curvature is nonzero; and, also, the deviations from Euclidean
relations are always proportional to the curvature.

If the warped spacetime is the gravitational field, what then is its curvature?
What is the physical manifestation of this curvature? How does it enter in the
GR equations of gravitation?

5.3.1 Tidal force as the curvature of spacetime

The equivalence principle states that in a freely falling reference frame the
physics is the same as that in an inertial frame with no gravity. SR applies
and the metric is given by the Minkowski metric ηµν . As shown in the flatness
theorem (Section 4.2.2), this approximation of gµν by ηµν can be done only
locally, that is, in an appropriately small region. Gravitational effects can always
be detected in a finite-sized free-fall frame as gravitational field is never strictly
uniform in reality; the second derivatives of the metric come into play.

Consider the lunar gravitation attraction exerted on the earth. While the earth
is in free fall toward the moon and viceversa, there is still a detectable lunar
gravitational effect on earth. It is so because different points on earth will feel
slightly different gravitational pulls by the moon, as depicted in Fig. 5.5(a).
The center-of-mass (CM) force causes the earth to “fall towards the moon”
so that this CM gravitational effect is “cancelled out” in this freely falling
terrestrial frame. After subtracting out this CM force, the remanent forces on
the earth, as shown in Fig. 5.5(b), are stretching in the longitudinal direction and
compression in the transverse direction. They are just the familiar tidal forces.22The ocean is pulled away in opposite

directions giving rise to two tidal bulges. This
explains why, as the earth rotates, there are
two high tides in a day.

Namely, in the freely falling frame, the CM gravitational effect is transformed
away, but, there are still the remnant tidal forces. They reflect the differences of
the gravitational effects on neighboring points, and are thus proportional to the
derivative of the gravitational field. We can illustrate this point by the following
observation. With rs and rm being the distances from earth to the sun and moon,
respectively, we have

[
gs = GNM�

r2
s

]
>

[
gm = GNMm

r2
m

]
, (5.27)

showing that the gravitational attraction of the earth by the sun is much larger
than that by the moon. On the other hand, because the tidal force is given by
the derivative of the force field

[
∂

∂r

GNM

r2

]
∝
[

GNM

r3

]
, (5.28)

and because rs � rm, the lunar tidal forces nevertheless end up being stronger
than the solar ones

[
Ts = GNM�

r3
s

]
<

[
Tm = GNMm

r3
m

]
. (5.29)
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(a) (b)

C.M.Earth Earth

Moon Moon
y
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z

Fig. 5.5 Variations of the gravitational
field as tidal forces. (a) Lunar gravitational
forces on four representative points on earth.
(b) After taking out the center-of-mass
motion, the relative forces on earth are
the tidal forces giving rise to longitudinal
stretching and transverse compression.

Since tidal forces cannot be coordinate-transformed away, they should be
regarded as the essence of gravitation. They are the variations of the grav-
itational field, hence the second derivatives of the gravitational potential. From
the discussion in this chapter showing that relativistic gravitational potential
being the metric, and that second derivative of the metric being the curvature,
we see that Einstein gives gravity a direct geometric interpretation by identi-
fying these tidal forces with the curvature of spacetime. A discussion of tidal
forces in terms of the Newtonian deviation equation is given in Box 5.2.

Box 5.2 The equation of Newtonian deviation and its GR generalization

Here we provide a more quantitative description of the gravitational tidal
force in the Newtonian framework, which will suggest an analogous GR
approach to be followed in Chapter 12.

As the above discussion indicates, the tidal effect concerns the relative
motion of particles in an nonuniform gravitational field. Let us consider two
particles: one has the trajectory x(t) and another has x(t) + s(t). Namely,
these two particles measured at the same time have a separation distance
of s(t). The respective equations of motion (i = 1, 2, 3) obeyed by these
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two particles are:

d2xi

dt2
= −∂�(x)

∂xi
and

d2xi

dt2
+ d2si

dt2
= −∂�(x + s)

∂xi
. (5.30)

Consider the case where si(t) is small and we can approximate the
gravitational potential �(x + s) by a Taylor expansion

�(x + s) = �(x)+ ∂�

∂x j
s j + · · · . (5.31)

From the difference of the two equations in (5.30), we obtain the
Newtonian deviation equation that describes the separation between two
particle trajectories in a gravitational field

d2si

dt2
= − ∂2�

∂xi∂x j
s j. (5.32)

Thus the relative acceleration per unit separation is given by a tensor having
the second derivatives of the gravitational potential (i.e. the tidal force
components) as its elements.

We now apply (5.32) to the case of a spherical gravitational source,
for example, the gravity due to the moon on earth, see Fig. 5.5,

�(x) = −GNM

r
, (5.33)

where the radial distance is related to the rectangular coordinates by r =
(x2 + y2 + z2)1/2. Since ∂r/∂xi = xi/r we have

∂2�

∂xi∂x j
= GNM

r3

(
δij − 3xix j

r2

)
. (5.34)

Consider the case of the “first particle” being located along the z-axis
xi = (0, 0, r), the Newtonian deviation Eq. (5.32) for the displacement of
the “second particle,” with the second derivative tensor given by (5.34),
now takes on the form of

d2

dt2




sx

sy

sz


 = −GNM

r3




1 0 0
0 1 0
0 0 −2






sx

sy

sz


 . (5.35)

We see that there is an attractive tidal force between the two particles in the
transverse direction Tx,y = −GNMr−3sx,y that leads to compression; a tidal
repulsion Tz = +2GNMr−3sz, leading to stretching, in the longitudinal
(i.e. radial) direction.

In GR we shall follow a similar approach (see Problems 12.4 and 12.5):
the two equations of motion (5.30) will be replaced by the corresponding
geodesic equations; their difference, after a Taylor expansion, leads to the
equation of geodesic deviation, which is entirely similar3 to (5.32). Since
the metric function is the relativistic potential, the second derivative tensor
turns into the curvature tensor of the spacetime (the Riemann curvature
tensor). In this geometric language we see that the cause of the deviation
from flat spacetime worldline is attributed to the curvature (cf. previous
discussion in Section 5.1.2.)

3We are not quite ready to derive this GR
equation as one still needs to learn (in
Chapter 11) how to perform differentiations
in a curved space.
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5.3.2 The GR field equation described

We now show that the curvature, identified as the tidal forces, enters directly in
the field equations of relativistic gravitational theory.

The field equation relates the source distribution to the resultant field.
Namely, given the source distribution, we can use the field equation to find
the field everywhere. For the Newtonian Eq. (5.5),

�2� = 4πGNρ, (5.36)

we have the second derivative of the gravitational potential�2
� being directly

proportional to the mass density ρ. What is the relativistic generalization of this
equation?

1. For the right-hand side (RHS) of the field equation, from the viewpoint
of relativity, mass being just a form of energy (the rest energy) and,
furthermore, energy and momentum being equivalent: they can be trans-
formed into each other when viewed by different observers (cf. (2.62)),
the mass density ρ of (5.5) is generalized in relativity to an object
called the “energy–momentum tensor” Tµν . The 16 elements include 1
being the energy density T00 = ρc2, 3 elements T0i the momentum
densities, and the remaining 12 elements representing the fluxes asso-
ciated with energy and momentum densities—they describe the flow of
energy and momentum components. There are actually only 10 inde-
pendent elements, because it is a symmetric tensor Tµν = Tνµ. A more
detailed discussion of the energy–momentum tensor will be presented
in Section 10.4.

2. For the second derivative of the potential on the left-hand side (LHS) of
the field equation, we have already seen that the relativistic gravita-
tional potential is the metric gµν and the curvature in (4.35) is a second
derivative of the metric. And, as we shall find in Chapter 11, for higher
dimensional spaces, the Gaussian curvature K is generalized to the
Riemann curvature tensor. A particular (contracted) version of the curva-
ture tensor is the Einstein tensor Gµν , having mathematical properties
that match those of the energy–momentum tensor Tµν .

This suggests the possible relativistic generalization of the gravitational
field equation as having the basic structure of (5.36): the RHS being the
energy–momentum tensor, and the LHS being the Einstein tensor involving
the second derivative of the metric.

Newton �2� ∝ ρ

GR Gµν ∝ Tµν

In this way, we obtain in Section 12.2 the Einstein field equation in the form of

Gµν = κTµν , (5.37)

where κ is a proportionality constant. As we shall show in Section 12.2.2 the
nonrelativistic limit of this equation is just the Newton’s Eq. (5.36) when we
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make the identification of

κ = −8πGN

c4
. (5.38)

Since the curvature has a different measurement unit from that for the energy–
momentum density, the proportional constant κ , hence Newton’s constant GN,
should be interpreted as a conversion factor. Just as the speed of light c is the
conversion factor between space and time that is fundamental to the special
relativistic symmetry of space and time (cf. Section 2.3), one way of viewing
the significance of Newton’s constant is that it is the conversion factor fun-
damental for a geometric description of gravity by GR, it connects spacetime
curvature to the gravitational source of energy and momentum, as in Einstein
equation:

(
curvature

of spacetime

)
= (Newton’s constant)×

(
energy–momentum

density

)
.

When worked out in Chapter 12, we shall see that (5.37) represents 10 coupled
partial differential equations. Their solution is the metric function gµν(x), fixing
the geometry of spacetime. We emphasize once more that in GR, spacetime is no
longer a passive background against which physical events take place. Rather, it
is ever-changing as it responds to the ever-changing matter/energy distribution
in the world.

For the rest of Parts I and II (Chapters 6–9), this Einstein field equation
will not be discussed further. Rather, we shall concentrate on investigating
its solutions, showing how a curved spacetime description of the gravitational
field, that is, knowing the metric gµν(x), brings about many interesting physical
consequences: from bending of light rays, black holes, to cosmology.

Box 5.3 Einstein’s three motivations: an update

In Chapter 1 we discussed Einstein’s motivations for creating GR. Now we
can see how these issues are resolved in the curved spacetime formulation
of a relativistic theory of gravitation.

1. SR is not compatible with gravity. In the GR formulation, we see that
SR is valid only in the locally inertial frames in which gravity is transformed
away.

2. A deeper understanding of mI = mG. The weak EP is generalized
to strong EP. The various consequences of EP led Einstein to the idea of a
curved spacetime as the relativistic gravitational field. At the funda-
mental level there is no difference between gravity and the “fictitious
forces” associated with accelerated frames. Noninertial frames of reference
in Newtonian physics are identified in Einstein’s theory with the presence
of gravity. The GR theory, symmetric with respect to general coordinate
transformations (including accelerated coordinates), and relativistic field
theory of gravitation must be one and the same. EP is built right into the
curved spacetime description of gravitation because any curved space is
locally flat.
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3. “Space is not a thing.” GR equations are covariant under the
most general (position-dependent) coordinate transformations. (See fur-
ther discussion as the “principle of general covariance” in Section 12.1.)
Spacetime is the solution to the Einstein equation. It has no independent
existence except expressing the relation among physical processes in the
world.

Review questions

1. What does one mean by a “geometric theory of physics”?
Use the distance measurements on the surface of earth to
illustrate your answer.

2. How can the phenomenon of gravitational time dilation be
phrased in geometric terms? Use this discussion to support
the suggestion that the spacetime metric can be regarded as
the relativistic gravitational potential.

3. Give a simple example how the EP physics implies a non-
Euclidean geometric relation.

4. What significant conclusion did Einstein draw from the
analogy between the fact that a curved space is locally flat
and that gravity can be transformed away locally?

5. How does GR imply a concept of space and time as reflecting
merely the relationship between physical events rather than
a stage onto which physical events take place?

6. Give the heuristic argument for GR equation of motion to be
the geodesic equation.

7. What is the Newtonian limit? In this limit, what relation
can one infer between the Newtonian gravitational potential
and a metric tensor component of the spacetime? Use this
relation to derive the gravitational Doppler shift.

8. What are tidal forces? How are they related to the grav-
itational potential? Explain why the solar tidal forces are
smaller than lunar tidal forces, even though the gravitational
attraction of earth by the sun is stronger than that by the
moon. Explain how in GR the tidal forces are identified with
the curvature of spacetime.

9. Give a qualitative description of the GR field equation.
Explain in what sense we can regard Newton’s constant as
a basic “conversion factor” in GR. Can you name two other
conversion factors in physics that are basic respectively to
SR and to quantum theory?

10. How are Einstein’s three motivations for creating GR
resolved in the final formulation of the geometric theory of
gravity?

Problems

(5.1) The metric element g00 From the definitions of metric
and propertime, derive the relation between proper time
and coordinate time

dτ = √−g00dt.

(5.2) Spatial distance and spacetime metric Einstein sug-
gested the following definition of spatial distance dl
between two neighboring points (A, B) with a coordinate
difference of dxi (where i = 1, 2, 3): a light pulse is sent
to B and reflected back to A. If the elapsed proper time
(according to A) is dτA, then dl ≡ cdτA/2. The square
of the spatial distance should also be quadratic in dxi:

dl2 = γijdxidx j .

How is this spatial metric related to the spacetime
metric gµν as defined by ds2 = gµνdxµdxν (where

µ= 0, 1, 2, 3)? Is it just γij = gij? (cf. Landau and
Lifshitz, 1975, §84).

(5.3) Non-Euclidean geometry of a rotating cylinder In
Section 5.1.1 we used the example of a rotating cylin-
der to motivate the need of non-Euclidean geometry. Use
the formalism derived in Problem 5.2 to work out the
spatial distance, showing this violation of the Euclidean
relation between radius and circumference.

(5.4) Geodesic equation in a rotating coordinate Knowing
the metric for a rotating coordinate from Problem 5.3,
work out the corresponding Christoffel symbol and
geodesic equation. This can be taken as the relativistic
version of the centrifugal force.

(5.5) The geodesic equation and light deflection Use the
geodesic equation, rather than Huygens’ principle, to
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derive the expression of gravitational angular deflection
given by (3.44), if the only warped metric element is
g00 = −1 − 2�(x)/c2. One approach is to note (see
Fig. 3.6) that the infinitesimal angular deflection dδ of a
photon with a momentum p = px̂ is related to momentum
change by dδ = dpy/p. Momentum in turn is proportional
to differentiation of displacement with respect to the
proper time p ∝ dx/dτ so we have the relation between
the two 4-vectors: pµ ∝ dxµ/dτ with µ = 0, 1, 2, 3. For
the Minkowski metric ηµν = diag(−1, 1, 1, 1), a light-
like (ηµνdxµdxν = 0) displacement along the x direction
leads to dxµ = (dx, dx, 0, 0), that is, dx0 = dx1 = dx and
the momentum 4-vector pµ = ( p, p, 0, 0), as appropriate
for massless photon [cf. (2.62) and (2.64)]. The deflec-
tion can be calculated from the geodesic equation by its
determination of dxµ/dτ , hence pµ.

(5.6) Symmetry property of the Christoffel symbols From the
definition of (5.10), check explicitly that

�λ
µν = �λ

νµ.

(5.7) The matrix for tidal forces is traceless One notes that
the matrix in (5.35) is traceless (vanishing sum of the
diagonal elements). Why should this be so?

(5.8) GN as a conversion factor From Newton’s theory
we know that Newton’s constant has the dimension
of (energy) (length) (mass)−2. With such a GN in the
proportional constant (5.38) of the Einstein Eq. (5.37),
check that it yields the correct dimension for the curvature
on the LHS of the Einstein equation. (NB the elements
of the energy–momentum tensor have the dimension of
energy density.)
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• Spacetime outside a spherical source has the Schwarzschild geometry.
• Gravitational lensing and the precession of Mercury’s perihelion

worked out as examples of geodesics in the Schwarzschild spacetime.
• Black hole is an object so compact that it is inside its Schwarzschild

surface, which is an event horizon: an observer outside cannot receive
any signal sent from inside.

• The physical reality of, and observational evidence for, black holes is
briefly discussed.

In the previous chapter we presented some preliminaries for a geometric descrip-
tion of gravity. The gravitational field as curved spacetime can be expressed
(once a coordinate system has been chosen) in terms of the metric function. In
this chapter, we discuss the solution gµν(x) to the Einstein field equation for the
region outside a spherically symmetric source (e.g. the sun), called the (exterior)
Schwarzschild geometry. Its nonrelativistic analog is the gravitational potential

�(r) = −GNM

r
, (6.1)

which is the solution to the Newtonian field equation �2
� (x) = 4πGNρ(x)

with a spherically symmetric mass density ρ(x) and a total mass M inside a
sphere with radius less than the radial distance r.

The general relativity (GR) field equation with a spherical source will
be solved in Chapter 12. Given the source mass distribution, we can find the
spacetime gµν(x) outside a spherical star. In this chapter, we shall only quote the
solution, called the Schwarzschild metric, and concentrate on the description
of a test particle’s motion in this geometry. In this connection we study several
interesting applications: gravitational lensing, precession of planet Mercury’s
perihelion, and finally, (nonrotating) black holes.

6.1 Description of Schwarzschild spacetime

We shall first show that, in a spherical coordinate system (t, r, θ , φ), the metric
tensor for a spherically symmetric spacetime has only two unknown elements.
These scalar metric functions g00(t, r) and grr(t, r) can be obtained by solv-
ing the GR field equation. This explicit solution will not be carried out until
Section 12.3. Here we just present the result:

g00(t, r) = − 1

grr(t, r)
= −1+ 2GNM

rc 2
. (6.2)
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The implication of such a geometry for various physical situations will then be
discussed in subsequent sections.

6.1.1 Spherically symmetric metric tensor

Because the source is spherically symmetric, the spacetime it generates (as the
solution to the Einstein equation for such a source) must have this symmetry.
The corresponding metric function gµν(x) must be isotropic in the spatial
coordinates. It is natural to pick a spherical coordinate system (t, r, θ , φ) having
the center coincident with that of the spherical source. As shown in Box 6.1,
the form of such an isotropic metric has only two unknown scalar functions
g00 and grr :

gµν = diag(g00, grr , r 2, r 2 sin 2 θ) (6.3)

which, when far away from the gravitational source, approaches the flat
spacetime limit:

lim
r→∞g00(t, r)→−1 and lim

r→∞grr(t, r)→ 1. (6.4)

Box 6.1 The standard form of an isotropic metric

Here we shall explicitly show that a spherically symmetric metric tensor
has only two unknown scalar functions.

1. General considerations of isotropy. The infinitesimal invariant
interval ds 2 = gµνdxµdxν must be quadratic in dx and dt without singling
out any particular spatial direction. Namely, ds 2 must be composed of
terms having two powers of dx and/or dt; the vectors x and dx must appear
in the form of dot products so as not to spoil the spherical symmetry. The
vector x can appear because the metric is a function of position and time
gµν = gµν(x, t).

ds 2 = Adx · dx + B(x · dx) 2 + Cdt(x · dx)+ Ddt 2, (6.5)

where A, B, C, and D are scalar functions of t and x · x. In a spherical
coordinate system (r, θ , φ):

x = rr̂, and dx = drr̂ + rdθ θ̂ + r sin θdφφ̂. (6.6)

Thus

x · x = r 2 and x · dx = rdr,

dx · dx = dr 2 + r 2(dθ 2 + sin 2 θdφ 2).

The invariant separation written in terms of spherical coordinates is now

ds 2 = A[dr 2 + r 2(dθ 2 + sin 2 θdφ 2)] + Br 2dr 2 + Crdrdt + Ddt 2,

(6.7)

or, equivalently, with some relabeling of scalar functions,

ds 2 = A[r 2(dθ 2 + sin 2 θdφ 2)] + Bdr 2 + Cdrdt + Ddt 2. (6.8)

2. Simplification by coordinate choices. From our discussion in
Chapter 4, we learnt that the Gaussian coordinates, as labels of points in
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space, can be freely chosen. In the same way, the name given to coordinates
in Riemannian geometry has no intrinsic significance until their connection
to physical length ds 2 is specified by the metric function. Thus, we are free
to make new choices of coordinates (with corresponding modification of
the metric) until the metric takes on the simplest form. Of course, in our
particular case, the process of changing to new coordinates must not violate
spherical symmetry.

(a) New time coordinate so that there will be no cross dtdr term.
Introducing a new coordinate t′

t → t′ = t + f (r). (6.9)

We have dt′ = dt + (df /dr)dr and

dt 2 = dt′ 2 −
(

df

dr

)2

dr 2 − 2
df

dr
drdt. (6.10)

Now the cross dtdr term has a coefficient C−2D(df /dr), which can be
eliminated by choosing an f (r) that satisfies the differential equation

df

dr
= + C

2D
. (6.11)

Incidentally, the absence of any linear dt factor means that the metric
is also time-reversal invariant.

(b) New radial coordinate so that the angular coefficient is trivial. We can
set the function A in (6.8) to unity by choosing a new radial coordinate

r 2 → r′ 2 = A(r, t)r 2

so that the first term on the right-hand side (RHS) of (6.8) is just
r′ 2(dθ 2 + sin 2 θdφ 2).

With these new coordinates we are left with only two unknown scalar
functions in the metric. In this way, the interval takes on the form of

ds 2 = g00(r, t)c 2dt 2 + grr(r, t)dr 2 + r 2(dθ 2 + sin 2 θdφ 2), (6.12)

which is shown in (6.3).

Interpreting the coordinates
Our spherical symmetric metric (6.3) is diagonal. In particular, gi0 = g0i = 0
(with i being a spatial coordinate index) means that for a given t, we can discuss
the spatial subspace separately. For a fixed t, we can visualize this spherically
symmetric coordinate system as a series of 2-spheres having different radial
coordinate values of r, with their center at the origin of the spherically symmetric
source. Each 2-sphere, having surface area of 4πr 2 and volume 4πr3/3, can be
thought of as made up of rigid rods arranged in a grid corresponding to various
(θ , φ) values with synchronized clocks attached at each grid point (i.e. each
point in this subspace has the same coordinate time).

• Before the gravitational source is “turned on,” the coordinate r is the
proper radial distance ρ defined as

dr 2 = ds 2
r ≡ dρ 2, (6.13)
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where ds 2
r is the invariant interval ds 2 with dt = dθ = dφ = 0, and the

coordinate t is the proper time τ for an observer at a fixed location

−c 2dt 2 = ds 2
t ≡ −c 2dτ 2, (6.14)

where ds 2
t is the invariant interval ds 2 with dr = dθ = dφ = 0.

Thus the coordinates (r, t) have the physical interpretation as the radial
distance and time measured by an observer far away from the (spherical)
gravitational source.

• After “turning on” the gravitational source, we have a warped spacetime.
In particular grr �= 1 there is curving in the spatial radial direction so
that the proper radial distance ρ �= r as

dρ = √grrdr. (6.15)

Consequently, the spherical surface area 4πr 2 and volume 4πr3/3 no
longer bear the Euclidean relation with their radius ρ. Similarly, the
proper time

dτ = √−g00dt, (6.16)

differs from the coordinate time because g00 �= −1. It signifies the
warping of the spacetime in the time direction.

6.1.2 Schwarzschild geometry

In GR, spacetime is not a passive background against which physical processes
take place. Rather, the geometry is determined by the distribution of mass and
energy. Given the source distribution, we can solve the GR field equation to
find the metric gµν(x). The solution of Einstein’s equation for the spacetime
exterior to a spherical source will be carried out in Chapter 12. Here we quote
this result

g00(t, r) = − 1

grr(t, r)
= −1+ r∗

r
, (6.17)

where r∗ is some constant length scale. We see that the deviation from flat
spacetime of (6.4) is determined by the size of the ratio r∗/r. The resultant
metric is called the Schwarzschild metric,

gµν = diag

[(
−1+ r∗

r

)
,

(
1− r∗

r

)−1

, r 2, r 2 sin 2 θ

]
. (6.18)

The Schwarzschild radius
We can relate this constant distance r∗ to familiar quantities by considering the
Newtonian limit (5.20) and (6.1) that lead to

g00 = −
(

1+ 2�

c 2

)
= −1+ 2GNM

c 2r
. (6.19)

Comparing this to (6.17), we obtain the Schwarzschild radius

r∗ = 2GNM

c 2
. (6.20)
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It is generally a very small distance: for example, the solar and terrestrial
Schwarzschild radii are respectively:

r∗� � 3 km and r∗⊕ � 9 mm. (6.21)

Hence, in general, the ratio r∗/r, which signifies the modification of the flat
Minkowski metric, is a very small quantity. For the exterior solutions to be
applicable, the smallest value that r can take is the radius R of the spherical
source: the above r∗ values translate into

r∗�
R�

= O (10−6) and
r∗⊕
R⊕

= O (10−10). (6.22)

The metric (6.18) is singular at the Schwarzschild radius. This singular
feature was not extensively studied at the beginning because many early
relativists thought r = r∗ was not physically realizable. Because r∗ is so small
and for the exterior solution r > rsource to be applicable, the massive source must
have such an extraordinary density that rsource < r∗. Only gradually was such a
possibility taken seriously. This situation of the black holes will be discussed in
Section 6.4. Our discussion here suggests that a black hole is expected to have
extremely high mass density. In fact a stellar-mass black hole M = O (M�)

indeed has a high density O (1019 kg/m3), comparable to nuclear density. But
we must keep in mind that black hole density1 (r∗)−3M actually has an inverse 1Based on the fact that no measurements

can be made inside a black hole, we chose
to define the density of a black hole as the
ratio of its mass to the spherical volume with
radius r∗.

dependence on it mass ∝ M−2 because the Schwarzschild radius r∗ increases
with mass. Thus for supermassive galactic back hole M = O (109M�) the
density is less than water!

Embedding diagram
A helpful way to visualize the warped space is to use an embedding diagram.
Since it is difficult to work with the full 3D curved space, we shall concentrate
on the 2D subspace, corresponding to a fixed polar angle θ = π/2 (and at some
given instance of time). Namely, we will focus on the 2D space slicing across
the middle of the source. In the absence of gravity this is just a flat plane as
depicted in Fig. 6.1(a). In the presence of gravity, this is a curved 2D space. We
would like to have a way to visualize the warped nature of this 2D subspace
(outside the source). A helpful way to do this is to imagine that this curved 2D
surface is embedded in a fictitious 3D Euclidean space, Fig. 6.1(b).

A particle moving on this θ = π/2 plane will naturally trace out a bent
trajectory as it follows the geodesic of this warped surface in the embedding
space. In our illustration we have used the Schwarzschild solution for a compact
source

�ρ = �r

(
1− r∗

r

)−1/2

. (6.23)

In this embedding diagram, the distance from the center on the curved surface
is ρ while that in the horizontal plane is the coordinate radial distance r. Thus
a small change in r corresponds to a large change in ρ when r approaches r∗.



92 Spacetime outside a spherical star

Fig. 6.1 (a) The θ = π/2 plane (r, φ) cutting
across the spherical source. (b) In a fictitious
3D embedding space, the physical 2D sub-
space of (a) is shown as a curved surface. In
this example, we have used the Schwarzschild
solution of grr = (1− r∗/r)−1. The singular
nature of the space at r � r∗ is reflected by
the steep slope of the curved surface near the
Schwarzschild circle.
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Isotropic metric is time-independent
We note from (6.17) that the scalar metric functions are time-independent even
though we have not assumed a constant source. This turns out to be a gen-
eral result (Birkhoff theorem): whenever the source is isotropic the resultant
spacetime must necessarily be time-independent. The theorem will be proven
in Box 12.3. In the meantime it is worthwhile to point out that the same result
holds for the Newtonian theory as well. Recall that the gravitational field out-
side a spherical source is identical to the gravitational field due to a point source
having all the spherical mass at the center of the spherical source. This proof
depends only on the symmetry property of the problem, and is not affected
by any possible time dependences. Thus, regardless of whether the spherical
mass is pulsating or exploding, etc., the resultant field is the same, as long
as the spherical symmetry is maintained. The analogous situation in electro-
magnetism is the statement that there is only dipole, quadrupole, . . ., but no
monopole, radiation.

6.2 Gravitational lensing

From the consideration of the equivalence principle (EP), Einstein already
deduced (see Section 3.3.2) that there will be a bending of the star light grazing
past the sun. This effect is closely related to the idea of gravitational time
dilation, expressed as a deviation from the flat space metric, see (5.3),

g00 = −
(

1+ 2�

c 2

)
= −1+ 2GNM

c 2r
= −1+ r∗

r
, (6.24)

which we see is part of the exact Schwarzschild solution (6.18). In the full GR
theory, the warping of the spacetime takes place not only in the time direction
g00 �= −1, but in the radial spatial direction as well, grr �= 1. Here we calculate
the effect of this extra warping on the bending of the light-ray, finding a doubling
of the deflection angle. The bending of the light ray by a massive object can
be linked to that by a lens. In Section 6.2.2 we shall present the lens equation,
and discuss gravitational lensing as an important tool for modern astronomy.
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6.2.1 Light ray deflection revisited

Let us consider the lightlike worldline in a fixed direction dθ = dφ = 0,

ds 2 = g00c 2dt 2 + grrdr 2 = 0. (6.25)

To an observer far from the source, using the coordinate time and radial distance
(t, r), the effective light speed according to (6.25) is

c(r) ≡ dr

dt
= c

√
−g00(r)

grr(r)
. (6.26)

A slightly different way of arriving at the same result is by noting that the speed
of light is absolute in terms of physical quantities c = dρ/dτ which is just
(6.26), after using (6.15) and (6.16) which relate the proper distance and time
(ρ, τ) to the coordinate distance and time (r, t).

In the previous EP discussion, we had effectively set grr = 1. Now the
Schwarzschild solution (6.17) informs us that g00 = −g−1

rr . The influence of
g00 �= −1 and grr �= 1 in (6.26) are of the same size and in the same direction.
Thus the deviation of the vacuum index of refraction n(r) from unity is twice
as large as that when only the EP effect was taken into account as in (3.40):

n(r) = c

c(r)
=
√
− grr(r)

g00(r)
= 1

−g00(r)
= 1− 2

�(r)

c 2
. (6.27)

Namely, the retardation of a light signal is twice as large as that given in (3.39)

c(r) =
(

1+ 2
�(r)

c 2

)
c. (6.28)

According to Eqs (3.39)–(3.45) the deflection angle δ, being directly
proportional to this deviation, is twice as large as that given by (3.47) (see
also Problem 5.2):

δGR = 2δEP = 4GNM�
c 2rmin

. (6.29)

We should apply rmin = R� for the case of the light ray grazing past the sun.
This predicted deflection of 1.74 arc seconds (about 1/4000 of the angular

width of the sun as seen from earth) is not easy to detect. One needed a solar
eclipse against the background of several bright stars (so that some could be
used as reference points). The angular position of a star with light grazing past
the (eclipsed) sun would appear to have moved to a different position when
compared to the location in the absence of the sun (cf. Fig. 3.6). On May 29,
1919 there was such an eclipse. Two British expeditions were mounted: one to
Sobral in northern Brazil, and another to the island of Principe, off the coast
of West Africa. The report by Dyson, Eddington, and Davidson that Einstein’s
prediction was successful in these tests created a worldwide sensation, partly
for scientific reasons, and partly because the world was amazed that so soon
after the First World War the British should finance and conduct an expedition
to test a theory proposed by a German citizen.

6.2.2 The lens equation

Gravitational deflection of a light ray discussed above, Fig. 6.2(a), has some
similarity to the bending of light by a glass lens, Fig. 6.2(b). The difference is
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Fig. 6.2 Bending of light ray as a lensing
effect. (a) Light from a distant star (source)
is deflected by a lensing mass M lying close
to the line of sight from the observer to the
source. As a result, the source star appears to
be located at a different direction. (b) Bend-
ing of light in (a) is analogous to that by
a glass lens.
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Apparent light path

Deflected light path

Line of sight
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Line of sight

False image(a)
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Fig. 6.3 Gravitational lensing of distant stars.
(a) When the source and lensing mass are
sufficiently far, double images can result. If
the line of sight passes directly through the
center of symmetrical lensing mass distribu-
tion, the false image appears as a ring, the
Einstein ring. (b) Gravitational lens “focuses”
images on a line.

False images:
Einstein ring

Source

Line of sight

M

Source

Focus line

M
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that while a convex lens can focus images at a point, gravitational lenses “focus”
on a line, Fig. 6.3(b). This is so because the gravitational deflection angle is
a decreasing function of the impact parameter b = rmin, as seen in (6.29),
for a light ray passing through the lens the deflection angle is an increasing
function. When the source and observers are sufficiently far from the lensing
mass, bending from both sides of the lensing mass can produce double images,
Fig. 6.3(a), and even a ring image. Solar deflection has been shown in our pre-
vious discussion to yield a bending angle of δ = 1.74′′. Such a small deflection
means that the earth is too close to the sun2 to see such lensing features as2One astronomical unit (AU) = 1.5×1013 cm

is the mean distance from earth to the sun. multiple images of background stars by the sun. The minimum distance needed
is R�/(1.74′′ in radian) � 0.8× 1014 m � 500 AU.

To the extent that we can approximate the light trajectory by its asymptotes,33This is the thin lens approximation: all
the action of the deflection is assumed to take
place at one position. It is valid only if the
relative velocities of the lens, source, and
observer are small compared to the velocity
of light, v 	 c.

we can derive the lens equation by simple geometrical consideration of
Fig. 6.4(b). The distance SS′ can be obtained in two ways4: (i) It subtends

4Here we concentrate on S′ ≡ S′+. The
calculation for S′− is the same.

the angle δ to yield SS′ = Dlsδ, where Dls is the distance between the lensing
mass and the source light, and (ii) it is the length difference SS′ = S′O′−SO′ =
Ds(θ−β), where Ds is distance from observer to the source light, while (θ−β)

is the angular separations between the image and source points. Equating these
two expressions and plugging in the previous result of (6.29) with b = rmin:

δ = Ds

Dls
(θ − β) = 4GNM

bc 2
, (6.30)
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Fig. 6.4 Geometry of gravitational lens-
ing. (a) Azimuthal and polar angle labels.
(b) The observer and source are at O and S,
respectively. The light ray is deflected by an
angle of δ by the lensing mass M. The true and
apparent positions S and S′ of the distant star
are located by angles β and θ , respectively.
b is the impact parameter b = r min.

and approximating the impact parameter b ≈ Dlθ , we then have the lens
equation

β = θ − Dls

DsDl

4GNM

θc 2
. (6.31)

This equation for a point lensing mass, being quadratic in its variable θ , usually
has two solutions corresponding to the two images S′±, resulting from bending
on two sides of the lensing mass, Fig. 6.3.

In the special case of β = 0, that is, perfect alignment of the source, lens,
and observer, the azimuthal axial symmetry of the problem yields a ring image,
the Einstein ring, with angular radius

θE =
√

Dls

DsDl

4GNM

c 2
. (6.32)

For the general case when the source is not exactly behind the lens, the lens
equation (6.31) for a single point lens

β = θ − θ 2
E /θ (6.33)

has two solutions:

θ± = 1

2

(
β ±

√
β 2 + 4θ 2

E

)
, (6.34)

corresponding to presence of double images. One is inside the would-be
Einstein ring θ− < θE, the other outside. With the azimuthal angular width �φ

of the source unchanged, these two images are distorted into arcs, Fig. 6.4(a).
Furthermore, if the distance to the source Ds and to the lens Dl can be estimated,
the mass of the lens can be deduced by measurements of θ± (hence θE) via (6.32).

Since 1979, astronomers have discovered several dozens of double quasar
pairs: two quasars5 having the same properties but separated by the few arc- 5Quasars (quasi-stellar objects) are very

luminous sources of small angular size at great
cosmic distances. See further discussion in
p110, Section 6.4.5.

seconds. To produce such a sizable separation, the lensing mass is expected to
be a galaxy (having billions of the solar mass). Even more dramatically, if the
lens is not a single galaxy but an entire cluster of galaxies, the images can be
clusters of distorted arcs. In Fig. 6.5 we display the distorted images of distant
galaxies as lensed by the cluster Abell 2218.
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Fig. 6.5 Gravitational lensing effects due to
the galaxy cluster Abell 2218. Just about all
the bright objects in this picture taken by
Hubble Space Telescope are galaxies in this
cluster, which is so massive and so com-
pact that it lenses the light from galaxies that
lie behind it into multiple images of long
faint arcs.

Box 6.2 Microlensing and the search for MACHOs

Gravitational lensing by stellar objects is typically too small to pro-
duce multiple images (i.e. the separate images cannot be resolved). Such
microlensing events show up, because of the overlap of images, as an
increase of luminosity flux of lensed sources. For the point lens discussed
here we can calculate the magnification factor by noting that the light inten-
sity (flux per unit solid angle of the source/image) is the same for each of
the images I = I+ = I− because they have the same source energy. Thus
their flux is proportional to their respective subtended solid angles �, and
the magnification is the ratio of combined image to that of the original flux
in the absence of lensing mass:

µ = f+ + f−
f

= I+d�+ + I−d�−
Id�

= θ+dθ+ + θ−dθ−
βdβ

, (6.35)

where we have used d� = sin θdθdφ � θdθdφ and the fact that azimuthal
angular width is unchanged, dφ = dφ+ = dφ−. We can calculate the
individual magnification (either + or − image) by a simple differentiation
of (6.33):

θdθ

βdβ
=
[

1−
(

θE

θ

)4
]−1

. (6.36)

Plugging in the θ = θ± solutions of (6.34), we then obtain (Problem 6.3),
for β̂ = β/θE, the magnification:

µ = β̂ 2 + 2

β̂

√
β̂ 2 + 4

> 1. (6.37)

Especially when β̂ → 0, the magnification µ ∝ 1/β̂ due to the
whole Einstein ring-image can be quite significant. As an example of the
gravitational lensing being a powerful tool of modern astronomy, evidence
for the existence of “massive compact halo objects,” or MACHOs has been
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obtained this way. As we shall discuss in the next chapter, there are com-
pelling reasons to think that there are dark matter present in the outer reaches
(the halo) of our galaxy. Some of this might be in the form of dead stars,
black holes, or whatever massive objects that do not shine—such (bary-
onic) dark matter are collectively called the MACHOs (cf. Section 7.1.4).
If a MACHO drifts in front of a background star, it will act as a lens-
ing mass, thus enhancing the brightness of that star temporarily. Several
astronomical teams undertook this search by simultaneously monitoring
millions of stars in the Large Magellanic Cloud (a small satellite galaxy of
the Milky Way). In 1997, the discovery of several such events (lasting a
few weeks to several months) was announced (Alcock et al., 1997).

6.3 Precession of Mercury’s perihelion

In this section, we shall discuss the motion of a test mass in the Schwarzschild
spacetime. In particular, we shall calculate the deviation from its Newtonian
elliptical orbit.

df

Fig. 6.6 A perturbed 1/r 2 attraction leads
to an open elliptical orbit which may be
described as an elliptical orbit with a precess-
ing axis. For planetary motion, this is usually
stated as the precession of the minimal-
distance point from the sun, the perihelion.

Celestial mechanics based on Newtonian theory of gravitation has been
remarkably successful. However, it had been realized around 1850 that there
was a discrepancy between the theory and the observed precession of the
perihelion of the planet Mercury. The pure 1/r 2 force law of Newton predicts
a closed elliptical orbit for a planet, that is, orbit with an axis fixed in space.
However, the perturbations due to the presence of other planets and astronom-
ical objects lead to a trajectory that is no longer closed. Since the perturbation is
small, such a deviation from the closed orbit can be described as an ellipse with a
precessing axis, Fig. 6.6. For the case of the Mercury, this planetary perturbation
can account for most of the observed perihelion advances—5600′′ (=1.556◦) per
century. However, there was still the discrepancy of 43 arc-second/century left
unaccounted for. Following a similar situation involving Uranus that eventually
led to the prediction and discovery of the outer planet Neptune in 1846, a new
planet, named Vulcan, was predicted to lie inside the Mercury orbit. But it was
never found. This is the perihelion precession problem that Einstein solved by
applying his new theory of gravitation. GR implies a small correction to the 1/r 2

force law, which just accounts for the missing 43′′ advance of Mercury’s orbit.
The GR problem we need to solve is as follows: given the gravitational field

(the Schwarzschild spacetime due to the sun), we are to find the motion of the
test particle (the Mercury planet). The geodesic equation that we need to solve
is the Euler–Lagrange equation

∂L

∂xµ
= d

dτ

∂L

∂ ẋµ
(6.38)

with the Lagrangian

L =
(

ds

dτ

) 2

= gµν ẋµẋν . (6.39)

gµν is the Schwarzschild metric, and, as is appropriate for a massive test
particle, we have picked its proper time τ as the curve parameter and used
the notation ẋµ = dxµ/dτ .

Just as in Newtonian mechanics, the trajectory (because of angular
momentum conservation in a central force problem) will always remain in
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the plane spanned by the particle initial velocity and the vector r connecting
the force center to the test particle. By setting θ = π/2, the Lagrangian takes
on the simple form of

L = −
(

1− r∗

r

)
c 2 ṫ 2 +

(
1− r∗

r

)−1

ṙ 2 + r 2φ̇ 2 = −c 2. (6.40)

The last equality follows from L = (ds/dτ) 2 = −c 2 because ds 2 = −c 2dτ 2.
NB only for a massive particle do we have L = −c 2; it is L = 0 for massless
particles (cf. discussion of 4-velocity in Section 10.2).

The φ̇ and ṫ terms are two constants of motion related to orbital angular
momentum l and total (Newtonian) energy K. Following the steps worked out
in Box 6.3, (6.40) can be written as

1

2
mṙ 2 +

(
1− r∗

r

)
l 2

2mr 2
− GNmM

r
= K. (6.41)

Except for the (1− (r∗/r)) factor, it is just the energy balance equation for the
nonrelativistic central force problem. The extra factor of

− r∗

r

l 2

2mr 2
= −GNMl 2

mc 2r3
(6.42)

may be regarded, for the problem of Mercury’s orbit, as a small correction to
the Newtonian potential energy −GNmMr−1 due to a r−4 type of force.

Box 6.3 Two constants of motion and the effective potential

Recall that if the Lagrangian L = L (q, q̇) does not depend explicitly on one
of the generalized coordinates q (so that ∂L/∂q = 0), the Euler–Lagrangian
equation implies the conservation law:

d

dτ

(
∂L

∂ q̇

)
= 0. (6.43)

In our case L does not explicitly depend on φ and t. The two corresponding
constants of motion are essentially the orbital angular momentum (l) and
the energy (K). (

∂L

∂φ̇

)
= 2r 2φ̇ ≡ λ (6.44)

and (
∂L

∂ ṫ

)
= −2

(
1− r∗

r

)
c 2 ṫ ≡ −2c 2η. (6.45)

After multiplying by 1
2 m(1− (r∗/r)), and plugging in the constants λ and

η, we can express the L = −c 2 Eq. (6.40) as

−mc 2η 2

2
+ 1

2
mṙ 2 +

(
1− r∗

r

)
mλ 2

8r 2
= −1

2
mc 2

(
1− 2GNM

c 2r

)

(6.46)

or

1

2
mṙ 2 +

(
1− r∗

r

)
mλ 2

8r 2
− GNmM

r
= mc 2η 2

2
− 1

2
mc 2. (6.47)
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Renaming the constants according to

λ 2

4
≡ l 2

m 2
(6.48)

and

η 2 − 1

2
≡ K

mc 2
(6.49)

this equation takes on the form of (6.41):

1

2
mṙ 2 +

(
1− r∗

r

)
l 2

2mr 2
− GNmM

r
= K. (6.50)

This suggests that K has the interpretation of total (Newtonian) energy
K = E − mc 2, since the above equation is the energy balance equation:

K = 1

2
mṙ 2 + m�eff, (6.51)

with the effective potential being

�eff = −
GNM

r
+ l 2

2m 2r 2
− r∗l 2

2m 2r3
. (6.52)

This relativistic energy Eq. (6.41) can be cast in the form of an orbit equation.
We can solve for r(φ) by the standard perturbation theory (see Box 6.4). With
e being the eccentricity of the orbit, α = l 2/GNMm 2 = (1 + e)rmin and
ε = 3r∗/2α, the solution is

r = α

1+ e cos[(1− ε)φ] . (6.53)

Thus the planet returns to its perihelion rmin not at φ = 2π but at φ =
2π/ (1− ε) � 2π + 3πr∗/α. Namely, the perihelion advances (i.e. the whole
orbit rotates in the same sense as the planet itself ) per revolution by (Fig. 6.6)

δφ = 3πr∗

α
= 3πr∗

(1+ e) rmin
. (6.54)

With the solar Schwarzschild radius r∗� = 2.95 km, Mercury’s eccentricity
e = 0.206, and its perihelion rmin = 4.6×107 km we have the numerical value
of the advance as

δφ = 5× 10−7 radian/revolution (6.55)

or, 5×10−7×180/π ×60×60 = 0.103′′ (arcsecond) per revolution. In terms
of the advance per century,

0.103′′ × 100 years

Mercury’s period of 0.241 years
= 43′′ per century. (6.56)

This agrees with the observational evidence.
This calculation explaining the perihelion advance of the planet Mercury

from first principles, and the correct prediction for the bending of starlight
around the sun, were all obtained by Albert Einstein in an intense two week
period in November, 1915. Afterwards, he wrote to Arnold Sommerfeld in a,
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by now, famous letter

This last month I have lived through the most exciting and the most exacting
period of my life; and it would be true to say this, it has been the most
fruitful. Writing letters has been out of the question. I realized that up
until now my field equations of gravitation have been entirely devoid of
foundation. When all my confidence in the old theory vanished, I saw
clearly that a satisfactory solution could only be reached by linking it with
the Riemann variations. The wonderful thing that happened then was that
not only did Newton’s theory result from it, as a first approximation, but
also the perihelion motion of the Mercury, as a second approximation. For
the deviation of light by the sun I obtained twice the former amount.

We have already discussed the doubling of the light deflection angle. The
topics of Riemannian curvature tensor and the GR field equation (having the
correct Newtonian limit) will be taken up in Part III—Sections 11.3 and 12.2,
respectively.

f

a

O
rmax rmin

r

Fig. 6.7 Points on an elliptical orbit are
located by the coordinates (r, φ), with some
notable positions at (rmin, 0), (rmax, π), and
(α, π/2).

Box 6.4 The orbit equation and its perturbation solution

We solve this relativistic energy equation (6.41) as a standard central force
problem. The relevant kinematic variables are shown in Fig. 6.7.

The orbit equation. To obtain the orbit equation r(φ) we first change all
the time derivatives into differentiation with respect to the angle φ by using
the angular momentum equations (6.44) and (6.48):

dτ = mr 2

l
dφ (6.57)

and then making the change of variable u ≡ 1/r (and thus u′ ≡ du/dφ =
−u 2(dr/dφ)). In this way (6.41) turns into

u′ 2 + u 2 − 2

α
u− r∗u3 = C, (6.58)

where α = l 2/GNMm 2, and C is some definite constant. This is the
equation we need to solve in order to obtain the planet orbit r (φ).

Zeroth-order solution. Split the solution u (φ) into unperturbed part u0

and a small correction: u = u0 + u1 with

u′ 20 + u 2
0 −

2

α
u0 = C. (6.59)

This unperturbed orbit equation can be solved by differentiating with
respect to φ and dividing the resultant equation by 2u′:

u′′0 + u0 = α−1, (6.60)

which is a simple harmonic oscillator equation in the variable (u0 − α−1),
with φ the “time” variable and ω = 1 the “angular frequency.” It has the
solution (u0 − α−1) = D cos φ. We choose to write the constant D ≡ e/α
so that the solution takes on the well-known form of a conic section,

r = α

1+ e cos φ
. (6.61)
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It is clear (see Fig. 6.7) that we have r = α/(1+ e) = rmin (perihelion) at
φ = 0 and r = α/(1− e) = rmax, (aphelion) at φ = π . Geometrically, e is
called the eccentricity of the orbit. The radial distance at r(φ = π/2) = α

can be expressed in terms of perihelion and eccentricity as

α = (1+ e)rmin. (6.62)

Relativistic correction. We now plug u = u0 + u1 into (6.58)

(u′0 + u′1) 2 + (u0 + u1)
2 − 2

α
(u0 + u1)− r∗(u0 + u1)

3 = C

and separate out the leading and the next leading terms (with
u1 = O(r∗)):

(
u′ 20 + u 2

0 −
2

α
u0 − C

)
+
(

2u′0u′1 + 2u0u1 − 2

α
u1 − r∗u3

0

)

+ O(u 2
1 , r∗2, u1r∗) = 0.

After using (6.59), we can then pick out the first-order equation:

2u′0u′1 + 2u0u1 − 2

α
u1 = r∗u3

0, (6.63)

where

u0 = 1+ e cos φ

α
, u′0 = −

e

α
sin φ. (6.64)

The equation for u1 is then given by

−e sin φ
du1

dφ
+ e cos φ u1 = r∗(1+ e cos φ)3

2α 2
. (6.65)

One can verify that it has the solution

u1 = r∗

2α 2

[
(3+ 2e 2)+ 1+ 3e 2

e
cos φ − e 2 cos 2 φ + 3e φ sin φ

]
.

(6.66)

The first two terms have the form of the zeroth-order solution, (A+B cos φ);
thus they represent unobservably small corrections. The third term, being
periodic in φ in the same way as the zeroth-order term, is also unimportant.
We only need to concentrate on the fourth term which is ever-increasing
with φ (modulo 2π ). Plugging this into u = u0 + u1, we obtain

r = α

1+ e cos φ + εe φ sin φ
. (6.67)

The denominator factor ε = 3r∗/2α being a small quantity, the angular
terms in the denominator can be cast in the same form as that for the zeroth
order solution (6.61): after approximating cos εφ � 1 and sin εφ � εφ

so that
e cos(φ − εφ) � e(cos φ + εφ sin φ), (6.68)

we have the solution (6.67) in a more transparent form

r = α

1+ e cos[(1− ε)φ] (6.69)

as shown in (6.53).
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6.4 Black holes

We study here the spacetime structure exterior to any object with its mass
so compressed that its radius is smaller than its Schwarzschild radius r∗ =
2GNM/c 2. Such objects have been given the evocative name black holes,
because it is impossible to transmit outwardly any signal, any light, from the
region inside the r = r∗ surface. This comes about as a black hole gives rise
to an infinite gravitational time dilation, that is, a vanishingly small effective
speed of light, for an observer far away from the source.

6.4.1 Singularities of the Schwarzschild metric

The Schwarzschild metric,

ds 2 = −
(

1− r∗

r

)
c 2dt 2 +

(
1− r∗

r

)−1

dr 2 + r 2(dθ 2 + sin 2 θdφ 2),

(6.70)

has singularities at r = 0 and r∗, and6 θ = 0 and π . We are familiar with the6The inverse metric has a [sin 2 θ ]−1 term.

notion that r = 0 and θ = 0 and π are coordinate singularities associated with
our choice of the spherical coordinate system. Namely, they are not physical and
do not show up in physical measurements, and they can be transformed away
by another coordinate choice. However, in the case here, the r = 0 singularity
is real. This is not surprising as the Newtonian gravitational potential for a point
mass already has this feature: −GNM/r.

What about the r = r∗ surface? As we shall demonstrate, it is actually
a coordinate singularity, that is, it is not physical and can be transformed
away by coordinate transformation (e.g. the Eddington–Finkelstein coordinates,
discussed in Box 6.5). However, while physical measurements are not singu-
lar at r = r∗, it does not mean that this surface is not special. It is an event
horizon, separating events that can be viewed from afar, from those which
cannot (no matter how long one waits). Namely, r = r∗ is a boundary of a
region, from within it is impossible to send out any signal. It is a boundary of
communication, much like earth’s horizon is a boundary of our vision.

When studying black hole physics it is often helpful to think of the scenario
of a spherical star collapsing into a black hole. The two most important physical
effects involved are:

1. The formation of a physical singularity at the end (r = 0) of the collapse.
2. As spherical collapse proceeds onward as more of the exterior

Schwarzschild geometry is exposed until the formation of the event hori-
zon (at r = r∗) restricting communication between an outside observer
and the collapsing star, hence preventing the singularity ever being
visible.

In the following subsections we shall provide some details for these claims.

6.4.2 Time measurements in the Schwarzschild spacetime

In Chapter 4 we used different inertial coordinate frames (e.g. freely falling
spaceship or an observer in the gravitational field watching the spaceship in
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acceleration, etc.) in order to get different viewpoints of the spacetime.
Similarly, useful insights of the Schwarzschild geometry can be had by using
different coordinate systems. Here we give the respective descriptions: first
according to an observer in a spaceship falling toward the center, then to an
observer viewing such event far away from the source.

The local proper time
We already mentioned that r = r∗ ≡ 2GNM/c 2 is a coordinate singular-
ity. Here we will display a specific case of time-measurement by an observer
traveling across the Schwarzschild surface. The result shows that such physical
measurement is not singular at r = r∗.

Let τ be the time measured on the surface of a collapsing star (or alternatively,
the proper time onboard a spaceship traveling radially toward the origin r = 0).
Recall from Section 6.3 that, for a particle (with mass) in the Schwarzschild
spacetime, we can write a generalized central-force energy equation (6.41).
This equation can be simplified further when we specialize to the radial motion
of dφ/dτ = 0 (i.e. l = 0) with zero kinetic energy (K = 0) at r = ∞ (i.e. the
collapsing star or the infalling spaceship start at rest from r = ∞):

1

2
ṙ 2 − GNM

r
= 0 (6.71)

or
1

c 2

(
dr

dτ

) 2

= 2GNM

c 2r
= r∗

r
or cdτ = ±

√
r

r∗
dr. (6.72)

The+ sign corresponds to an exploding star (or, an outward-bound spaceship),
while the − sign to a collapsing star (or, an inward-bound probe). So we pick
the minus sign. A straightforward integration yields

τ(r) = τ0 − 2r∗

3c

[( r

r∗
)3/2 −

( r0

r∗
)3/2

]
, (6.73)

where τ0 is the time when the probe is at some reference point r0.
Thus the proper time τ(r) is perfectly smooth at the Schwarzschild surface,

(see Fig. 6.8). The time for the star to collapse from r = r∗ to the singular point
at r = 0 is �τ = 2r∗/3c which is of the order of 10−4 s for a star with a mass
10 times the solar mass (i.e. r∗ � 30 km). An observer on the surface of the
collapsing star would not feel anything peculiar when the star passed through
the Schwarzschild surface. And it will take both the star and the observer about
a tenth of a millisecond to reach the origin, which is a physical singularity.

The Schwarzschild coordinate time
While the time measurement by an observer traveling across the Schwarzschild
surface is perfectly finite, this is not the case according to the observer far away
from r = r∗.

Recall that the coordinate time t in the Schwarzschild spacetime is the
time measured by an observer far away from the source, where the space-
time approaches the flat Minkowski space. In the above subsection we have
calculated the proper time τ as a function of the radial distance, we now calcul-
ate t(r). For this purpose we need to convert (6.72) for the proper time into one
for the coordinate time. Using the relation dτ = √−g00dt = (1 − r∗/r)1/2dt
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in (6.72) we obtain

dt = −
√

r

r∗
dr

c(1− (r∗/r))1/2
, (6.74)

which can be integrated to yield

t = t0 − 2r∗

3c

[( r

r∗
)3/2 −

( r0

r∗
)3/2

]

+ r∗

c

{
ln

∣∣∣∣
√

(r/r∗)+ 1√
(r/r∗)− 1

·
√

(r0/r∗)− 1√
(r0/r∗)+ 1

∣∣∣∣− 2

[( r

r∗
)1/2 −

( r0

r∗
)1/2

]}
.

(6.75)

When r and r0 are much greater than r∗, the coordinate time of (6.75)
approaches7 the proper time of (6.73) as it should. The above logarithmic term7A Taylor expansion of the logarithmic factor

leads to the cancellation of factors in the {· · · }
in (6.75).

can be written as

ln

∣∣∣∣∣
√

r +√r∗√
r −√r∗

·
√

r0 −
√

r∗√
r0 +

√
r∗

∣∣∣∣∣ = ln

∣∣∣∣∣∣∣

(√
r +√r∗

) 2

r − r∗
· r0 − r∗

(
√

r0 +
√

r∗) 2

∣∣∣∣∣∣∣
.

If r is near r∗, we can drop all nonsingular terms in (6.75) so that

t − t0 = − r∗

c
ln

r − r∗

r0 − r∗
. (6.76)

Equivalently, (r − r∗) = (r0 − r∗)e−(t−t0)c/r∗ . It takes an infinite amount
of coordinate time (i.e. the time according to the clock located far from the
Schwarzschild surface) to reach r = r∗ (see Fig. 6.8).

Proper time
t(r)

Coordinate
time t(r)

r = 0        r = r*            r = r0

r

Fig. 6.8 The contrasting behavior of proper
time τ(r) vs. coordinate time t(r) at the
Schwarzschild surface.

Infinite gravitational redshift Another way to interpret the above-discussed
phenomenon of a distant observer seeing the collapsing star to slow down to a
standstill as due to an infinite gravitational time dilation. The relation between
coordinate and proper time interval is given by (cf. (6.16)):

dt = dτ√−g00
= dτ√

1− (r∗/r)
. (6.77)

The coordinate time interval becomes infinite as r approaches r∗. If we think
in terms of wave peaks, it takes an infinite time for the next peak to reach the
far away receiver. This can be equivalently phrased as an “infinite gravitational
red shift.” Our discussion in Section 5.2.2 has

ωrec

ωem
=
√

(g00)em

(g00)rec
=
√

1− (r∗/rem)

1− (r∗/rrec)
. (6.78)

When rem → r∗, the received frequency approaches zero, as it would take an
infinite interval to receive the next photon (i.e. the peak-to-peak time being pro-
portional to ω−1). Thus no signal transmission from the black hole is possible.

The “black star” of Michell and Laplace Recall our discussion in
Section 3.3.3 that it is tempting to attribute the behavior of a light ray in a
gravitational field as due to a “gravitational mass” of the photon. It often leads
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to a more familiar derivation of the GR result. For the situation at hand of
a photon not being able to reach a far-away observer, one may interpret it as
due to the gravitational attraction of the photon by the spherical mass M. The
well-known nonrelativistic expression for the escape velocity

vesc =
√

2GNM

r
= c

√
r∗
r

(6.79)

is independent of the object’s mass. To the question of how large a ratio of
the source mass to radius has to be that even when the object traveling at the
speed of light cannot escape, the answer from (6.79) for vesc = c is just the
GR result of r = r∗. Historically, discussions of “black star” were carried out
along such lines in the eighteenth century by John Michell, as well as by Pierre
Laplace. However, we must recognize that, from the perspective of modern
gravitational theory (see discussion in Section 3.3.4), this is a conceptually
erroneous approach. The impossibility of sending out a light signal from the
region inside the Schwarzschild surface is due to infinite gravitational time
dilation, rather than a photon having any gravitational mass.

6.4.3 Lightcones of the Schwarzschild black hole

To gain further insight to the event horizon, it is instructive to examine the beha-
vior of the lightcone in the Schwarzschild spacetime. Let us consider a radial
(dθ = dφ = 0) worldline for a photon:

ds 2 = −
(

1− r∗

r

)
c 2dt 2 +

(
1− r∗

r

)−1

dr 2 = 0. (6.80)

Thus8 8This relation differs from that in (6.74)
because we are now considering a lightlike
worldline.cdt = ± dr

1− (r∗/r)
. (6.81)

This can be integrated to obtain, for some reference spacetime point of (r0, t0),

c(t − t0) = ±
(

r − r0 + r∗ ln

∣∣∣∣
r − r∗

r0 − r∗

∣∣∣∣
)

, (6.82)

or simply,
ct = ±(r + r∗ ln |r − r∗| + constant). (6.83)

The + and − signs stand for the outgoing and infalling photon world-lines,
as shown in Fig. 6.9. To aid our viewing of this spacetime diagram we have
drawn in several lightcones in various spacetime regions. We note that for the
region far from the source where the spacetime becomes flat, the lightcone
approaches the usual form with ±45◦ sides.

ct
Incoming light 

Outgoing light 

O

II

I

r* r

Fig. 6.9 Lightcones in the Schwarzschild
spacetime. Regions I and II are separated
by the Schwarzschild surface. Different light
rays correspond to (6.83) with different
constant. Note that the outgoing light ray in
region II ends at the r = 0 line.

The most prominent feature we notice is that the lightcones “tip over” when
crossing the Schwarzschild surface. Instead of opening toward the t → ∞
direction, they tip toward the r = 0 line. This can be understood by noting that
the roles of space and time are interchanged in Schwarzschild geometry when
one moves across the r = r∗ surface:

(a) In the spacetime region (I) outside the Schwarzschild surface r > r∗,
the time and space coordinates have the usual property being timelike
ds 2

t < 0 and spacelike ds 2
r > 0 (cf. (6.13) and (6.14)). Namely, the

time axis (i.e. perpendicular to the r axis) is timelike, and a fixed-time
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worldline is spacelike. Since the trajectory for any real particle must
necessarily be timelike9 and be contained inside the lightcone, the light-
cones must open toward the t →∞ direction: an observer in region (I)
cannot stop his biological clock.

9The worldline of any real particle
remains timelike ds 2 < 0 whether outside
or inside the Schwarzschild surface. Points
along the trajectory must be causally
connected (i.e. by signals traveling not faster
than light). This feature of lightcone tip over
is another way of saying that any light signal
emitted inside would follow a worldline that
always terminates at r = 0.

(b) But in region (II), inside the Schwarzschild surface, their roles are
reversed. Namely, a worldline of fixed time is now timelike. This comes
about because the (1− (r∗/r)) factor changes sign in g00 and grr . For
a worldline to remain timelike, an observer can no longer stay put at
one position, but is forced to move inward toward the r = 0 singularity.
For the worldline to be contained within a lightcone, the lightcones
themselves must tip over when crossing the r = r∗ surface. The tipping
over of the lightcones also makes it clear that, once inside the region (II),
there is no way one can send a signal to the outside region. Hence, the
Schwarzschild surface is an event horizon.

The fact that the metric becomes singular at the r = r∗ surface means that
the Schwarzschild coordinates, while appropriate for regions far away from the
source, are not convenient for the discussion near the Schwarzschild surface.
In our description of the “tipping-over” of the lightcones in Fig. 6.9 the use
of Schwarzschild coordinates is suspect as the effect is discontinuous across
the r = r∗ surface. All such doubts are removed when another coordinate
system is employed. In the Eddington–Finkelstein coordinates (Box 6.5) the
Schwarzschild singularity is removed, and the lightcones, with respect to these
new coordinates, tip over smoothly. This also demonstrates explicitly that this
is a coordinate singularity, as it is absent in this coordinate system.

Box 6.5 The Eddington–Finkelstein coordinates

The choice of Eddington–Finkelstein coordinates can be motivated as
follows. Recall the proper time of an infalling particle into the black hole is
smooth for all values of r, cf. (6.73). Thus instead of setting up the coordin-
ate system using a static observer far from the gravitational source (as is the
case of the Schwarzschild coordinates) one can describe the Schwarzschild
geometry from the viewpoint of an infalling observer. Mathematically,
a simpler procedure is to use an infalling photon as the observer to set
up the new time coordinate t. The infalling ds 2 = 0 null geodesic in
the new (t, r) spacetime diagram should be a −45◦ straight line—just as
the infalling photon worldline in the flat spacetime, where the coordinate
time is the proper time, cf. (6.14). Such a worldline along radial trajectory
ds 2 = −c 2dt̄ 2 + dr 2 = 0, or cdt̄ = ±dr is described by the equation

ct̄ = −r + constant, (6.84)

which should be compared to the equation for an infalling photon in the
Schwarzchild coordinates given by (6.83),

ct + r∗ ln |r − r∗| = −r + constant. (6.85)

A comparison of the LHSs of (6.84) and (6.85) suggests that we make the
coordinate transformation of

ct → ct̄ ≡ ct + r∗ ln |r − r∗|. (6.86)
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Differentiating both sides,

cdt̄ = cdt + r∗

r − r∗
dr, (6.87)

and substituting into the Schwarzschild line element (6.70) with � being
the solid angle, we find

ds 2 = −
(

1− r∗

r

)
c 2dt̄ 2 + r∗

r
2cdt̄dr +

(
1+ r∗

r

)
dr 2 + r 2d� 2,

(6.88)

which is now regular at r = r∗. In fact it is regular in both regions I and
II. Thus, this transformation extends the coordinate range10 from I to both
regions I and II. One can object that this extension is achieved by a trans-
formation (6.86) that itself becomes singular at r = r∗. However, the only
relevant point is that we have found a set of coordinates, as defined by the
line element (6.88) which also describes the geometry outside a spherical
source. How one found such a set is immaterial.

To look at the lightcone structure in the Eddington–Finkelstein coordi-
nates, we can simplify the algebra by introducing the variable

u ≡ ct̄ + r. (6.89)

Using du = cdt̄ + dr, the line element in (6.88) can then be written as

ds 2 = −c 2dt̄ 2 + dr 2 + r∗

r
(c 2dt̄ 2 + 2cdt̄dr + dr 2)+ r 2d� 2

= −
(

1− r∗

r

)
du 2 + 2dudr + r 2d� 2. (6.90)

Thus, for the worldline of a radially (d� = 0) infalling photon (ds 2 = 0),
we must have

−
(

1− r∗

r

)
du 2 + 2dudr = 0. (6.91)

Equation (6.91) has two solutions: one being du = 0 which is just the
straight infalling −45◦ line of (6.84), forming the left-hand-side edges of
the lightcones. The other solution

du = 2dr

1− (r∗/r)
= cdt̄ + dr (6.92)

or

ct̄ =
∫

r + r∗

r − r∗
dr = r + 2r∗ ln |r − r∗| + constant (6.93)

resembles the outward going null line in the Schwarzschild coordinates
(6.83), and forms the right-hand-side of the lightcone. Plotting them
in Fig. 6.10 we see now that lightcones tip over smoothly across the
Schwarzschild surface. Inside the horizon, both sides of lightcones bend
toward the r = 0 line. In Fig. 6.11, with two spatial dimensions suppressed,
we display the spacetime diagram of an imploding star with an observer on
its surface sending out light signals at a regular interval.

10Another set of coordinates, the Kruskal
coordinates, has been discovered; it is valid
in even more extensive region than that for
the Eddington–Finkelstein coordinates.

u = constant

O

II I

r*
r

ct

Outgoing light 

Fig. 6.10 Lightcones in Eddington–
Finkelstein spacetime.
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Outgoing light signals
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r*

r 
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 r
*
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Fig. 6.11 A star undergoing gravitational
collapse (two spatial dimensions suppressed).
The points on the surface of the collaps-
ing star corresponding to radially moving
particles. One such worldline, same as
that shown in Fig. 6.8, is displayed above.
The region exterior to the collapsing star has
the Schwarzschild geometry.
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6.4.4 Orbit of an object around a black hole

The formalism presented in our study of the relativistic orbit of a planet can also
be applied to the study of the motion of a massive object around a black hole.
Let us examine the structure of effective gravitational potential derived in (6.52)

�eff = −GNM

r
+ l 2

2m 2r 2
− r∗l 2

2m 2r3
. (6.94)

While the second term in �eff is the familiar centrifugal barrier, the last term is
a new GR contribution, which is a small correction for situations such as planet
motion, but can be very important when radial distance r is comparable to the
Schwarzschild radius r∗ as in the case of a compact stellar object. We can find
the extrema of this potential by ∂�eff/∂r = 0

GM

r 2
− l 2

m 2r3
+ 3r∗l 2

2m 2r4
= 0 (6.95)

or

r 2 − l 2

GMm 2
r + 3l 2

2GMm 2
r∗ = 0. (6.96)

Newtonian Feff

r

K

r+ r–

Feff

Fig. 6.12 Schwarzschild vs. Newtonian
effective potential.

The solutions r+ and r− specify the locations where �eff has maximum and
minimum, respectively, see Fig. 6.12,

r± = l 2

2GMm 2

[
1∓

(
1− 6GMm 2

l 2
r∗
)]1/2

. (6.97)

We note the distinction from the effective potential in the Newtonian limit
of r∗ = 0: for the Newtonian �eff the centrifugal barrier always dominates
with �eff → ∞ in the r → 0 limit, and there is no r+; a particle cannot
fall into the r = 0 center as long as l �= 0. In the relativistic Schwarzschild
geometry, in the small r limit, the r∗ term becomes the most important one and
�eff → −∞. When K ≥ m�eff(r+), a particle can plunge into the gravity
center even if l �= 0. If K = m�eff(r−), just like the Newtonian case, we
have a stable circular orbit with r = r−. However, this circular radius cannot
be arbitrarily small. From (6.97) we have the condition for the circular orbit
having the smallest radius:

6GMm 2

l 2
r∗ = 1 (6.98)

so that the innermost stable circular orbit has radius

r0 = l 2

2GMm 2
= 3r∗. (6.99)

6.4.5 Physical reality of black holes

Because of the extraordinary feature of the strongly warped spacetime near the
Schwarzschild surface, it took a long time for the physics community to accept
the reality of the black hole prediction by the Schwarzschild solution. Here is
a short summary of the 50 years development leading to the recognition of the
true physical nature of black hole and the modern astronomical observation of
such objects.
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The long road to the acceptance of black holes’ reality
There have been two parallel, and intertwined, lines of study:

1. GR study of the Schwarzschild solution and warped spacetime, much
along the lines discussed in our presentation here.

2. Study of gravitational collapse of massive stars—in a normal star,
gravitational contraction is balanced by the thermal pressure of the gas,
which is large enough if it is hot enough as due to the thermonuclear
reactions at the core. The question naturally presents itself: after the
exhaustion of nuclear fuel, what will be the fate of a massive star?

We present some of the highlights of this development:

• 1920s and 1930s: No one was willing to accept the extreme predic-
tions that Schwarzschild gave for the highly compact stars. Einstein
and Eddington, the opinion setters, openly expressed the view that such
gravitational features could not be physical. Calculations were done and
results were interpreted as indicating the impossibility of black holes,
instead of interpreting them correctly as indicating that no force could
resist the gravitational contraction in such a situation.

• 1930: S. Chandrasekhar used the new quantum mechanics to show that,
for stellar mass M > 1.4M�, the electron’s degenerate pressure will not
be strong enough to stop the gravitational contraction. (Electrons obey
Pauli’s exclusion principle. This effect gives rise to a repulsive force
(the degenerate pressure) that resists the gravitational attraction.) Stars
having masses under this limit so that the gravitational collapse can be
resisted by the electron’s fermionic repulsion become white dwarfs. In
1932 Chadwick discovered the neutron, which is also a fermion. Zwicky
suggested that the remnant of supernova explosion, associated with the
final stage of gravitational collapse, was a neutron star. Oppenheimer
and Volkov, and independently Landau, studied the upper mass limit
for neutron stars and found it to be a few solar masses. If greater than
this limit, the neutron repulsion would not be large enough to resist the
gravitational collapse all the way to the r = 0 singularity.

• In the meantime (1939) Oppenheimer and Snyder performed GR study
and made most of the points as presented in our discussion here. But the
physics community remained skeptical as to the reality of black holes.
The reservations were many. For example, one questioned whether the
spherical symmetrical situation was too much an idealization? How to
take account of the realistic complications such as stellar rotation (the spin
causing the star to bulge), deformation to form lumps, shock waves lead-
ing to mass ejection, and effects of electromagnetic, gravitational, and
neutrino radiation, etc.?

• 1940s and 1950s. The development of atomic and hydrogen bombs during
Second World War and the cold war period involved the similar type of
physics and mathematical calculations as the study of realistic stellar
collapse. From such experience, groups led by Wheeler (USA) and
Zel’dovich (USSR) and others carried out realistic simulations. By the
end of 1950s, the conclusion had been reached that, despite the com-
plications of spin, deformation, radiation, etc. the implosion proceeded
much the way as envisioned in the idealized Oppenheimer and Snyder
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calculation. Even with some uncertainty in the nuclear physics involved,
this maximum value is determined to be ≈ 2M�. Any star with a mass
M � 2M� would contract all the way to become a black hole.

• One development that had a significant impact on the thinking of theorists
was the rediscovery in 1958 by Finkelstein of the coordinate system first
invented by Eddington (1924) in which the Schwarzschild singularity
does not appear, showing clearly that it is a coordinate singularity (see
Box 6.5).

Observational evidence of black holes
Black holes being small black discs in the sky far away, it would seem rather
hopeless to ever observe them. But by taking account of the gravitational effects
of black hole on its surroundings, we now have fairly convincing evidence for
a large number of black holes. The basic approach is to determine that the
mass of the object is greater than the maximum allowed mass of a neutron star
(≈ 2M�), then it must be a black hole. The “observed” black holes can be
classified into two categories:

1. Black holes in X-ray binaries. The majority of all stars are members of
binary systems orbiting each other. If the black hole is in a binary system with
another visible star, by observing the Kepler motion of the visible companion,
one can obtain some limit on the mass of the invisible star as well. If it exceeds
2M�, it is a black hole candidate. Even better, if the companion star produces
significant gas (as is the case of solar flares), the infall of such gas (called
accretion) into the black hole will produce intense X-rays. A notable example
is Cygnus X-1, which is now generally accepted as a black hole binary system
with the visible companion having a mass Mvis > 20M� and the invisible black
hole having a mass M > 7M�. Altogether, close to 10 such binary black holes
have been identified in our Galaxy.

2. Galactic black holes. It has also been discovered (again by detecting
the gravitational influence on visible nearby matter) that at the centers of
most galaxies are supermassive black holes, with masses ranging from 106

to 1012M�. Even though the initial finding had been a great surprise, once the
discovery was made, it is not too difficult to understand why we should expect
such supermassive centers. The gravitational interaction between stars is such
that they “swing and fling” past each other: resulting in that one flies off outward
while the other falls inward. Thus, we can expect many stars and dust to be
driven inward toward the galactic core, producing a supermassive gravitational
aggregate. It has been observed that some of these galactic nuclei emit huge
amounts of X-rays and visible light to be a thousand times brighter than the
stellar light of a galaxy. Such galactic centers are called AGNs (active galactic
nuclei). The well-known astrophysical objects, quasars (quasi-stellar objects)
are interpreted as AGNs in early stage of the cosmic evolution. Observations
suggest that an AGN is composed of a massive center surrounded by a molecu-
lar accretion disk. They are thought to be powered by rotating supermassive
black holes at their cores of such disks. The energy source is ultimately the
rest energy of particles. To power such a huge emission one needs extremely
efficient mechanisms for releasing the rest energy. Besides the electromagnetic
extraction of rotational energy as alluded to above, another important vehicle
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is gravitational binding: when free particles falls into lower-energy centrally
bound states in the formation of the accretion disk around the black hole. In the
following paragraph we briefly discuss the energy release by such a gravitational
binding.

Energy release by gravitational binding We are familiar with the fact that
thermonuclear fusion is a much more efficient mechanism than chemical reac-
tion to release the (rest) energy mc 2. Here we show that binding of a particle
to a compact center of gravity can be an even more efficient mechanism.
The thermonuclear reactions taking place in the sun can be summaried as
fusing four protons (hydrogen nuclei each with a rest energy of 938 MeV)
into a helium nucleus with a released energy of 27 MeV, which represents
27÷ (4× 938) ≈ 1% of the rest energy. For gravitational binding, consider a
free particle, that falls toward a black hole, and ends up bound in a circular orbit
(radius r) outside the Schwarzschild radius. The total energy for gravitationally
bound particle is given by (Problems 6.4 and 6.5)

E = mc 2
(

1− r∗

r

)(
1− 3

2

r∗

r

)−1/2

.

For the innermost stable circular orbit with r = 3r∗ (cf. (6.99)), we have
E = 0.94 mc 2. Namely, 6% of the rest energy is released—even larger than
thermonuclear fusion.

A glimpse of advanced topics in black hole physics The interested reader
is referred to Section A.2 where some advanced topics in black hole physics
are very briefly discussed.

Review questions

1. What is the form of the spacetime metric (when written in
terms of the spherical coordinates) for a spherically sym-
metric space? Explain very briefly how such a spacetime is
curved in space as well as in time.

2. Present a simple proof of Birkhoff’s theorem for Newtonian
gravity. Explain how one then concludes that there is no
monopole radiation.

3. Write down the metric function for Schwarzschild
spacetime. Given the relation of the metric element g00 to
the gravitational potential as −(1 + 2�/c 2), demonstrate
that the Newtonian result � = −GNM/r is contained in this
solution.

4. How does the feature grr = −g−1
00 in the Schwarzschild

metric lead to a bending of the light-ray in GR which
is twice as much as that predicted by the EP alone,
δGR = 2δEP?

5. In simple qualitative terms, explain how gravitational
lensing can, in some circumstance, give rise to “Einstein
rings,” and, in some cases, an enhancement of the brightness
of a distant star.

6. Write down the energy equation for the relativistic central
force problem used for calculating the precession of the
perihelion of the planet Mercury.

7. What does one mean by saying that the Schwarzschild
surface is only a coordinate singularity?

8. Explain why the Schwarzschild surface is an “event horizon”
(a) by considering gravitational time dilation, and (b) by an
examination of the lightcone behavior in the Schwarzschild
spacetime (tipping over of the lightcone, etc.).

9. If black holes are invisible, how can we deduce their exis-
tence? What are the two classes of black holes for which we
already have observational evidence?
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Problems

(6.1) Energy relation for a particle moving in the
Schwarzschild spacetime Show that (6.40), expressing
the invariant spacetime interval for a material particle
ds 2 = −c 2dτ 2, can be interpreted as the Schwarzschild
spacetime generalization of the familiar special relat-
ivistic relation between energy and momentum, E 2 =
p 2c 2 + m 2c4 (cf. (2.63)). Namely, show that the flat
spacetime (r∗ = 0) version of (6.40) can be written as
E 2 = p 2c 2 + m 2c4.

(6.2) Equation for a light trajectory We have used Huygens’
principle in Section 3.3.3 and the geodesic equation in
Problem 5.2 to derive the expression of gravitational
angular deflection δGR of (6.29). Here you are asked to
obtain this result in yet another way—by following the
procedure presented in Section 6.3 when we calculated
the orbit equation for a material particle (e.g. the planet
Mercury) in the Schwarzschild geometry. Starting with
the Lagrangian L = 0, instead of L = −c 2 (why?), and
using the same definition of the two constants of motion
as given in (6.44) and (6.45), you have the equation

(
dr

dσ

) 2

+
(

1− r∗

r

)
λ 2

4r 2
= c 2η 2. (6.100)

Following the same steps as given in Box 6.4, you can
change the differentiation with respect to the curve para-
meter to that of the orbit angle dσ = 2λ−1r 2dφ, and use
the variable u = r−1 to obtain the equation, equivalent to
(6.58), for the light trajectory:

u′′ + u− εu 2 = 0,

where u′′ = d 2u/dφ 2 and ε = 3r∗/2. A perturbation
solution u = u0 + εu1 should lead to the result accurate
up to the first-order ε

1

r
= sin φ

rmin
+ 3+ cos 2φ

4

r∗

r 2
min

.

From this expression for the trajectory r(φ), one can com-
pare the directions of the initial and final asymptotes to
deduce the angular deflection to be δGR = 2r∗/rmin.

(6.3) Lens equation Carry out the calculations for (6.36)
and (6.37).

(6.4) Total energy in curved spacetime Show that the con-
served quantity η, as defined by (6.49) η ≡ (1 +
2K/mc 2)1/2, has the interpretation of being the total
energy per unit rest energy in the Schwarzschild space-
time η = E/mc 2. Recall that the above quantity K is the
total energy in the nonrelativistic limit, K = E − mc 2.

(6.5) Circular orbits For the simplest case of circular orbits,
show that the two conserved constants η and l of ( 6.49)
and (6.48) are fixed to be

l 2 = GNMm 2r

(
1− 3

2

r∗

r

)−1

,

η 2 =
(

1− r∗

r

) 2 (
1− 3

2

r∗

r

)−1

. (6.101)

Suggestion Use (6.49) for the bound state total energy
K/mc 2 = (η 2 − 1

)
/2 and write the effective potential

(6.52) as

�eff = c 2

2

[(
1− r∗

r

)(
1+ l 2

m 2r 2c 2

)
− 1

]
.

(6.6) Effective speed of light coming out of a black hole
vanishes Following the discussion of gravitational
index of refraction in Section 3.3.2 show that, accord-
ing to an observer far away, the light coming out of a
black hole has zero speed.

(6.7) No stable circular orbit for light around a black hole
Use the effective potential as suggested by the energy
balance Eq. (6.100) to show that there is no stable circular
trajectory for a photon going around a black hole.
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• The framework required to study the whole universe as a physical
system is general relativity (GR).

• The universe, when observed on distance scales over 100 Mpc, is
homogeneous and isotropic.

• Hubble’s discovery that the universe is expanding suggests strongly
that it had a beginning when all objects were concentrated at a
point of infinite density. The estimate of the age of the universe by
astrophysics from observed data is �12.5 Gyr.

• There is a considerable amount of evidence showing that most of the
mass in the universe does not shine. The mass density of the universe,
including both luminous and dark matter, is around a third of the
“critical density.”

• The spacetime satisfying the cosmological principle is described by
the Robertson–Walker metric in the comoving coordinates (the cosmic
rest frame).

• In an expanding universe with a space that may be curved, any treat-
ment of distance and time must be carried out with care. We study the
relations between cosmic redshift and proper, as well as luminosity,
distances.

Cosmology is the study of the whole universe as a physical system: what is
its matter–energy content? How is this content organized? What is its history?
How will it evolve in the future? We are interested in a “smeared” description
with the galaxies being the constituent elements of the system. On the cosmic
scale the only relevant interaction among galaxies is gravitation; all galaxies are
accelerating under their mutual gravity. Thus the study of cosmology depends
crucially on our understanding of the gravitational interaction. Consequently,
the proper framework for cosmology is GR. The solution of Einstein’s equation
describes the whole universe because it describes the whole spacetime.

From Chapter 6 we learnt that, for a given gravitational system (M and R
being the respectively characteristic mass and length dimensions), one could
use the dimensionless parameter

2GNM

c2R
≡ ψ (7.1)

to decide whether Einstein’s theory was required, or a Newtonian descrip-
tion would be adequate. In the context of the spatially isotropic solution, it is
just the relative size of Schwarzschild radius to the distance scale R. Recall
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ψ� = O(10−6) for the sun (cf. Eq. (6.22)). Typically the GR effects are small
at the level of an ordinary stellar system. On the other hand, we have also
considered the case of stellar objects that were so compact that they became
black holes when the distance scale is comparable to the Schwarzschild radius
ψbh = O(1). For the case of cosmology, the mass density is very low. Never-
theless, the distance involved is so large that the total mass M, which increases
faster than R, is even larger. This also results in a sizable ψ (Problem 7.1). Thus,
to describe events on the cosmic scales, we must use GR concepts.

Soon after the completion of his papers on the foundation of GR, Einstein
proceeded to apply his new theory to cosmology. In 1917, he published his paper,
“Cosmological considerations on the general theory of relativity.” Since then,
almost all cosmological studies have been carried out in the framework of GR.

7.1 The cosmos observed

We begin with the observational features of the universe: the organization of
its matter content, the large scale motion of its components, its age and mass
density.

7.1.1 Matter distribution on the cosmic distance scale

The distance unit traditionally used in astronomy is the parsec (pc). This is
defined, see Fig. 7.1(a), as the distance to a star having a parallax of one
arcsecond for a base-line equal to the (mean) distance between earth and sun
(called an AU, the astronomical unit). Thus pc = (1′′ in radian)−1 × AU =
3.1× 1016 m = 3.26 light-years. (One arcsec equals to 4.85× 10−6 rad.) Here
we first introduce the organization of stars on the cosmic scales of kpc, Mpc,
and even hundreds of Mpc.

1 pc

2 AU

30 kpc

2 kpc
Sun

199

Sun

Earth

(a)

(b)

Fig. 7.1 (a) The astronomical distance unit
parsec (parallax second) defined, see text.
(b) Side view of Milky Way as a typical spiral
galaxy.

The distance from the solar system to the nearest star is 1.2 pc. Our own
galaxy, the Milky Way, is a typical spiral galaxy. It is comprised of O (1011)

stars in a disc with a diameter of 30 kpc and a disc thickness of about 2 kpc,
see Fig. 7.1(b). Galaxies in turn organize themselves into bodies of increasingly
large sizes—into a series of hierarchical clusters. Our galaxy is part of a small
cluster, called the Local Group, comprised of about 30 galaxies in a volume
measuring 1 Mpc across, for example, the distance to Andromeda galaxy (M31)
is 0.7 Mpc. This cluster is part of the Local, or Virgo, Supercluster over a volume
measuring 50 Mpc across, with the Virgo cluster comprised of 2000 galaxies
over a distance scale of 5 Mpc as its physical center. (The Virgo cluster is about
15 Mpc from us.) This and other clusters of galaxies, such as Hydra–Centaurus
supercluster, appear to reside on the edge of great voids. In short, the distribution
of galaxies about us is not random, but rather clustered together in coherent
patterns that can stretch out up to 100 Mpc. The distribution is characterized
by large voids and a network of filamentary structures (see Fig. 7.2). However,
beyond this distance scale the universe does appear to be fairly uniform.

7.1.2 Cosmological redshift: Hubble’s law

Olbers’ paradox: darkness of the night sky Up until less than 100 years ago,
the commonly held view was that we lived in a static universe that was infinite
in age and infinite in size. However, such a cosmic picture is contradicted by
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Fig. 7.2 Galaxy distribution out to 858 Mpc,
compiled by Gott et al. (2003) based on data
collected by SDSS and 2dF surveys.

the observation that night sky is dark. If the average luminosity (emitted energy
per unit time) of a star is L, then the brightness seen at a distance r would be
f (r) = L/4πr2. The resultant flux from integrating over all the stars in the
infinite universe would be unbounded:

B =
∫

n f (r)dV = nL
∫ ∞

rmin

dr = ∞, (7.2)

where n, the number density of stars, has been assumed to be a constant. This
result of infinite brightness is an over-estimate because stars have finite angular
sizes, and the above calculation assumes no obstruction by foreground stars.
The correct conclusion is that the night sky in such a universe would have the
brightness as if the whole sky were covered by shining suns. Because every
line-of-sight has to end at a shining star, although the flux received from a
distant star is reduced by a factor of r−2 but, for a fixed solid angle, the number
of unobstructed stars increases with r2. Thus, there would be an equal amount
of flux from every direction. It is difficult to find any physical mechanism
that will allow us to evade this result of night sky ablaze. For example, one
might suggest that interstellar dust would diminish the intensity for light having
traveled a long distance. But this does not help, because over time, the dust
particles would be heated and radiate as much as they absorb.

Maybe our universe is not an infinite and static system?

Hubble’s discovery
Astronomers have devised a whole series of techniques that can be used to
estimate the distances ever farther into space. Each new one, although less
reliable, can be used to reach out further into the universe. During the period
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of 1910–1930, the “cosmic distance ladder” reached out beyond 100 kpc. The
great discovery was made that our universe was composed of a vast collec-
tion of galaxies, each resembling our own. One naturally tried to study the
motions of these newly discovered “island universes” by using the Doppler
effect. When a galaxy is observed at visible wavelengths, its spectrum typically
has absorption lines because of the relatively cool upper stellar atmosphere.
For a particular absorption line measured in the laboratory to have a wave-
length λem, the received wavelength by the observer may, however, be different.
Such a wavelength shift

z ≡ λrec − λem

λem
(7.3)

is related to the emitter motion by the Doppler effect (cf. Box 10.1), which,
for nonrelativistic motion, can be stated as

z = �λ

λ
� v

c
, (7.4)

where v is the recession velocity of the emitter (away from the receiver).
A priori for different galaxies, one expects a random distribution of wave-

length shifts: some positive (redshift) and some negative (blueshift). This is
more or less true for the Local Group. But beyond the few nearby galaxies,
the measurements by Vesto Slipher of some 40 galaxies, over a 10 year period
at Arizona’s Lowell Observatory, showed that all, except a few in the Local
Group, were redshifted. Edwin Hubble (Mt Wilson Observatory, California)
then attempted to correlate these redshift results to the more difficult measure-
ments of the distances to these galaxies. The great discovery was made that the
redshift was proportional to the distance d to the light emitting galaxy. In 1929,
Hubble announced his result:

z = H0

c
d (7.5)

or, substituting in the Doppler interpretation1 of (7.4),1A Doppler redshift comes about because of
the increase in the distance between the emit-
ter and the receiver of a light signal. In the
familiar situation, this is due to the relative
motion of the emitter and the receiver. This
language is being used here in our initial dis-
cussion of the Hubble’s law. However, as we
shall show in Sec 7.3, especially Eq. (7.53),
the proper description of this enlargement of
the cosmic distance as reflecting the expan-
sion of the space itself, rather than the motion
of the emitter in a static space.

v = H0d. (7.6)

Namely, we live in an expanding universe. On distance scales greater than
10 Mpc, all galaxies obey Hubble’s law: they are receding from us with speed
linearly proportional to the distance. The proportional constant H0, the Hubble
constant, gives the recession speed per unit separation (between the receiving
and emitting galaxies). To obtain an accurate account of H0 has been a great
challenge as it requires one to ascertain great cosmic distances. Only recently
has it become possible to yield consistent results among several independent
methods. We have the convergent value22For a recent compilation of cosmological

parameters, see, for example Freedman and
Turner (2003). H0 = (72± 7 km/s)Mpc−1, (7.7)

where the subscript 0 stands for the present epoch H0 ≡ H(t0). An inspection
of the Hubble’s law (7.6) shows that H0 has the dimension of inverse time, and
the measured value in (7.7) can be translated into Hubble time tH ≡ H−1

0 �
13.6 Gyr and Hubble length lH = ctH � 4,200 Mpc.

Hubble’s law and the Copernican principle
That all galaxies are receding away from us may lead one to suggest
erroneously that our location is the center of the universe. The correct
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interpretation is in fact just the opposite. The Hubble relation actually follows
naturally from a straightforward extension of the Copernican principle: our
galaxy is not at a privileged position in the universe. The key observation
is that this is a linear relation between distance and velocity at each cosmic
epoch. As a result, it is compatible with the same law holding for all observers
at every galaxy. Namely, observers on every galaxy would see all the other
galaxies receding away from it according to Hubble’s law.

r�

O�

O

G

r

r – r�

Fig. 7.3 Relative positions of a galaxy G with
respect to two observers located at two other
galaxies: O and O′.

Let us write the Hubble’s law in a vector form:

v = H0r. (7.8)

Namely, a galaxy G, located at position r, will be seen by us (at the origin O)
to recede at velocity v proportional to r. Now consider an observer on another
galaxy O′ located at r′ from us as in Fig. 7.3. Then, according to the Hubble’s
Law, it must be receding from us according to

v′ = H0r′ (7.9)

with the same Hubble constant as H0 is independent of distance and velocity.
The difference of these two equations yields

(v − v′) = H0(r − r′). (7.10)

But (r− r′) and (v−v′) are the respective location and velocity of G as viewed
from O′. Since v and v′ are in the same direction as r and r′, the vectors
(v − v′) and (r − r′) must also be parallel. Namely, the relation (7.10) is just
the Hubble’s law valid for the observer on galaxy O′. Clearly such a deduction
would fail if the velocity and distance relation, at a given cosmic time, were
nonlinear (i.e. if H0 depends either on position and/or on velocity).

Distance measurement by redshift
We can turn the Hubble relation around and use it as a means to find the distance
to a galaxy by its observed redshift. In fact, the development of new techniques
of multi-fiber and multi-slip spectrographs allowed astronomers to measure
redshifts for hundreds of galaxies simultaneously. This made large surveys of
galaxies possible. In the 1980s there was the Harvard–Smithsonian Center for
Astrophysics (CfA) galaxy survey, containing more than 15,000 galaxies. Later,
the Las Campanas mapping eventually covered a significantly larger volume
and found the “greatness limit” (i.e. cosmic structures have maximum size and
on any larger scale the universe would appear to be homogeneous). But this
was still not definitive. The modern surveys culminated in two recent parallel
surveys: the Anglo-Australian Two-Degree Field Galaxy Redshift Survey (2dF)
and the Sloan Digital Sky Survey (SDSS) collaborations have measured some
quarter of a million galaxies over a significant portion of the sky, confirming the
basic cosmological assumption that the universe of a large distance �100 Mpc is
homogeneous and isotropic. (For further discussion see Sections 7.2 and 7.3.)
In fact, an important tool for modern cosmology is just such large-structure
study. Detailed analysis of survey data can help us to answer questions such
as whether the cosmic structure observed today came about in a top–down
(i.e. largest structure formed first, then the smaller ones by fragmentation) or
in a bottom–up process. (The second route is favored by observational data.)
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In fact many of the cosmological parameters, such as Hubble constant and
energy density of the universe, etc. can also be extracted from such analysis.

7.1.3 Age of the universe

If all galaxies are rushing away from each other now, presumably they must
have been closer in the past. Unless there was some new physics involved,
extrapolating back in time there would be a moment, “the big bang,” when all
objects were concentrated at one point of infinite density.3 This is taken to be the3See Problem 7.9 for a brief description of

the alternative cosmology called steady-state
theory which avoids the big bang begin-
ning by having a constant mass density
maintained through continuous spontaneous
matter creation as the universe expands.

origin of the universe. How much time has evolved since this fiery beginning?
What is then the age of our universe?

It is useful to note that the inverse of the Hubble’s constant at the present
epoch, the Hubble time, has the value of

tH ≡ H−1
0 = 13.6± 1.4 Gyr. (7.11)

By Hubble “constant,” we mean that, at a given cosmic time, H is independent
of the separation distance and the recessional velocity—the Hubble relation is
a linear relation. The proportional coefficient between distance and recessional
speed is not expected to be a constant with respect to time: there is matter
and energy in the universe, their mutual gravitational attraction will slow down
the expansion, leading to a monotonically decreasing expansion rate H(t)—a
decelerating universe. Only in an “empty universe” do we expect the expansion
rate to be a constant throughout its history, H(t) = H0. In that case, the age t0
of the empty universe is given by the Hubble’s time

[t0]empty = d

v
= 1

H0
= tH. (7.12)

For a decelerating universe full of matter and energy, the expansion rate must
be larger in the past: H(t) > H0 for t < t0. Because the universe was expanding
faster than the present rate, this would imply that the age of the decelerating
universe must be shorter than the empty universe age: t0 < tH. Nevertheless,
we shall often use the Hubble time as a rough benchmark value for the age of
the universe, which has a current horizon of 2ctH = O(10, 000 Mpc).

Phenomenologically, we can estimate the age of the universe from observa-
tional data. For example, from astrophysical calculation, we know the relative
abundance of nuclear elements when they are produced in a star. Since they
have different decay rates, their present relative abundance will be different
from the initial value. The difference is a function of time. Thus, from the
decay rates, the initial and observed relative abundance, we can estimate the
time that has elapsed since their formation. Typically, such calculation gives
the ages of stars to be around 13 ± 1.5 Gyr. This only gives an estimate of
time when stars were first formed, thus only a lower bound for the age of the
universe. However, our current understanding informs us that the formation of
stars started a hundred million years or so after the big bang, thus such a lower
limit still serves an useful estimate of t0.

An important approach to the study of universe’s age has been the research
work on systems of 105 or so old stars known as globular clusters. These stars
are located in the halo, rather than the disc, of our Galaxy. It is known that halo
lacks the interstellar gas for star formation. These stars must be created in the
early epochs after the big bang (as confirmed by their lack of elements heavier
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than lithium, cf. Section 8.4). Stars spend most of their lifetime undergoing
nuclear burning. From the observed brightness (flux) and the distance to the
stars, one can deduce their intrinsic luminosity (energy output per unit time).
From such properties, astrophysical calculations based on established models
of stellar evolution, allowed one to deduce their ages (Krauss and Chaboyer,
2003).

[t0]gc � 12.5± 1.5 Gyr. (7.13)

For reference, we note that the age of our earth is estimated to be around 4.6 Gyr.

7.1.4 Dark matter and mass density of the universe

There is a considerable amount of evidence that most of the mass in the uni-
verse does not shine. Namely, in the universe we have dark matter as well as
luminous. The mass density then has two components:

ρM = ρLM + ρDM. (7.14)

It is useful to express mass density in terms of a benchmark value for a universe
with expansion rate given by the Hubble constant H. One can check that the
ratio, with H2 being divided by the Newton’s constant GN, has the units of
mass density. With an appropriate choice of coefficient, we have the value of
the critical density

ρc = 3H2

8πGN
. (7.15)

The significance of this quantity will be discussed in Chapter 8 when the Einstein
equation for cosmology will be presented. In the meantime, we introduce the
notation for the density parameter

� ≡ ρ

ρc
. (7.16)

Equation (7.14) for the matter densities may then be written as

�M = �LM +�DM, (7.17)

where �LM and �DM are the density parameters for luminous matter and dark
matter, respectively. Since the Hubble constant is a function of cosmic time,
the critical density also evolves with time. We denote the values for the present
epoch with the subscript 0. For example, ρ(t0) ≡ ρ0, ρc(t0) ≡ ρc,0, and
�(t0) ≡ �0, etc. For the present Hubble constant H0 as given in (7.7), the
critical density has the value

ρc,0 = (0.97± 0.08)× 10−29 g/cm3 (7.18)

or equivalently a critical energy density4 of 4In the natural unit system of quantum field
theory, this energy per unit volume is app-
roximately (2.5 × 10−3eV)4/(�c)3, where
� is Planck’s constant (over 2π ) with
�c ≈ 2× 10−5eV·cm.

ρc,0c2 � 0.88× 10−10 J/m3 � 5, 500 eV/cm3. (7.19)

In the following, we shall discuss the measurement of the universe’s mass
density (averaged over volumes on the order of 100 Mpc3) for both luminous and
dark matter. In recent years, these parameters have been deduced rather accu-
rately by somewhat indirect methods: a detailed statistical analysis of the tem-
perature fluctuation in the cosmic microwave background (CMB) radiation and
from large structure studies by 2dF and SDSS galaxy surveys mentioned above.
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The large-structure study involves advanced theoretical tools that are beyond
the scope of this introductory presentation. In the following we choose to offer
a few methods that involve rather simple physical principles, even though they
may be somewhat “dated” in view of recent cosmological advances. Our dis-
cussion will, in fact, be only semi-quantitative. Subtle details of derivation, as
well as qualification of the stated results, will be omitted. The purpose is to
provide some general idea as to how cosmological parameters can in principle
be deduced phenomenologically.

Luminous matter
The basic idea of measuring the mass density for the luminous matter is through
its relation to the luminosity L (we omit the subscript 0 for the present epoch)

ρLM =
(

luminosity
density

)
×
(

M

L

)
. (7.20)

Namely, one finds it convenient to decompose mass density into two sep-
arate factors: luminosity density and mass-to-luminosity ratio. The luminosity
density can be obtained by a count of galaxies per unit volume, multiplied
by the average galactic luminosity. Several surveys have resulted in a fairly
consistent conclusion of 200 million solar luminosity/Mpc3,

(
luminosity

density

)
≈ 0.2× 109 L�

(Mpc)3
. (7.21)

L� is the solar luminosity. The ratio (M/L) is the amount of mass associated,
on the average, with a given amount of light. This is the more difficult quantity
to ascertain. Depending on the selection criteria one gets a range of values
for the mass-to-luminosity ratio. The average of these results came out to be
(M/L) ≈ 4M�/L�. Plugging this and (7.21) into (7.20 ) we obtain an estimate
ρLM ≈ 8× 108M�/Mpc3 ≈ 5× 10−32 g/cm3, or a density ratio

�LM ≈ 0.005. (7.22)
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Fig. 7.4 (a) Gravitational attraction on
a mass m due to a spherical mass distribu-
tion. (b) The velocity v(r) rotation curve
(solid line) does not fall as r−1/2 beyond R,
the edge of the visible portion of a galaxy.

Dark matter
Although the dark matter does not emit electromagnetic radiation, it still feels
gravitational effects. The most direct evidence of dark matter’s existence comes
from measured “rotation curves” in galaxies. Consider the gravitational force
that a spherical (or ellipsoidal) mass distribution exerts on a mass m located at
a distance r from the center of a galaxy, see Fig. 7.4(a). Since the contribution
outside the Gaussian sphere (radius r) cancels out, only the interior mass M(r)
enters into the Newtonian formula for gravitational attraction. The object is
held by this gravity in a circular motion with centripetal acceleration of v2/r.
Hence

v(r) =
√

GNM(r)

r
. (7.23)

Thus the tangential velocity inside a galaxy is expected to rise linearly with the
distance from the center v ∼ r if the mass density is approximately constant.
For a light source located outside the galactic mass distribution the velocity is
expected to decrease as v ∼ 1/

√
r, see Fig. 7.4(b). The velocity of particles
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located at different distances (the rotation curves) can be measured through the
21-cm lines of the hydrogen atoms. However, beyond the visible portion of
the galaxies r > R , instead of this fall-off, they are observed to stay at the
constant peak value as far as the measurement can be made. (See, for example,
Cram et al., (1980).) This indicates that the observed object is gravitationally
pulled by other than the luminous matter. Such nonluminous matter is believed
to form spherical haloes with dimensions considerably larger than the visible
disc, see Fig. 7.5. According to (7.23), the flatness of the rotation curve means
that M ∝ r. We can think of the halo as a sphere with mass density decreasing
as r−2. Measurements of the rotational curve for spiral galaxies have shown
that halo radii are at least ten times larger than the visible radii of the galaxies.

Halo

Fig. 7.5 The halo of dark matter surrounding
the luminous portion of the galaxy.

Baryonic vs. nonbaryonic matter

• Matter made up of protons and neutrons is generally referred to as
“baryonic matter.” Baryon is the collective name for strongly interacting
particles made up of quark triplets. For our purpose here, the baryon
number is just the proton plus neutron numbers. Other types of particles,
such as photons, electrons, and neutrinos, carry zero baryon number.
Baryon matter can clump to form atoms and molecules, leading to large
astronomical bodies. Luminous matter (shining stars) should be bary-
onic matter; but some of the baryonic matter may not shine—this is the
“baryonic dark matter”:

�B = �LM +�BDM. (7.24)

Nonluminous baryonic matter can be planets or stellar remnants such as
black holes, white dwarfs, and brown dwarfs (the last category being stars
of the size of Jupiter, with not enough mass to trigger the thermonuclear
reaction to make it shine), as well as interstellar gas around galaxies.

• There may also exist gaseous clouds made up of exotic elementary
particles that do not have electromagnetic interactions. Neutrinos are
cases in point. They only feel the weak nuclear force (i.e. they do
not have strong or electromagnetic charges). With their masses being
extremely small, neutrinos are expected to be in relativistic motion. They
are examples of “hot dark matter.” There may also be other “weakly inter-
acting massive particles” (WIMPs) that are predicted by various exten-
sions of the standard model of particle interactions.5 WIMPs, expected to

5It has been suggested that the Standard
Model of particle physics be extended by the
inclusion of supersymmetry (cf. discussion
on p. 282). Every known elementary parti-
cle must then have a supersymmetric partner,
with a spin differing by half a unit. The lightest
of such hypothesized supersymmetry parti-
cles are expected to be neutralino ferminos
(partners to the neutral Higgs scalar and weak
bosons) and should be stable against sponta-
neous decay. They can in principle make up
the bulk of the required dark matter WIMPs.

be much more massive than nucleons, are examples of “cold dark matter.”
Hot and cold dark matter have distinctly different effects on the formation
of galaxies and clusters of galaxies from initial density inhomogeneity
in the universe.6 Whether hot or cold, such nonbaryonic dark matter will 6If the dark matter had been fast moving (hot)

particles, they would be able to stream away
from high density regions, thus smoothing
out small density perturbations. This would
have left only the large scale perturbations,
leading to the formation of largest structure
(superclusters) first, with the smaller structure
(galaxies) being produced from fragmenta-
tion. However, this top–down scenario is
inconsistent with observation.

be labeled as “exotic.” Exotic particles are necessarily dark.

�DM = �BDM +�exotic. (7.25)

Namely, the total mass of the universe can be divided into categories, either,
depending whether it shines or not, into luminous and dark matter, or depending
on their composition, into baryonic and exotic matter:

�M = �LM +�DM = �B +�exotic (7.26)

= �LM +�BDM +�exotic. (7.27)



124 Homogeneous and isotropic universe

Thus we need a program to deduce the phenomenological values of �M as well
as its various components.

The total mass density ���M
Because the rotation curves cannot be measured far enough out to determine
the extent of the dark matter halo, we have to use some other approach to
fix the mass density of the dark matter in the universe. Here we discuss one
method which allows us to measure the total (luminous and dark) mass in
a system of galaxies (binaries, small groups, and large clusters of galaxies),
that are bound together by their mutual gravitational attraction. This involves
measurements of the mean-square of the galactic velocities 〈v2〉 and the average
galactic inverse separation 〈s−1〉 of, obviously, the luminous components of
the system. These two quantities, according to the virial theorem of statistical
mechanics, 〈V〉 = −2〈T〉, relating the average potential and kinetic energy, are
proportional to each other—with the proportional constant given by the total
gravitational mass M (luminous and dark) of the system,

〈v2〉 = GNM

〈
1

s

〉
. (7.28)

The proof of this theorem is left as an exercise (Problem 7.6). Here we shall
merely illustrate it with a simple example. Consider a two-body system (M, m),
with M � m, separated by distance s. The Newtonian equation of motion
GNMm/s2 = mv2/s immediately yields the result in (7.28). From such consid-
erations, one obtains a total mass density that is something like 80 times larger
than the luminous matter. Thus the luminous matter, being what we can see
when looking out into space, is only a tiny fraction of the mass content of the
universe.

We should add a historical note. That there might be significant amount of
dark matter in the universe was first pointed out by Fritz Zwicky in the 1930s.
The basis of this proposal is just the method we have outlined here. Zwicky
noted that the combined mass of the visible stars and gases in the Coma cluster
was simply not enough, given the observed radial velocities of the galaxies, to
hold them together gravitationally, that is, what is holding together a galaxy or
a cluster of galaxies must be some form of dark matter. The modern era began
in 1970 when Vera Rubin and W. Kent Ford, using more sensitive techniques,
were able to extend the velocity curve measurements far beyond the visible
edge of gravitating systems of galaxies and clusters of galaxies.

There are now several independent means to determine the mass density at
the present era �M,0: one approach is through gravitational lensing by galaxies,
and clusters of galaxies (see Section 6.2), and another is by comparing the
number of galaxy clusters in galaxy superclusters throughout the cosmic age.
Results, that are generally consistent with the above quoted value have been
obtained (Sadoulet, 1999; Griest and Kamionkowski, 2000):

�M,0 = 0.30± 0.05. (7.29)

We shall show in the next chapter that the whole universe is permeated
with radiation. However, their energy density is considerably smaller so that
�R,0 	 �M,0.
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The necessity of exotic dark matter
Knowing that mass content of the universe is dominated by dark matter, can
we still conclude that most of the matter is baryonic? Namely, can the dark
matter, just like the luminous matter, be made up of protons and neutrons?
Observational evidence showed that is not the case.

As it turns out, we have methods that can distinguish between baryonic
and exotic dark matter because of their different interactions. The light nuclear
elements (helium, deuterium, etc.) were produced predominantly in the early
universe at the cosmic time O(102 s), cf. Section 8.4. Their abundance (in
particular deuterium) is sensitive to the baryonic abundance. From such
considerations we have the result (Burles et al., 2001)

�B � 0.04, (7.30)

which is confirmed by the latest cosmic microwave anisotropy measurements
(see Chapter 9), as well as gravitational microlensing (see Box 6.2). From
(7.22), we see that �B � �LM. This means that even most of the “ordinary
matter” is not visible to us. Our understanding of the baryonic dark matter
is still not complete. It is commonly believed that a major portion of it is in
the form of unseen ionized gas surrounding galaxies in galactic clusters. Also,
with �B 	 �M we can conclude that a significant fraction of the dark matter
must be exotic:

�exotic = (�M −�B) ≈ �M. (7.31)

Namely, almost 90% of the matter in the universe is made up of the yet-unknown
nonbaryonic dark matter. Most of the speculations have centered around the
possibility that such nonbaryonic matter is clouds of weakly interacting massive
particles postulated to exist by particle theories that go beyond the standard
model verified by current high energy experiments (cf. the discussion leading
to (7.25)).

In summary, the total mass density, baryonic and exotic together, is only
a third of the critical density:

�M � 0.30 (7.32)

most of which is dark

�M = �LM +�DM with �LM ≈ 0.005. (7.33)

Thus, the luminous matter associated with stars and gas we see in galaxies
represents about 2% of the total mass content. Most of the matter is dark;
the dark matter is in turn composed mostly of exotic particles:

�M = �B +�exotic with �B � 0.04. (7.34)

The exact nature of these exotic nonbaryonic particles remains one of the
unsolved problems in physics.

7.2 The cosmological principle

That the universe is homogeneous and isotropic on the largest scale of hundreds
of Mpc has been confirmed by direct observation only very recently (cf. dis-
cussion at the end of Section 7.1.2). Another evidence for its homogeneity
and isotropy came in the form of extremely uniform CMB radiation. This is the
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relic thermal radiation left over from an early epoch when the universe was only
105 years old. The nonuniformity of CMB is on the order of 10−5. (Cf. Sec-
tions 8.5 and 9.3.1.) This shows that the “baby universe” can be described as
being highly homogeneous and isotropic.

But long before obtaining this direct observational evidence, Einstein had
adopted the strategy of starting the study of cosmology with a basic working
hypothesis called the cosmological principle (CP): at each epoch (i.e. each
fixed value of cosmological time t) the universe is homogeneous and isotropic.
It presents the same aspects (except for local irregularities) from each point.

• This statement that there is no privileged location in the universe (hence
homogeneous and isotropic) is sometimes referred to as the Copernican
cosmological principle.

• This is a priori the most reasonable assumption, as it is difficult to think
of any other alternative. Also, in practice, it is also the most “useful,” as
it involves the least number of parameters. There is some chance for the
theory to be predictive. Its correctness can then be checked by observa-
tion. Thus CP was invoked in the study of cosmology long before there
was any direct observational evidence for a homogeneous and isotropic
universe.

• The observed irregularities (i.e. the structure) in the universe-stars, galax-
ies, clusters of galaxies, superclusters, voids, etc.-are assumed to arise
because of gravitational clumping around some initial density uneven-
ness. Various mechanisms for seeding such density perturbation have
been explored. Most of the efforts have been concentrated around the
idea that, in the earliest moments, the universe passed through a phase
of extraordinarily rapid expansion, the “cosmic inflationary epoch.”
The small quantum fluctuations were inflated to astrophysical size and
they seeded the cosmological density perturbation (cf. Sections 9.2.3
and 9.3.1).

The cosmological principle gives rise to a picture of the universe as a physical
system of “cosmic fluid.” The fundamental particles of this fluid are galaxies,
and a fluid element has a volume that contains many galaxies, yet is small
compared to the whole system of the universe. Thus, the motion of a cosmic
fluid element is the smeared-out motion of the constituent galaxies. It is deter-
mined by the gravitational interaction of the entire system—the self-gravity of
the universe. This means that each element is in free-fall; all elements follow
geodesic world-lines. (In reality, the random motions of the galaxies are small,
on the order of 10−3.)

Such a picture of the universe allows us to pick a privileged coordinate frame,
the comoving coordinate system, where

t ≡ the proper time of each fluid element

x i ≡ the spatial coordinates carried by each fluid element.

A comoving observer flows with a cosmic fluid element. The comoving coord-
inate time can be synchronized over the whole system. For example, t is
inversely proportional to the temperature of the cosmic background radiation
(see Section 8.3) which decreases monotonically. Thus, we can in principle
determine the cosmic time by a measurement of the background radiation
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temperature. This property allows us to define spacelike slices, each with a fixed
value of the coordinate time, and each is homogenous and isotropic.

Because each fluid element carries its own position label the comoving
coordinate is also the cosmic rest frame—as each fluid element’s position
coordinates are unchanged with time. But we must remember that in GR
the coordinates do not measure distance, which is a combination of the coord-
inates and the metric. As we shall detail below, the expanding universe, with
all galaxies rushing away from each other, viewed in this comoving coordinate,
is described not by changing position coordinates, but by an ever-increasing
metric. This emphasizes the physics underlying an expanding universe not as
something exploding in the space, but as the expansion of space itself.

7.3 The Robertson–Walker metric

The cosmological principle says that, at a fixed cosmic time, each spacelike
slice of the spacetime is homogeneous and isotropic. Just as our discussion in
Section 6.1 showing that spherical symmetry restricts the metric to the form
of gµν = diag(g00, grr , r2, r2 sin2 θ) with only two scalar functions, g00

and grr , in this section we discuss the geometry resulting from the cosmo-
logical principle, which has a Robertson–Walker metric when expressed in the
comoving coordinates.

The time components
Because the coordinate time is the proper time of fluid elements, we must
have g00 = −1. The fact that the spacelike slices for fixed t can be defined
means that the spatial axes are orthogonal to the time axes:

g00 = −1 and g0i = gi0 = 0. (7.35)

To understand this orthogonality, further details are necessary. Consider an event
separated from two other events in distinctive ways: because fixed-time space-
like slices of space exist, we can consider one separation being daµ = (0, dx i)

for a definite spatial index i, as well as another separation dbµ = (dt, 0).
The first connects two events on a spacelike space containing all events with
the same cosmic time, the second being an interval along the worldline of
a comoving observer. The inner product of these two intervals

daµdbµ = gi0dx idt (the µ indices summed, not the i indices)

is an invariant, valid in any coordinate system including the local Minkowski
frame. This makes it clear that the left-hand side (LHS) vanishes. The above
equality then implies gi0 = 0.

The self-consistency of this choice of coordinates can be checked as follows.
A particle at rest in the comoving frame is a particle in free fall under the mutual
gravity of the system; it should follow a geodesic worldline obeying (5.9):

d2xµ

dτ 2
+ �

µ
αβ

dxα

dτ

dxβ

dτ
= 0. (7.36)

Being at rest, dx i = 0 with i = 1, 2, 3, we only need to calculate the
Christoffel symbol �

µ
00. But the metric properties of (7.35) imply that
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�
µ
00 = 0. Thus these fluid elements at rest with respect to the comoving frame

(dx i/dτ = d2x i/dτ 2 = 0) do satisfy (trivially) the geodesic equation.

The metric for a 3D space with constant curvature
Let gij be the spatial part of the metric

gµν =
(−1 0

0 gij

)
(7.37)

that satisfies the cosmological principle. The invariant interval expressed in
terms of the comoving coordinates is

ds2 = −c2dt2 + gijdx idx j

≡ −c2dt2 + dl2. (7.38)

Because of the CP requirement (i.e. no preferred direction and position),
the time-dependence in gij must be an overall scale factor R(t), with no
dependence on any of the indices:

dl2 = R2(t)dl̃2, (7.39)

where the reduced length element dl̃ is both t-independent and dimensionless.
It is also useful to define a dimensionless scale factor

a(t) ≡ R(t)

R0
(7.40)

normalized at the present epoch by a(t0) = 1. The denominator on the right-
hand side (RHS) R0 ≡ R(t0) is sometimes referred to as the radius of the
universe now. One has the picture of the universe as a three-dimensional (3D)
map with cosmic fluid elements labeled by the fixed comoving coordinates x̂i.
Time evolution enters entirely through the time-dependence of the map scale
R(t) = R0a(t), see Fig. 7.6,

xi(t) = R0a(t)x̂i (7.41)

with x̂i being the fixed (t-independent) dimensionless map coordinates, while
a(t) is the size of the grids and is independent of map coordinates. As the
universe expands, the relative distance relations (i.e. the shape of things)
are not changed.

a(t)

Fig. 7.6 A 3D map of the cosmic fluid
with elements labeled by t-independent x̂i
comoving coordinates. The time-dependent
of any distance is entirely determined by the
t-dependent scale factor a(t).

The Robertson–Walker metric is for a spacetime which, at a give time, has
a 3D homogeneous and isotropic space. One naturally expects this 3D space to
have a constant curvature. In Section 4.3.2 we have already written down the
metric in two spherical coordinate systems:

Equation (4.45) for the comoving coordinates (χ , θ , φ):

dl2 = R2
0a2(t)

[
dχ2 + k−1

(
sin2

√
kχ
)

d�2
]

. (7.42)

Equation (4.46) for a related comoving spherical system (ξ , θ , φ)

dl2 = R2
0a2(t)

(
dξ2

1− kξ2
+ ξ2d�2

)
. (7.43)

The parameter k in gij can take on the values ±1, 0 with k = +1 for a
3-sphere, k = −1 for a 3-pseudosphere, and k = 0 for a 3D Euclidean space.
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Some of the properties of such spaces, such as their embedding and their volume
evaluation, were also discussed in Problems 4.6 and 4.7. In the context of
cosmology, the universe having a k = +1 positively curved space is called
a “closed universe,” a k = −1 negatively curved space an “open universe,”
and k = 0 a “flat universe.” While the deduction of the 3D spatial metric
given in Section 4.3.2 is only heuristic, in Section 12.4.1 we shall provide
an independent derivation of the same result. In practice, one can use either
one of the two coordinates displayed in (7.42) and (7.43); they are equivalent.
In the following, for definiteness, we shall work with the (ξ , θ , φ) coordinate
system of (7.43).

7.3.1 Proper distance in the RW geometry

In an expanding universe with a space that may be curved, we must be very
careful in any treatment of distance. In the following sections we shall deal with
several kinds of distance, starting with conceptually the simplest: the proper
distance.

The proper distance dp(ξ , t) to a point at the comoving radial distance ξ and
cosmic time t can be calculated from the metric (7.43) with d� = 0 and dt = 0.

dp(ξ , t) = a(t)R0

∫ ξ

0

dξ ′

(1− kξ ′2)1/2
(7.44)

= a(t)

(
R0√

k

)
sin−1(

√
kξ). (7.45)

Namely, for a space with positive curvature k = +1, we have a(t)R0 sin−1 ξ ;
negative curvature, a(t)R0 sinh−1 ξ , and a flat space a(t)R0ξ .

This relation
dp(ξ , t) = a(t)dp(ξ , t0) (7.46)

implies a proper velocity of

vp(t) = d(dp)

dt
= ȧ(t)

a(t)
dp(t). (7.47)

This is just Hubble’s law with the Hubble constant expressed in terms of the
scale factor:

H(t) = ȧ(t)

a(t)
and H0 = ȧ(t0). (7.48)

Recall that the appearance of an overall scale factor in the spatial part of the
Robertson–Walker metric follows from our imposition of the homogeneity and
isotropy condition. The result in (7.47) confirms our expectation that in any
geometrical description of a dynamical universe which satisfies the cosmolog-
ical principle, Hubble’s law emerges automatically. We emphasize that, in the
GR framework, the expansion of the universe is described as the expansion
of space, and “big bang” is not any sort of “explosion of matter in space,” but
rather it is an “explosion of space itself.” Space is not a “thing” that is expanding,
rather space (as represented by the metric function) is the Einstein equation’s
solution, which has the feature of having an increasing scale factor.

To relate the proper distance to the redshift of a light source located
at comoving distance ξem, we use the fact that the observer and emitter are
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connected by a light ray along a radial path,

ds2 = −c2dt2 + R2
0a2(t)

dξ2

1− kξ2
= 0.

Moving c2dt2 to one side and taking the minus sign for the square-root for
incoming light, we have

R0

∫ ξem

0

dξ

(1− kξ2)1/2
= dp(ξem, t0) = −

∫ tem

t0

cdt

a(t)
, (7.49)

where (7.44) has been used to express the first integral in terms of the proper
distance at t = t0. The second integral can be put into more useful form by
changing the integration variable to the scale factor,

−
∫ tem

t0

cdt

a(t)
= −

∫ aem

1

cda

a(t)ȧ(t)
= −

∫ aem

1

cda

a2(t)H(t)
. (7.50)

In this way (7.49) becomes the relation between proper distance and scale
factor at the emission time

dp(ξem, t0) = −
∫ aem

1

cda

a2H(a)
. (7.51)

7.3.2 Redshift and luminosity distance

We see that the scale factor a(t) is the key quantity in our description of the
time evolution of the universe. In fact, because a(t) is generally a monotonic
function, it can serve as a kind of cosmic clock. How can the scale factor be
measured? The observable quantity that has the simplest relation to a(t) is the
wavelength shift of a light signal.

The spectral shift, according to (7.3) is

z = �λ

λ
= λrec

λem
− 1. (7.52)

We expect that the wavelength (in fact any length) scales as a(t) (see
Problem 7.8 for a more detailed justification):

λrec

λem
= a(trec)

a(tem)
. (7.53)

Since the “received time” is at t0 with a(t0) = 1, we have the basic relation

1+ z = 1

a(tem)
. (7.54)

For example, at the redshift of z = 1, the universe had a size half as large as at the
present one. In fact a common practice in cosmology is to refer to “the redshift
of an era” instead of its cosmic time. For example, the “photon decoupling
time,” when the universe became transparent to light (cf. Section 8.5), is said
to occur at z = 1,100, etc.
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Changing the integration variable in (7.51) to the redshift, we have the relation
between proper distance and redshift in the Robertson–Walker spacetime:

dp(z) =
∫ z

0

cdz′

H(z′)
. (7.55)

The functional dependence of distance on the redshift is, of course, the Hubble
relation. Different cosmological models having a Hubble constant with different
z dependence would yield a different distance-redshift relation. Thus the Hubble
curve can be used to distinguish between different cosmological scenarios.
As we shall discuss in the next chapter, our universe has been discovered to
be in an accelerating expansion phase. By fitting the Hubble curve we shall
deduce that the universe’s dominant energy component is some unknown “dark
energy,” which provides the repulsion in causing the expansion to proceed at
an ever faster rate.

Luminosity distance and standard candle
The principal approach in calculating the distance to any stellar object is to
estimate its true luminosity and compare that with the observed flux (which is
reduced by the squared distance). Thus it is important to have stars with known
intrinsic luminosity that can be used to gauge astronomical distances. Stars
with luminosity that can be deduced from other properties are called “standard
candles.” A well-known class of standard candles is the Cepheid variable stars,
which have a definite correlation between their intrinsic luminosity and their
pulse rates. In fact, Edwin Hubble used Cepheids to deduce the distances of
the galaxies collected for his distance-vs.-redshift plot. Clearly, the reliability
of the method depends on one’s ability to obtain the correct estimate of the
intrinsic luminosity. A famous piece of history is that Hubble underestimated
the luminosity of his Cepheids by almost a factor of 50, leading to an under-
estimation of the distances, hence an overestimate of the Hubble constant H0

by a factor of seven. This caused a “cosmic age problem” because the resultant
Hubble time (which should be comparable to the age of the universe) became
much shorter than the estimated ages of many objects in the universe. This was
corrected only after many years of further astronomical observation and astro-
physical modeling. Here, we assume that the intrinsic luminosity of a standard
candle can be reliably obtained.

In this section, we study the distance that can be obtained by measuring the
light flux from a remote light source with known luminosity. Because we use
observations of light emitted in the distant past of an evolving universe, this
requires us to be attentive in dealing with the concept of time.

The measured flux of watts per unit area is related to the intrinsic luminosity
L, which is the total radiated-power by the emitting object, as

f = L

4πd2
L

. (7.56)

This defines the luminosity distance dL. In a static universe with a flat geometry,
the luminosity distance equals the proper distance to the source: dp(st) = dL.

f = L

4πd2
p(st)

. (7.57)
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In an expanding universe this observed flux, being proportional to energy
transfer per unit time, is reduced by a factor of (1+ z)2: one power of (1+ z)
comes from energy reduction due to wavelength lengthening of the emitted
light, and another power due to the increasing time interval. Let us explain: The
energy being proportional to frequency ω, the emitted energy, compared to the
observed one, is given by the ratio,

ωem

ω0
= λ0

λem
= 1

a(tem)
= 1+ z, (7.58)

where we have used a(t0) = 1 and (7.53) and (7.54). Just as frequency is
reduced by ω0 = ωem(1 + z)−1, the time interval must be correspondingly
increased by δt0 = δtem(1 + z), leading to a reduction of energy transfer rate
by another power of (1+ z):

ω0

δt0
= ωem

δtem
(1+ z)−2. (7.59)

Thus the observed flux in an expanding universe, in contrast to the static universe
result of (7.57), is given by

f = L

4πd2
p(1+ z)2

. (7.60)

Namely, the luminosity distance (7.56) differs from the proper distance by

dL = dp(1+ z). (7.61)

In Chapter 8 the cosmological equations will be solved to obtain the epoch
dependent Hubble’s constant in terms of the energy/mass content of the
universe. In this way we can find how the proper distance dp (thus also the
luminosity distance), depends on the redshift z via (7.55) for the general relation.
(Problem 7.11 works out the case of small z.) In Box 7.1 we explain the astro-
nomy practice of plotting the Hubble diagrams of redshift vs. distance modulus
(instead of luminosity distance), which is effectively the logarithmic luminosity
distance.

Box 7.1 Logarithmic luminosity and distance modulus

Ancient Greek astronomers classified the brightness (observed flux)
of stars as having “first magnitude” to “sixth magnitude” for the brightest to
the faintest stars visible to the naked eye—the brighter a star is, the smaller
its magnitude. Since for this magnitude range of m(6) − m(1) = 5 the appar-
ent luminosities span roughly a factor of 100 (namely, f(1)/f(6) � 100), a
definition of apparent magnitude m is suggested:

m ≡ −2.5 log10
f

f0
, (7.62)

so that m(6) − m(1) = 2.5 log10( f(1)/f(6)) = 5. The reference flux is taken
to be f0 ≡ 2.52× 10−8 W/m2 so that the brightest visible stars correspond
to m = 1 objects. In this scale, for comparison, the sun has an apparent
magnitude m� = −26.8.
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Similar to (7.62), we can define a logarithmic scale, called absolute
magnitude, for the intrinsic luminosity of a star:

M ≡ −2.5 log10
L

L0
, (7.63)

where the reference luminosity L0 is defined so that a star with this power
output will be seen at a distance 10 pc away to have a flux f0:

f0 = L0

4π(10 pc)2
. (7.64)

This works out to be L0 = 78.7L�. Using the definition of luminos-
ity distance as given in (7.56), the Eq. (7.64) can be translated into an
expression for the luminosity ratio:

f

L
= f0

L0

(
10 pc

dL

)2

. (7.65)

Taking the logarithm of this equation leads to the definition of distance
modulus (m −M), which can be related to luminosity distance by taking
the difference of (7.62) and (7.63) and substituting in (7.65):

m −M = 5 log10
dL

10 pc
. (7.66)

In astronomy literature, one finds the common practice of plotting the
Hubble diagram with one axis being the redshift z and another axis,
instead of luminosity distance, its logarithmic function, the distance
modulus (e.g. Figs 9.8 and 9.11).

Review questions

1. What does it mean that Hubble’s law is a linear relation?
What is the significance of this linearity? Support your
statement with a proof.

2. What is the Hubble time tH? Under what condition is
it equal to the age of the universe t0? In a universe
full of matter and energy, what would be the expected
relative magnitude of these two quantities (tH > t0 or
tH < t0)? What is the lower bound for t0 deduced from
the observation data on globular clusters?

3. What are “rotation curves?” What feature would we expect
if the luminous matter were a good representation of the
total mass distribution? What observational feature of the
rotation curve told us that there were significant amounts
of dark matter associated with galaxies and clusters of
galaxies?

4. Give a simple example that illustrates the content of the
virial theorem for a gravitational system. How can this be
used to estimate the total mass of the system?

5. What are the values that we have for the total mass density
�M, for the luminous matter �LM, and for the baryonic
matter �B? From this deduce an estimate of �exotic, the
exotic dark matter density parameter. All values are for
the present epoch, and list them only to one significant
figure.

6. What is the cosmological principle? What are the comoving
coordinates?

7. Write out the form of the Robertson–Walker metric for
two possible coordinate systems. What is the input (i.e. the
assumption) used in the derivation of this metric?
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8. What is the physical meaning of the scale factor a(t) and
the parameter k in the Robertson–Walker metric? How is
the epoch-dependent Hubble constant H(t) related to the
scale factor a(t)?

9. What is the scaling behavior of wavelength? From this,
derive the relation between the scale factor a(t) and the
redshift z.

10. Derive the integral expression for the proper distance
dp = c

∫
H−1dz to the light source with redshift z.

11. What is luminosity distance? How is it related to the
proper distance?

Problems

(7.1) The universe as a strong gravitational system One
can check that the universe as a whole corresponds to
a system of strong gravity that requires a GR descrip-
tion by making a crude estimate of the parameter ψ in
Eq. (7.1). For this calculation you can assume a static
Euclidean universe having a finite spherical volume with
radius given by a horizon length cH−1

0 and having a
mass density comparable to the critical density as given
in (7.18).

(7.2) Luminosity distance to the nearest star The nearest
star appears to us to have a brightness f∗ � 10−11f�
( f� being the observed solar flux). Assuming that it has
the same intrinsic luminosity as the sun, estimate the
distance d∗ to this star, in the distance unit of parsec,
as well as in the astronomical unit AU � 5× 10−6 pc.

(7.3) Gravitational frequency shift contribution to the Hubble
redshift Hubble’s linear plot of redshift vs. distance
relies on spectral measurement of galaxies beyond the
Local Group with redshift z � 0.01. A photon emit-
ted by a galaxy suffers not only a redshift because of
cosmic recession, but also gravitational redshift. Is the
latter a significant factor when compared to the reces-
sional effect? Suggestion: Compare the galactic system
with mass MG = O(1011M�) and size RG = O(1012R�)

to the solar shift of z� = O(10−6), cf . (3.26).

(7.4) Energy content due to star light By assuming the stars
have been shining with the same intensity since the
beginning of the universe and always had the luminos-
ity density as given in (7.21), estimate the density ratio
�∗ = ρ∗/ρc for star light. For this rough calculation you
can take the age of universe to be Hubble time tH.

(7.5) Night sky as bright as day Olbers’ paradox is solved
in our expanding universe because the age of universe
is not infinite t0 � tH and, having a horizon length
� ctH, it is effectively not infinite in extent. Given
the present luminosity density of (7.21), with the same
approximation as Problem 7.4, estimate the total flux
due to starlight. Compare your result with the solar flux
f� = L�[4π(AU)2]−1. We can increase the star light
flux by increasing the age of the universe t0. How much

older must the universe be in order that the night sky is
a bright as day?

(7.6) The Virial theorem Given a general bound system of
mass points (located at rn) subject to gravitational forces
(central and inverse square) Fn = −∇Vn with Vn ∝ r−1

n .
By considering the time derivative, and average, of
the sum of dot-products of momentum and position
G ≡ �npn·rn (called the virial), show that the time-
averages of the kinetic and potential energy are related
as

2〈T〉 = −〈V〉.
(7.7) Proper distance from comoving coordinate χ In the

text we worked out the proper distance from a point
with radial coordinate ξ as in (7.46). Now perform the
same calculation (and obtain a similar result) for a point
labeled by the alternative radial coordinate χ with a
metric given by (7.42).

(7.8) Wavelength in an expanding universe By a careful
consideration of the time interval between emission and
observation of two successive wavecrests, prove that
in an expanding universe with a scale factor a(t) the
wavelength scales as expected:

λrec

λem
= a(trec)

a(tem)
.

Suggestion: cf. Eq. (7.49).

(7.9) The steady-state universe In Section 7.3.1 we
explained how Hubble’s law naturally emerges in any
geometric description that satisfies the cosmological
principle. The conventional interpretation of an ever
increasing scale factor means that all objects must have
been closer in the past, leading to a big bang begin-
ning. We also mentioned in Section 7.3.2 that, because
of an initial overestimate of the Hubble constant (by a
factor of seven), there was a “cosmic age problem.” To
avoid this difficulty, an alternative cosmology, called the
steady-state universe (SSU), was proposed by Hermann
Bondi, Thomas Gold, and Fred Hoyle. It was suggested
that, consistent with the Robertson–Walker descrip-
tion of an expanding universe, cosmological quantities
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(besides the scale factor)-the expansion rate, decelera-
tion parameter, spatial curvature, matter density, etc.-are
all time-independent. A constant mass density means
that the universe did not have a big hot beginning; hence
there cannot be a cosmic age problem. To have a con-
stant mass density in an expanding universe requires the
continuous, energy-nonconserving, creation of matter.
To SSUs advocates, this spontaneous mass creation is no
more peculiar than the creation of all matter at the instant
of big bang. In fact, the name “big bang” was invented
by Fred Hoyle as a somewhat disparaging description of
the competing cosmology.

(a) Supporters of SSU find this model attractive
on theoretical grounds—because it is compatible
with the “perfect cosmological principle.” From
the above outline of SSU and the cosmological
principle in Section 7.2, can you infer what this
“perfect CP” must be?

(b) RW geometry, hence (7.48), also holds for SSU,
but with a constant expansion rate H(t) = H0.
From this, deduce the explicit t-dependence of
the scale factor a(t). What is the SSU predic-
tion for the deceleration parameter q0 defined
in (7.67)?

(c) SSU has a 3D space with a curvature K that is not
only constant in space but also in time. Does this
extra requirement fix its spatial geometry? If so,
what is it?

(d) Since the matter density is a constant ρM(t) =
ρM,0 � 0.3ρc,0 and yet the scale factor increases
with time, SSU requires spontaneous matter

creation. What must be the rate of this mass cre-
ation per unit volume? Express it in terms of
the number of hydrogen atoms created per cubic
kilometer per year.

(7.10) The deceleration parameter and Taylor expansion
of the scale factor Display the Taylor expansion of
the scale factor a(t) and [a(t)]−1 around t = t0, up to
(t − t0)2, in terms of the Hubble’s constant H0 and the
decleration parameter defined by

q0 ≡ −ä(t0)a(t0)

ȧ2(t0)
. (7.67)

(7.11) z2 correction to the Hubble relation The Hubble
relation (7.5) is valid only in the low velocity limit.
Namely, it is the leading term in the power series expan-
sion of the proper distance in terms of the redshift.
Using the definition of deceleration parameter intro-
duced in (7.67) one can show that, including the next
order, the Hubble relation reads as

dp(t0) = cz

H0

(
1− 1+ q0

2
z

)
. (7.68)

(a) One first uses (7.49) to calculate the proper dis-
tance up to the quadratic term in the “look-back
time” (t0 − tem).

(b) Use the Taylor series of Problem 7.10 to express
the redshift in terms of the look-back time up to
(t0 − tem)2.

(c) Deduce the claimed result of (7.68) by using
the result obtained in (a) and inverting the rela-
tion between the redshift and look back time
obtained in (b).
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• The dynamics of a changing universe are determined by Einstein’s
equation, which for a Robertson–Walker geometry with the ideal fluid
as its mass/energy source takes on the form of Friedmann equations.
Through these equations matter/energy determines the scale factor a(t)
and the curvature constant k in the metric description of the cosmic
spacetime.

• Friedmann equations have simple quasi-Newtonian interpretations.
• The universe began hot and dense (the big bang), and thereafter

expanded and cooled. The early universe had undergone a series of
thermal equilibria—it had been a set of “cosmic soups” composed of
different particles.

• The observed abundance of the light nuclear elements match well with
their being the product of the big bang nucleosynthesis.

• When the universe was 350,000 years old photons decoupled, and they
remain today as the primordial light having a blackbody spectrum with
temperature T = 2.725 K.

• The cosmic microwave background (CMB) is not perfectly uniform.
The dipole anisotropy is primarily determined by our motion in the rest
frame of CMB; higher multipoles contain much information about the
geometry, matter/energy content of the universe, as well as the initial
density perturbation out of which grew the cosmic structure we see
today.

In the previous chapter, we studied the kinematics of the standard model of
cosmology. The requirement of a homogeneous and isotropic space fixes the
spacetime to have the Robertson–Walker metric in comoving coordinates. This
geometry is specified by a curvature signature k and a t-dependent scale factor
a(t). Here we study the dynamics of the homogeneous and isotropic universe.
The unknown quantities k and a(t) are to be determined by the matter/energy
sources through the Einstein field equation as applied to the physical system of
the cosmic fluid.

We live in an expanding universe: all the galaxies are now rushing away
from each other. This also means that they must have been closer, hence
denser and hotter, in the past. Ultimately, at the cosmic beginning a(0) = 0,
everything must have been right on top of each other. Thus, the standard model
of cosmology makes the remarkable prediction that our universe started with
a big hot bang.
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This prediction that there existed a hotter and denser period in the early uni-
verse received strong empirical support, notably by the following discoveries:

1. The 1964 discovery of an all-pervasive microwave background radiation,
which is the “after-glow” of the big bang, or the primordial light shining
from the early universe, see Section 8.5.

2. The agreement found in the observed abundance of the light nuclear
elements, 4He, D, Li, . . . , etc. with the predicted values by the big
bang cosmology. The big bang nucleosynthesis will be discussed in
Section 8.4.

In Chapter 9, we shall discuss speculations about the nature of the big bang
itself, as described by the inflationary cosmology, as well as the recent discovery
that the expansion of our universe is accelerating because of the presence of
“dark energy,” which exerts a repulsive gravitational force.

8.1 Friedmann equations

The Einstein equation relates spacetime’s geometry on one side and the
mass/energy distribution on another, Gµν = κTµν , cf. Section 5.3.2. For a
description of the universe as a physical system that satisfies the cosmolog-
ical principle, we have learnt in Sections 7.2 and 7.3 that the spacetime must
have the Robertson–Walker metric in comoving coordinates. This fixes Gµν on
the geometry side of Einstein’s equation; the source side should also be com-
patible with a homogeneous and isotropic space. The simplest plausible choice
is to have the energy–momentum tensor Tµν take on the form of an ideal fluid,
that is, thermal conductivity and viscosity is unimportant in the cosmic fluid.
The proper tensor description of an ideal fluid will be given in Section 10.4 and
it is specified by two parameters: mass density ρ and pressure p. Thus the GR
field equation relates the geometric parameters of curvature signature k and the
scale factor a(t) = R(t)/R0 to the cosmic fluid density ρ(t) and pressure p(t).

The Einstein equation with the Robertson–Walker metric and ideal fluid
source leads to the basic set of cosmic equations. They are called the Friedmann
equations, after the Russian mathematician and meteorologist who was the
first, in 1922, to appreciate that the Einstein equation admitted cosmological
solutions leading to an expanding universe.1 1After Einstein’s 1917 cosmology paper, one

notable contribution was by de Sitter, who
studied a dynamical model with nonzero
cosmological constant � �= 0 but devoid of
ordinary matter and energy, see Section 9.2.2.

One component of the Einstein equation becomes “the first Friedmann
equation,”

ȧ2(t)

a2(t)
+ kc2

R2
0a2(t)

= 8πGN

3
ρ. (8.1)

Another component becomes “the second Friedmann equation,”

ä(t)

a(t)
= −4πGN

c2

(
p+ 1

3
ρc2
)

. (8.2)

Because the pressure and density factors are positive we have a negative second
derivative ä(t): the expansion must decelerate because of mutual gravitational
attraction among the cosmic fluid elements. It can be shown (Problem 9.1) that
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a linear combination of these two Friedmann Eqs (8.1) and (8.2) leads to

d

dt
(ρc2a3) = −p

da3

dt
, (8.3)

which, having the form of the first law of thermodynamics dE = −pdV , is the
statement of energy conservation. Since it has such a simple physical interpreta-
tion, we shall often use Eq. (8.3) instead of (8.2), and by “Friedmann equation”
one usually means the first Friedmann Eq. (8.1).

Because there are only two independent equations, yet there are three
unknowns functions a(t), ρ(t), and p(t), we need one more relation. This is
provided by the “equation of state,” relating the pressure to the density of the
system. Usually such relation is rather complicated. However, since cosmology
deals only with a dilute gas, the equation of state we need to work with can
usually be written simply as

p = wρc2, (8.4)

which defines w as the parameter that characterizes the material content of the
system. For example, for nonrelativistic matter the pressure is negligibly small
compared to the rest energy of the material particles, hence w = 0, and for
radiation we have w = 1

3 , etc.
While the precise relation of the Friedmann equations to the Einstein field

equation will be discussed in Section 12.4.2, here in Section 8.1.1 we shall
present a quasi-Newtonian approach, which gives them a more transparent
physical interpretation.

Critical density of the universe
The first Friedmann Eq. (8.1) can be rewritten as

−k =
(

ȧR0

c

)2 (
1− ρ

ρc

)
, (8.5)

where the critical density is defined as

ρc(t) = 3

8πGN

ȧ2

a2
= 3[H(t)]2

8πGN
(8.6)

after using the expression of Hubble’s constant H = ȧ/a of Eq. (7.48). Denoting
the density ratio by � = ρ/ρc as in (8.5), we have

− kc2

ȧ2R2
0

= 1−�. (8.7)

In particular at t = t0 it becomes, for �0 = ρ0/ρc,0,

kc2

R2
0

= H2
0 (�0 − 1). (8.8)

This clearly expresses the GR connection between matter/energy distribution
(�0) and geometry (k): if our universe has a mass density greater than the critical
density, the average curvature must be positive k = +1 (the closed universe);
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if the density is less than the critical density, then k = −1, the geometry of an
open universe having a negative curvature; and if ρ = ρc, we have the k = 0
flat geometry:

�0 > 1 −→ k = +1 closed universe,
�0 = 1 −→ k = 0 flat universe,
�0 < 1 −→ k = −1 open universe.

(8.9)

Namely, the critical density is the value that separates the positively curved,
high-density universe from the negatively curved, low-density universe. From
the phenomenological values stated in Chapter 7, �0 = �M,0 � 0.3, it would
seem that we live in a negatively curved open universe. In Chapter 9 we shall
discuss this topic further, and conclude that we need to modify the Einstein
equation (by the addition of the cosmological constant). This theoretical input,
together with new observational evidence, now suggests that we in fact live in
a k = 0 flat universe, with the energy/mass density in the universe just equal to
the critical value.

Remark: It is often useful to write the Friedmann Eq. (8.1) with the curvature
parameter k being replaced by �0 through Eq. (8.8),

H2

H2
0

= ρ

ρc,0
+ 1−�0

a2
. (8.10)

8.1.1 The quasi-Newtonian interpretation

The derivation of Friedmann equations involves rather long and tedious calcula-
tions (see Section 12.4.2) of the Einstein tensor components Gµν from unknown
factors k and a(t) of the metric gµν and relate them via the Einstein equation
Gµν = κTµν to the density ρ and pressure p from the energy momentum
tensor Tµν . Having stated this connection of Friedmann Eqs (8.1) and (8.2) to
the GR Einstein equation, we now show that they actually have rather simple
Newtonian interpretations.

Applicability of Newtonian interpretations
At the beginning of Chapter 7, we presented arguments for the necessity of GR as
the proper framework to study cosmology. Indeed, the Friedmann equations are
for the scale factor a(t) and the curvature signature k, which are the fundamental
concepts of a curved spacetime description of gravity. Nevertheless, as we
shall show, these equations have rather simple Newtonian interpretations when
supplemented with global geometric concepts at appropriate junctures. There is
no contradiction that cosmological equations must fundamentally be relativistic
and yet have Newtonian interpretation. The cosmological principle states that
every part of the universe, large or small, behaves in the same way. When we
concentrate on a small region, Newtonian description should be valid, because
gravity involved is not strong and small space can always be approximated by a
flat geometry. Thus, we should be able to understand the cosmological equation
with a Newtonian approach when it is carried out in an overall GR framework.
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Interpretations of the Friedmann equations
Equation (8.3) is clearly the statement of energy conservation as expressed in
the form of the first law of thermodynamics dE = −pdV . Namely, the change
in energy E (with the energy per unit volume ρc2) is equal to the work done on
the system with the volume V being proportional to a3.

The Friedmann Eq. (8.1) has a straightforward interpretation as the usual
energy balance equation (total energy being the sum of kinetic and poten-
tial energy) for a central force problem. Recall that in our homogeneous and
isotropic cosmological models we ignore any local motions of the galaxies.
The only dynamics we need to consider is the change in separation due to the
change of the scale factor a(t). Namely, the only relevant dynamical question
is the time-dependence of the separation between any two fluid elements.

O r m

Fig. 8.1 The effect on the separation r
between two galaxies due to the gravitational
attraction by all the mass in the cosmic fluid.
The net force on m is as if all the mass inside
the sphere is concentrated at the center O.

To be specific, let us consider a cosmic fluid element (i.e. an element com-
posed of a collection of galaxies), in the homogeneous and isotropic fluid
(Fig. 8.1), with mass m at the radial distance r(ξ , t) = a(t)r0(ξ) with ξ being
the dimensionless time-independent comoving radial coordinate, cf. (7.46) with
respect to an arbitrarily selected comoving coordinate origin O. We wish to
study the effect of gravitational attraction on this mass point m by the whole
fluid, which may be treated as spherically symmetric2 centered around O.

2Homogeneity and isotropy implies spherical
symmetry with respect to every point.

The gravitational attraction due to the mass outside the sphere (radius r), in
the opposite direction is cancelled. To understand this you can imagine the
outside region as composed of a series of concentric spherical shells and the
interior gravitational field inside each shell vanishes. This is the familiar New-
tonian result. Here we must use GR because the gravitational attraction from
the mass shells at large distances is not Newtonian. But it turns out this familiar
nonrelativistic solution is also valid in GR, related to the validity of Birkhoff’s
theorem (as stated at the end of Section 6.1 and Box 12.3). Consequently, the
mass element m feels only the total mass M inside the sphere.

This is a particularly simple central force problem, as we have only the
radial motion, ṙ = ȧr0. The energy balance equation has no orbital angular
momentum term:

1

2
mṙ2 − GNmM

r
= Etot, (8.11)

which may be re-written as

1

2
mȧ2r2

0 −
GNmM

ar0
= Etot. (8.12)

The expansion of the universe means an increasing a(t) and potential energy
(i.e. it is less negative). This necessarily implies a decreasing ȧ(t), namely,
a slowdown of the expansion. The total mass inside the (flat space) sphere
being M = ρ4πa3r3

0/3, we get

ȧ2 − 8πGN

3
ρa2 = 2Etot

mr2
0

. (8.13)

Remember that this calculation is carried out for an arbitrary center O. Different
choices of a center correspond to different values of r0 and thus different Etot.
The assumption of a homogeneous and isotropic space leads to the GR conclu-
sion that the right-hand side (RHS) of Eq. (8.13) is a constant with respect to
any choice of O. Furthermore, GR leads to the interpretation of the constant on
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the RHS as the curvature parameter (k):

2Etot

mr2
0

≡ −kc2

R2
0

. (8.14)

In this way we see that (8.13) is just the first Friedmann Eq. (8.1).
Similarly one can show Friedmann Eq. (8.2) as the F = ma equation of this

system (Problem 8.2).

Mass density also determines the fate of the universe
With this interpretation of the Friedmann Eq. (8.1) as the energy balance equa-
tion and with the identification of the curvature signature k as being proportional
to the total energy of (8.14), it is clear that the value of k, hence also that of
density ρ as in (8.5), determines not only the geometry of the 3D space, but
also the fate of the cosmic evolution.3 3Even though this connection between dens-

ity and the outcome of time evolution is
broken when the Einstein equation is modified
by the presence of a cosmological constant
term as discussed in Chapter 9, the follow-
ing presentation can still give us some insight
to the meaning of the critical density.

For the central force problem, we recall, whether the motion of the test mass m
is bound or not is determined by the sign of the total energy Etot. An unbound
system allows r →∞where the potential energy vanishes and the total energy
is given by the kinetic energy, which must be positive: Etot > 0 namely, k < 0
(cf. (8.14)). Also the same Eq. (8.11) shows that the sign of Etot reflects the
relative size of the positive kinetic energy as compared to the negative potential
energy. We can phrase this relative size question in two equivalent ways:

1. Compare the kinetic energy to a given potential energy: the escape
velocity. Given a source mass (i.e. the potential energy), one can decide whether
the kinetic energy term (i.e. test particle velocity) is big enough to have an
unbound system. To facilitate this comparison, we write the potential energy
term in the form

GN
mM

r
≡ 1

2
mv2

esc (8.15)

with the escape velocity being

vesc =
√

2GNM

r
. (8.16)

The energy Eq. (8.11) then takes the form of

GN
mM

r

(
v2

v2
esc
− 1

)
= Etot. (8.17)

When v < vesc, thus Etot < 0, the test mass m is bound and can never escape.
2. Compare the potential energy to a given kinetic energy: the critical

mass. Given test-particle’s velocity (i.e. the kinetic energy), one can decide
whether the potential energy term (i.e. the amount of mass M) is big enough to
overcome the kinetic energy to bind the test mass m. Writing the kinetic energy
term as

1

2
mṙ2 ≡ GN

mMc

r
(8.18)

with the critical mass being

Mc = rṙ2

2GN
= aȧ2r3

0

2GN
, (8.19)
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the energy Eq. (8.11) then takes the form of

1

2
mṙ2

(
1− M

Mc

)
= Etot. (8.20)

When M > Mc, thus Etot < 0, the test mass m is bound and can never escape.

The analogous question of whether, given an expansion rate H(t), the
test-galaxy m is bound by the gravitational attraction of the cosmic fluid is
determined by whether there is enough mass in the arbitrary sphere (on its
surface m lies) to prevent m from escaping completely. Namely, the question
of whether the universe will expand forever, or its expansion will eventually
slow down and re-collapse will be determined by the value of k ∼ −Etot. Since
the sphere is arbitrary, what matters is the density of the cosmic fluid. We will
divide the critical mass (8.19) by the volume of the sphere, and use the Hubble
constant relation H = ȧ/a of (7.48) to obtain

aȧ2r3
0/2GN

4πa3r3
0/3

= 3H2(t)

8πGN
, (8.21)

which is just the critical density ρc defined in (8.6). With M/Mc being replaced
by ρ/ρc, Eq. (8.20) with Etot given by (8.14) is just the Friedmann equation as
written in (8.5) and (8.7).

8.2 Time evolution of model universes

We now use Friedmann Eqs (8.1), (8.3) and the equation of state (8.4) to find the
time dependence of the scale factor a(t) for a definite value of the curvature k.
Although in realistic situations we need to consider several different energy/mass
components ρ = �wρw with their respective pressure terms pw = wρwc2,
we shall at this stage consider mostly single component systems. To simplify
notation we shall omit the subscript w in the density and pressure functions.

Scaling of the density function
Before solving a(t), we shall first study the scaling behavior of density and
pressure as dictated by the energy conservation condition (8.3). Carrying out
the differentiation in this equation, we have

ρ̇c2 = −3(ρc2 + p)
ȧ

a
, (8.22)

which, after using the equation of state (8.4), turns into

ρ̇

ρ
= −3(1+ w)

ȧ

a
. (8.23)

This can be solved by straightforward integration:

ρ(t) = ρ0[a(t)]−3(1+w). (8.24)

For a matter dominated universe w = 0, and a radiation dominated universe
w = 1

3 , the respective densities scale as

ρM(t) = ρM,0[a(t)]−3 and ρR(t) = ρR,0[a(t)]−4. (8.25)
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While the first equation displays the expected scaling behavior of an inverse
volume, the second relation can be understood because radiation energy is
inversely proportional to wavelength, hence scales as a−1, which is then divided
by the volume factor a3 to get the density. For the special case of negative
pressure p = −ρc2 with w = −1, Eq. (8.24) leads to a constant energy density
ρ(t) = ρ(t0) even as the universe expands. As we shall discuss in the next
chapter the newly discovered “dark energy” seems to have just this property.

Model universe with k= 0
We proceed to solve Eq. (8.1) for the time evolution of the scale factor a(t)
for some simple situations. We first consider a class of model universes with
k = 0. As we shall see, a spatially flat geometry is particularly relevant for the
universe we live in. The Friedmann Eq. (8.1) reads

(
ȧ

a

)2

= 8πGN

3
ρ0a−3(1+w), (8.26)

where we have also plugged in (8.24). Assuming a power law growth for the
scale factor

a =
(

t

t0

)x

(8.27)

thus
ȧ

a
= x

t
, (8.28)

we can immediately relate the age of the universe t0 to the Hubble time
tH = H−1

0 :

H0 ≡
(

ȧ

a

)

t0

= x

t0
or t0 = xtH.

Also, by substituting (8.28) into (8.26), we see that to match the powers of t on
both sides, there must be the relation

x = 2

3(1+ w)
. (8.29)

For the matter-dominated and radiation-dominated cases

MDU (w = 0) x = 2

3
a =

(
t

t0

)2/3

t0 = 2

3
tH,

RDU

(
w = 1

3

)
x = 1

2
a =

(
t

t0

)1/2

t0 = 1

2
tH. (8.30)

Also, (8.29) informs us that x is singular for the w = −1 universe, which
possesses, we have already noted, negative pressure and constant energy
density. This means that for this case the scale factor has a nonpower-growth
t-dependence, that is, assumption (8.27) is not applicable. We also point out
the general situation of t0 < tH for w > − 1

3 , and t0 > tH for w < − 1
3 .

Here we have considered the specific case of a flat geometry k = 0. But we
note that the result also correctly describes the early epoch even in a universe
with curvature k �= 0. This is so because in the t → 0 limit, the curvature term
in the Friedmann Eq. (8.1) is negligible when compared to the ȧ term which
grows as some negative power of the cosmic time.
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Time evolution in single-component universes
Here we shall consider the time evolution of toy universes with only one com-
ponent of energy/matter. They can be thought as approximations to a more
realistic multi-component universe if the energy content is dominated by one
component. Namely, a matter-dominated universe means that the energy of the
universe resides primarily in the form of (nonrelativistic) matter, even though
there may be many more relativistic radiation particles than matter particles.

Radiation-dominated universe The radiation energy density scales as
ρ ∼ a−4, and the Friedmann Eq. (8.1) can be written, with A being some
constant, as

ȧ2(t) = A2

a2(t)
− kc2

R2
0

. (8.31)

With a change of variable y = a2 this equation is simplified to

ẏ2 + 4kc2

R2
0

y = 4A2,

which has the solutions:

a2(t) = 2At − kc2

R2
0

t2. (8.32)

We note that this expression for the scale factor does have the correct early uni-
verse limit of a ∼ t1/2 for a radiation-dominated universe, as previously derived
in (8.30). The different time dependence of the scale factor a(t) for k = 0,±1
is plotted in Fig. 8.2. NB the straight (ȧ = constant) line corresponds to an
empty universe, and all other curves lie below this, reflecting the fact that in all
cases the expansion undergoes deceleration because of gravitational attraction.

Matter-dominated universe The matter density scales as ρ ∼ a−3 and the
first Friedmann Eq. (8.1) becomes, with B being also a constant

ȧ2(t) = B

a(t)
− kc2

R2
0

. (8.33)

Fig. 8.2 Time dependence of the scale factor
a(t) for the open, flat, and closed universe.
The qualitative features of these curves are
the same for radiation- or matter-dominated
universes. All models must have the same
radius a0 and slope ȧ0 at t0 in order to match
the Hubble constant H0 = ȧ0/a0 at the
present epoch. The origin of the cosmic time
t = 0 is different for each curve.

0 0 0 0

a(t)

t0
tH

Decelerating
universe
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The solution is more complicated. We merely note that the qualitative behavior
of a(t) as depicted in Fig. 8.2 is again obtained. Namely, for density less than ρc

the expansion of the open universe (k = −1) will continue forever; for ρ > ρc

the expansion of a closed universe (k = +1) will slow down to a stop then start
to recollapse—all the way to another a = 0 “big crunch”; for the flat universe
(k = 0) the expansion will slow down but not enough to stop.

8.3 Big bang cosmology

During the epochs immediately after the big bang, the universe was much
more compact, and the energy associated with the random motions of matter
and radiation is much larger. Thus, we say, the universe was much hotter. As a
result, elementary particles could be in thermal equilibrium through their inter-
actions. As the universe expanded, it also cooled. With the lowering of particle
energy, particles (and antiparticles) would either disappear through annihila-
tion, or combine into various composites of particles, or “decouple” to become
free particles. As a consequence, there would be different kinds of thermal relics
left behind by the hot big bang. One approach to study the universe’s history is
to start with some initial state which may be guessed based on our knowledge
(or speculation) of particle physics. Then we can evolve the universe forward
in the hope of ending up with something like the observed universe today. That
we can speak of the early universe with any sort of confidence rests with the
idea that the universe had been in a series of equilibria (cf. (8.45)). At such
stages, the property of the system was determined, independent of the details
of the interactions, by a few parameters such as the temperature, density, pres-
sure, etc. Thermodynamical investigation of the cosmic history was pioneered
by Tolman (1934). This approach to extract observable consequence from big
bang cosmology was first vigorously pursued by George Gamow and his col-
laborators in the 1940s. Here, we shall give an overview of the thermal history
of the universe, in particular, the scale-dependence of radiation temperature.

Once again, it should be pointed out that the calculations carried out in this
chapter are rather crude, and they are for illustrative purposes only—to give us
a flavor of how in principle cosmological predictions can be made. Typically,
realistic calculations would be far more complicated, involving many reaction
rates with numerous conditions.

8.3.1 Scale-dependence of radiation temperature

For the radiation component of the universe, we can neglect particle masses and
chemical potentials4 compared to kBT (here kB being the Boltzmann’s constant).

4Except that for photons, there is no strong
theoretical ground to set the chemical poten-
tial µ to zero. Yet, since there is nothing that
requires a sizable µ, we shall for simplicity
set |µ| 	 kBT in our discussion.

The number distributions with respect to the energy E of the radiation for a gas
system composed of bosons (for the minus sign) and fermions (for the positive
sign) are, respectively,

dn = 4πg

h3c3

E2dE

eE/kBT ± 1
, (8.34)

where h is the Planck’s constant, and g the number of spin states of the particles
making up the radiation. Thus for photons and electrons, we have g(γ ) = 2 and
g(e) = 2, respectively.5 Neutrinos have g(ν) = 1 because only the left-handed

5Particles with mass and spin s have 2s + 1
spin states (e.g. spin 1

2 electrons have two spin
states), but massless spin particles (e.g. spin 1
photons or spin 2 gravitons) have only two
spin states.
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states participate in interactions. Carrying out the integration, we get the number
density n = ∫ dn ∼ T3:

nb = 4

3
nf = 2.404

g

2π2

(
kBT

hc

)3

(8.35)

for the respective boson and fermion systems. We can derive the thermodyn-
amics relation (Stefan–Boltzmann law) between radiation energy density and
its temperature by performing the integration of u = ∫ Edn ∼ T4:

ρRc2 = uR = g∗

2
aSBT4, (8.36)

where aSB is the Stefan–Boltzmann constant

aSB = π2k4
B

15c3�3
= 7.5659× 10−16 J/m3/K4. (8.37)

We have summed over the energy contribution by all the constituent radiation
particles so that g∗ is the “effective number” of spin states of the particles
making up the radiation:

g∗ =
∑

i

(gb)i + 7

8

∑
i

(gf )i (8.38)

with (gb)i and (gf )i are the spin factors of the ith species of boson or fermion
radiation particles, respectively. The 7

8 factor reflects the different integral val-
ues for the fermion distribution, with a plus sign in (8.34), vs. that for the boson
case.

Knowing the number and energy densities we can also display the average
energy of the constituent radiation particles Ē = ρRc2/n. In particular we have
the photon average energy

ĒR = 2.7kBT . (8.39)

Combining this result (8.36) of ρR ∼ T4 with our previous derived relation
(8.25) for a radiation-dominated system ρR ∼ a−4, we deduce the scaling
property for the radiation temperature

T ∝ a−1. (8.40)

This expresses, in precise scaling terms, our expectation that temperature is high
when the universe is compact, or equivalently, when it expands, it also cools.
Under this temperature scaling law, the distributions in (8.34) are unchanged
(Tolman, 1934), because the radiation energy was inverse to the wave length,
E ∼ λ−1 ∼ a−1(t), the combinations VE2dE and E/kBT were invariant under
the scale changes.

Remark: In the context of Newtonian interpretation of the cosmological
(Friedmann) equations, we can understand energy conservation in an expanding
universe as follows: while the total number of radiation particles N = nV does
not change during expansion, the total radiation energy (kBT) scales as a−1.
This loss of radiation energy, because of an increase in a, is balanced by the
increase of gravitational energy of the universe. The gravitational potential
energy is also inversely proportional to distance, hence∼a−1, but it is negative.
Thus, it increases with an increase in a because it becomes less negative.
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Relation between radiation temperature and time The early universe is
dominated by radiation with the scale factor a ∝ t1/2 (cf. (8.30)). We can drop
the curvature term in the Friedmann Eq. (8.1), and replace ȧ/a by (2t)−1 to
show that the radiation energy density is related to cosmic time as

ρRc2 = 3

32π

c2

GN
t−2. (8.41)

We can rewrite this relation, in a way making it easier to remember, by using the
quantum gravity units: Planck energy density and time of (A.9) in Section A.2,

ρRc2 = 3

32π
(ρc2)Pl

(
tPl

t

)2

. (8.42)

Namely, in the natural unit system the radiation density is about one tenth per
unit cosmic time squared. The radiation density can be related to temperature
by the Stefan–Boltzmann law of (8.36), leading to

kBT � 0.46 EPl

(
t

tPl

)−1/2

(8.43)

or equivalently an easy to remember numerical relation:

t(s) � 1020

[T(K)]2 . (8.44)

From this estimate we shall see that the big bang nucleosynthesis, taking place
at temperature Tbbn � 109 K (cf. (8.53)), corresponded to a cosmic age of
tbbn = O(102 s) after the big bang.

8.3.2 Different thermal equilibrium stages

Subsequent to the big bang, the cooling of the universe allowed for the exist-
ence of different composites of elementary particles. When the falling thermal
energy kBT could no longer produce various types of particle–antiparticle pairs,
this lack of fresh supply of antiparticles caused their disappearance from equi-
librium states as their annihilation with particles continued. Quarks combined
into protons and neutrons (collectively called nucleons). The latter would in
turn join into atomic nuclei. At a time some 350,000 years after the big bang,
the lower temperature would allow electrons to combine with hydrogen and
other light nuclei to form electrically neutral atoms without being immediately
blasted apart by high energy electromagnetic radiation. As a result, the universe
became transparent to photons. No longer being pushed apart by radiation, the
gas of atoms (mostly hydrogen), was free to collapse under its own gravitational
attraction, and thus began the process to form stars and galaxies in a background
of free photons as we see them today.

In the early universe, energy density was high. This implies a rapidly expand-
ing and cooling universe (cf. (8.1)). To determine what kinds of particle
reactions would be taking place to maintain thermal equilibrium involves
dynamical calculations, taking into account reaction rate in an expanding and
cooling medium. The basic requirement (the “Gamow condition”) is that the
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reaction rate must be faster than the expansion rate of the system (the universe)

� ≥ H, (8.45)

where Hubble’s constant H measures the expansion rate, and the reaction rate66Properly, the reaction rate should be thermal
averaged � = n〈σv〉. Since the product σv
is close to a constant, this averaging for our
purpose can be done trivially.

� was given by the product of the number density n of the reactant particles,
the relative particle velocity v, and the reaction cross section σ , which gives the
probability for the reaction to take place:

� = nσv. (8.46)

Particle velocity entered because it is the flux of the interacting particles and
was given by the velocity distribution as determined by the thermal energy of
the system. The condition for a new equilibrium stage to take place is given by
the condition of � = H. The cross section being laboratory measured or theory
predicted quantities is assumed to be given, and this condition can be used to
solve for the thermal energy and the redshift value at which a new equilibrium
stage starts.

Epochs of neutrino and positron decoupling
A convenient reference point may be taken when the thermal energy was about
1 GeV corresponding to the age of universe at t � 10−5 s. Prior to this, all
the stable particles–proton, neutron, electron, neutrino, and their antiparticles,
as well as photons–were in thermal equilibrium.

As the universe cooled, different particles would go out of equilibrium. We
mention two examples: neutrino decoupling and the disappearance of positrons.

1. The neutrinos started out in thermal equilibrium, through the (reversible)
weak interaction reactions, which also allowed proton and neutron to transform
into each other.

ν + n � e− + p, ν + p � e+ + n, (8.47)

where n, p, e−, e+, ν and ν̄ stand for neutron, proton, electron, positron,
neutrino and anti-neutrino, respectively. But as the system cooled, the par-
ticle energy was reduced. The cross sections σ of (8.46) for the reactions
in (8.47), which had a strong energy-dependence, fell rapidly, and eventu-
ally the reaction rate � would fall below the expansion rate H. The neutrinos
(both neutrinos and anti-neutrinos) no longer interacted with matter. Put in
another way, the above listed weak interaction processes, which maintained
the neutrinos in thermal equilibrium, and the exchange between protons and
neutrons, effectively switched off when the universe cooled below a certain
temperature (kBTν ≈ 3 MeV). In this way, the neutrinos decoupled from
the rest of the matter and the proton–neutron ratio was “frozen”.7 The neutri-

7Free neutrons can decay into protons (plus
electrons and anti-neutrinos) with a half-life
just over 10 min. However, soon after nucleon
freezeout, before any significant fraction of
the neutrons disappeared, they fused into
deuterons (each composed of a neutron and
proton) and other light nuclei, see Section 8.4.
Neutrons bound inside stable nuclei are safe
against spontaneous decay if the nuclear bind-
ing energy is greater than the neutron–proton
rest energy difference.

nos, which participate in weak interactions only, evolved subsequently as free
particles. These free neutrinos cooled down as the universe expanded. In the
present epoch, the universe should be filled everywhere with these primordial
neutrinos (and anti-neutrinos) having a thermal spectrum (with Tν,0≈1.9 K)
corresponding to a density nν≈150 cm−3. (See Box 8.1 and similar discus-
sion in Section 8.5 of decoupled photons.) Because the neutrino interaction
cross-section is so small, it does not seem possible to detect them with the
present technology. Nevertheless, if neutrinos have even a small mass, they can



8.4 Primordial nucleosynthesis 149

Table 8.1 A chronology of the universe

Radiation-dominated universe Matter-dominated universe

Cosmic 10−5 s 102 s 1013 s 1015 s 1017 s
time

Thermal 1 GeV 3 MeV/1 MeV 0.7 MeV 1 eV
energy

Age of . . . Quarks- Nucleons ν decouple/ Nuclear Photon Galaxies Now
Leptons e+ decouple synthesis decouple

Physics Particle physics Nuclear Atomic Astronomy
physics physics

potentially be an important contributor to the (non-baryonic) dark matter mass
density of the universe.8

8The latest results on neutrino oscillation do
indicate that mν �= 0. However, it is so small,
�10−3 eV, that neutrinos cannot possibly
be the principal component of dark matter.
Furthermore, current understanding of the
structure formation in the universe disfavors
such “hot dark matter” as the dominant form
of dark matter.

2. Similarly, the disappearance of an electron’s antiparticles, positrons,
proceeded as follows: initially we had the reversible reaction of

e+ + e− � γ + γ . (8.48)

However, as the universe cooled, the photons became less energetic. The rest
energy of an electron or positron being just over 1/2 MeV, when kBT
fell below their sum of 1 MeV, the reaction could no longer proceed from
right to left. Because there were more electrons than positrons, the positrons,
by this reaction going from left to right, would be annihilated. They disappeared
from the universe. (This matter–antimatter asymmetry, showing up as an excess
of electrons over positrons in the universe, will be discussed briefly in Box 8.2
at the end of this chapter.)

When we go back in time, before the age of nucleons, at such high energies the
strong interaction underwent a “QCD deconfinement phase transition,” when
all the quarks inside the nucleons were released.9 Initially we had mostly the 9The fundamental strong interaction of

quantum chromodynamics (QCD), under nor-
mal low energy environment, binds quarks
into nucleons and other strongly interact-
ing particles. At extremely high energy and
density, quarks are set free—deconfined.

“up” and “down” quarks. As we go further back in time, energy got higher,
other heavy flavors of quarks and leptons (“strange” quarks and muons, etc.)
would be present, etc. See the chronology of the universe (Table 8.1).

In the following sections, we shall discuss two particular epochs in the history
of the universe which had left observable features on our present-day cosmos.
(1) In Section 8.4 we study the epoch of big bang nucleosynthesis tbbn � 102 s,
when protons and neutrons combined into charged nuclei (ions) at the end of
the age of nucleons. But the lack of stable nuclei with mass number at 5 and
8 prevents the formation of elements heavier than lithium. Thus the abund-
ance of light nuclear elements in the universe can be deduced via cosmological
considerations. (2) In Section 8.5 we study the epoch at tγ � 350,000 year
when photons no longer interacted with matter. Having been decoupled, they
survived to the present era as the CMB radiation.

8.4 Primordial nucleosynthesis

When we look around our universe, we see mostly hydrogen, and very little
of heavy elements. The abundance of heavy elements can all be satisfactorily
accounted for by the known nuclear reactions taking place inside stars and
supernovae. On the other hand, everywhere we look, besides hydrogen we also
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see a significant amount of helium. (The helium abundance had been deduced
by measurements of the intensities of spectral lines of 4He in stars, planetary
nebulas, and H-II regions of galaxies.) The observation data indicate a helium-4
mass fraction being close to 24%:

y ≡
( 4He

H+ 4He

)

mass
with yobs � 0.24. (8.49)

Similarly, we observe a uniform density, at a much smaller abundance, for the
light elements: deuterium (D), helium-3 (3He), and lithium-7 (7Li). Gamow
and Alpher were the first to suggest, in the late 1940s, that these light nuclear
elements were synthesized in the early universe. The primordial processes were
theorized to follow the path described below.

The age of nucleons
During this epoch, the cosmic soup was composed of protons, neutrons,
electrons, positrons, neutrinos, anti-neutrinos, and photons. There was a tend-
ency for the protons and neutrons to bind (through strong interactions) into
nuclear bound states.10 However, as soon as they were formed, they were10A nucleus is composed of Z number of

protons and N number of neutrons, giving it
the mass number A = Z +N . Since chemical
properties are determined by the proton num-
ber, we can identify Z from the name of the
element, for example, hydrogen has Z = 1
and helium Z = 2. Nuclei having the same Z
but different number of neutrons are isotopes.
From the mass number, usually denoted by a
superscript on the left side of the nucleus sym-
bol, we can figure out the number of neutrons.
The most abundant helium isotope is helium-
4 (4He) having two neutrons, followed by
helium-3 (3He) having one neutron. Hydro-
gen’s isotopes have their distinctive names:
the deuteron has one proton and one neutron
2H ≡ D, and the tritium nucleus 3H has two
neutrons.

blasted apart by energetic photons (photo-dissociation). We can categorize the
dominant reactions during the age of nucleons into two types:

1. The transitions between protons and neutrons p ↔ n via prototypical
weak interaction processes involving neutrinos as given in (8.47).

2. The protons and neutrons could fuse into light-nuclei ions via strong
interaction processes (by adding, one at a time, a proton or a neutron):
The key reaction is

p+ n � D+ + γ , (8.50)

where D+ is the deuteron (i.e., the singly-charged deuterium ion, com-
prising one proton and one neutron), an isotope of hydrogen, and γ

denotes, as before, an energy-carrying photon. As the universe cools
there are fewer photons energetic enough to photodissociate the deuteron
(the reaction proceeding from the right to the left), and thus deuterons
accumulate. The following nucleon capture reactions can then build up
heavier elements:

D+ + n � 3H+ + γ , D+ + p � 3He++ + γ (8.51)

and

3H+ + p � 4He++ + γ , 3He++ + n � 4He++ + γ . (8.52)

These reversible nuclear reactions would not go further, to bind into
even heavier nuclei because, helium-4 being a particularly tightly bound
nucleus, the formation of a nuclear structure involving 5 nucleons was
not energetically favored. Lacking an A = 5 stable nucleus, the synthesis
of lithium with mass numbers six or seven from stable helium required
the much less abundant deuterons or tritium

4He+ D � 6Li+ γ and 4He+ 3H � 7Li+ γ .

Big bang nucleosynthesis could not progress further in producing
heavier elements (A > 7) because there is no stable A = 8 element.
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(If beryllium-8 were formed, it would almost immediately disintegrate
into a pair of helium-4s.)

Epoch of primordial nucleosynthesis
But as the universe expanded and cooled, the photons were no longer energetic
enough to photodissociate the bound nuclei. This happened, according to a
detailed rate calculation, when the thermal energy decreased down to

kBTbbn � 0.7 MeV, (8.53)

corresponding to an ambient temperature on the order of Tbbn � 109 K, and an
age of the universe of tbbn � O(102 s) (cf. (8.41) and (8.44)). The net effect
of the above reactions from (8.50) to (8.52) was to cause all the neutrons to be
bound into helium-4 nuclei, because there were more protons than neutrons:

2n + 2p −→ 4He++ + γ . (8.54)

We can then conclude that the resultant number density nHe for helium-4 must
be equal to half of the neutron density nHe = nn/2. Use the approximation that
helium mass mHe is four times the nucleon mass mN, and that the number density
of hydrogen nH should equal the proton number density minus neutron density
(i.e. they were the left-over protons after all the other protons had combined
with the neutrons to form helium ions).

y ≡
( 4He

H+ 4He

)

mass
= nHemHe

nHmH + nHemHe

= (nn/2) · 4mN

(np − nn)mN + (nn/2) · 4mN
= 2λ

1+ λ
, (8.55)

where λ is the neutron to proton ratio: λ = nn/np. For nonrelativistic nucleons
in thermal equilibrium, this ratio is fixed by the Boltzmann distribution,
exp(−ε/kBT):

λ = exp

[
−
(

εn − εp

kBTbbn

)]
� exp

[
−
(

mn − mp

kBTbbn

)
c2
]
= e−1.3/0.7 = 1

6.4
,

(8.56)

where we have used (8.53) and the fact that the neutron is slightly more massive
than the proton, with a rest energy difference of (mn−mp)c2 = 1.3 MeV. After
taking into account the fact that some of the neutrons could have decayed into
protons via the process n −→ p+ e+ ν̄ (but keep in mind that at this stage the
free neutron lifetime was still longer than the age of the universe) the neutron
to proton ratio λ is reduced somewhat from 1

6.4 to � 1
7 , yielding a result very

close to the observed ratio of 0.24.

y = 2λ

1+ λ
� 2/7

8/7
= 1

4
. (8.57)

In summary, once the deuterium was formed by the fusion of protons and
neutrons, this chain of fusion reactions proceeded rapidly so that just about
all neutrons were bound into helium. Since these reactions were not per-
fectly efficient, trace amounts of deuterium and helium-3 were left over. (The
small leftover tritium would also decay into helium-3.) Formation of nuclei
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beyond helium progressed slowly; only small amounts of lithium-6 and -7
were synthesized in the big bang.

Spectral lines of 7Li have been measured in metal-poor stars. Since nuclear
elements were produced in stellar thermonuclear reactions, a low abundance
of heavy elements indicates that the star was formed from primordial, uncon-
taminated gas. Thus, at such sites we can assume the elements were produced
in big bang nucleosynthesis. Deuterium abundance has been measured in the
solar system and in high redshift clouds of interstellar gas by their absorption
of light coming from even more distant quasars.

Again, we must keep in mind the crude calculations presented here are for
illustrative purpose only. They are meant to give us a simple picture of the
physics involved in such cosmological deduction. Realistic calculations often
involved the simultaneous inclusion of many reaction rates. In the detailed
computations leading to (8.57), one must also use the result of

1. The assumption that there are only three flavors of light neutrinos
(electron-, muon-, and tau-neutrinos), because it changes the effective
degrees of freedom in the radiation g∗ in (8.38);

2. Observed baryon mass density ρB, because it impacts the rate of cooling
of the universe. In particular, deuterium D is very sensitive to ρB. Thus,
we can use the observed abundance of light elements, in particular deu-
terium, to determine the baryon density. The best fit, as shown in Fig. 8.3,
is at ρB � 0.5× 10−30 g/cm3, or as a fraction of the critical density:

�B � 0.044. (8.58)

As we already pointed out in Section 7.1.4, when compared to total mass
density �M = �B + �exotic � 0.30, this shows that baryons are only
a small part of the matter in the universe. It also follows that the dark
matter must mostly be constituted of unknown exotic weakly interacting
massive particles (WIMPs) (�GeV/c2). Furthermore, we can obtain
an estimate of baryon number density nB when we divide the baryon
energy density ρBc2 = �B · ρcc2 = 220 MeV/m3 by the energy of
each nucleon, which can be taken to be the rest energy of the nucleon
(939 MeV) because these particles are nonrelativistic:

nB � 0.23/m3. (8.59)

8.5 Photon decoupling and the CMB

The early universe was a plasma of radiation and matter held together by their
mutual interaction. As the universe expanded and cooled, matter had congealed
into neutral atoms and the cosmic soup lost its ability to entrap the photons.
These free thermal photons survived as the CMB radiation we see today. The
uniformly distributed relic photons obey a blackbody spectrum. Their discovery
gave strong support to the hot big bang beginning of our universe, as it is
difficult to think of any other alternative account for the existence of such
physical phenomena on the cosmic scale. Furthermore, its slight temperature
fluctuation, the CMB anisotropy, is a picture of the “baby universe.” Careful
study of this anisotropy has furnished and will continue to provide us with
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Fig. 8.3 The abundance of light nuclear
elements vs. baryon mass density ρB of
the universe. (Graph from Freedman and
Turner (2003).) The curves are big bang
nucleosynthesis predictions and the boxes
are observational results: the vertical heights
represent uncertainties in observation and
horizontal width the range of ρB that theory
can accommodate observation. The shaded
vertical column represents the value of ρB that
allows theory and observation to agree for all
four elements. Its uncertainty (the width of
the column) is basically determined by the
deuterium abundance, which has both a strong
ρB dependence and a well-measured value.

detailed information about the history and composition of the universe. This is
a major tool for quantitative cosmology.

8.5.1 Universe became transparent to photons

The epoch when charged nuclear ions and electrons were transformed into
neutral atoms is called the photon-decoupling time11 (tγ ). This took place when 11The photon-decoupling time is also referred

to in the literature as the “recombination
time.” We prefer not to use this terminology
as, up to this time, ions and electrons had
never been combined. The name has been
used because of the analogous situation in
the interstellar plasma where such atomic
formation is indeed a re-combination.

the thermal energy of photons just dropped below the threshold required to
ionize the newly formed atoms. Namely, the dominant reversible reaction during
the age of ions,

e− + H+ ←→ H+ γ , (8.60)

ceased to proceed from right to left when the photon energy was less than the
ionization energy. All the charged electrons and ions were swept up and bound
themselves into stable neutral atoms.

One would naturally expect the temperature at the decoupling time kBTγ =
O(eV) to be comparable to the typical atomic binding energy. In fact, a detailed
calculation yields

kBTγ � 0.26 eV. (8.61)

Dividing out the Boltzmann’s constant kB, this energy corresponds to a photon
temperature of

Tγ � 3,000 K. (8.62)

The same � = H calculation also yields the redshift

zγ � 1,100.
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If we know the matter and energy content of the universe now, we can translate
this redshift value into an estimate of the cosmic age when photons decoupled.
To do such a calculation properly we still need the material to be discussed in
Chapter 9. This redshift can be translated into a cosmic age of

tγ � 1013 s, (8.63)

that is, about 350,000 years after the big bang.
Shortly after recombination, the universe became transparent to the electro-

magnetic radiation. Thereafter, the decoupled photons could travel freely
through the universe, but they still had the blackbody spectrum which was
unchanged as the universe expanded. These relic photons cooled according
to the scaling law of T ∝ a−1. Thus, the big bang cosmology predicted that
everywhere in the present universe there should be a sea of primordial photons
following a blackbody spectrum.

What should the photon temperature be now? From the estimates of Tγ �
3,000 K and zγ � 1,100 we can use (8.40) and (7.54) to deduce

Tγ ,0 = Tγ

1+ zγ

� 2.7 K.

A blackbody spectrum of temperature T has its maximal intensity at the
wavelength λmaxT � 0.3 cm K (known as the “Wien displacement constant”).
Thus, an estimate Tγ ,0 � 2.7 K implies a thermal spectrum with the maximal
intensity at λmax = O(mm)—there should be a relic background radiation in
the microwave range.1212While this electromagnetic radiation is

outside the visible range, we can still “see”
it because such a microwave noise constitutes
a percent of the television “snow” between
channels.

In summary, photons in the early universe were tightly coupled to ion-
ized matter through Thomson scattering. Such interactions stopped about
350,000 years after the big bang, when the universe had cooled sufficiently to
form neutral atoms (mainly hydrogens). Ever since this last scattering time, the
photons have traveled freely through the universe, and redshifted to microwave
frequencies as the universe expanded. This primordial light should appear today
as the CMB thermal radiation with a temperature of about 3 K.

8.5.2 The discovery of CMB radiation

The observational discovery of the CMB radiation was one of the great scientific
events in the modern era. It made the big bang cosmology much more cred-
ible as it is difficult to see how else such a thermal radiation could have been
produced. The discovery and its interpretation also constitute an interesting
story. In 1964, Robert Dicke led a research group (including James Peebles,
Peter Roll, and David Wilkinson) at Princeton University to detect this cos-
mic background radiation. While they were constructing their apparatus, Dicke
was contacted by Arno Penzias and Robert W. Wilson at the nearby Bell Lab.
Penzias and Wilson had used a horn-shaped microwave antenna in the past year
to do astronomical observations of the Galaxy. This “Dicke radiometer” was
originally used in a trial satellite communication experiment, and was known
to have some “excess noise.” Not content to ignore it, they made a careful mea-
surement of this background radiation, finding it to be independent of direction,
time of the day, or season of the year. While puzzling over the cause of such
a radiation, they were informed by one of their colleagues of Princeton group’s
interest in the detection of a cosmic background radiation. (Peebles had given
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a colloquium on this subject.) This resulted in the simultaneous publication of
two papers: one in which Penzias and Wilson announced their discovery; the
other by the Princeton group explaining the cosmological significance of the
discovery. (At about the same time, a research group around Yakov Zel’dovich
in Moscow also recognized the importance of the cosmic background radiation
as the relic signature of a big bang beginning of the universe.)

Because of microwave absorption by water molecules in the atmosphere,
it is desirable to carry out CMB measurements at locations having low humidity
and/or at high altitude. Thus, some of the subsequent observations were done
with balloon-borne instruments launched in Antarctica (low temperature, low
humidity, and high altitude). Or even better, to go above the atmosphere in
a satellite. This was first accomplished in the early 1990s (Smoot et al., 1990) by
the Cosmic Background Explorer satellite (COBE), obtaining results showing
that the CMB radiation followed a perfect blackbody spectrum (Fixsen et al.,
1996) with a temperature of

Tγ ,0 = 2.725± 0.002 K. (8.64)

The COBE observation not only confirmed that the thermal nature of the cosmic
radiation was very uniform (the same temperature in every direction), but also
discovered the minute anisotropy at the micro-Kelvin level. This has been
interpreted as resulting from the matter density perturbation, which, through
subsequent gravitational clumping, gave rise to the cosmic structure we see
today: galaxies, clusters of galaxies, and voids, etc. This will be further
discussed in Section 8.5.4, and in Chapter 9.

8.5.3 Photons, neutrinos, and the radiation–matter
equality time

The knowledge of CMB’s temperature allows us to calculate the photon number
density. This reveals that there are about a billion photons to every nucleon
in the universe. Such information will enable us to estimate the cosmic time
when the universe made the transition from a radiation-dominated to a matter-
dominated universe. In this section, we also discuss another cosmic thermal
relic: the primordial neutrinos.

The photon to baryon number ratio
Knowing the CMB photon temperature Tγ ,0 = 2.725 K, we can calculate the
relic photon number density via (8.35):

nγ ,0 = 2.4

π2

(
kBTγ ,0

hc

)3

� 411/cm3. (8.65)

Namely, there are now in the universe, on an average, 400 photons for every
cubic centimeter. Clearly this density is much higher than the baryon matter
density obtained in (8.59) from the primordial nucleosynthesis theory, and the
observed abundance of light nuclear elements. The baryon and photon number
ratio comes out to be nB

nγ

� 0.6× 10−9. (8.66)

For every proton or neutron there are about 2 billion photons. This also explains
why the thermal energy at photon decoupling is as low as 0.26 eV. Considering
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that the hydrogen ionization energy is 13.6 eV, why was the ionization not shut
off until the thermal energy fell so much below this value? This just reflects the
fact that there are so many photons for every baryon that the blackbody thermal
photons have a broad distribution and photon number density was very high,
n ∼ T3. Thus, even though the average photon energy was only 0.26 eV, there
was a sufficient number of high energy photons at the tail end of the distribution
to bring about a new equilibrium phase.

This ratio (8.66) should hold all the way back to the photon decoupling
time, because not only was the number of free photons unchanged, but also
the baryon number, since all the interactions in this low energy range respected
the law of baryon number conservation. The relevance of this density ratio to
the question of matter–antimatter asymmetry of the universe is discussed in
Box 8.2.

Transition from radiation-dominated
to matter-dominated era
It is clear that we now live in a matter-dominated universe, as the matter energy
density is considerably greater than that for the radiation, �M � �R, where the
radiation is composed of CMB photons13 and three flavors of neutrinos.14 Their13The energy density due to star light

(i.e. all electromagnetic radiation except
the microwave background) is much smaller
than CMB photons.

14Even though we have not measured all
the neutrino masses, all indications are that
they are very small and we can treat them as
relativistic particles with kinetic energy much
larger than their rest energy.

relative abundance is calculated in Box 8.1: using (8.76) �ν,0 = 0.68 �γ ,0

so that the radiation density is about 1.68 times larger than the density due
to CMB radiation alone. The matter–radiation ratio now can be related to
the baryon–photon ratio

�M,0

�R,0
= �M,0

�B,0

�B,0

1.68×�γ ,0

= 0.3

0.04

nB

nγ

mNc2

1.68× kBTγ ,0
� 1.1× 104, (8.67)

where the energy density for nonrelativistic baryon matter is given by the
product of number density and rest energy of the nucleon mNc2 = 939 MeV and
photon energy by kBTγ ,0. We have also used the phenomenological results of
(7.29) and (7.30) for �M,0 and �B,0. Since radiation density scales as ρR ∼ a−4

while matter ρM ∼ a−3, even though �R,0 is small in the present epoch, radi-
ation was the dominant contributor in the early universe. The epoch when the
universe made this transition from a radiation-dominated to matter-dominated
era can be fixed by the condition of ρR(tRM) = ρM(tRM), where tRM is the
cosmic age when radiation and matter densities were equal:

1 = ρR

ρM
= ρR,0

ρM,0
[a(tRM)]−1 = �R,0

�M,0
(1+ zRM) � 1+ zRM

1.1× 104
. (8.68)

Hence the redshift for radiation–matter equality is zRM � 1.1× 104, which is
10 times larger than the photon decoupling time with zγ � 1,100. This also
yields scale factor and temperature ratios of [a(tγ )/a(tRM)] = [TRM/Tγ ] � 10,
or a radiation thermal energy

kBTRM = 10 kBTγ = O(10 eV). (8.69)

Knowing this temperature ratio we can find the “radiation–matter equality time”
tRM � 10,000 years (Problem 8.9) from the photon decoupling time tγ � 1013 s.
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From that time on, gravity (less opposed by significant radiation pressure) began
to grow from the tiny lumpiness in matter distribution into the rich cosmic
structures we see today.

Also, since radiation dominance ceased so long ago (tRM 	 t0) and if the uni-
verse is composed of matter and radiation only, we can estimate the age of the
universe based on the model of a matter-dominated universe because during
the overwhelming part of the universe’s history, the dominant energy com-
ponent has been in the form of nonrelativistic matter. In particular, for a
matter-dominated universe with a spatially flat geometry, we have, according
to (8.30),

(t0)
k=0 � (t0)

k=0
MDU =

2

3
tH � 9 Gyr. (8.70)

This value is seen to be significantly less than the age deduced by observation
(cf. Section 7.1.3). As we shall see in the next chapter, a flat geometry is indeed
favored theoretically and confirmed by observation. This contradiction in the
estimate of the cosmic age hinted at the possibility that, besides radiation and
matter, there may be some other significant form of energy in the universe.

Box 8.1 Entropy conservation, photon reheating, and the neutrino
temperature

We have already noted that (8.3), being a linear combination of the
Friedmann Eqs (8.1) and (8.2), has the interpretation of energy con-
servation, dE + pdV = 0. This implies, through the Second Law of
thermodynamics TdS = dE + pdV , that the entropy is conserved, dS = 0.
Holding the volume fixed, a change in entropy is related that of energy
density dS = (V/T)duR and the radiation energy density uR being propor-
tional to T4 as in (8.36), we can relate entropy to temperature and volume
as

S = g∗

2
aSBV

∫
dT4

T
= 2g∗

3
aSBVT3. (8.71)

Before neutrino decoupling, the radiation particles–photons, neutrinos,
anti-neutrinos, electrons, and positrons–were in thermal equilibrium. Thus,
photons and neutrinos (as well as anti-neutrinos) have the same tem-
perature Tγ = Tν . We have already discussed the sequence of cosmic
equilibria: first, neutrinos decoupled at kBT ≈ 3 MeV, second there was
photon decoupling at kBT ≈ O (eV). Whether they were coupled or not,
the radiation temperature scaled as T ∝ a−1. So we would expect the
relic photons and neutrinos to have the same temperature now. However,
we must take into account the effect of positron disappearance, which
happened at kBT ≈ O (MeV) in between these two epochs of neutrino and
photon decoupling. The annihilation of electron and positron into photons
would heat up the photons (“photon reheating”), raising the photon tem-
perature over that of neutrinos, which had already decoupled. One can
calculate the raised photon temperature T ′γ > Tγ by the condition of
entropy conservation discussed above:

Sγ + Se− + Se+ = S′γ . (8.72)
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With the effective spin degrees of freedom (8.38) in (8.71), this entropy
conservation equation becomes [2+ 7

8 (2+ 2)]T3V = 2T ′3V ′, or
(

T ′γ
Tγ

)3
V ′

V
= 11

4
. (8.73)

On the other hand, the neutrinos being noninteracting, their entropy was
not affected, Sν = S′ν . Namely, T3

ν V = T ′3ν V ′, or
(

T ′ν
Tν

)3 V ′

V
= 1. (8.74)

Equations (8.73) and (8.74), together with the thermal equilibrium
condition Tγ = Tν that prevailed before the positron disappearance, lead to

T ′γ =
(

11

4

)1/3

T ′ν = 1.4× T ′ν . (8.75)

Knowing Tγ ,0 � 2.7 K the temperature of relic neutrinos and anti-
neutrinos now should be Tν,0 � 1.9 K. This temperature difference leads
to the different photon and neutrino number densities as first stated in
Section 8.3.2.

Using (8.75) we can also compare the neutrino and photon contributions
to the radiation energy content of the universe via ( 8.36):

ρν

ργ

= g∗ν
gγ

(
T ′ν
T ′γ

)4

= 21/4

2

(
4

11

)4/3

= 0.68, (8.76)

because the neutrino effective spin degrees of freedom g∗ν = 7
8 [3× (1+1)]

must include the three species (“flavors”) of neutrinos (electron, muon, and
tau neutrinos), as well as their antiparticles.

Box 8.2 Cosmological asymmetry between matter and antimatter

The ratio displayed in (8.66) is also a measure of the baryon number asym-
metry in the universe. By this we mean that if the universe contained equal
numbers of baryons (having baryon number +1) and antibaryons (having
baryon number −1) then the net baryon number would vanish, nB = 0.
In the early universe there was plenty of thermal energy so that anti-baryons
(particles carrying negative baryon numbers such as anti-quarks making
up anti-protons, etc.) were present in abundance. In fact, there were just
about an equal number of particles and antiparticles. The fact that the
present universe has only particles and no antiparticles means that there
must have been a slight excess of particles. As the universe cooled to
the point when particle–antiparticle pairs could no longer be produced by
radiation, all antiparticles would disappear through annihilation. (See Sec-
tion 8.3.2 on positron disappearance.) Thermal equilibrium in the early
universe would ensure that photons and quark–anti-quark pair numbers
should be comparable. From this we can conclude that the population of
baryons was only slightly larger than that of anti-baryons as indicated, for
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example, by the quark–anti-quark asymmetry ratio:

nq − nq̄

nq + nq̄
� nB

nγ

= O(10−9). (8.77)

Because the universe is observed to be electrically neutral, this statement
about baryon number asymmetry can also be extended to electron–
positron asymmetry. Namely, (8.77) holds for the entire matter–antimatter
asymmetry of the universe.

This matter–antimatter asymmetry is a puzzle, as no cosmological model
can generate a net baryon number if all underlying physical processes (such
as all the interactions included in the Standard Model of particle physics)
conserve baryon number. Thus one had to impose on the standard big bang
cosmology an ad hoc asymmetric initial boundary condition (8.66). Why
should there be this asymmetry, with this particular value? It would be much
more satisfying if starting with a symmetric state (or better, independent of
initial conditions) such an asymmetry could be generated by the underlying
physical interactions. One of the attractive features of the Standard Model of
particle interaction and its natural extensions is that they generally possess
precisely the conditions to produce such excess of matter over antimatter.

8.5.4 CMB temperature fluctuation

After subtracting off the Milky Way foreground radiation, one obtained, in every
direction, the same blackbody temperature—the CMB showed a high degree of
isotropy. However, such an isotropy is not perfect. One of the major achieve-
ments of COBE satellite observations was the detection of slight variation of
temperature: first at the 10−3 level associated with the motion of our Local
Group of galaxies in the gravitational potential due to neighboring cosmic matter
distribution, then at the 10−5 level, which, as we shall explain, holds the key to
our understanding of the origin of structure in the universe, how the primordial
plasma evolved into stars, galaxies, and clusters of galaxies.

The dipole anisotropy
The sensitive instrument Differential Microwave Radiometer (DMR) aboard
COBE first revealed the existence of a “dipole anisotropy” in the CMB back-
ground. Although each point on the sky has a blackbody spectrum, in one half
of the sky the spectrum corresponds to a slightly higher temperature while the
other half is slightly lower with respect to the average background temperature

δT

T
≈ 1.237× 10−3 cos θ , (8.78)

where θ is measured from the direction joining the hottest to the coldest spot
on the sky. The dipole distortion is a simple Doppler shift, caused by the net
motion of the COBE satellite which is 371 km/s relative to the reference frame in
which the CMB is isotropic (cf. Problem 8.14). The Doppler effect changes the
observed frequency, which in turn changes the energy and temperature of
the detected background radiation. The different peculiar motions result from
the gravitational attraction as a consequence of uneven distribution of masses in
our cosmic neighborhood. The quoted number represents the observation result
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after subtracting out the orbit motion of COBE around the earth (∼8 km/s), and
the seasonal motion of earth around the sun (∼30 km/s). The measured value
is in fact the vector sum of the orbital motion of the solar system around the
galactic center (∼220 km/s), the motion of the Milky Way around the center
of mass of the Local Group (∼80 km/s), and the motion of Local Group of
galaxies (630 ± 20 km/s) in the general direction of the constellation Hydra.
The last, being the peculiar motion of our small galaxy cluster toward the
large mass concentration in the neighboring part of the universe, reflects the
gravitational attraction by the very massive Virgo cluster at the center of our
Local Supercluster, which is in turn accelerating toward the Hydra–Centaurus
supercluster.

The peculiar motions mentioned above are measured with respect to the frame
in which the CMB is isotropic. The existence of such a CMB rest frame does
not contradict special relativity. SR only says that no internal physical mea-
surements can detect absolute motion. Namely, physics laws do not single out
an absolute rest frame. It does not say that we cannot compare motion relative
to a cosmic structure such as the microwave background. The more relevant
question is why constant velocity motion in this CMB rest frame coincides with
the Galilean frames of Newton’s first law. (CMB acts as an aether.) To the extent
that the CMB frame represents the average mass distribution of the universe,
this statement is called Mach’s principle (cf. Box 1.1). While to a large extent
Einstein’s GR embodies Mach’s principle, there is no definitive explanation of
why the CMB rest frame defines the inertial frames for us.

Physical origin and mathematical description
of CMB anisotropy
After taking off this 10−3 level dipole anisotropy, the background radiation
is seen to be isotropic. CMB being a snapshot of our universe, the observed
isotropy is a direct evidence of our working hypothesis of a homogeneous
and isotropic universe. Nevertheless, this isotropy should not be perfect.
The observed universe has all sorts of structure, some of the superclusters
of galaxies and largest voids have dimensions as large as 100 Mpc across.
Such a basic feature of our universe must be reflected in the CMB in the form
of small temperature anisotropy. There must be matter density nonuniformity
which would have brought about temperature anisotropy through electromag-
netic interactions; photons traveling from denser regions were gravitational
redshifted and therefore arrived cooler, while photons from less dense regions
did less work and arrived warmer. One of the great achievements of the COBE
observation team is the first observation of such an anisotropy, at the level of
10−5 (Smoot et al., 1992). Small temperature variations of about 10 µK com-
ing from different directions was finally detected. This discovery provided the
first evidence for a primordial density nonuniformity that, under gravitational
attraction, grew into the structures of stars, galaxies, and clusters of galaxies that
we observe today. δT/T = O(10−5) was smaller than expected based on the
observed structure of luminous matter. But this “discrepancy” can be resolved
by the existence of exotic dark matter. There were further inhomogeneities not
seen through the CMB anisotropy because they were due to matter that did
not have electromagnetic interactions to leave an imprint on the background
photons.
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Here we present the basic formalism needed for a description of this CMB
anisotropy. The CMB temperature has directional dependence T(θ , φ) with an
average of

〈T〉 = 1

4π

∫
T(θ , φ) sin θ dθ dφ = 2.725 K. (8.79)

The temperature fluctuation

δT

T
(θ , φ) ≡ T(θ , φ)− 〈T〉

〈T〉 (8.80)

has a root-mean-square value of
〈(

δT

T

)2
〉1/2

= 1.1× 10−5. (8.81)

How do we describe such temperature variation across the celestial sphere?
Recall that for a function of one variable, a useful approach is Fourier expansion
of the function in a series of sine waves with frequencies that are integral
multiples of the fundamental wave (with the largest wavelength). Similarly for
the dependence on (θ , φ) by the temperature fluctuation (think of it as vibration
modes on the surface of an elastic sphere), we expand it in terms of spherical
harmonics15 15The temperature being real, the expansion

could equally be written in terms of a∗lmY∗m
l .

δT

T
(θ , φ) =

∞∑
l=0

l∑
m=−l

almYm
l (θ , φ). (8.82)

These basis functions obey the orthonormality condition
∫

Y∗m
l Ym′

l′ sin θdθdφ = δll′δmm′ (8.83)

and the addition theorem
∑

m

Y
∗m
l (n̂1)Y

m
l (n̂2) = 2l + 1

4π
Pl(cos θ12), (8.84)

where Pl(cos θ) is the Legendre polynomial, n̂1 and n̂2 are two unit vectors
pointing in directions with an angular separation θ12. Namely, n̂1 · n̂2 = cos θ12.
We display a few samples of the spherical harmonics,

Y0
0 =

(
1

4π

)1/2

, Y0
1 =

(
3

4π

)1/2

cos θ ,

Y±1
3 = ∓

(
21

64π

)1/2

sin θ(5 cos2 θ − 1)e±iφ .

The multipole number “l” represents the number of nodes (locations of zero
amplitude) between equator and poles, while “m” is the longitudinal node
number. For a given l, there are 2l + 1 values for m : −l,−l + 1, . . . , l − 1, l.
The expansion coefficients alm are much like the individual amplitudes in
a Fourier series. They can be projected out from the temperature fluctuation
by (8.83):

alm =
∫

Y
∗m
l (θ , φ)

δT

T
(θ , φ) sin θdθdφ. (8.85)

Cosmological theories predict only statistical information. The most useful
statistics is the 2-point correlation. Consider two points at n̂1 and n̂2 separated
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by θ . We define the correlation function

C(θ) ≡
〈
δT

T
(n̂1)

δT

T
(n̂2)

〉

n̂1·n̂2=cos θ

, (8.86)

where the angle brackets denote the averaging over an ensemble of realizations
of the fluctuation.16 The inflationary cosmology predicts that the fluctuation is16In principle it means averaging over many

universes. Since we have only one universe,
this ensemble averaging is carried out by aver-
aging over multiple moments with different
m moments, which in theory should be equal
because of spherical symmetry.

Gaussian as is thus independent of the alms. Namely, the multipoles alm are
uncorrelated for different values of l and m:

〈a∗lmal′m′ 〉 = Clδll′δmm′ , (8.87)

which defines the power spectrum Cl as a measure of the relative strength
of spherical harmonics in the decomposition of the temperature fluctuations.
The lack of m-dependence reflects the rotational symmetry of the underlying
cosmological model. When we plug (8.82) into ( 8.86), the conditions (8.87)
and (8.84) simplify the expansion to

C(θ) = 1

4π

∞∑
l=0

(2l + 1)ClPl(cos θ). (8.88)

Namely, the information carried by C(θ) in the angular space can be rep-
resented by Cl in the space of multipole number l. The power spectrum Cl is
the focus of experimental comparison with theoretical predictions. From the
map of measured temperature fluctuation, one can extract multipole moments
by the projection (8.85) and since we do not actually have an ensemble of
universes to take the statistical average, this is estimated by averaging over alms
with different ms. Such an estimate will be uncertain by an amount inversely
proportional to the square-root of the number of samples

〈(
δCl

Cl

)2
〉1/2

∝
√

1

2l + 1
. (8.89)

The expression also makes it clear that the variance will be quite significant
for low multiple moments when we have only a very small number of samples.
This is referred to as the “cosmic variance problem” (cf. Fig. 9.13).

In the next chapter we shall present the basic features of the power spectrum:
to show how it can be used to measure the curvature of space, to test different
theories of the origin of the cosmic structure that we see today, and to extract
many cosmological parameters.

Review questions

1. Describe the relation of the Friedmann Eq. (8.1) and
the Einstein equation, as well as give its Newtonian
interpretation. Why can we use non-relativistic Newtonian
theory to interpret the general relativistic equation in
cosmology? Also, in what sense is it only quasi-
Newtonian?

2. In what sense can the critical density be understood as akin
to the more familiar concept of escape velocity?

3. Why do we expect the energy density of radiation to
scale as a−4? Why should the energy of the universe be
radiation-dominated in its earliest moments?
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4. What is the equation of state parameter w for radia-
tion? What is the time dependence of the scale factor
a(t) in a flat radiation-dominated universe (RDU) and
in a flat matter-dominated universe (MDU)? How is the
age of the universe t0 related to the Hubble time tH in
a RDU, and in a MDU? Justify the natural expectation
that the age of our universe is approximately two-thirds of
the Hubble time.

5. Draw a schematic diagram showing the behaviors of the
scale factor a(t) for various values of k in cosmological
models (with zero cosmological constant). (It is suggested
that all a(t) curves be drawn to meet at the same point
a(t0) with the same slope ȧ(t0)). Also mark the regions
corresponding to a decelerating universe, an accelerating
universe, and an empty universe.

6. Give an argument for the scaling behavior of the radiation
temperature: T � a−1. Show that under such a scaling
law, the spectrum distribution of the blackbody radiation is
unchanged as the universe expands.

7. What is the condition (called the Gamow condition) for
any particular set of interacting particles being in thermal
equilibrium during the various epochs of the expanding
universe?

8. Given that the cosmic helium synthesis took place when
the average thermal energy of particles was of the order

of MeV, how would you go about estimating the number
density ratio of neutron to proton nn/np at that epoch? If
nn/np � 1

7 , what is the cosmic helium mass fraction?

9. How can one use the theory of big bang nucleosynthesis
and the observed abundance of light elements such as deu-
terium to deduce the baryon number density �B and that
the number of neutrino flavors should be three?

10. What physics process took place around the photon decoup-
ling time tγ ? What were the average thermal energy
and temperature at tγ ? Knowing the redshift zγ � 103,
calculate the expected photon temperature now.

11. What is the cosmic time when the universe made the tran-
sition from a radiation-dominated to a matter-dominated
system. How does it compare to the nucleosynthesis time,
and photon decoupling times?

12. Give the argument that relates the matter–antimatter asym-
metry in the early universe to the baryon-to-photon ratio
now (�10−9).

13. Why would the peculiar motion of our galaxy show up as
CMB dipole anisotropy?

14. Besides the dipole anisotropy, how does the CMB temper-
ature anisotropy reflect the origin of cosmic structure?

15. What is the “cosmic variance”?

Problems

(8.1) Friedmann equations and energy conservation Show
that a linear combination of these two Friedmann
Eqs (8.1) and (8.2) leads to Eq. (8.3).

(8.2) Newtonian interpretation of the second Friedmann
equation Adopting the same approach used in the
Newtonian “derivation” of Eq. (8.1) in the text, inter-
pret the second Friedmann Eq. (8.2) as the F = ma
equation of the system.

(8.3) Friedmann equation for a multi-component universe
Show that the Friedmann equation for a multi-
component universe may be written as

ȧ2 + kc2

R2
0

= 8πGN

3

∑
w

ρw,0a−(1+3w),

where w is the equation of state parameter defined
in (8.4).

(8.4) The empty universe A low density universe may be
approximated by setting the density function in the
Friedmann equation to zero,

ȧ2 = − kc2

R2
0

.

Besides the uninteresting possibility of ȧ = k = 0 for
a static universe with a Minkowski spacetime, show that
the nontrivial solution to this equation is represented
by the straight-line a(t) in Fig. 8.2. Find the Hubble rela-
tion between the proper distance and redshift in such a
model universe.

(8.5) Hubble plot in a matter-dominated flat universe As
we have explained at the end of Chapter 7, the Hub-
ble diagram is usually a plot of the distance modulus
vs. redshift. Find this relation for a matter-dominated
universe with a flat spatial geometry k = 0.
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(8.6) Another calculation of photon density Give a direct
estimate of thermal photon number density from the esti-
mate that at a cosmic era with redshift zγ � 1,100 the
average photon energy was ū � 0.26 eV.

(8.7) Time and redshift of a light emitter Given the time
dependence of the scale factor as in (8.27) a(t) = (t/t0)x ,
use (7.49) to calculate the proper distance dp(t) between
a light emitter (at tem) and receiver (at t0) in terms of the
emission time tem as well as another expression in terms
of its redshift z.

(8.8) Scaling behavior of number density and Hubble’s
constant

(a) Show that the number densities for matter and
radiation both scale as

n(t)

n0
= (1+ z)3

with the redshift.
(b) From the Friedmann equation, show that the

Hubble constant H(t) scales as

H2 = �M,0(1+ z)3H2
0

in a matter-dominated flat universe, and as

H2 = �R,0(1+ z)4H2
0

in a radiation-dominated flat universe.

(8.9) Radiation and matter equality time Knowing that the
photon decoupling epoch corresponds to a redshift of
zγ = 1.1 × 103 and a cosmic time tγ � 350,000 year,
convert the radiation–matter equality redshift zRM �
1.1 × 104 from (8.68) to the corresponding cosmic
time tRM.

(8.10) Density and deceleration parameter In Problem 7.11
we introduce the deceleration parameter q0. Use the
second Friedmann equation (8.2) and the equation of
state parameter w of (8.4) to show that

q0 = 1
2

∑
i

�i,0(1+ 3wi).

In particular in a matter-dominated flat universe
q0 = + 1

2 .

(8.11) Temperature and redshift Knowing how the temper-
ature scales, show that we can also connect T(z) at an
epoch to the corresponding redshift z to T0 at the present
era:

T = T0(1+ z). (8.90)

(8.12) Radius of the universe Show that the radius R0 of the
universe [cf. Eq. (7.40)] with �0 > 1, is related to the
density parameter �0 and the Hubble constant H0 by

R0 = c

H0
√

�0 − 1
.

(8.13) Cosmological limit of neutrino mass Given that
the density parameter of non-baryonic dark matter
�exotic = �M −�B � 0.26, what limit can be obtained
for the average mass of neutrinos (average over three
flavors)?

(8.14) Temperature dipole anisotropy as Doppler effect
Show that the Doppler effect implies that an observer
moving with a nonrelativistic velocity v through
an isotropic CMB would see a temperature dipole
anisotropy of

δT

T
(θ) = v

c
cos θ ,

where θ is angle from the direction of the motion.
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• Einstein introduced the cosmological constant in his field equation so
as to obtain a static cosmic solution.

• The cosmological constant is the vacuum-energy of the universe: this
constant energy density corresponds to a negative pressure, giving rise
to a repulsive force that increases with distance. A vacuum-energy
dominated universe expands exponentially.

• The inflationary theory of cosmic origin—that the universe had expe-
rienced a huge expansion at the earliest moment of the big bang—can
provide the correct initial conditions for the standard model of cos-
mology: solving the flatness, horizon problems, and providing an
origin of matter/energy, as well as giving just the right kind of density
perturbation for subsequent structure formation.

• The inflationary epoch leaves behind a flat universe, which can be
compatible with the observed matter density being less than the critical
density and a cosmic age greater than 9 Gyr if there remains a small
but nonvanishing cosmological constant—a dark energy. This would
imply a universe now undergoing an accelerating expansion.

• The measurement of supernovae at high redshift provided direct
evidence for an accelerating universe. Such data, together with
other observational results, especially the anisotropy of cosmic
microwave background (CMB) and large structure surveys, gave
rise to a concordant cosmological picture of a spatially flat universe
� = �� + �M = 1, dominated by dark energy �� ≈ 0.7 and
�M = �DM + �LM ≈ 0.3, and by dark matter �DM � �LM.
The cosmic age comes out to be comparable to the Hubble time
t0 ∼= 13.2 Gyr.

• The cosmological constant and the cosmic coincidence problems point
to the need of new fundamental physics.

As we have discussed in Sections 7.1.3 and 8.2, Newton’s and the original
Einstein’s equations would lead us to expect the expansion of the universe to
slow down because of gravitational attraction. In this chapter, we shall see how
a modification of the Einstein equation, with the introduction of the cosmo-
logical constant �, allows for the possibility of a gravitational repulsive force
that increases with distance. This effect was first discovered by Einstein in his
effort of seeking a static solution to the GR field equation. It also allows for the
possibility that the universe had undergone an extraordinarily rapid expansion
at an early moment (the inflationary epoch). The inflationary scenario of the big
bang brings about just the correct initial conditions for the standard cosmology
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and predicts a flat geometry for the universe at large. Finally, a nonvanishing
� term can account for the recently discovered evidence of an accelerating
universe in the present epoch. An accelerating expansion means slower expan-
sion in the past, hence a longer age for the universe—long enough to account
for the oldest objects observed in the universe. The cosmological constant also
provides us with a dark energy that, together with the observed matter content,
fulfills the inflationary cosmology’s prediction of a flat universe, which requires
the mass/energy density of the universe to be equal to the critical density.

9.1 The cosmological constant

Before Hubble’s discovery in 1929 of an expanding universe, just about every-
one, Einstein included, believed that we lived in a static universe. Recall
that the then-observed universe consisted essentially of stars within the Milky
Way galaxy. But gravity, whether nonrelativistic or relativistic, is a universal
attraction. Hence, theoretically speaking, a static universe is an impossibility.
Specifically, as we have demonstrated, the Friedmann cosmological Eqs (8.1)
and (8.2) have solutions corresponding always to a dynamic universe—a
universe which is either contracting or expanding. Namely, these equations
are not compatible with the static condition of an unchanging scale factor
ȧ = ä = 0, which would lead to a trivial empty universe,1 ρ = p = 0.1For Einstein equation without cosmological

constant, a static solution necessarily corre-
sponds to an empty universe. On the other
hand, an empty universe is compatible with
an expanding universe with negative spatial
curvature. See Problem 8.4.

Recall our brief discussion of the GR field equation Gµν = κTµν with
κ = −8πc−4GN in Section 5.3.2. Gµν on the left-hand side (LHS) is the
curvature tensor of spacetime and Tµν on the right-hand side (RHS), the
energy–momentum source term for gravity (the curved spacetime). The goal of
obtaining a static universe from general relativity (GR) led Einstein to alter his
field equation to make it contain a repulsion component. This could, in princi-
ple, balance the usual gravitational attraction to yield a static cosmic solution.
Einstein discovered that the geometry side of his field equation can naturally
accommodate an additional term. As will be discussed in Section 12.4.3, the
simplest term that is mathematically compatible with Einstein’s field Eq. (5.37)
is the metric tensor gµν ,

Gµν −�gµν = κTµν . (9.1)

Such a modification will, however, alter its nonrelativistic limit to differ from
Newton’s equation. In order that this alteration is compatible with known
phenomenology, it must have a coefficient � so small as to be unimportant
in all situations except on truly large cosmic scales. Hence, this additional
constant � has come to be called the cosmological constant.

While we have introduced this term as an additional geometric term, we could
just as well move it to the RHS of the equation and view it as an additional
source term of gravity. In particular, when the regular energy–momentum is
absent Tµν = 0 (the vacuum state),

Gµν = �gµν ≡ κT�
µν .

T�
µν = κ−1�gµν = (−c4�/8πGN)gµν can be interpreted as the energy–

momentum tensor of the vacuum. Just as Tµν for cosmic fluid’s ordinary
radiation and matter depends on two functions of energy density ρ and pressure
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p, this vacuum-energy–momentum tensor T�
µν can be similarly parametrized by

“vacuum-energy density” ρ� and “vacuum pressure” p�. As we shall demon-
strate in Section 12.4.3 (after we have properly studied energy–momentum ten-
sor in Section 10.3), these two quantities are related to a positive cosmological
constant � as follows: the vacuum-energy per unit volume,

ρ� = �c2

8πGN
> 0, (9.2)

is a constant (in space and in time) and the corresponding vacuum pressure,

p� = −ρ�c2 < 0, (9.3)

is negative, corresponding to an equation-of-state parameter w = −1 as defined
in Eq. (8.4). Such density and pressure, as we shall presently show, are com-
patible with basic physics principles, and, most relevant for our cosmological
discussion, they give rise to a gravitational repulsion.

	

Fig. 9.1 The � energy in a chamber has
negative pressure and thus pulls in the piston.

� as constant energy density and negative pressure
What is a negative pressure? Consider the simple case of a piston chamber filled
with ordinary matter and energy, which exerts a positive pressure by pushing
out against the piston. If it is filled with this � energy, Fig. 9.1, it will exert a
negative pressure by pulling in the piston. Physically this is sensible because,
as its energy per unit volume ρ�c2 is a constant, the change in system’s energy
is strictly proportional to its volume change dE = ρ�c2dV . The system would
like to lower its energy by volume-contraction (pulling in the piston). When
we increase the volume of the chamber dV > 0 (hence its energy dE > 0) by
pulling out the piston, we have to do positive work to overcome the pulling by
the � energy. Energy conservation is maintained in such a situation because
the negative pressure p < 0 is just what is required by the First Law of thermo-
dynamics: dE = −pdV when both dE and dV have the same sign. In fact the
First Law also makes it clear that if energy density is a constant dE = ρc2dV
so that the dV factors cancel, the pressure must necessarily equal the negative
of the energy density p = −ρc2.

9.1.1 Vacuum-energy as source of gravitational repulsion

To see that the negative pressure can give rise to a repulsive force, let us first
discuss the Newtonian limit of the Einstein equation with a general source,
composed of mass density ρ as well as pressure p (as is the case for a cosmology
with ideal fluid as the source). It can be shown (see Box 12.1 for detail), that
the limiting equation, written in terms of the gravitational potential �, is

�2� = 4πGN

(
ρ + 3

p

c2

)
. (9.4)

This informs us that not only mass, but also pressure, can be a source of
gravitational field. For the nonrelativistic matter having a negligible pressure
term, we recover the familiar Eq. (5.36) of Newton.

Explicitly displaying contributions from ordinary matter and vacuum-energy
(thus density and pressure each have two parts: ρ = ρM+ρ� and p = pM+p�),
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the Newton/Poisson Eq. (9.4) becomes

�2� = 4πGN

(
ρM + 3

pM

c2
+ ρ� + 3

p�

c2

)

= 4πGNρM − 8πGNρ� = 4πGNρM −�c2, (9.5)

where we have used (9.3), p� = −ρ�c2, and set pM = 0 because ρMc2 �
pM. For the vacuum-energy dominated case of �c2 � 4πGNρM, the Poisson
equation can be solved (after setting the potential to zero at the origin) by

�� (r) = −�c2

6
r2. (9.6)

Between any two mass points, this potential corresponds to a repulsive force
(per unit mass) that increases with separation r,

g� = −∇�� = +�c2

3
r, (9.7)

in contrast to the familiar −r/r3 gravitational attraction. With this pervasive
repulsion that increases with distance, even a small � can have a signific-
ant effect on truly large dimensions. It would be possible to counteract the
gravitational attraction and allow for the static solution sought by Einstein.

9.1.2 The static universe

We now consider the Friedmann Eqs (8.1) and (8.2) with a nonvanishing
cosmological constant,

ȧ2 + kc2/R2
0

a2
= 8πGN

3
(ρM + ρ�), (9.8)

ä

a
= −4πGN

c2

[
( pM + p�)+ 1

3
(ρM + ρ�)c2

]
. (9.9)

The RHS of (9.9) need not necessarily be negative because of the presence
of the negative pressure term p� = −ρ�c2. Consequently, a decelerating
universe is no longer the inevitable outcome. For nonrelativistic matter, after
setting pM = 0, we have

ä

a
= −4πGN

3
(ρM − 2ρ�) . (9.10)

The static condition of ä = 0 now leads to the constraint:

ρM = 2ρ� = �c2

4πGN
. (9.11)

Namely, the mass density ρM of the universe is fixed by the cosmological
constant. The other static condition of ȧ = 0 implies, through (9.8), the static
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solution a = a0 = 1

kc2

R2
0

= 8πGNρ� = �c2. (9.12)

Since the RHS is positive, we must have

k = +1. (9.13)

Namely, the static universe must have a positive curvature (a closed universe)
with a scale factor, the “radius of the universe,” also being determined by the
cosmological constant:

R0 = 1√
�

. (9.14)

Thus, the basic features of such a static universe, the density and radius, are
determined by the arbitrary input parameter �. Not only is this a rather artificial
arrangement, but also the solution is, in fact, unstable. Namely, a small varia-
tion will cause the universe to deviate from this static point. A slight increase
in the separation will cause the gravitational attraction to decrease. Since
the vacuum repulsion is not affected, the negative pressure prevails over the
positive attraction, causing the separation to increase further. A slight decrease
in the separation will increase the gravitational attraction to cause the separation
to decrease further, until the whole system collapses.

Box 9.1 Some historical tidbits of modern cosmology

• The Friedmann equations with both ordinary and vacuum-energies
(9.8) and (9.9) are sometimes call the Friedmann–Lema ı̂ tre
equations. That Einstein’s equation had expanding, or contracting,
solutions was first pointed out in the early 1920s by the Russian
meteorologist and mathematician Alexander A. Friedmann, who also
discovered Einstein’s original oversight of not realizing his static
solution being unstable. Friedmann’s fundamental contribution to
cosmology was hardly noticed by his contemporaries. It had to be
rediscovered later by the Belgian civil engineer and priest Georges
Lemaître, who published in 1927 his model of cosmology with con-
tributions coming from both ρM and ρ�. More importantly, Lemaître
was the first one, having been aware of Hubble’s work through his
contact with Harvard astronomers (he spent three years studying
at Cambridge University and M.I.T.), to show that the linear rela-
tion between distance and redshift (Hubble’s law) follows from such
cosmological considerations. The original derivations by Friedmann
and Lemaître were somewhat awkward. Modern presentations have
mainly followed the approach initiated by Howard Percy Robertson
and Arthur G. Walker. Thus the framework using Einstein’s equation
for a homogeneous and isotropic universe has come to be known as
the FLRW (Friedmann–Lemaître–Robertson–Walker) cosmological
model.

• Having missed the chance of predicting an expanding universe before
its discovery, Einstein came up with a solution which did not really
solve the perceived difficulty. (His static solution is also unstable.)
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It had often been said that later in life Einstein considered the intro-
duction of the cosmological constant to be “the biggest blunder of
his life!” This originated from a characterization by George Gamow
in his autobiography (Gamow, 1970):

Thus, Einstein’s original gravity equation was correct, and
changing it was a mistake. Much later, when I was discussing
cosmological problems with Einstein, he remarked that the
introduction of the cosmological term was the biggest blunder
he ever made in his life.

Then Gamow went on to say,

But this blunder, rejected by Einstein, is still sometimes used
by cosmologists even today, and the cosmological constant �

rears its ugly head again and again and again.

What we can conclude for sure is that Gamow himself considered
the cosmological constant “ugly” (because this extra term made the
field equation less simple). Generations of cosmologists continued to
include it because there was no physical principle one could invoke
to exclude this term. (If it is not forbidden, it must exist!) In fact,
the discovery of the cosmological constant as the source of a new
cosmic repulsive force must be regarded as one of Einstein’s great
achievements. Now, as we shall see, the idea of a nonzero cosmo-
logical constant was the key in solving a number of fundamental
problems in cosmology. Namely, Einstein taught us the way to bring
about a gravitational repulsion. Although this “tool” of the cosmolog-
ical constant was not required for the task (the static universe) it was
invented for, this repulsive force was needed to account for the explo-
sion that was the big bang (inflationary epoch), and was needed to
explain how the expansion of the universe could accelerate.

9.2 The inflationary epoch

The standard model of cosmology (the FLRW model) has been very successful
in presenting a self-contained picture of the evolution and composition of the
universe: how the universe expanded and cooled after the big bang; how the
light nuclear elements were formed; after the inclusion of the proper density
inhomogeneity, how in an expanding universe matter congealed to form stars,
galaxies, and clusters of galaxies. It describes very well the aftermath of the
big bang. However, the model says very little about the nature of the big bang
itself: how did this “explosion of the space” come about? It assumes that all
matter existed from the very beginning. Furthermore, it assumes certain very
precise initial conditions that just cry out for an explanation (see the flatness
and horizon problems discussed later).

The inflationary cosmology is an attempt to give an account of this big bang
back to an extremely short instant (something like 10−38 s) after the t = 0
cosmic singularity.2 According to this inflationary model, the universe had

2This is to be compared to the even earlier
period, comparable to the Planck time tPl =
O(10−43 s), when quantum gravity is required
for a proper description. See Section A.2. a burst of expansion during which the scale factor increased by more than
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30 orders of magnitude, see Fig. 9.2. In this inflationary process, all the matter
and energy could have been created virtually from nothing. Afterwards, the
universe followed the course of adiabatic expansion and cooling as described
by the FLRW cosmology, presented in Chapter 8. Figure 9.2 also makes it
clear that in the inflationary scenario, the observable universe originates from
an entity some 10−30 times smaller than that which would have been the size
in the case without inflation.

9.2.1 Initial conditions for the standard big bang model

The standard FLRW model requires a number of seemingly unnatural fine-
tuned initial conditions. As we shall see, they are just the conditions that would
follow from an inflationary epoch. We start the discussion of initial conditions
by listing two such theoretical difficulties, two “problems.”

Without inflation

A factor
of 1030

t

a(t)

Inflation epoch   10–35s~~

ai
(IC)

ai
(SM)

Fig. 9.2 Comparison of scale factor’s time
evolution. The standard FLRW model curves
are represented by dashed lines; the solid
curve is that of the inflation model which
coincides with the standard model curve
after 10−35 s. The intercepts on the a-axis
correspond to the initial scales: a(SM)

i in the

standard model (without inflation) and a(IC)
i

in the inflation cosmology, respectively.

The flatness problem
Because of gravitational attraction among matter and energy, we would expect
the expansion of the universe to slow down. This deceleration ä(t) < 0 means
that ȧ(t) must be a decreasing function. This is exemplified by the specific
case of a radiation dominated universe a ∼ t1/2, thus ȧ ∼ t−1/2, or a matter
dominated universe a ∼ t2/3, and ȧ ∼ t−1/3, as derived in (8.30). Recall that
the Friedmann equation can be written in terms of the mass density parameter
� as in (8.7):

[1−�(t)] = −kc2

[ȧ(t)]2R2
0

. (9.15)

This displays the connection between geometry and matter/energy: if k = 0
(a flat geometry), we must have the density ratio � = 1 exactly; when k �= 0
for an universe having curvature, then [1 − �(t)] must be ever-increasing
because the denominator on the RHS is ever decreasing. Thus, the condition
for a flat universe � = 1 is an unstable equilibrium point—if � ever deviates
from 1, this deviation will increase with time. Or, we may say: “gravitational
attraction loves curvature”—it always enhances any initial curvature. In light
of this property, it is puzzling that the present mass density �0 has been found
observationally (see Section 7.1.4) to be not too different from the critical
density value (1−�0) = O(1). This means that � must have been extremely
close to unity (extremely flat) in the cosmic past. Such a fine-tuned initial
condition would require an explanation.

We can make such statement quantitatively. Ever since the radiation–matter
equality time t > tRM, with zRM = O(104) (cf. (8.68)) the evolution of
the universe has been dominated by nonrelativistic matter: a(t) ∼ t2/3 or
ȧ ∼ t−1/3 ∼ a−1/2. We can then estimate the ratio as given by (9.15):

1−�(tRM)

1−�(t0)
=
[

ȧ(tRM)

ȧ(t0)

]−2

=
[

aRM

a0

]

=(1+ zRM)−1 = O(10−4). (9.16)

Successful prediction of light element abundance by primordial nuclear syn-
thesis gave us direct evidence for the validity of the standard model of
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cosmology back to the big bang nucleosynthesis time tbbn = O(102 s). The time
evolution for t < tRM was radiation dominated: a(t) ∼ t1/2 or ȧ ∼ t−1/2 ∼ a−1.
This would then imply

1−�(tbbn)

1−�(tRM)
=
[

ȧ(tbbn)

ȧ(tRM)

]−2

=
[

a(tbbn)

a(tRM)

]2

=
[

kBTbbn

kBTRM

]−2

� O(10−10), (9.17)

where we have used the scaling behavior of the temperature, and (8.53)
kBTbbn = O(MeV) and (8.53) kBTRM = O(10 eV) to reach the last numer-
ical estimate. Thus, in order to produce a (�0 − 1) = O(1) now, the combined
result of (9.16) and (9.17) tells us that one has to have at the epoch of primordial
nuclear synthesis a density ratio equal to unity to an accuracy of one part in 1015.
Namely, we must have [�(tbbn)− 1] = O(10−14). That the FLRW cosmology
requires such an unnatural initial condition constitutes the flatness problem.

The horizon problem
Our universe is observed to be very homogeneous and isotropic. In fact, we can
say that it is “too homogeneous and isotropic.” Consider two different parts of
the universe that are outside of each other’s horizons. They are so far apart that
no light signal sent from one at the beginning of the universe could have reached
the other. Yet they are observed to have similar properties. This suggests their
being in thermal contact sometime in the past. How can this be possible?

This horizon problem can be stated most precisely in terms of the observed
isotropy of the CMB radiation (up to one part in 100,000, after subtracting
out the dipole anisotropy due to the peculiar motion of our Galaxy). When
pointing our instrument to measure the CMB, we obtain the same blackbody
temperature in all directions. However, every two points in the sky with an
angular separation on the order of a degree actually correspond to a horizon
separation back at the photon-decoupling time tγ (see (9.31)). The age of the
universe at photon decoupling time was about 350,000 years, yet the observed
isotropy indicates that regions far more than the horizon distance 350,000 light-
year apart were strongly correlated. This is the horizon problem of the standard
FLRW cosmology.

Initial conditions required for the standard
cosmic evolution
We have discussed the horizon problem and flatness problem, etc. as the short-
comings of the standard big bang model. Nevertheless, it must be emphasized
that they are not contradictions since we could always assume that the universe
had just these conditions initially to account for the observed universe today.
For example, the horizon problem can be interpreted simply as reflecting the
fact that the universe must have been very uniform to begin with. These “prob-
lems” should be viewed as informing us of the correct initial conditions for the
cosmic evolution after the big bang: “The initial conditions must be just so.”
What we need is a theory of the initial conditions. Putting it in another way,
the standard big bang model is really a theory for the evolution of the universe
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after the big bang. We now need a theory of the big bang itself. A correct theory
should have the feature that it would automatically leave behind a universe with
just these desired conditions.

9.2.2 The inflation scenario

The initial condition problems can be solved if, in the early moments, the uni-
verse had gone through an epoch of extraordinarily rapid expansion. This can
solve the flatness problem, as any initial curvature could be stretched flat by the
burst of expansion, and can solve the horizon problem if the associated expan-
sion rate could reach superluminal speed. If the expansion rate could be greater
than the light speed, then one horizon volume could have been stretched out to
such a large volume that corresponded to many horizon volumes after this burst
of expansion. This rapid expansion could happen if there existed then a large
cosmological constant �, which could supply a huge repulsion to the system.
The question is, then, what kind of physics can give rise to such a large �?
In this section, we explain how modern particle physics can suggest a possible
mechanism to generate, for a short instant of time, such a large vacuum-energy.

False vacuum, slow rollover phase transition and an
effective �
The inflationary cosmology was invented in 1980 by Alan Guth in his study
of the cosmological implications of the grand unified theories (GUTs) of par-
ticle interactions. The basic idea of a GUT is that particle interactions possess
certain symmetry.3 As a result, all the fundamental forces-the strong, weak,

3“Particle interaction symmetry” has the same
meaning as “symmetry in particle physics”
as explained in Chapter 1: physics equations
are unchanged under some transformation.
However, instead of transformations of space
and time coordinates as in relativity, here
one is concerned with transformation in some
“internal charge space.” The mathematical
description of symmetry is group theory. An
example of grand unification group is SU(5)

and particles form multiplets in this internal
charge space. Members of the same multiplet
can be transformed into each other: electrons
into neutrinos, or into quarks, and the GUT
physics equations are covariant under such
transformations. After the spontaneous sym-
metry breaking, the interactions possess less
symmetry: for example, SU(5) is reduced
down to SU(3) × SU(2) × U(1), which is
the symmetry group of the low energy effect-
ive theory known as the Standard Model of
quantum chromodynamics and electroweak
interactions.

and electromagnetic interactions (except for gravity)-behave similarly at high
energy. In fact they are just different aspects of the same (unified) interaction
like the different faces of the same die. However, the structure of the theory is
such that there is a phase transition at a temperature corresponding to the grand
unification energy scale, around 1015–1016 GeV. In the energy regime higher
than this scale, the system is in a symmetric phase and the unification of particle
interactions is manifest (i.e. all interactions behave similarly); when the uni-
verse cooled below this scale, the particle symmetry became hidden, showing
up as distinctive forces. (For a discussion of spontaneous symmetry break-
down, that is, hidden symmetry, as illustrated by spontaneous magnetization of
a ferromagnet, see Section A.3.)

In quantum field theory, particles are quantum excitations of their associated
fields: electrons of the electron field, photons of the electromagnetic field, etc.
New fields are postulated to exist, related to yet to be discovered particles.
What brings about the above-mentioned spontaneous symmetry breaking and
its associated phase transition is the existence of a certain spin-zero field φ(x),
called the Higgs field, or Higgs particle. Such a field, just like the familiar
electromagnetic field, carries energy. What is special about a Higgs field is that
it possesses a potential energy density function V(φ) much like the potential
energy function in the ferromagnet example of Section A.3. Normally one
would expect field values to vanish in the vacuum state (the state with the
lowest energy). A Higgs field, surprisingly, can have a nonzero vacuum state
field permeating throughout in space, cf. Figs 9.3(a) and (b). The effect of this
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Fig. 9.3 Potential energy function of a Higgs field is illustrated by the simple case of V(φ) =
α(T)φ2 + λφ4, possessing a discrete symmetry V(−φ) = V(φ). The parameter α has
temperature-dependence, for example, α = α0(T − Tc), where, just like λ, α0 is a posi-
tive constant. (a) Above the critical temperature (T > Tc, hence α > 0), we have the normal
case of the lowest energy state (the vacuum) being at φ0 = 0, which is symmetric under
φ → −φ. (b) Below Tc (hence α < 0), the symmetric V(φ) has the lowest energy at points
φ± = ±√−α/2λ while V(φ = 0) is a local maximum. The choice of the vacuum state being
either of the asymmetric φ+ or φ− breaks the symmetry (cf. similar plot in Fig. A.3(b)). The
dashed box in (b) is displayed in (c) to show that the inflation/Higgs potential V(φ) has an
almost flat portion at the φ = 0 origin for a slow rollover transition. The dot represents the
changing location of the system—rolling from a high plateau of the false vacuum toward the
true vacuum at the bottom of the trough.

hidden symmetry can then spread to other particles through their interaction
of the Higgs field. For example, a massless particle can gain its mass when
propagating in the background of such a Higgs field. Different Higgs fields are
posited to exist. Here we are referring to the Higgs particles in GUTs, which
may have a mass O(1015 GeV/c2). These should not be confused with the
electroweak Higgs particle, thought to have a mass on the order of 102 GeV/c2,
which is responsible to give masses to electrons and quarks as well as the W
and Z bosons that mediate weak interactions.

In the cosmological context, such a postulated field is simply referred to as the
inflation field, or inflation/Higgs field. Linde, and independently Albrecht and
Steinhardt, elaborated further on the original scheme by Guth. They suggested
that parameters of the unified theory were such that the potential energy function
of the inflation field had a very small slope around the origin as in Fig. 9.3(c).
As the universe cools, the temperature dependent parameters change so that
the potential energy function changes from Fig. A.3(a) to (b). The prior lowest
energy point at zero field value became a local maximum and the system would
rollover to the new asymmetric vacuum state where the Higgs field would have
a nonvanishing vacuum value. But the parameters are such that this rollover
was slow. During this transition, we could regard the system, compared to the
true (asymmetric) vacuum state, as having an extra energy density. We say
the system (i.e. the universe) was temporarily in a false vacuum. Having this
vacuum-energy density, which is time and position independent, the universe
effectively had a large cosmological constant.
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Exponential expansion in a vacuum-energy
dominated universe
Let us consider the behavior of the scale factor a(t) in a model with � > 0 when
the matter density can be ignored. In such a vacuum-energy dominated situation,
the behavior of expansion rate ȧ(t) is such that we can always approximate the
curvature signature as k ≈ 0 (cf. (9.22)). Equation (9.8) then becomes

ȧ2

a2
= 8πGN

3
ρ� = �c2

3
. (9.18)

Thus ȧ is proportional to the scale factor a itself. Namely, we have the familiar
rate equation. It can be solved to yield an exponentially expanding universe
(called the de Sitter universe):

a (t2) ≡ a (t1) e(t2−t1)/�τ (9.19)

with

�τ =
√

3

�c2
=
√

3

8πGNρ�

, (9.20)

where we have expressed the cosmological constant in terms of the vacuum-
energy density ρ�c2 as in (9.2). Physically we can understand this exponential
result because the repulsive expansion is self-reinforcing: as the energy density
ρ� is a constant, the more the space expands, the greater is the vacuum-energy
and negative pressure, causing the space to expand even further. In fact, we can
think of this � repulsive force as residing in the space itself, so as the universe
expands, the push from this � energy increases as well. We note that the total
energy was conserved during the inflationary epoch’s rapid expansion because
of the concomitant creation of gravitational field, which has a negative potential
energy (cf. Section 8.3.1).

Remark: Because � represents a constant energy density, it will be the dom-
inant factor ρ� � ρM at later cosmic time, because the matter density ρM

decreases as a−3. This dominance means that it is possible for the universe to
be geometrically closed (� > 1 and k = +1), yet does not stop expanding.
Namely, with the presence of a cosmological constant, the mass/energy density
� (hence the geometry) no longer determines the fate of the universe in a simple
way. In general, a universe with a nonvanishing �, regardless of its geometry,
would expand forever. The only exception is when the matter density is so large
that the universe starts to contract before ρ� becomes the dominant term.

9.2.3 Inflation and the conditions it left behind

In the previous section we have described how the grand unification Higgs field
associated with spontaneous symmetry breaking can serve as the inflation field.
A patch of the universe with this “inflation/Higgs matter” might have under-
gone a slow rollover phase transition and thus lodged temporarily in a false
vacuum with a large constant energy density. The resultant effective cosmolog-
ical constant �eff provided the gravitational repulsion to inflate the scale factor
exponentially. A grand unification thermal energy scale EGU = O(1016 GeV),
that is, a temperature TGU = O(1029 K), which according to (8.44) corresponds
to the cosmic time tGU � 10−38 s. The energy density ρGUc2 can be estimated
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as follows: in a relativistic quantum system (such as quantum fields) there is the
natural energy-length scale given by the product of Planck’s constant (over 2π)
times the velocity of light: �c = 1.97× 10−16 GeV ·m. Using this conversion
factor we have the energy density scale for grand unification

ρGUc2 � (EGU)4

(�c)3
� 10100 J/m3. (9.21)

For a vacuum-energy density ρ� ≈ ρGU, the corresponding exponential expan-
sion time-constant �τ of (9.20) had the value �τ � 10−37 s. Namely, the
exponential inflationary expansion took place when the universe was tGU �
10−38 s old, with an exponential expansion time constant of �τ = O(10−37 s).
By a “slow” rollover phase transition we meant that the parameters of the
theory are such that inflation might have lasted much longer than 10−37 s,
for example, 10−35 s (100 e-fold), expanding the scale factor by more than
30 orders of magnitude, until the system rolled down to the true vacuum, end-
ing the inflation epoch (cf. Fig. 9.3). Afterwards the universe commenced the
adiabatic expansion and cooling according to the standard FLRW model until
the present epoch. This dynamics has the attractive feature that it would leave
behind precisely the features that had to be postulated as the initial conditions
for the standard FLRW cosmology.

The horizon and flatness problems solved
With the exponential behavior of the scale factor in (9.19), we can naturally have
superluminal (ȧR0 > c) expansion as the rate ȧ(t) also grows exponentially.
This does not contradict special relativity, which says that an object cannot pass
another one faster than c in one fixed frame. Putting it in another way, while
an object cannot travel faster than the speed of light through space, there is no
restriction stipulating that space itself cannot expand faster than c. Having a
superluminal expansion rate, this inflationary scenario can solve the horizon
problem, because two points that are a large number of horizon lengths apart
now (or at the photon decoupling time when the CMB was created) could still
be in causal contact before the onset of the inflationary epoch. They started out
being thermalized within one horizon volume before the inflation epoch, but
became separated by many horizon lengths due to the superluminal expansion.

This inflationary scenario can solve the flatness problem because the space
was stretched so much that it became, after the inflationary epoch, a geomet-
rically flat universe to a high degree of accuracy. When this exponential
expansion (9.19) is applied to the Friedmann Eq. (9.15), it yields the ratio

1−�(t2)

1−�(t1)
=
[

ȧ(t2)

ȧ(t1)

]−2

= e−2(t2−t1)/�τ . (9.22)

Just as the scale factor was inflated by a large ratio, say, e(t2−t1)/�τ = 1030,
we can have the RHS as small as 10−60. Start with any reasonable value of
�(t1) we can still have, after the inflation, a �(t2) = 1 to a high accuracy.
While the cosmic time evolution in the FLRW model, being determined by
gravitational attraction, always enhances the curvature by driving the universe
away from � = 1 (hence the flatness problem), the accelerating expansion
due to the vacuum repulsion always pushes the universe (very rapidly) toward
the � = 1 point. Thus a firm prediction by the inflationary scenario is that the
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universe left behind by inflation must have a flat geometry and, according to
GR, a density equal to the critical value (9.15)—although it does not specify
what components make up such a density.

The origin of matter/energy and structure
in the universe
Besides the flatness and horizon problems, the standard FLRW cosmology
requires as initial conditions that all the energy and particles of the universe be
present at the very beginning. Furthermore, this hot soup of particles should
have just the right amount of initial density inhomogeneity (density perturbation)
which, through subsequent gravitational clumping, formed the cosmic structure
of galaxies, clusters of galaxies, voids, etc. we observe today. One natural
possibility is that such density perturbation resulted from quantum fluctuation of
particle fields in a very early universe. However, it is difficult to understand how
such microscopic fluctuations can bring forth the astrophysical-sized density
nonuniformity required for the subsequent cosmic construction. Remarkably,
the inflationary cosmology can provide us with an explanation of the origin of
matter/energy, as well as the structure of the universe.

The inflation model suggests that at the beginning of the big bang a patch
of the inflation/Higgs matter (smaller than the size of a proton) underwent
a phase transition bringing about a huge gravitational repulsion. This is the
driving force behind the space-explosion that was the big bang. While this
inflation material (the � energy) expanded exponentially in size to encompass
a space that eventually developed into our presently observed universe, its
energy density remained essentially a constant. In this way more and more
particle/field energy was “created” during the inflationary epoch. When it ended
with the universe reaching the true vacuum, its oscillations at the trough in
Fig. 9.3 showed up, according to quantum field theory, as a soup of ordinary
particles. Namely, according to the inflation theory, the initial potential energy
of the inflation/Higgs field (having little kinetic energy) was the origin of our
universe’s matter content when it was converted into relativistic particles.

The phenomenon of particle creation in an expanding universe can be
qualitatively understood as follows: according to quantum field theory, the
quantum fluctuations of the field system can take on the form of appearance and
disappearance of particle–antiparticle pairs in the vacuum. Such energy non-
conserving processes are permitted as long as they take place on a sufficiently
short timescale �t so that the uncertainty relation �E�t ≤ � is not violated.
In a static space, such “virtual processes” do not create real particles. However,
when the space is rapidly expanding, that is, the expansion rate was larger than
the annihilation rate, real particles were created.4 Thus, inflation in conjunction

4For a related phenomenon of Hawking
radiation, see Section A.2.

with quantum field theory naturally gives rise to the phenomenon of particle
creation. This hot, dense, uniform collection of particles is just the postulated
initial state of the standard big bang model. Furthermore, the scale factor had
increased by such a large factor that it could stretch the subatomic size fluctua-
tion of a quantum field into astrophysical sized density perturbation to seed the
subsequent cosmic structure formation. The resultant density fluctuation was
random, “Gaussian,” and scale-invariant, which will be discussed in Box 9.2.

Remarks: Our discussion of the inflation scenario has been couched in the
language of grand unified Higgs field. It should be understood the grand unified
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theories themselves have not been verified experimentally in any detail because
its intrinsic energy scale of 1016 GeV is so much higher than the highest energy
≈103 GeV reachable by our accelerators. On the other hand, we are confident
that some version of grand unification is correct, as the simplest GUTs can
already explain many puzzles of the Standard Model of particle physics, such
as why strong interaction is strong, weak interaction weak, and why the quarks
and leptons have the charges that they do. Nevertheless, the connection between
grand unification and inflation cosmology has remained only as a suggestive
possibility. It was our knowledge of the grand unification theory that allowed
construction of a physically viable scenario that could give rise to an inflationary
epoch. But what precisely is the inflation field, and what parameters actually
govern its behavior remain as topics of theoretical discussion. The remarkable
fact is that some reasonable speculation of this type can already lead to the
resolution of many cosmological puzzles, and have predictions that have con-
sistently checked with observation. As a final remark, we should also mention
that it had generally been assumed that the effective cosmological constant,
associated with the false vacuum, vanished at the end of the inflationary epoch.
The general expectation was that the standard FLRW cosmology that followed
the inflation epoch was one with no cosmological constant. Part of the rationale
was that a straightforward estimate of the cosmological constant, as due to the
zero-point energy of a quantum vacuum, yielded such an enormously large �

(see Section A.4) that many had assumed that there must be some yet-to-be dis-
covered symmetry argument that would strictly forbid a nonzero cosmological
constant.

9.3 CMB anisotropy and evidence for k= 0

As discussed in Section 9.2.3, inflationary cosmology predicts that the
spatial geometry of our universe must be flat. This prediction received more
direct observational support through detailed measurement of the temperature
anisotropy of the CMB radiation.

The CMB is the earliest and largest observable thing in cosmology. Its
remarkable uniformity over many horizon lengths reflects its spatial origin
as coming from a single pre-inflation horizon volume. Just before the photon
decoupling time, the universe was a tightly bound photon–baryon fluid, and dark
matter. The inflationary scenario, with its associated phenomenon of particle
creation, also generated a small density perturbation on a wide range of dis-
tance scales onto this overall homogeneity. Because of gravitational instability,
this nonuniform distribution of matter eventually evolved into the cosmic struc-
ture we see today. In the early universe, the gravitational clumping of baryons
was resisted by photon radiation pressure. This set up an acoustic wave of
compression and rarefaction with gravity being the driving force and radiation
pressure the restoring force. All this took place against a background of dark
matter fluctuations, which continued to grow because dark matter did not inter-
act with radiation. Such a photon–baryon fluid can be idealized by ignoring the
dynamical effects of gravitation and baryons. This leads to a sound wave speed

cs �
√

p

ρ
� c√

3
(9.23)



9.3 CMB anisotropy and evidence for k= 0 179

as pressure and density being approximated by those for radiation p ≈ ρc2/3.
This compression and rarefaction was then translated through gravitational
redshift into a temperature inhomogeneity, showing up as a series of peaks
and troughs in the temperature power spectrum to be discussed in the following
section.

9.3.1 Three regions of the angular power spectrum

From (8.85) and (8.88) for the correlation function, we see that the mean-square
temperature anisotropy may be written for large multipole number l as

〈(
δT

T

)2
〉
= 1

4π

∞∑
l=0

(2l + 1)Cl ≈
∫

l(l + 1)

2π
Cld ln l. (9.24)

[(l(l + 1)/2π)Cl] is approximately the power per logarithmic interval, and
is the quantity presented in the conventional plot of power spectrum against a
logarithmic multipole number (cf. Figs 9.4 and 9.13).

On small sections of the sky where curvature can be neglected, the spherical
harmonic analysis becomes ordinary Fourier analysis in two dimensions. In this
approximation the multipole number l has the interpretation as the Fourier wave
number. Just as the usual Fourier wave number k ≈ π/x, the multipole moment
number l ≈ π/θ : large l corresponds to small angular scales with l ≈ 102

corresponding to degree scale separation.
The inflationary scenario left behind density fluctuations that were Gaussian

and scale invariant (cf. Box 9.2). Such an initial density perturbation, together
with an assumption of a dark matter content dominated by nonrelativistic par-
ticles (the “cold dark matter” model), leads to a power spectrum as shown in
Fig. 9.4. We can broadly divide it into three regions:

Region I (l < 102). This flat portion at large angular scales (the “Sachs–
Wolfe plateau”) corresponds to oscillations with a period larger than the age of
the universe at photon decoupling time. These waves are essentially frozen in
their initial configuration. The flatness of the curve reflects the scale-invariant
nature of the initial density perturbation as given by the inflation cosmology
(cf. Box 9.2).

Region II (102 < l < 103). At these smaller angular scales, smaller than
the sound horizon, there had been enough time for the photon–baryon fluid to
undergo oscillation. The peaks correspond to regions having higher, as well as
lower, than average density. This is so because the power spectrum is the square
of alm and hence indifferent to their signs. The troughs are regions with neutral
compression, thus have maximum velocity (recall our knowledge of oscillators).
CMB from such regions underwent a large Doppler shift. In short, it is a snapshot
of the acoustic oscillations with modes (fundamental plus harmonics) having
different wavelengths and different phases of oscillations. The amplitudes are
related to cosmological parameters such as the baryon density �B.

Region III (l > 103). Photon decoupling did not take place instantaneously,
but the last scattering surface had a finite thickness. Photons diffuse out from
any overdense region if it is smaller than the photon’s mean free path, which
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Fig. 9.4 CMB power spectrum as a function
of the multipole moments. The solid curve
with peaks and troughs is the prediction by
inflation model (with cold dark matter). The
physics corresponding to the three marked
regions is discussed in the text. The dashed
curve is that by the topological defect model
for the origin of the cosmic structure.
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was increasing as the universe expanded. The net effect was an exponential
damping of the oscillation amplitude in this sub-arcminute scales.

Box 9.2 Density fluctuation from inflation is scale-invariant

Inflation produces such a huge expansion that subatomic size quantum fluc-
tuations are stretched to astrophysical dimensions. For fluctuations larger
than the sound horizon ≈ csH−1 one can ignore pressure gradients, as the
associated sound waves cannot have crossed the perturbation in a Hubble
time. The density perturbation without a pressure gradient evolves like the
homogeneous universe (Problem 9.1):

ρa2(�−1 − 1) = const., (9.25)

where a is the scale factor. With � ≈ 1 and �ρ 	 ρ = ρc�, the above
relation implies

ρca2�� = a2�ρ = const. (9.26)

We now consider the implication of this scaling behavior for the perturba-
tion in gravitational potential on a physical distance scale of aL,

�� = GN�M

aL
= 4π

3

GN�ρ(aL)3

(aL)

= 1

2

H2L2

ρc
a2�ρ,

which is scale invariant because of (9.26). Namely, for a physical distance
scale aL, we have a gravitational potential perturbation that is independent
of the scale factor a because H = ȧ/a was a constant as both a and ȧ
undergo the same exponential increase during the inflationary epoch. Yet
because the scale factor a would change by something like 30 decades
during this epoch, we would have the same �� for a range of comov-
ing length L that changed over 30 decades. Thus, inflationary cosmology
makes the strong prediction of a scale-invariant density perturbation. It can
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be shown that such density fluctuation, called the Harrison–Zel’dovich
spectrum, would produce an angular power spectrum for the CMB
anisotropy of the form

Cl = const.

l(l + 1)
.

Thus, in the plot of l(l + 1)Cl vs. l in Fig. 9.4 the power spectrum for the
large angle region (l < 100) is a fairly flat curve.

In Box 9.2 above we have presented the power spectrum as predicted by
the inflationary cosmology: Gaussian density perturbation leading to a random
distribution of hot and cold spots on the temperature anisotropy map, and a
power spectrum displaying peaks and troughs. It is illuminating to contrast this
to an alternative theory of cosmic structure origin, the topological defect model.
In this scenario, one posits that as the universe cooled to a thermal energy of
1016 GeV, the phase transition that breaks the associated grand unification sym-
metry also produced defects in the fabric of spacetime—in the form of strings,
knots, and domain walls, etc. This introduced the initial density perturbation
that seeded the subsequent structure formation. Such a density fluctuation would
produce line-like discontinuities in the temperature map and a smooth power
spectrum (instead of the wiggly features as predicted by the inflation model),
see Fig. 9.4. As we shall discuss in the next subsection, the observed CMB
anisotropy favors inflation over this topological defect model for the origin of
the cosmic structure.

9.3.2 The primary peak and spatial geometry
of the universe

Consider the oscillatory power spectrum in Region II of Fig. 9.4. The temper-
ature fluctuations reflect the sound wave spectrum of the photon–baryon fluid
at photon decoupling time. There would be standing waves having wavelength
λn = λ1/n, with the fundamental wavelength given by the sound horizon:

λ1 =
∫ tγ

0

csdt

a(t)
≈ cs

∫ tγ

0

dt

a(t)
. (9.27)

Such a wavelength would appear as angular anisotropy of scale

α1 � λ1/d(tγ ), (9.28)

where d(tγ ) is the comoving angular diameter distance from the observer to
photon decoupling time. Namely, it is the comoving distance a photon would
have traveled to reach us from the surface of last scattering,

d
(
tγ
) = c

∫ t0

tγ

dt

a(t)
. (9.29)

When evaluating the integrals in (9.27) and (9.29), we shall assume a matter-
dominated flat universe with time-dependence of the scale factor a(t) ∝ t2/3
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as given by (8.30),
∫

dt

a(t)
∝
∫

a−1/2da ∝ a1/2 = (1+ z)−1/2. (9.30)

Matter-domination is plausible because the radiation-matter equality time is
almost an order of magnitude smaller than the photon decoupling time, that is,
according to (8.68) the redshift zRM � zγ . Thus the fundamental wavelength
corresponds to an angular separation of

α1 ≈ λ1

d(tγ )
= cs(1+ zγ )−1/2

c[(1+ z0)−1/2 − (1+ zγ )−1/2]

� (1+ zγ )−1/2

√
3

� 0.17 rad � 1◦, (9.31)

where we have used z0 = 0, zγ � 1,100 and, as discussed in (9.23), a sound
speed cs � c/

√
3. This fundamental wave angular separation in turn translates

into the multipole number

l1 � π

α1
� π

√
3(1+ zγ )1/2 ≈ 200. (9.32)

Thus, in a flat universe we expect the first peak of the power spectrum to be
located at this multipole number.

d = Ru
+l

l

a

Fig. 9.5 A comparison of subtended lengths
in a flat vs. positively curved surfaces. For the
same angular diameter distance d, the same
angle α subtends a smaller wavelength λ+ in
a closed universe when compared to the cor-
responding λ = λ+[(R0/d) sin(R0/d)]−1 >

λ+ in a flat universe.

The above calculation was performed for a flat universe. What would be
the result for a spatially curved universe? We will simplify our discussion by the
suppression of one dimension and consider a 2D curved surface. In a positive
curved closed universe (k = +1), light travels along longitudes (Fig. 9.5).
A physical separation λ1 at a fixed latitude, with polar angle θ and a coordinate
distance d = R0θ , subtends an angle

α1+ = λ1

R0 sin θ
= λ1

R0 sin(d/R0)
= λ1

d

(
1+ d2

3!R2
0

+ · · ·
)

>
λ1

d
.

Namely, a given comoving scale (λ1) at a fixed distance (d) the separation angle
(α1+) would appear to be larger (than the case of flat universe). For a negatively
curved open universe (k = −1), one simply replaces sin by sinh:

α1− = λ1

R0 sinh(d/R0)
= λ1

d

(
1− d2

3!R2
0

+ · · ·
)

<
λ1

d
.

A given comoving scale at a fixed distance, the separation angle would appear
to be smaller. With the multipole number being inversely proportional to the
separation angular scale, in an universe with spatial curvature the first peak
would be shifted away from l1 ≈ 200, to a smaller (larger) multipole number
for a closed (open) universe.

Although COBE satellite mapped the entire sky with high sensitivity discov-
ering the CMB anisotropy at δT/T = O(10−5), its relatively coarse angular
resolution of O(7◦) was not able to deduce the geometry of our universe. In
late 1990s a number of high altitude observations, e.g., MAT/TOCO (Miller
et al., 1999), and balloon-borne telescopes: Boomerang (de Bernardis et al.,
2000), and Maxima-1 (Hanany et al., 2000), had detected CMB fluctuations on
smaller sizes. These observations produced evidence for a spatially flat universe
by finding the characteristic size of the structure to be about a degree wide and
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Fig. 9.6 Image of the complex temperature
structure of CMB over 2.5% of the sky as
captured by the Boomerang balloon-borne
detector. The black dot at the lower right-
hand corner represents the size of a full moon
subtending an angle about half-a-degree.

a power spectrum peaked at l ≈ 200, see Fig. 9.6. The k = 0 statement is
of course equivalent, via the Friedmann equation, to a total density �0 = 1.
A careful matching of the power spectrum led to

�0 = 1.03± 0.03. (9.33)

In the meantime, another dedicated satellite endeavor, WMAP (Wilkinson
Microwave Anisotropy Probe), had reported their result in 2003. Their
high resolution result allowed them to extract many important cosmological
parameters: H0, �0, �M,0, �B, and the deceleration parameter q0, etc. (to be
discussed in Section 9.5).

9.4 The accelerating universe in the present epoch

Phenomenological puzzles of a flat universe
Thus by mid/late 1990s there was definitive evidence that the geometry of the
universe is flat as predicted by inflation. Nevertheless, there were several pieces
of phenomenology that appeared in direct contradiction to such a picture.

A missing energy problem The Friedmann Eq. (8.7) requires a flat universe
to have a mass/energy density exactly equal to the critical density, �0 = 1. Yet
observationally, including both the luminous and dark matter, we can only find
a third of this value. (Radiation energy is negligibly small in the present epoch.)

�M = �LM +�DM � 0.30. (9.34)

Thus, it appears that to have a flat universe we would have a “missing energy
problem.”
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A cosmic age problem From our discussion of the time evolution of the
universe, we learned that the age of a flat universe should be two-third of the
Hubble time, see (8.70),

(t0)flat = 2

3
tH � 9 Gyr, (9.35)

which is shorter than the estimated age of old stars. Notably the globular clusters
have been deduced to be older than 12 Gyr (cf. Section 7.1.3). Thus, it appears
that to have a flat universe we would have a “cosmic age problem.”

5A dark energy is defined as the “negative
equation-of-state energy”, w < 0 in Eq. (8.4).
It gives rise to a gravitational repulsion (cf.
Sec. 9.1.1). The simplest example of a dark
energy is Einstein’s cosmological constant,
with w = −1. NB: One should not con-
fuse this with the energies of neutrinos, black
holes, etc., which are also ‘dark’, but are
counted as parts of the “dark matter” (cf.
Sec. 7.1.4), as the associated pressure is not
negative.

Possible resolution through a nonvanishing dark energy5 A possible
resolution of these phenomenological difficulties of a flat universe (hence infla-
tionary cosmology) would be to assume that the cosmological constant is
nonzero, even after inflation. Of course it could not have the immense size as
the one it had during the inflation epoch. Rather, the constant vacuum-energy
density ρ� should now be about two-thirds of the critical density to provide the
required missing energy.

� = �M +��
?= 1, (9.36)

where �� ≡ ρ�/ρc. A nonvanishing � would also provide the repulsion
to accelerate the expansion of the universe. In an accelerating universe the
expansion rate in the past must be smaller than the current rate H0. This means
that it would take a longer period to reach the present era, thus a longer age
t0 > 2tH/3 even though the geometry is flat. This just might possibly solve the
cosmic age problem mentioned as well.

9.4.1 Distant supernovae and the 1998 discovery

In order to obtain observational evidence for any changing expansion rate of the
universe (i.e. to measure the curvature of the Hubble curve), one would have to
measure great cosmic distances, for example, a distance method that works to
over 5 billion light years. Clearly some very bright light sources are required.
Since this also means that we must measure objects back in a time interval that
is a significant fraction of the age of the universe, the method must be applicable
to objects present at the early cosmic era. As it turns out, supernovae are ideally
suited for this purpose.

SNe as standard candles
That type Ia supernovae (SNe Ia) could possibly serve as such standard candles
was suggested in 1979 by Stirling Colgate. The first SN Ia was discovered in
1988 by a Danish group at redshift z = 0.3. At their peaks SNe Ia produce
a million times more light than Cepheid Variables, the standard candle most
commonly used in cosmology (cf. Section 7.3.2). SNe Ia begin as white dwarfs
(collapsed old stars sustained by degenerate pressure of their electrons) with
mass comparable to the sun. If the white dwarf has a large companion star,
which is not uncommon, the dwarf’s powerful gravitational attraction will draw
matter from its companion. Its mass increases until the “Chandrasekhar limit”
� 1.4 M�. As it can no longer be countered by the electron pressure, the grav-
itational contraction develops and the resultant heating of the interior core would
trigger the thermonuclear blast that rips it apart, resulting in an SN explosion.
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The supernova eventually collapses into a neutron star. Because they start with
masses in a narrow range, such supernovae have comparable intrinsic bright-
ness. Furthermore, Mark Phillips and Adam Riess and their collaborators have
shown in mid-1990s that their brightness has characteristic decline from the
maximum which can be used to improve on the calibration of their luminosity
(the light-curve shape-analysis). Hence one has some confidence that SNe Ia
can be used as standard candles. Supernovae are rare events in a galaxy. The
last time a supernova explosion occurred in our galaxy was about 400 years
ago. Using new technology, astronomers overcame this problem by simultane-
ously monitoring thousands of galaxies so that on the average some 10 to 20
supernovae can be observed in a year.

The discovery of an accelerating universe
Because light from distant galaxies was emitted long ago, to measure a star
(or a supernova) farther out in distance is to probe the cosmos further back in
time. An accelerating expansion means that the expansion rate was smaller in
the past. Thus to reach a given redshift (i.e. recession speed) it must be located
farther away6 than expected (for a decelerating or empty universe), see Fig. 9.7.

6A Hubble curve (as in Fig. 9.7) is a plot
of the luminosity distance versus the redshift
(measuring recession velocity). A straight
Hubble curve means a cosmic expansion that
is coasting. This can only happen in an empty
universe (cf. Sec. 7.1.3 and Fig. 8.2). If the
expansion is accelerating, the expansion rate
H must be smaller in the past. From Eq. (7.5):
H�r = z, we see that, for a given redshift
z, the distance �r to the light-emitting super-
nova must be larger than that for an empty or
decelerating universe.

Observationally, it would be measured to be dimmer than expected.
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Fig. 9.7 Hubble diagram: the Hubble curve
for an accelerating Universe bends upward.
A supernova on this curve at a given red-
shift would be further out in distance than
anticipated.

By 1998 two collaborations: the Supernova Cosmological Project, led by Saul
Perlmutter of the Lawrence Berkeley National Laboratory (Perlmutter et al.,
1999) and the High-z Supernova Search Team, led by Brian Schmidt of the
Mount Stromlo and Siding Spring Observatory (Riess et al., 1998), each had
accumulated some 50 SNe Ia at high redshifts—z: 0.4–0.7 corresponding to SNe
occurring five to eight billion years ago. They made the astonishing discovery
that the expansion of the universe was actually accelerating, as indicated by
the fact that the measured luminosities were on the average 25% less than
anticipated, and the Hubble curve bent upward, Fig. 9.8.

From the Hubble curve plotted in the space of redshift and luminosity dis-
tance, one can then extract the mass and dark energy content of the universe in
the present epoch. The proper distance dp from a supernova with a redshift z
in the present epoch a(t0) = 1 has been shown in (7.55). Combined with the
result in (7.61), this yields an expression for the luminosity distance:

dL(z) = c(1+ z)
∫ z

0

dz′

H(z′)
, (9.37)

where, using the Friedmann Eq. (8.1), we can express the epoch-dependent
Hubble constant in terms of the scale factor and the density parameters
(Problem 9.2), including in particular the cosmological constant density term:

H(t) = H0

(
�R,0

a4
+ �M,0

a3
+�� + 1−�0

a2

)1/2

, (9.38)

where a(t) can in turn be replaced by the redshift according to (7.54),

H(z) = H0[�R,0(1+ z)4 +�M,0(1+ z)3 +�� + (1−�0)(1+ z)2]1/2

� H0[�M,0(1+ z)3 +�� + (1−�M,0 −��)(1+ z)2]1/2.

(9.39)

The resultant Hubble curves dL(z) in (9.37) with H(z) in the form of (9.39) that
best fitted the observation data would yield values of �M,0 and �� that were
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Fig. 9.8 Discovery of an accelerating
universe. The Hubble plot showing the
data points lying above the empty universe
(dotted) line. The dashed curve represents
the prediction of a flat universe without
cosmological constant, the solid curve being
the best fit of the observational data. The
vertical axes are the luminosity distance
expressed in terms of distance modulus
(cf. Box 7.1). In the lower panel �(m − M)

is the difference after subtracting out the
empty universe value. Figure from review by
Riess (2000).
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consistent with the requirement of a flat geometry: �M,0+�� = 1. The favored
values (see Fig. 9.9) are

�M,0 � 0.3 and �� � 0.7 (9.40)

suggesting that most of the energy in our universe resided in this mysterious
“dark energy” (cf. sidebar 5, p. 184).

7We can check the limit of (9.42) for a matter-
dominated flat universe (��,0 = �R,0 = 0
with �0 = �M,0 = 1) which yields an age

t0 = tH
∫ 1

0 a1/2da = 2
3 tH, in agreement with

the result obtained in (8.30).

These observed values for �M,0 and �� can also be translated into an age
for the flat universe. Hubble constant being the rate of expansion H = ȧ/a, we
can relate dt to the differential of the scale factor,

t0 =
∫ t0

0
dt =

∫ 1

0

da

aH
. (9.41)

From (9.38) for the scale-dependent Hubble constant, this yields an expression
of the age7 in terms of the density parameters:

t0 = tH

∫ 1

0

da

[�R,0a−2 +�M,0a−1 +��a2 + (1−�0)]1/2
. (9.42)

The spatially flat universe with negligible amount of radiation energy, �0 =
�M,0 + �� = 1, leads to a simple relation between cosmic time and scale
factor of a given epoch:

t(a) = tH

∫ a

0

da′

[�M,0/a′ +��a′ 2]1/2

= tH

[
2

3
√

��

ln

√
��a3 +√�M,0 +��a3

√
�M,0

]
. (9.43)
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Thus for the supernovae results �M,0 � 0.3 and �� � 0.7, we have the age of
the universe

t0 = t(1) � 0.97tH � 13.2 Gyr. (9.44)

This value clearly solves the cosmic age problem discussed on p 184.
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Fig. 9.9 Fitting �� and �M to the discov-
ery data as obtained by High-Z SN Search
Team and Supernova Cosmology Project. The
favored values of �� � 0.7 and �M �
0.3 follow from the central values of CMB
anisotropy �� + �M � 1 (the straight
line) and those of the SNe data represented
by confidence contours (ellipses) around
�� −�M � 0.4.

8The absorption and scattering by ordinary
dust shows a characteristic frequency depend-
ence that can, in principle, be subtracted
out. By the unknown dust we refer to any
possible “gray dust” that could absorb light
in a frequency-independent manner.

9.4.2 Transition from deceleration to acceleration

Since the immediate observational evidence from these far away supernovae
is a smaller-than-anticipated luminosity, one wonders whether there is a more
mundane astrophysical explanation. There may be one (or a combination of
several) mundane cause that can mimic the observational effects of an acceler-
ating universe. Maybe this luminosity diminution is brought about not because
the supernovae were further away than expected, but by the absorption by
yet-unknown8 interstellar dust, and/or by some yet-unknown evolution of super-
novae themselves (i.e. supernovae’s intrinsic luminosity were smaller in the
cosmic past)? However, all such scenarios would lead us to expect that the
supernovae, at even greater distances (and even further back in time), should
have their brightness continue to diminish.

For the accelerating universe, on the other hand, this diminution of luminosity
would stop, and the brightness would increase at even larger distances. This is so
because we expect the accelerating epoch be proceeded by a decelerating phase.
The dark energy should be relatively insensitive to scale change ρ� ∼ a0(t) (the
true cosmological constant is a constant density, independent of scale change),
while the matter or radiation energy densities, ρ ∼ a−3(t) or a−4(t), should be
more and more important in earlier times. Thus, the early universe could not
be dark energy dominated, and it must be decelerating. This transition from a
decelerating to an accelerating phase would show up as a bulge in the Hubble
curve, see Fig. 9.10.
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Fig. 9.10 Time evolution of an accelerating
universe. It started out in a decelerating phase
before taking on the form of an exponential
expansion. The transition to an accelerating
phase shows up as a “bulge”; this way it has
an age longer than the � = 0 flat universe age
of 2

3 tH.

Let us estimate the redshift when the universe made this transition. We
define an epoch-dependent “deceleration parameter” which generalizes the q0

parameter of Problem 7.11,

q(t) ≡ −ä(t)

a(t)H2(t)
,

which, through the Friedmann equation, can be related to the density ratios
(Problem 8.10)

q(t) = �R(t)+ 1

2
�M(t)−��

= �R,0

[a(t)]4 +
�M,0

2[a(t)]3 −��. (9.45)

After dropping the unimportant �R,0 and replacing the scale factor by z, we have

q(z) � 1

2
�M,0(1+ z)3 −��. (9.46)

The transition from decelerating (q > 0) to the accelerating (q < 0) phase
occurred at redshift zM� (corresponding to the matter/dark-energy equality
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time) when the deceleration parameter vanished q(zM�) ≡ 0, or

1+ zM� =
(

2��

�M,0

)1/3

. (9.47)

The supernovae data translate into a transition redshift of zM� � 0.7,
corresponding to a scale factor of aM� � 0.6 and a cosmic time, according
to (9.43), of tM� = t(a = 0.6) � 7 Gyr—in cosmic terms, the transition took
place only recently (“just yesterday”)! This reflects the fact that the matter den-
sity in the present epoch �M,0 happens to be comparable to the dark energy
density ��.

Thus, the conclusive evidence for the accelerating universe interpretation
of the supernovae data is observed in this bulge structure, which cannot be
mimicked by any known astrophysical causes. The 1998 discovery data (z:
0.4–0.7) showed the rise of this bulge, but we need to see the falling part of
the Hubble curve. SNe further out (z > 0.7) should be still in the decelerating
phase; they should be brighter than what is expected of continuing dimming
scenario that mundane interpretation would have us anticipate. Astonishingly,
just such an early decelerating phase had been detected.

After the original discovery of an accelerating universe, researchers had
searched for other supernovae at high z. The supernova labeled SN1997ff had
been serendipitously recorded by the Hubble Space Telescope, and by other
observational means (some intentionally, and some unpremeditated). Through
a major effort at data analysis, its properties were deduced in 2001, showing
that it is a type Ia SN having a redshift of z � 1.7 and, thus an explosion
occurring 10 billion years ago, making it by far most distant supernova ever
detected. Remarkably, it is brighter by almost a factor of two compared to
the expectation of continual dimming, see Fig. 9.11. This is the bulge feature
unique to a Hubble curve for an accelerating universe—the light was emitted
long ago, when the expansion of the universe was still decelerating. During
the 2001–03 period, many more high-z SNe had been discovered both from
ground-based observation and with Hubble Space Telescope. These data had
provided conclusive evidence for cosmic deceleration that preceded the present
epoch of cosmic acceleration (Riess et al., 2004).

The problem of interpreting � as quantum vacuum-energy The introduc-
tion of the cosmological constant in the GR field equation does not explain its
physical origin. In the inflation model the effective cosmological term represents
the false vacuum-energy of an inflation field. In fact, the cosmological constant

Fig. 9.11 Discovery of the decelerating
phase. Graph from (Riess et al., 2001). Loca-
tion of SN1997ff (because of measurement
uncertainties, shown as a patch on the right
side of the diagram) and other high z SNe
are plotted with respect to those for an empty
universe (the horizontal line) in a Hubble dia-
gram (cf. lower panel of Fig. 9.8). The black
spots follow an up-turning curve which rep-
resents the luminosity and redshift relation
showing continuing dimming as a mundane
astrophysical explanation would require.
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has a more fundamental physical interpretation—as the quantum mechanical
vacuum-energy9 (also called the zero-point energy). From the view of quantum 9The inflationary cosmology discussion

presupposes that the quantum vacuum
contribution to the cosmological constant is
negligibly small.

field theory, a vacuum state is not simply “nothingness.” The uncertainty
principle informs us that the vacuum has a constant energy density.10 How-

10In fact, QFT also pictures the vacuum as a
sea of sizzling activities with constant creation
and annihilation of particles.

ever, as we show in Section A.4 such an association leads to an estimate of
ρ� that is something like 10120 larger than the observed value (ρ� � ρc, the
critical density). Since it is off-the-mark by such a large factor (there are very
few numbers in physics as large as 10120), many thought that there must be
some yet-undiscovered-symmetry principle which would demand the quantum
vacuum-energy to be exactly zero.11 The dark energy driving the accelerating

11In Section A.4 we also illustrate this by the
example of “supersymmetry,” the invariance
between half-integer spin particles (fermions)
and integer spin particles (bosons).

expansion (cf. sidebar 5, p. 184) is suggested to have its physical origin in
something other than quantum zero-point energy. One possibility is that the
dark energy (with a density parameter �X � 0.7) is associated with some yet-
unknown scalar field (sometimes referred to as the “quintessence”), somewhat
akin to the association of the inflationary expansion to the inflation/Higgs field.
Such theories often have an equation-of-state parameter wX �= w� = −1.
However, observational data do not support a dark energy wX significantly dif-
ferent from the value of−1. For example, the deceleration parameter q0 can be
independently measured. Then the relation in Problem 8.10, from which (9.45)
was derived, implies

q0 = 1

2
[�M,0 + (1+ 3wX)�X] (9.48)

or

wX = 1

3

(
2q0 −�M,0

�X
− 1

)
. (9.49)

Thus �X � 0.7, �M,0 � 0.3, and an observed value of q0 � −0.6 (see
Table 9.1) would lead to wX = −0.95. The current observational data are
certainly consistent with the dark energy having just the property of the
cosmological constant as first theorized by Einstein.

9.5 The concordant picture

An overall coherent and self-consistent picture of the cosmos has emerged
that can account for the geometry and structure of the universe, as well as its
evolution onward from a fraction of a second after the big bang. In this section,
we first summarize the cosmological parameters and discuss the concordant
cosmological model that had emerged. Even though we have a consistent
picture, there are still many unsolved problems; we shall mention some of
them at the end of this chapter.

Ten cosmological parameters
Our previous discussion has concentrated on conceptually and technically sim-
pler approaches in obtaining cosmological parameters—counting and weighing
methods, plotting the Hubble curve (including data from high-redshift super-
novae), and light-element abundance, etc. These measurements have now
been confirmed and hugely improved by the analysis of very different phys-
ical phenomena: the CMB temperature anisotropy (in particular as measured
by WMAP) in combination with analysis of large-scale structure survey data
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(obtained in particular by 2dF and SDSS). While a presentation of the analysis
involved in the large-scale structure study is beyond the scope of this book, we
have briefly discussed the CMB anisotropy (cf. Sections 8.5.4 and 9.3): detailed
study of the power spectrum through a spherical harmonics decomposition can
be displayed as a curve (relative amplitude vs. angular momentum number)
with a series of peaks. The primary peak (i.e. the dominant structure) is at the
one degree scale showing that the spatial geometry is flat; the secondary peaks
are sensitive to other cosmological parameters such as the baryon contents of
the universe, �B � 0.04, etc. WMAP has a much improved angular resolution
compared to COBE, Fig. 9.12, this allowed us to add an array of cosmological
parameters (Table 9.1).

The standard model of cosmology
Cosmology has seen a set of major achievements over the past decade, to the
extent that something like a standard model for the origin and development of
the universe is now in place: the FLRW cosmology proceeded by an inflation-
ary epoch. Many of the basic cosmological parameters have been deduced in
several independent ways, arriving at a consistent set of results. These data are
compatible with our universe being infinite and spatially flat, having matter/
energy density equal to the critical density, �0 = 1. The largest energy com-
ponent �X � 0.7 is consistent with it being Einstein’s cosmological constant
�X = ��. In the present epoch this dark energy content is comparable in
size to the matter density �M � 0.3, which is made up mostly of cold dark
matter. The expansion of the universe will never stop—in fact having entered
the accelerating phase, the expansion will be getting faster and faster.

Fig. 9.12 The temperature fluctuation of
CMB is a snap-shot of the baby universe
at photon decoupling time. A comparison
of the results by COBE vs. WMAP shows
the marked improvement in resolution by
WMAP. This allowed us to extract many
more cosmological parameters from the latest
observations.

COBE

WMAP
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Table 9.1 Ten cosmological parameters (from Freedman and Turner 2003). The
left column is the combined analysis of published data; the right column the

first-year data from WMAP (Bennett et al., 2003). The equation numbers in the
central column refer to part of the text, where such parameters were discussed. The
first parameter h0 is the Hubble constant H0 measured in units of 100 (km/s)/Mpc

Parameter Description WMAP
value

h0 0.72± 0.07 Present expansion rate (7.7) 0.71
+0.04
−0.03

q0 −0.67± 0.25 Deceleration parameter (9.48) −0.66± 0.10
t0 13± 1.5 Gyr Age of the universe (9.44) 13.7± 0.2 Gyr
T0 2.725± 0.001 K CMB temperature (8.64)
�0 1.03± 0.03 Density parameter (9.33) 1.02± 0.02
�B 0.039± 0.008 Baryon density (8.58) 0.044± 0.004
�CDM 0.29± 0.04 Cold dark matter density (7.25) 0.23± 0.04
�ν 0.001− 0.05 Massive neutrino density
�X 0.67± 0.06 Dark energy density (9.40) 0.73± 0.04
wX −1± 0.2 Dark energy equation < −0.8

of state (9.49)

Still many unsolved problems
Although we have a self-consistent cosmological description, many mysteries
remain. We do not really know what makes up the bulk of the dark matter, even
though there are plausible candidates as predicted by some yet-to-be-proven
particle physics theories. The most important energy component is the myster-
ious “dark energy,” although a natural candidate is the quantum vacuum-energy.
Such an identification leads to an estimate of its size that is completely off the
mark (cf. Section A.4). If one can show that the quantum vacuum-energy must
somehow vanish due to some yet-to-be-found symmetry principle, a particular
pressing problem is to find out whether this dark energy is time-independent, as
is the case of the cosmological constant, or is it more like an effective Lambda
coming from some quintessence scalar field like the case of inflation. Despite
our lack of understanding of this dark energy, the recent discoveries constitute
a remarkable affirmation of the inflationary theory of the big bang. Still, even
here the question remains as to the true identity of the inflation/Higgs field. We
need to find ways to test the existence of such a field in some noncosmological
settings.

Besides the basic mystery of dark energy (“the cosmological constant
problem”) there are other associated puzzles, one of them being the “cosmic
coincidence problem”: we have the observational result that in the present epoch
the dark energy density is comparable to the matter density, �X � �M. Since
they scale so differently (�M ∼ a−3 vs. �X ∼ a0) we have �M � 1 in the
cosmic past, and �� � 1 in the future. Thus, the present epoch is very special—
the only period when they are comparable. Then the question is why? How do
we understand this requirement of fine tuning the initial values in order to have
�M � �X now?

A finite dodecahedral universe: a cautionary tale
It cannot be emphasized too much that the recent spectacular advances in
cosmology have their foundation in the ever-increasing amount of high pre-
cision observational data. Ultimately any cosmological theory will stand or
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Fig. 9.13 The angular power spectrum of
CMB temperature anisotropy. The dots are the
first-year data-points from WMAP. The the-
oretical curve follows from inflationary model
(having cold dark matter) with parameters
given in Table 9.1. The fan-shaped shaded
area at low multiple moments reflects the
uncertainty due to cosmic variance, cf. (8.89).
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fall, depending on its success in confronting experimental data. In this context
we offer the following cautionary tale.

An inspection of the CMB power spectrum in Fig. 9.13 shows that a few data
points in the large angle (low l) region tend to be lower than the theoretical curve
based on the standard cosmological model outlined above. This does not con-
cern most cosmologists because they are still in the shaded area corresponding
to the statistical uncertainty called cosmic variance (cf. (8.89)). Nevertheless,
it is possible to interpret these low data points as potential signature of a finite
universe. The weakness of quadrupole (l = 2) and octupole term (l = 3) can
be taken as lack of temperature correlation on scales greater than 60◦. Maybe
the space is not infinite and the broadest waves are missing because space is
not big enough to accommodate them. Our discussion above has shown the
evidence for the space being locally homogenous and isotropic. However, local
geometry constrains, but does not dictate, the shape of the space. Thus, it is
possible that the topology of the universe is nontrivial. Luminet et al. (2003)
constructed just such a model universe based on a finite space with a nontrivial
topology (the Poincaré dodecahedral space). It has a positive curvature with
�0 = 1.013, which is compatible with observation as listed in Table 9.1. One
of the ways to study the shape, or topology, of the universe is based on the idea
that if the universe is finite, light from a distant source will be able to reach us
along more than one path. This will produce matching images (e.g. circles) in
the CMB anisotropy. A search for such matching circles has turned out to be
negative (Cornish et al., 2004). Thus this finite universe model may in the end,
be ruled out by observation.

Our purpose in reporting this particular episode in the cosmological study is
to remind ourselves of the importance of keeping an open mind of alternative
cosmologies. This example showed vividly how drastically different cosmolog-
ical pictures can be based on cosmological parameters that are not that different
from each other. Thus, when looking at a result such as �0 = 1.03± 0.03 we
should refrain from jumping to the conclusion that data has already shown a
�0 = 1 flat universe. This shows the importance of acquiring high precision
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data, which will ultimately decide which model gives us the true cosmology.
On the other hand, while slight change of one or two parameters may favor
different cosmological models, it is the overall theoretical consistency and the
ability to account for a whole array of data in cosmology that ultimately allows
us to believe that the current concordant picture has a good chance to survive
future experimental tests.

Review questions

1. Use the first law of thermodynamics to show the con-
stancy of a system’s energy density (even as its volume
changes) requires this density to be equal to the negative of
its pressure.

2. A vacuum-energy dominated system obey Newton’s equa-
tion �2

� = −�c2, where � is a positive constant. What
is the gravitational potential �(r) satisfying this equa-
tion? From this, find the corresponding gravitational field
g(r) ≡ −∇�(r).

3. From the Friedmann Equation [1 − �(t)] =
−kc2/[ȧ(t)R0]2 and the fact that the universe has been
matter-dominated since the radiation–matter equality time
with redshift zRM = O(104), show that the deviation of
energy density ratio � from unity at tRM must be a factor
of 10,000 times smaller than that at the present epoch t0:

[1−�(tRM)] = [1−�(t0)] × 10−4.

Use this result (and its generalization) to explain the flatness
problem.

4. What is the horizon problem? Use the result that the angu-
lar separation corresponding to one horizon length at the
photon decoupling time is about one degree (for a flat
universe) to explain this problem.

5. Use a potential energy function diagram to explain the idea
of a phase transition in which the system is temporarily in
a “false vacuum.” How can such a mechanism be used to
give rise to an effective cosmological constant?

6. Give a simple physical justification of the rate equation
obeyed by the scale factor ȧ(t) ∝ a(t) in a vacuum-energy
dominated universe. Explain how the solution a(t) of such a
rate equation can explain the flatness and horizon problems.

7. How does the inflationary cosmology explain the origin of
mass and energy in the universe as well as the origin of the
cosmic structure we see today?

8. The CMB power spectrum can be divided into three regions.
What physics corresponds to each region?

9. How can the observed temperature anisotropy of the
CMB be used to deduce that the average geometry of the
universe is flat?

10. The age of a flat universe without the cosmological constant
is estimated to be 2

3 tH ≈ 9 Gyr. Why can an accelerating
universe increase this value?

11. What is a dark energy? How is it different from the dark
matter?

12. Give two reasons to explain why type Ia supernovae
are ideal “standard candles” for large cosmic scale
measurements.

13. Why should the accelerating universe lead us to observe the
galaxies, at a given redshift, to be dimmer than expected
(in an empty or decelerating universe)?

14. Why is the observation of supernovae with the high-
est redshifts (>0.7) in the decelerating phase taken to
be the convincing evidence that the accelerating universe
interpretation of SNe data (z: 0.2–0.7) is correct?

15. What is the cosmic coincidence problem?

16. What is the “standard model of cosmology”? In this model
is the space finite or infinite? What is its geometry? How
old is the universe? What is the energy/matter content of
the universe?

Problems

(9.1) Another form of the expansion equation Use either
the Friedmann equation or its quasi-Newtonian analog
of (8.11) to derive (9.25).

(9.2) The epoch-dependent Hubble constant and a(t) Use
(8.7) to replace the curvature parameter k in the
Friedmann Equation (8.1) to show the epoch dependence
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of the Hubble constant through its relation to the density
parameters as in (9.38).

(9.3) Luminosity distance and redshift in a flat universe
Knowing the redshift-dependence of the Hubble constant
from Problem 9.2 in a flat universe with negligible �R,0,
show that the Hubble curve dL(z) can be used to extract the
density parameters �M and �� from the simple relation

dL(z) = c(1+ z)
∫ z

0

cdz′

H0[�M,0(1+ z′)3 +��]1/2
.

(9.4) Negative � and the “big crunch” Our universe is spa-
tially flat with the dominant component being matter and
positive dark energy. Its fate is an unending exponential

expansion. Now consider the same flat universe but with
a negative dark energy �� = 1−�M,0 < 0, which pro-
vides a gravitational attraction [cf. (9.7)]. Show that this
will slow the expansion down to a standstill when the
scale factor reaches amax = (−��/�M,0)

1/3. The sub-
sequent contraction will reach the big crunch a(t∗) = 0
at the cosmic time t∗ = 2

3 π tH(−��)−1/2.

(9.5) Another estimate of deceleration/acceleration transi-
tion time Another simple way to estimate the decel-
eration/acceleration transition (“inflection”) time as the
epoch when the matter and dark energy components are
equal. Show that the redshift result obtained in this way
is comparable to that of (9.47).
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• We introduce the mathematical subject of tensors in a general coor-
dinate system and apply it to the four-dimensional continuum of
Minkowski spacetime.

• When physics equations are written as 4-tensor equations, they are
automatically unchanged under coordinate transformation, and hence
respect the principle of relativity. Such formalism is said to be
“manifestly covariant.”

• In the case of special relativity (SR), the coordinate transformations
are Lorentz transformations.

• xµ, ∂µ, Uµ, and pµ are the displacement, the gradient, the velocity,
and the momentum 4-vectors; the six components of the electric and
magnetic fields Ei and Bi form an antisymmetric tensor Fµν = −Fνµ.

• The Maxwell equation and charge conservation equation are presented
in manifestly covariant form.

• The energy–momentum tensor of a field system Tµν = Tνµ is
introduced and the physical meaning of its components discussed.

In the introductory Chapter 1 we emphasized the approach of relativity as the
coordinate symmetry. The principle of relativity says that physics equations
should be covariant under coordinate transformations. To ensure that this prin-
ciple is automatically satisfied, all one needs to do is to write physics equations
in terms of tensors. Tensors are mathematical objects having definite trans-
formation properties under coordinate transformations. The simplest examples
are scalars and vectors. If every term in an equation has the same tensor property,
that is, transforms in the same way under coordinate transformations, then the
relational form of the equation will not be altered under such transformations.
In the next three chapters, the full tensor formalism, hence the symmetry view-
point of relativity, will be explicated. In this chapter, we deal mainly with basic
tensors in the 4-dimensional (4D) spacetime. The formalism will be adequate
for global Lorentz transformations which are relevant for special relativity (SR).
In the next chapter, we discuss the topic of tensor equations that are covariant
under the local (position-dependent) transformation of general relativity.

10.1 General coordinate systems

Referring back to Section 2.3.1 where we first introduced general coordinates,
we recall that, in contrast to the Cartesian coordinate system in the Euclidean
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space, generally coordinate basis vectors may not be mutually perpendicular
and may have different length: ei · ej ≡ gij �= δij. This means that the bases
{ei}, as well as the metric gij, are not their own inverse. We have inverse bases
and inverse metric, distinctive from the bases and their metric. Let us denote
the inverse bases by a set of vectors {ei}. Our notation is that the bases have
subscript labels, while inverse bases have superscript labels. The inverse relation
is expressed as an orthonormality condition through dot products much like
(2.33):

ei · e j = δ
j
i . (10.1)

Furthermore, we have the completeness condition of
∑

i ei ⊗ ei = 1, where
the symbol ⊗ stands for “direct product.” There are n basis vectors, {ei} with
i = 1, 2, . . . , n. Each of the basis vectors in turn has components (ei)a with
a = 1, 2, . . . , n. Equation (10.1) can be written out as

∑
a(ei)a(e j)a = δ

j
i ,

while the completeness condition corresponds to the component multi-
plication of ∑

i

(ei)a(e
i)b = δab. (10.2)

(See Problem 10.1 for an illustrative example.) The dot products of the bases
are the metric functions:

ei · ej ≡ gij metric,

ei · e j ≡ gij inverse metric.
(10.3)

These metric matrices are inverse to each other,

gikgkj = δ
j
i (10.4)

through the condition (10.1). Again, we shall follow the Einstein summation
convention of summing over repeated upper and lower indices.

Covariant and contravariant vectors
Because there are two sets of coordinate basis vectors {ei} and {ei}, for each
vector V there can be two possible expansions:

Expansion of V Projections Component names

V = Viei V i = V · ei Contravariant components of V

V = Viei Vi = V · ei Covariant components of V

(10.5)

Repeated indices are summed in the expansions of the vector V. We shall often
refer to the contravariant and covariant components of a vector, for simplicity,
as contravariant vector and covariant vector. For a general rectilinear coordinate
system in a flat plane (Fig. 10.1), these two types of components can be visu-
alized as follows: the contravariant components are the parallel projections
of a vector onto the basis vectors, while the covariant components are
the perpendicular projections (hence parallel projections with respect to the
inverse bases).

e2

e1
V1

V

V2

V1

V2

a

Fig. 10.1 Contravariant components (V1,V2)

and covariant components (V1, V2) of a
vector V in a general coordinate system. For
the simple case of basis vectors having unit
length, they are seen to be related as V1 =
(V1 + V2 cos α) and V2 = (V1 cos α + V2).
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One of the principal advantages for introducing these two types of tensor
components is the simplicity of the resultant scalar product, which, after
using (10.1), can always be expressed as

V · U = (Viei) · (Uje j) = ViUj(ei · e j) = ViUi. (10.6)

If we had used expansion only in terms of the basis {ei}, or only the inverse
basis {ei}, we would have to display the metric tensors:

V · U = gijV
iU j = gijViUj. (10.7)

A comparison of (10.6) and (10.7) shows that tensor indices can be raised or
lowered through contractions with the metric tensors:

Vi = gijV
j, Vi = gijVj. (10.8)

As have already used in previous chapters (e.g. (4.8)), (10.7) can be taken as
our definition of the metric, especially the vectors are taken to be infinitesimal
displacement vectors dx · dx = ds2 = gijdxidx j.

Coordinate transformations
Under a coordinate change, the transformation of contravariant components
may be written as




V1

V2
...

Vn


 −→




V ′ 1
V ′ 2...
V ′ n


 =




L1
1 L1

2 . . . L1
n

L2
1 L2

2...
Ln

1 . . . Ln
n







V1

V2
...

Vn


.

Vis represent the components of the vector V in the original coordinate system,
while V ′is are those with respect to the transformed system. This relation can
be written in a more compact notation as (cf. Box 2.1 and Section 2.3.1)

Vi −→ V ′i = [L]ij V j. (10.9)

It is important to keep in mind that contravariant and covariant components
transform differently under a coordinate transformation. We will represent the
transformation of covariant components as

Vi −→ V ′i = [L̄] j
i Vj (10.10)

where [L̄] in (10.10) differs from [L] in (10.9). The transformation property of
a general tensor component can be illustrated by an example

Tk
ij −→ T ′kij = [L̄]li [L̄]mj [L]kn T n

lm. (10.11)

Namely, for each superscript index we have an [L] factor, and each subscript
index an [L̄]. Only if Tk

ij transform in this way, can they be considered as
tensor components. For example, the inverse metric gij having two contravariant
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indices must transform as

g′ij = [L]ik[L] j
l gkl, (10.12)

while the metric tensor transforms as

g′ij = [L̄]ki [L̄]ljgkl. (10.13)

The [L] and [L̄] transformations are in fact inverse to each other. We can see
this from the invariance of the scalar product U · V:

U ′kV ′k = UiV
i or Uj[L̄] j

k[L]ki V i = Ujδ
j
i V i. (10.14)

Thus

[L̄] j
k[L]ki = δ

j
i . (10.15)

Written as matrix relations, (10.15) is just [L̄][L] = 1. Equation (10.13)
shows that the transformation of the metric involves the inverse transformation
matrices as first shown in (2.45), as well as in Problem 4.3.

Remark: In a flat space, such as the Minkowski space of SR, for which we can
always use a coordinate system so that the metric is position independent, we
also have an invariant g′ = g. Equation (10.13) becomes g = [L̄]g[L̄�] which
was used in Section 2.3.2 to derive the explicit form of Lorentz transformation.
We should emphasize that the condition g′ij = gij is not possible for a curved
space. While the tensor formalism remains basically the same, there is the
key difference of basis vectors being necessarily position-dependent, {ei(x)}.
Consequently, the metric tensors gij = ei · e j must also be position-dependent,
and they always transform nontrivially under coordinate transformations,
g′ij �= gij.

10.2 Four-vectors in Minkowski spacetime

As discussed in Section 2.3, Lorentz transformations may be viewed as
“rotations” in the 4D spacetime. Hence if physical quantities are represented by
4-vectors and 4-tensors, the resultant physics equations will automatically be
invariant under Lorentz transformation—these equations will be, manifestly,
relativistic. The position-time components xµ (the Greek index µ ranges from
0 to 3) are naturally contravariant components of the 4-position vector because
they are the coefficients of expansion of the position-time vector onto the basis
axes,1 x = xµeµ:1For the 4D space µ = 0, 1, 2, 3 the frame

formed by the set of four basis vectors {eµ}
is referred to as a tetrad (or, in German, as
a Vierbein).

xµ = (x0, x1, x2, x3) = (ct, x, y, z). (10.16)

For Minkowski spacetime the space–time interval

s2 = −(x0)2 + (x1)2 + (x2)2 + (x3)2 = ηµνxµxν (10.17)

has the same value with respect to every inertial observer. This can be interpreted
as defining the metric for the flat Minkowski space,

gµν = diag(−1, 1, 1, 1) ≡ ηµν . (10.18)
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Under a Lorentz transformation, the new components are related to the
original ones by

xµ → x′µ = [L]µν xν . (10.19)

Specifically, for a boost with a velocity v in the +x direction, we have
(cf. (2.60)) 


ct′
x′
y′
z′


 =




γ −βγ

−βγ γ

1
1







ct
x
y
z


 , (10.20)

where β and γ are defined in (2.14). Because the metric is given by (10.18) the
covariant displacement vector (in contrast to contravariant vector) is given by:

xµ = ηµνxν = (−ct, x, y, z). (10.21)

The contraction between contravariant and covariant components is the
invariant interval and is related to the proper time τ :

s2 = xµxµ = −c2t2 + x2 + y2 + z2 = −c2τ 2. (10.22)

Now let’s consider the coordinate transformation [L̄] for the covariant
components,

Vµ −→ V ′µ = [L̄]νµVν . (10.23)

[L] and [L̄] are inverse to each other. For a boost transformation [L] as
given in (10.20) the corresponding [L̄] transformation can be obtained by the
replacement of (β →−β):

[L̄] =




γ βγ

βγ γ

1
1


 . (10.24)

The del operator
From calculations in Chapter 2 (see Problem 2.3 in particular) we know that the
4-gradient operator transforms according to an inverse Lorentz transformation

∂

∂xµ
−→ ∂

∂x′µ
= [L̄]νµ

∂

∂xν
. (10.25)

Equation (10.23) then makes it clear that, while displacement vector xµ is
naturally contravariant as in (10.19) and (10.21), the del operator is naturally
covariant. We shall often use the notation ∂µ to represent this covariant del
operator:

∂µ ≡ ∂

∂xµ
=
(

1

c

∂

∂t
,

∂

∂x
,

∂

∂y
,

∂

∂z

)
, (10.26)

and the corresponding contravariant del-operator

∂µ = ηµν∂ν =
(
−1

c

∂

∂t
,

∂

∂x
,

∂

∂y
,

∂

∂z

)
. (10.27)

A contraction of the two operators in (10.26) and (10.27) leads to the Lorentz-
invariant 4-Laplacian (D’Alembertian) operator:

� ≡ ∂µ∂µ = − 1

c2

∂2

∂t2
+ ∇2,
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with the Laplacian operator being∇2 = (∂2/∂x2)+(∂2/∂y2)+(∂2/∂z2). Thus
the relativistic wave equation has the form of �ψ = 0.

The velocity 4-vector
We have already shown in Chapter 2 (cf. (2.21)–(2.24)) that velocity compon-
ents have a rather complicated Lorentz transformation property. This is because
ordinary velocity dxµ/dt is not a proper 4-vector: while dxµ is a 4-vector, the
ordinary time coordinate t is not a Lorentz scalar—it is a component of a
4-vector. This suggests that to have a velocity satisfying simple Lorentz trans-
formation, we should differentiate the displacement with respect to the proper
time τ , which is a Lorentz scalar:

Uµ = dxµ

dτ
. (10.28)

Still, the relation between the 4-velocity Uµ and dxµ/dt can be readily deduced.
Coordinate time and proper time being related by the time dilation relation of

t = γ τ (10.29)

with

γ =
(

1− v2

c2

)−1/2

with vi = dxi

dt
, (10.30)

we have

Uµ = dxµ

dτ
= γ

dxµ

dt
= γ (c, v1, v2, v3). (10.31)

It is easy to check the invariance of UµUµ ≡ U2:

U2 = γ 2(−c2 + v2) = −c2. (10.32)

Remark: In Chapter 6, where motion in the Schwarzschild spacetime was
discussed, we have used the Lagrangian L = gµν ẋµẋν where ẋµ = dxµ/dτ

can be interpreted as the 4-velocity of the particle. Thus L = U2 = −c2 for
a material test particle (6.40). It should be noted that because there is no rest
frame for the photon, the corresponding concept of 4-velocity as differentiation
of displacement with respect to proper time does not exist. In that case, one can
replace τ by the curve parameter of a photon’s worldline; then the connection
to a time coordinate is lost.

The relativistic momentum
For momentum, we naturally consider the product of invariant mass m with
4-velocity:

pµ ≡ mUµ = γ (mc, pNR), (10.33)

where we have used (10.31) with pNR = mv being the nonrelativistic
momentum. Namely, the 1, 2, 3 components of pµ are the relativistic gen-
eralization of the ordinary momentum, p = γ mv. What then is the zeroth
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component of the 4-momentum? Let’s take its nonrelativistic limit:

p0 = mcγ = mc

(
1− v2

c2

)−1/2
NR−→ mc

(
1+ 1

2

v2

c2
+ · · ·

)

= 1

c

(
mc2 + 1

2
mv2 + · · ·

)
. (10.34)

The presence of the kinetic energy term 1
2 mv2 in the nonrelativistic limit nat-

urally suggests that we interpret cp0 as the relativistic energy E = γ mc2, which
has a nonvanishing value mc2 even when the particle is at rest v = 0:

pµ =
(

E

c
, p
)

. (10.35)

Because the invariant square of the 4-velocity is −c2, (10.32), the invariant
square of the 4-momentum must be−(mc)2. From this we obtain the important
relativistic energy–momentum relation:

E2 = (mc2)2 + (pc)2. (10.36)

In summary, we have the relativistic 3-momentum p = γ mv, and the
relativistic energy E = γ mc2, which encompasses the rest (γ = 1) energy of

E = mc2. (10.37)

Remark: The concept of a velocity-dependent mass m∗ ≡ γ m is sometimes
used in the literature so that p =m∗v and E = m∗c2. In our discussion we will
avoid such a usage and restrict ourselves only to the Lorentz scalar mass m,
which is equal to m∗ in the rest frame of particle m∗|v=0 = m—hence called
the rest mass.

Covariant force
Just as the ordinary velocity v has a complicated Lorentz property and we intro-
duced the object of 4-velocity, it is also not easy to relate different components
of the usual force vector F = dp/dt in different moving frames. The notions
of 4-velocity and 4-momentum naturally lead us to the definition of 4-force,
or the covariant force, as

Kµ ≡ dpµ

dτ
= m

dUµ

dτ
, (10.38)

which, using (10.35), has components

Kµ = dpµ

dτ
= γ

d

dt

(
E

c
, p
)
= γ

(
Ė

c
, F
)

. (10.39)

Next we show that the rate of energy change Ė is given, just as in nonrelativistic
physics, by the dot-product F · v. From (10.38)

KµUµ = m
dUµ

dτ
Uµ = 1

2
m

d

dτ
UµUµ = 0, (10.40)

because U2 is a constant. Substituting in the components of Kµ and Uµ from
(10.39) and (10.31), we have

KµUµ = γ 2(−Ė + F · v) = 0. (10.41)
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Hence the components of the covariant force can be displayed,

Kµ = γ

(
F · v

c
, F
)

. (10.42)

In Box 10.1 we discuss another familiar 4-vector, with frequency and wave
number as its components.

Box 10.1 The wave vector

Recall that for a dynamic quantity A(x, t) to be a solution to the wave
equation, its dependence on the space and time coordinates must be in
the combination of (x − vt), where v is the wave velocity. A harmonic
electromagnetic wave is then proportional to exp i(k·x−ωt) with k = |k| =
2π/λ being the wave number, ω = 2π/T being the angular frequency, and
they being related to the light velocity as ω/k = c.

The phase factor (k · x − ωt), basically counting the number of peaks
and troughs of the wave, must be a frame-independent quantity, that is,
a Lorentz scalar,

k · x − ωt = (−ct, x)

(
ω/c

k

)
≡ xµkµ.

From our knowledge that (ct, x) is a 4-vector and xµkµ a scalar, we
conclude (via the quotient theorem, Problem 10.6) that ω and k must also
form a 4-vector:

kµ =
(ω

c
, kx, ky, kz

)
. (10.43)

Namely, under the Lorentz transformation, the components of this wave
vector change into each other as

kµ −→ k′µ = [L]µν kν . (10.44)

Specifically under a Lorentz boost in the+x direction with reduced velocity
β = ν/c, we have (cf. Eq. (10.20))

k′x = γ
(

kx − β
ω

c

)
, (10.45)

ω′ = γ (ω − cβkx) = γ (ω − cβk cos θ), (10.46)

where θ is the angle between the boost direction x̂ and the direction of wave
propagation k̂. In this way we have the relativistic Doppler formula,

ω′ = (1− β cos θ)√
1− β2

ω, (10.47)

which is to be compared to the nonrelativistic Doppler relation ω′ =
(1 − β cos θ)ω. We note that in the NR limit there is no Doppler shift in
the transverse direction θ = π/2—compared to the relativistic “transverse
Doppler effect” of ω′ = γω. (One can trace back the origin of this new
effect as due to the SR time dilation effect.) In the longitudinal direction
θ = 0 we have the familiar relation of

ω′

ω
=
√

1− β

1+ β
. (10.48)

Because of the ω = ck relation kµ has a nil invariant length, kµkµ = 0.
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10.3 Manifestly covariant formalism for E&M

It has already been shown in Chapter 2 (cf. Box 2.1) that electromagnetic
theory respects the principle of relativity. In this section, we will present the
equations of electromagnetism in “manifestly covariant form.” Namely, they
will be written in a form making it obvious that these relations do not change
under Lorentz transformations.

10.3.1 The electromagnetic field tensor

Relativity unifies space and time, and space and time coordinates become
components of a common vector in the covariant formalism. They can be trans-
formed into each other when viewed in different inertial frames. Relativity also
makes clear the unification of electricity and magnetism, as E and B fields
can be transformed into each other by Lorentz transformations, (2.18), and
they must be elements belonging to the same tensor (Box 10.2). The six fields,
Ei and Bi, (i = 1, 2, 3), are independent elements of a common antisymmetric
Fµν = −Fνµ 4-field tensor, with the assignment of

F0i = −Ei, Fij = εijkBk , (10.49)

where εijk is the totally antisymmetric Levi–Civita symbol with ε123 = 1.
Explicitly writing out (10.49), we have

Fµν =




0 −E1 −E2 −E3

E1 0 B3 −B2

E2 −B3 0 B1

E3 B2 −B1 0


 (10.50)

or

Fµν = gµλFλρgρν =




0 E1 E2 E3

−E1 0 B3 −B2

−E2 −B3 0 B1

−E3 B2 −B1 0


 . (10.51)

It is also useful to define the dual field tensor

F̃µν ≡ −1

2
εµνλρFλρ , (10.52)

where εµνλρ is the 4D Levi–Civita symbol2 with ε0ijk = εijk and thus 2The Levi–Civita symbol in an n-dimensional
space is a quantity with n indices. Thus, in a
3D space we have εijk with (i = 1, 2, 3), and
in a 4D space, εµνλρ , etc. They are totally anti-
symmetric: an interchange of any two indices
results in a minus sign: εijk = −εjik = εjki,
etc. Thus, they vanish whenever any two
indices are equal. All the nonzero elements
can be obtained by permutation of indices
from ε12 = ε123 = ε0123 ≡ 1. Among their
utilities, they can be used to express the cross-
product of vectors, (A× B)i = εijkAjBk . For
further discussion, see Section 11.3.

ε0123 = 1. Namely,
F̃0i = −Bi, F̃ij = −εijkEk (10.53)

or explicitly

F̃µν =




0 −B1 −B2 −B3

B1 0 −E3 E2

B2 E3 0 −E1

B3 −E2 E1 0


 . (10.54)

Box 10.2 Lorentz transformation of the EM fields

With respect to moving observers, the electric and magnetic fields transform
into each other. That they are components of a 4-tensor means that they
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must transform according to (10.11), as:

Fµν −→ F ′µν = [L]µλ [L]νρFλρ . (10.55)

The explicit form of this transformation under a boost (see (10.20)) is
given by




0 E′1 E′2 E′3
−E′1 0 B′3 −B′2
−E′2 −B′3 0 B′1
−E′3 B′2 −B′1 0


 =




γ −βγ

−βγ γ

1
1




×




0 E1 E2 E3

−E1 0 B3 −B2

−E2 −B3 0 B1

−E3 B2 −B1 0







γ −βγ

−βγ γ

1
1


 .

(10.56)

One can easily check that the relation given by the tensor transformation
(10.56) is just the Lorentz transformation (E, B) → (E′, B′) as shown
in (2.18).

The dual tensor F̃µν has the same Lorentz transformation property as the
tensor Fµν itself.4 From this we deduce that under Lorentz transformation
there are two combinations of the electromagnetic fields that are invariant
(products among Fµν and F̃µν with all indices contracted):

FµνFµν ∝ (E2 − B2) (10.57)

and

Fµν F̃µν ∝ (E · B). (10.58)

NB: The combination E2 +B2 is not a Lorentz scalar. It, being the energy
density, transforms as a component of the energy–momentum tensor, which
we shall discuss in Box 10.5.

4Fµν and F̃µν transform differently under
space reflection. As a result, (E2 − B2) is a
scalar and (E · B) a pseudoscalar. Also we
have FµνFµν = F̃µν F̃µν .

We now use the field tensor Fµν to write the equations of electromagnetism
in a form that clearly displays their Lorentz covariance.

Lorentz force law
Using (10.49) one can easily show that the electromagnetic equation of motion

F = q

(
E+ 1

c
v × B

)
(10.59)

is just the covariant Lorentz force law

Kµ = q

c
FµνUν . (10.60)

with µ taking on the spatial indices (1, 2, 3). The interpretation of µ = 0 is left
as an exercise.
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Inhomogeneous Maxwell’s equations
Gauss’s and Ampere’s laws in (2.17)

∇ · E = ρ, ∇ × B− 1

c

∂E
∂t
= j

c
, (10.61)

are contained in the covariant Maxwell’s equation

∂µFµν = −1

c
jν , (10.62)

where the electromagnetic 4-current is given as

jµ = ( j0, j) = (cρ, j). (10.63)

Homogeneous Maxwell’s equations
Faraday’s and magnetic-Gauss’s laws in (2.16)

∇ × E+ 1

c

∂B
∂t
= 0, ∇ · B = 0 (10.64)

are contained in the “Bianchi identity” of the EM field tensor (Box 10.3)

∂µFνλ + ∂λFµν + ∂νFλµ = 0. (10.65)

Alternatively, the homogeneous equations can be written as (Problem 10.12)

∂µF̃µν = 0. (10.66)

Remark: Written in (10.62) and (10.66), it is clear that Maxwell’s equations
in the free space (i.e. jµ = 0) are invariant under the duality transformation
of Fµν → F̃µν , namely, a 90◦ rotation in the plane spanned by perpendicular
E and B axes: E → B and B →−E.

Box 10.3 EM potential and gauge symmetry

The homogeneous Maxwell’s Eq. (10.66) εµνλρ∂µFλρ = 0 can be solved by
expressing the field tensor in terms of the electromagnetic 4-potential Aµ:

Fλρ = ∂λAρ − ∂ρAλ. (10.67)

Equation (10.67) is just the familiar relation between EM fields and the
scalar and vector potentials (φ, A) = Aµ:

B = ∇ × A, E = −∇φ − ∂

∂t
A. (10.68)

The dynamics of the EM potentials is then determined by the inhomo-
geneous Maxwell’s Eqs (10.62) after replacement of (10.67). This simpli-
fies the description by reducing the number of dynamical variables from
six in Fµν down to four Aµ. However, the correspondence between Fµν

and Aµ is not unique because of the relation (10.67), hence the Maxwell’s
equations are invariant under the “gauge transformation”

Aµ −→ A′µ = Aµ − ∂µχ , (10.69)

where χ(x) is an arbitrary spacetime dependent scalar function, (called the
gauge function). A change of the potential according to (10.69) will not
alter the electromagnetic description by E and B fields.
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10.3.2 Electric charge conservation

When the 4-del operator ∂ν is applied to the inhomogeneous Maxwell’s
Eq. (10.62), the left-hand side (LHS) vanishes because the combination ∂ν∂µ is
symmetric in (µ, ν) while Fµν is antisymmetric. This implies that the right-hand
side (RHS) must also vanish:

∂ν jν = 0. (10.70)

To investigate the physical meaning of this 4-divergence equation, we display
its components as shown in (10.63):

∂ρ

∂t
+ ∇ · j = 0, (10.71)

which is the familiar “equation of continuity.” If we integrate every term over
the volume,

d

dt

∫
V

ρdV = −
∫

V
∇ · jdV = −

∮
S

j · dσ , (10.72)

where we have used the divergence theorem to arrive at the last integral (over
the closed surface S, covering the volume V ). This expression clearly shows
the physical interpretation of this equation as a statement of electric charge
conservation: the RHS shows the in-flow of electric charge across the surface
S (flux) resulting in an increase of charge in the volume V , as expressed on the
LHS. As a general rule, the expression of any conservation laws in systems of
continuous media (e.g. a field system) is in the form of continuity Eq. (10.71),
or more directly as the vanishing 4-divergence condition (10.70).

10.4 Energy–momentum tensors

We have just studied the electromagnetic current

jµ = (cρ, j), (10.73)

where ρ is the electric charge and j the current density. More explicitly the
x-component can be written out as

j1 = �q

(�y�z)�t
= ρvx. (10.74)

We have the relation between charge–current–density and charge–density
as j = ρv, where v is the velocity field. Thus, (10.73) may be written
as jµ = ρ(c, v). We can also replace the density by the rest frame density ρ′
(which is a Lorentz scalar) through the relation ρ = γρ′ (reflecting the usual
Lorentz length/volume contraction) to relate it to the 4-velocity field,

jµ = ρ′γ (c, v) = ρ′Uµ. (10.75)

This shows explicitly that, ρ′ being a scalar, jµ is a bona fide 4-vector.
Electric charge conservation can be expressed as a 4-divergence condition

(10.70). Other conservation laws can all be written similarly. For example,
instead of charge, if we consider the case of mass, we can similarly define
a mass-current 4-vector as (10.73):

jµ = (cρ, j) = (c×mass density, mass current-density) (10.76)

and (10.70) becomes a statement of mass conservation.
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In the same manner, we can consider a 4-current for energy ( p0 = E/c):

J(0)µ =
(

energy density,
1

c
× energy current–density

)
, (10.77)

as well as the 4-current for the ith momentum component ( pi):

J(i)µ = (c× pi density, pi current–density). (10.78)

The factor of c in the last line originates from the current normalization: (cρ, j).
These four 4-currents, J(0)µ and J(i)µ (with i = 1, 2, 3), are not independ-
ent because, unlike charge and mass, energy and momentum components
transform into each other under a Lorentz transformation. That is, they them-
selves form a 4-vector: ( p0, pi) = pµ. This suggests that we need to place
these four (ν = 0, i) 4-currents J(ν)µ (µ = 0, j) together in one multiplet, in the
form of a 4× 4 matrix:

T νµ =
(

J(0)µ

J(i )µ

)
=
(

J(0)0, J(0)j

J(i )0, J(i )j

)
, (10.79)

called the (symmetric) energy–momentum tensor Tµν . We are particularly
interested in this quantity because energy and momentum being the source
of gravity, Tµν enters directly in the the relativistic field equation of gravity.
(This Einstein equation, first displayed in Section 5.3.2, will be discussed in
detail in Section 12.2.) Here we first examine the physical meaning of each
component of this tensor Tµν :

• T00 = J(0)0 = energy density, cf. (10.77).
• T0i = J(0)i = ith-component of ((1/c) of energy) current–density,

cf. (10.77). For example,

T01 = γ mc2/c

(�y�z)�t
= mc

�V
γ

�x

�t
= ρ′cγ vx = ρ′c2

c
Ux. (10.80)

• Ti0 = J(i)0 = c× density of ith-momentum component, cf. (10.78).
For example,

T10 = c
γ mvx

�V
= ρ′cUx. (10.81)

We see that momentum density Ti0 is equal to the energy current T0i.
• Tij = J(i)j = the jth component of the ith-momentum current density.

We note that the diagonal i = j momentum current Tii has the simple
interpretation of being the pressure:

momentum–current = momentum

(area)⊥�t
= force

(area)⊥
= pressure, (10.82)

where we have used the fact the rate of momentum change is force.
Clearly, the off-diagonal terms would involve shear forces. Also, just as
Ti0 = T0i, it is straightforward to show that Tij = Tji. Thus, in general,

T νµ = Tµν . (10.83)

T νµ is a symmetric tensor.

Energy momentum conservation, for an isolated system, is then expressed as

∂µTµν = 0. (10.84)
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If the system is subject to some external force field, the RHS will then be the
force density field,

∂µTµν = φν . (10.85)

This is analogous to the single particle case where the change of momentum is
related to force: dpµ/dτ = Kµ; in the absence of any external force, we have
momentum conservation: dpµ/dτ = 0.

A swarm of noninteracting particles
Let us construct the energy–momentum tensor for the simplest system of a
swarm of noninteracting particles, a “cloud of dust.” First consider a coordinate
system, in which each position label is carried by the particles themselves.
In such comoving frames, all particles have a fixed position-coordinate at all
times, thus with respect to this coordinate system all particles are effectively
at rest (v = 0, γ = 1), the 4-velocity field takes on a simple form of Uµ =
(c, 0). The only nonvanishing energy–momentum tensor term is the rest energy
density T00:

Tµν =




ρ′c2

0
0

0


 , (10.86)

where ρ′ is the mass density in this comoving (i.e. rest) coordinate system.
But in this reference frame we can also write the above tensor in terms of the
4-velocity field Uµ = (c, 0) as

Tµν = ρ′UµUν . (10.87)

Even though we have arrived at this expression for Tµν in a particular
coordinate frame, because this equation is a proper tensor equation (i.e. every
term has the same tensor property), it is covariant under coordinate transforma-
tions. Consequently this expression is also valid in every inertial frame, and
hence is the general expression of the energy–momentum tensor for this system
of noninteracting particles.

Ideal fluid
We now consider the case of an ideal fluid, in which fluid elements interact
only through a normal (perpendicular) force. Namely, there is no shear force
(thus Tij = 0 for i �= j). This implies that in this system there is pressure but
no viscosity. So to obtain the Tµν of an ideal fluid from that in (10.86), all we
need to do is to add pressure terms (cf. (10.82)) in the (i, i) diagonal positions:

Tµν =




ρ′c2

p
p

p


 =

(
ρ′ + p

c2

)
UµUν + pηµν . (10.88)

The equality of T11 = T22 = T33 = p expresses the isotropy property of
the ideal fluid. Namely, the pressure applied to a given portion of the fluid
is transmitted equally in all directions and is everywhere perpendicular to the
surface on which it acts. Also, because the given volume element is at rest in the
comoving frame, its momentum density also vanishes, T0i = Ti0 = 0. Similar
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to the above-discussed cloud of dust case, the proper tensor expression on the
RHS of (10.88) means that this expression is valid for all coordinate frames.
The nonrelativistic limit of an ideal fluid’s energy momentum tensor, and its
relation to Euler’s equation for fluid mechanics, are considered in Box 10.4.

Box 10.4 Nonrelativistic limit and the Euler’s equation

It is instructive to consider the nonrelativistic limit (γ → 1) of the energy–
momentum tensor of an ideal fluid. As the rest energy dominates over
pressure (which results from particle momenta) ρc2 � p, the tensor in
(10.88) takes on the form of

Tµν NR=
(

ρc2 ρcvi

ρcvj ρvivj + pδij

)
. (10.89)

Let us now examine the conservation law ∂µTµν = 0 for this nonrelativistic
system. (In the following discussion we shall often use the expression for
mass current density j = ρv.)

• ∂µTµ0 = ∂0T00 + ∂iT i0 = c(∂ρ/∂t + ∇ · j) = 0, which is just the
continuity equation, expressing mass conservation.

• ∂µTµj = ∂0T0j + ∂iT ij = ∂tρvj + ∂i(ρvivj + pδij) = 0, which is
Euler’s equation of fluid mechanics:

ρ

[
∂v
∂t
+ (v · ∇)v

]
= −∇p. (10.90)

To see the physical significance of the terms in this equation, let us recall
that, the pressure p being the force per unit area, the total force acting on a
closed surface is given by

−
∮

S
pdσ = −

∫
V
∇pdV .

Thus −∇pdV is seen as the force acting on a fluid element having a
volume dV ,

−∇pdV = (ρdV)
dv
dt

, (10.91)

where dv/dt represents the rate of change of velocity of a fluid element as
it moves about in space. Namely, here v is the velocity field and depends
on time as well as on the spatial position:

dv
dt
= ∂v

∂t
+ dx

dt

∂v
∂x
+ dy

dt

∂v
∂y
+ dz

dt

∂v
∂z
= ∂v

∂t
+ (v · ∇)v. (10.92)

Namely, Euler’s Eq. (10.90) is just the “F = ma equation” for fluid
mechanics,

ρ
dv
dt
= −∇p. (10.93)

The electromagnetic field is a physical system carrying energy and momen-
tum. In Box 10.5 we discuss the Tµν for such a system.
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Box 10.5 Tµν of the electromagnetic field

It can be shown5 that the energy–momentum tensor for an electromagnetic
field is

Tµν = 1

2
ηαβ(FµαFνβ + F̃µαF̃νβ) = ηαβFµαFνβ − 1

4
ηµνFαβFαβ ,

(10.94)
where we have used the identity

ηαβ(FµαFνβ − F̃µαF̃νβ) = 1

2
ηµνFαβFαβ . (10.95)

This relation can be proven by summing over Levi–Civita symbols appear-
ing in the definition of the dual fields F̃µα and F̃νβ , or by direct
multiplication of field tensor matrices of (10.50) and (10.54). From the com-
ponent expression of the field tensor, one can easily check (Problem 10.15)
that T00 = 1

2 (E2 + B2) and T0i = (E × B)i, which are, respectively,
the familiar EM expressions for the energy density and the energy current
density (the Poynting vector).

For the simpler case of free space jµ = 0, we expect to have conservation
of field energy–momentum ∂µTµν = 0. This can be checked as follows:

∂µTµν = ηαβFµα(∂µFνβ)− 1

2
ηµνFαβ(∂µFαβ)

= Fαβ(∂αFνβ)− 1

2
Fαβ(∂νFαβ)

= Fαβ(∂αFνβ)+ 1

2
Fαβ(∂βFνα + ∂αFβν)

= 1

2
Fαβ(∂αFνβ + ∂βFνα) = 0, (10.96)

where on the first line we have used Maxwell’s Eq. (10.62) for jµ = 0,
to reach the second line we have relabeled some dummy indices, to reach
the third line we have used Maxwell’s Eq. (10.65), to reach the fourth
line we have used the antisymmetric property of Fνβ = −Fβν , and the last
equality follows from the fact that the antisymmetric Fαβ is contracted with
the combination in the parenthesis, which is symmetric in (α, β).

For the case where there are charged particles in the space so that jµ �= 0,
energy and momentum are stored in the field as well as in the motion of
the charged particles,

Tµν = Tµν

field + Tµν

charge, (10.97)

where Tµν

charge = ρ′massU
µUν , with ρ′mass being the proper mass density of

the charged particles. It can be shown (Problem 10.16) that neither Tµν

field
nor Tµν

charge are conserved, but their divergences mutually cancel so that
∂µTµν = 0. Thus for the system as a whole, energy and momentum are
conserved.

5This is usually obtained by relating the
energy–momentum tensor to the variations of
the Lagrangian density of the field system.
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Review questions

1. What are the covariant and contravariant components of
a vector? Why do we need these two kinds of vector (tensor)
components?

2. Write out the Lorentz transformation of coordinates (t, x) for
a boost v = vx̂, and of the differential operators
(∂t ,�).

3. Why do we say that the position 4-vector xµ is naturally
contravariant and the del operator ∂µ is naturally covariant?

4. Contravariant and covariant vectors transform differently.
How are their transformations related?

5. Write the coordinate transformation for a mixed tensor
Tµ

ν −→ T
′µ
ν .

6. Why is dxµ/dt not a 4-vector? How is the velocity 4-vector
related to this dxµ/dt?

7. What are the relativistic expressions of energy and
3-momentum? Derive their invariant relation.

8. What does one mean by saying that the inhomogeneous
Maxwell’s equation ∂µFµν = −jν/c is manifestly covari-
ant? Show that this equation also includes the statement of
electric charge conservation.

9. What is the physical interpretation of the components in Tµν?

10. Write out the elements of Tµν for an ideal fluid in the rest
frame of a fluid element (the comoving frame).

Problems

(10.1) Basis and inverse basis vectors: a simple exercise
Basis vectors for a two-dimensional space is given
explicitly as

e1 = a

(
1
0

)
and e2 = b

(
cos θ

sin θ

)

(a) Find the inverse basis vectors {ei} so that
ei · e j = δij

(b) Write out the metric tensors gij and gij so that∑
j gijg jk = δik

(c) Show that the sum of outer products is the iden-
tity matrix,

∑
i ei⊗ ei = 1. This is an expression

of the completeness condition of (10.2).

(10.2) Perpendicular vs. parallel projections In a coord-
inate system with nondiagonal unit base vectors: e2

1 =
e2

2 = 1, and e1 · e2 = cos α, as shown in Fig. 10.1,
you can use the matrix form (2.34) for the metric
to check (geometrically) the relations (10.8) between
the perpendicular and parallel projections as drawn in
Fig. 10.1.

V1 = g11V1 + g12V2 = V1 + (cos α)V2. (10.98)

(10.3) Coordinate transformations and permutation
symmetry If a tensor has some symmetry propert-
ies, for example, Tij ± Tji = 0, after a coordinate
transformation, the transformed tensor still has the
same properties; in this case, T ′ij ± T ′ji = 0.

(10.4) Transformations: components vs. basis vectors The
reason that Vi are called the contravariant components
and Vi the covariant components is that they trans-
form “oppositely” and “in the same way” as the base
vectors ei. From the definitions given in (10.5), explain
why there must be such relations.

(10.5) gij is a tensor We have called gij = ei · ej a tensor.
Demonstrate that (a) the metric definition does imply
the requisite transformation property; (b) use the role
played by metrics in the contractions UiV jgij or UiVjgij

to confirm these transformation properties.

(10.6) The quotient theorem This theorem states that in a
tensor equation such as Aµν = CµλρBλρ

ν , if we know
that Aµν and Bλρ

ν are tensors, then the coefficients Cµλρ

must also form a tensor. Show that the proof, that gij

is a set of tensor components, in Problem 10.5(b) is an
illustration of the quotient theorem.

(10.7) Lorentz transform and velocity addition rule Use
the Lorentz transformation property of the velocity
4-vector to derive the velocity addition rule (2.24).

(10.8) Gravitational redshift: another derivation Instead of
considering a spaceship in free fall, one can use the
equivalence of the spaceship at rest in a gravitational
field−g to a spaceship moving upward with an acceler-
ation a = g. Use the Lorentz frequency transformation
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of SR as given in (10.48) to derive the gravitational fre-
quency shift (3.24) by noting that the receiver will be
an observer in motion.

(10.9) Antiproton production threshold Because of baryon
number conservation, the simplest reaction to pro-
duce an antiproton p̄ in a proton–proton scattering is
pp → pppp̄. Knowing that the rest energy of a proton
mpc2 = 9.4 GeV, use the invariant pµpµ to find the
minimum kinetic energy a proton must have in order
to produce an antiproton after colliding with another
proton at rest.

(10.10) Covariant Lorentz force law Check that the
µ = 0 component of (10.60) does have the correct
interpretation as the time component of a covariant
force K0 = γ F · v/c as required by (10.42).

(10.11) Manifestly covariant Maxwell’s equations Use
(10.49) and (10.53) to check that components of
(10.62) and (10.66) are just the Maxwell equations of
(10.61) and (10.64).

(10.12) Homogeneous Maxwell’s equations Explicitly
demonstrate that the two forms of the homogeneous
Eqs (10.65) and (10.66) are equivalent. Suggestion:
Start with Eq. (10.66) with ν = 0 to derive Eq. (10.65).

(10.13) Electromagnetic potentials Verify the solution
(10.67) of the homogeneous Maxwell equation, by
substituting it into (10.65).

(10.14) Tµν for a swarm of dust Use the explicit form of
ρ ′UµUν in ( 10.87) for Tµν to check the physical mean-
ing of the elements of the energy–momentum tensor as
discussed in the text.

(10.15) Tµν for electromagnetic field Check the physical
meaning of the elements of the energy–momentum
tensor (10.94) for electromagnetic fields as given in
the discussion prior to (10.83).

(10.16) Tµν for a system of EM field and charges Show
that neither Tµν

field of (10.94) nor Tµν

charge of (10.97) is
conserved, but their divergences mutually cancel so
that ∂µTµν = 0. Thus, for the system as a whole,
energy and momentum are conserved.

(10.17) Radiation pressure and energy density Derive the
relation, p = ρc2/3, between pressure and energy den-
sity for a volume of radiation by treating the radiation
as an ideal fluid of (10.88). Hint: First examine the
trace (ηµνTµν) of the energy momentum tensor for the
EM field (10.94).
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• Coordinate transformations in a curved space are necessarily position-
dependent. Still, the tensors used in general relativity (GR) are
basically the same as those in special relativity (SR), except when
differentiation is involved.

• By adding another term (related to Christoffel symbols) to the ordinary
derivative operator, we can form a “covariant derivative,” which pro-
duces proper tensor derivatives.

• The relation between Christoffel symbols and first derivatives of metric
functions Eq. (5.10) is re-established.

• Using the concept of parallel transport, the geometric meaning of
covariant differentiation is further clarified.

• The curvature tensor for an n-dimensional space is derived by the
parallel transport of a vector around a closed path.

• Symmetry and contraction properties of the Riemann curvature tensor
are considered. We find just the desired tensor needed for GR field
equation.

In contrast to the case for flat space, basis vectors in a curved space must change
from position to position. This implies that coordinate transformations must
necessarily be position-dependent. As a consequence, ordinary derivatives of
tensors, except for the trivial scalars, are no longer tensors. Nevertheless it can
be shown that one can construct “covariant differentiation operations” so that
they result in tensor derivatives. We demonstrate this first by formal manipula-
tion (Section 11.1) and also by a more geometric introduction (Section 11.2).
This geometric concept of parallel transport will also be employed to gener-
alize the Gaussian curvature of a two-dimensional (2D) space to the Riemann
curvature tensor for a curved space of arbitrary dimensions. We conclude this
section with a study of the symmetry and contraction properties of the Riemann
tensor, which will be needed when we study the GR field equation, the Einstein
equation, in Chapter 12.

11.1 Derivatives in a curved space

The tensors used in general relativity (GR) are basically the same as those in
special relativity (SR), except when differentiation is involved. This difference
reflects the fact that coordinate transformations in a curved space are necessarily
position-dependent. One finds that differentiation of a tensor results in a quantity
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which is no longer a tensor. This poses serious problem as relativistic equations
must be tensor equations. To overcome this, we introduce in this section the
“covariant derivative” which does not spoil the tensor properties, and allows us
to have relativistic physics equations.

11.1.1 General coordinate transformations

The coordinate transformations in SR (the Lorentz transformations) are
position-independent “global transformations.” The rotation angles and boost
velocity are the same for every spacetime point. We rotate the same amount
of angle and boost with the same velocity everywhere. In GR we must deal
with position-dependent “local transformations,” the general coordinate trans-
formation. This position dependence is related to the fact that in a curved space
the basis vectors {eµ} must necessarily change from point to point, leading to
position-dependent metric functions:

gµν ≡ [eµ(x) · eν(x)] = gµν(x). (11.1)

The metric [g] is a rank-2 tensor and thus transforms (cf. (10.12)) as [g′] =
[L][L][g] where we have symbolically represented the (inverse) coordinate
transformation by [L]. If we differentiate both sides of this relation, we get

∂[g′] = 2[L][g](∂[L])+ [L][L](∂[g]). (11.2)

For a flat space, one can always work with a coordinate system having
a position-independent metric, ∂[g′] = ∂[g] = 0, the above relation then
shows that the transformation matrix must also be position-independent,
∂[L] = 0. In a curved space the metric must be position-dependent ∂[g] �= 0,
implying that the transformation also has x-dependence

∂[L] �= 0. (11.3)

Coordinate transformation as a matrix
of partial derivatives
The coordinate transformations in SR (the Lorentz transformations) leave
invariant the separation s2 = gµνxµxν . In a curved space the bases and metric
necessarily vary from point to point. General transformations in such a space
are not expected to have such a finite invariant separation. However, since a
curved space is locally flat, this will be possible to demand the coordinate
transformation

dx′µ = [L]µν dxν (11.4)

that leaves invariant an infinitesimal length:

ds2 = gµνdxµdxν . (11.5)

This defines the metric functions for a given coordinate system. Let us now
recall the (chain-rule) differentiation relation:

dx′µ = ∂x′µ

∂xν
dxν . (11.6)

A comparison of (11.4) and (11.6) suggests that the coordinate transformation
can be written as a matrix of partial derivatives:

[L]µν =
∂x′µ

∂xν
. (11.7)
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Namely, the transformation for a contravariant vector may be written as

Vµ → V ′µ = ∂x′µ

∂xν
V ν . (11.8)

More explicitly, the relation in (11.8) may be written out as




V ′ 0
V ′1
V ′ 2
V ′ 3


 =




∂x′ 0/∂x0 ∂x′ 0/∂x1 ∂x′ 0/∂x2 ∂x′ 0/∂x3

∂x′1/∂x0 ∂x′1/∂x1 ∂x′1/∂x2 ∂x′1/∂x3

∂x′ 2/∂x0 ∂x′ 2/∂x1 ∂x′ 2/∂x2 ∂x′ 2/∂x3

∂x′ 3/∂x0 ∂x′ 3/∂x1 ∂x′ 3/∂x2 ∂x′ 3/∂x3







V0

V1

V2

V3


.

This notation is also applicable to the global transformation discussed in the
previous chapter. As an instructive exercise, one can show the elements of the
Lorentz transformation matrix (10.20) can be recovered from partial differen-
tiation of the Lorentz boost formulae as displayed in, for example, Eq. (2.13).
This way of writing the transformations also has the advantage of preventing
us from misidentifying the transformation [L]µν as a tensor.

As we have discussed in Chapter 10, the del operator transforms as a covariant
vector, cf. Eq. (10.25),

∂

∂x′µ
= [L]νµ

∂

∂xν
(11.9)

The chain rule of differentiation leads to the identification

[L̄]νµ =
∂xν

∂x′µ
, (11.10)

which makes it obvious that [L][L̄] = 1 because (∂x′µ/∂xν)(∂xλ/∂x′µ) = δλ
ν .

For any covariant components, we have the transformation

Vµ → V ′µ =
∂xν

∂x′µ
Vν . (11.11)

The reason {Vµ} are called covariant components is because they transform in
the same way as the basis vectors:

eµ → e′µ =
∂xν

∂x′µ
eν , (11.12)

while the contravariant components transform oppositely. A general tensor
with both contravariant and covariant indices transforms as direct products
of contravariant and covariant vectors Tµν...

λ... ∼ AµBν . . . Cλ . . .. The simplest
mixed tensor has the transformation

Tµ
ν → T ′µν = ∂xλ

∂x′ν
∂x′µ

∂xρ
Tρ

λ . (11.13)

Again we emphasize that GR coordinate transformations, that keep invari-
ant the infinitesimal interval of Eq. (11.5), may be fruitfully viewed as the
local Lorentz transformations — Lorentzian because they are spacetime length-
preserving transformations; local because the physics equations are required to
be covariant under independent transformations at every spacetime point. Also,
coordinates in GR have no intrinsic significance (See discussion in Section 4.1
and 4.2 as well as in Box 6.1). Their relation to distance measurements is
given through the metric function of (11.5). Thus, we are able to make coor-
dinate changes as long as the metric is changed correspondingly. Tensors in
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GR are objects that have definite transformation properties (as shown above),
so that tensor equations keep their form under the general transformations. In
this way these equations are automatically relativistic.

11.1.2 Covariant differentiation

The above discussion would seem to imply that there is no fundamental differ-
ence between the tensors in flat and in curved space. But as we shall demonstrate
below, this is not so when differentiation is involved.

Ordinary derivatives of vector components are not tensors
In a curved space, the derivative ∂νVµ is a non-tensor. Even though we have ∂ν

and Vµ being good vectors, as indicated by (11.9),

∂µ → ∂ ′µ =
∂xλ

∂x′µ
∂λ, (11.14)

and (11.8), their combination ∂νVµ still does not transform properly,

∂νVµ → ∂ ′νV ′µ �= ∂xλ

∂x′ν
∂x′µ

∂xρ
∂λVρ , (11.15)

as required by (11.13). We can see this by differentiating ∂ ′ν ≡ (∂/∂x′ν) on
both sides of (11.8):

∂ ′νV ′µ = ∂

∂x′ν

(
∂x′µ

∂xρ
Vρ

)
= ∂xλ

∂x′ν
∂x′µ

∂xρ
(∂λVρ)+ ∂2x′µ

∂x′ν∂xρ
Vρ , (11.16)

where (11.14) has been used. Compared to the right-hand side (RHS) of
(11.15), there is an extra term

∂

∂x′ν

(
∂x′µ

∂xρ

)
�= 0, (11.17)

which is (11.3) with the transformation written in terms of partial derivatives.
Thus, the transformation difficulty of ∂νVµ is related to the position-dependent
nature of the coordinate transformation, which in turn reflects, as discussed at
the beginning of this subsection, the position-dependence of the metric. Thus,
the root problem lies in the moving bases eµ = eµ(x) of the curved space. More
explicitly, because the tensor components are the projections of the tensor onto
the basis vectors Vµ = eµ · V, the moving bases ∂νeµ �= 0 produce an extra
term in the derivative:

∂νVµ = eµ · (∂νV)+ V · (∂νeµ). (11.18)

The properties of the two terms on the RHS will be studied below.

Covariant derivatives
In order for the equation to be relativistic we must have tensor equations such
that they are unchanged under coordinate transformations. Thus, we seek
a covariant derivative Dν to be used in covariant physics equations. Such
a differentiation is constructed to yield a tensor:

DνVµ → D′νV ′µ = ∂xλ

∂x′ν
∂x′µ

∂xρ
DλVρ . (11.19)

As will be demonstrated below, the first term on the RHS of (11.18) is just this
desired covariant derivative term.
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We have suggested that the trouble with the differentiation of vector compon-
ents is due to the coordinate dependence of Vµ. By this reasoning, derivatives
of a scalar function � should not have this complication—because scalar tensor
does not depend on the bases,

∂µ�→ ∂ ′µ�′ = ∂xλ

∂x′µ
∂λ�. (11.20)

Similarly, the derivatives of the vector V itself (not its components) transform
properly because V is coordinate-independent,

∂µV → ∂ ′µV = ∂xλ

∂x′µ
∂λV. (11.21)

Both (11.20) and (11.21) merely reflect the transformation of the del-operator
(11.14). If we dot both sides of (11.21) by the inverse basis vectors, and use
their transformation

e′ν = ∂x′ν

∂xρ
eρ (11.22)

as well, we obtain

e′ν · ∂ ′µV = ∂xλ

∂x′µ
∂x′ν

∂xρ
eρ · ∂λV. (11.23)

This shows that eν · ∂µV is a proper mixed tensor as required by (11.13),
and can be the covariant derivative we have been looking for:

DµV ν = eν · ∂µV. (11.24)

This relation implies that DµV ν can be viewed as the projection of the vectors1 1We are treating [∂µV] as a set of vectors,
each being labeled by an index µ.[∂µV] along the direction of eν ; we can then interpret DµV ν , much in the manner

of (10.5), as the coefficient of expansion of [∂µV] in terms of the basis vectors:

∂µV = (DµV ν)eν (11.25)

with the repeated indices ν summed over.

Christoffel symbols as expansion coefficients of ∂νeµ

On the other hand, we do not have a similarly simple transformation relation
like (11.21) when V is replaced by one of the coordinate basis vectors (eµ),
which by definition change under coordinate transformations. As a result,
the corresponding expansion for ∂νeµ, as in (11.25),

∂νeµ = −�
µ
νλeλ or V · (∂νeµ) = −�

µ
νλVλ (11.26)

does not have coefficients−�
µ
νλ that are tensors. Anticipating the result, we have

here used the same notation for these expansion coefficients as the Christoffel
symbols introduced in Chapter 5 (cf. (5.10))—also called the affine connection
(connection, for short).

Plugging (11.24) and (11.26) into (11.18), we find

DνVµ = ∂νVµ + �
µ
νλVλ. (11.27)

Thus, in order to produce the covariant derivative, the ordinary derivative ∂νVµ

must be supplemented by another term. This second term directly reflects the
position-dependence of the basis vectors, as in (11.26). Even though both ∂νVµ

and �
µ
νλVλ do not have the correct transformation properties, the unwanted
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terms produced from their respective transformations (11.16) cancel each other
so that their sum DνVµ is a good tensor. (Another proof of DνVµ being a
tensor can be found in Problem 11.5.) Further insight about the structure of the
covariant derivative can be gleaned by invoking the basic geometric concept of
parallel displacement of a vector, to be presented in Section 11.2.

Compared to the contravariant vector Vµ of (11.27), the covariant derivative
for a covariant vector Vµ takes on the form (Problem 11.1) of

DνVµ = ∂νVµ − �λ
νµVλ. (11.28)

A mixed tensor such as Tµ
ν , transforming in the same way as the direct product

VµUν , will have a covariant derivative

DνTρ
µ = ∂νTρ

µ − �λ
νµTρ

λ + �ρ
νσ Tσ

µ . (11.29)

Namely, a set of Christoffel symbols for each index of the tensor—a (+�T) term
for a contravariant index, a (−�T) term for a covariant index, etc. A specific
example is the covariant differentiation of the (covariant) metric tensor gµν :

Dλgµν = ∂λgµν − �
ρ
λµgρν − �

ρ
λνgµρ . (11.30)

11.1.3 Christoffel symbols and metric tensor

We have introduced the Christoffel symbols �
µ
νλ as the coefficients of expansion

for ∂νeµ as in (11.26). In this section, we shall relate such �
µ
νλ to the first

derivative of the metric tensor. This will justify the identification with the
symbols first defined in Eq. (5.10). To derive this relation, we need to first
point out an important feature of �

µ
νλ, as defined by (11.26) and (11.30). It can

be shown (Problem 11.3)
�

µ
νλ = �

µ
λν (11.31)

that is, symmetric with respect to the interchange of its two lower indices.

The metric tensor is covariantly constant
While the metric tensor is position-dependent, ∂[g] �= 0, it is a constant
with respect to covariant differentiation, D[g] = 0 (we say gµν is covariantly
constant):

Dλgµν = 0. (11.32)

One way to prove this is to use the expression of the metric in terms of the
basis vectors: gµν = eµ · eν , and apply the definition of �, as given in (11.26),
∂νeµ = +�

ρ
µνeρ :

∂λ(eµ · eν) = (∂λeµ) · eν + eµ · (∂λeν)

= �
ρ
λµeρ · eν + �

ρ
λνeµ · eρ . (11.33)

Written in terms of the metric tensors, this relation becomes

∂λgµν − �
ρ
λµgρν − �

ρ
λνgµρ = Dλgµν = 0, (11.34)

where we have applied the definition of the covariant derivative of a covariant
tensor gµν as in (11.30). That the metric tensor is covariantly constant is also
the key ingredient in the proof of the “flatness theorem” first discussed in
Section 4.2.3, and proven in Box 11.1. And as we shall see (cf. Section 12.4.3),
this key property allowed Einstein to introduce his “cosmological constant term”
in the general relativistic field equation.
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Christoffel symbols as the metric tensor derivative
In the above discussion we have used the definition (11.26) of Christoffel
symbols as the coefficients of expansion of the derivative ∂νeµ. Here we shall
derive an expression for Christoffel symbols, as the first derivative of the metric
tensor, which agrees with the definition first introduced in (5.10). We start by
using several versions of (11.34) with their indices permuted cyclically:

Dλgµν = ∂λgµν − �
ρ
λµgρν − �

ρ
λνgµρ = 0,

Dνgλµ = ∂νgλµ − �
ρ
νλgρµ − �ρ

νµgλρ = 0,

−Dµgνλ = −∂µgνλ + �ρ
µνgρλ + �

ρ
µλgνρ = 0.

(11.35)

Summing over these three equations and using the symmetry property of
(11.31), we obtain:

∂λgµν + ∂νgλµ − ∂µgνλ − 2�
ρ
λνgµρ = 0 (11.36)

or, in its equivalent form,

�λ
µν =

1

2
gλρ[∂νgµρ + ∂µgνρ − ∂ρgµν]. (11.37)

This relation showing �
µ
νλ as the first derivative of the metric tensor is called

“the fundamental theorem of Riemannian geometry.” It is just the definition
stated previously in (5.10). From now on we shall often use this intrinsic
geometric description of the Christoffel symbols (11.37) rather than (11.26).
The symmetry property of (11.31) is explicitly displayed in (11.37).

Box 11.1 A proof of the flatness theorem

The flatness theorem, as first stated in Section 4.2.3, asserts that at any
point P one can always make a coordinate transformation xµ → x̄µ and
gµν → ḡµν where the metric tensor ḡµν is a constant, up to a second order
correction (i.e. the first order terms vanish):

ḡµν(x̄) = ḡµν(0)+ bµνλρ x̄λx̄ρ + · · · , (11.38)

where for simplicity we have taken the point P to be at the origin of the
coordinate system and the position vector x̄µ is assumed to be infinites-
imally small. We shall prove this result by explicit construction. Namely,
we display a coordinate transformation

∂xµ

∂ x̄ν
= δµ

ν − �
µ
νλx̄λ (11.39)

that is shown to lead to the result of (11.38).

Here is the proof: According to (11.39) and (11.8), the relation between
the new and old coordinates can be written as xµ = x̄µ− 1

2�
µ
νλx̄ν x̄λ+ · · · .

Now, substitute (11.39), as well as the power series expansion gµν(x) =
gµν(0)+ ∂λgµνxλ + · · · , into the metric transformation equation

ḡµν(x̄) = ∂xλ

∂ x̄µ

∂xρ

∂ x̄ν
gλρ(x), (11.40)
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we have

ḡµν(x̄) = (δλ
µ − �λ

µα x̄α)(δρ
ν − �

ρ
νβ x̄β)(gλρ(0)+ ∂γ gλρxγ + · · · )

= gµν(0)− [�λ
µαgλν(0)+ �λ

ανgµλ(0)− ∂αgµν]xα + · · · .

The coefficient of xα (square bracket) vanishes because of (11.34):
the metric is covariantly constant. Thus the transformation in (11.39)
indeed has the claimed property of leading to a metric having the form of
(11.38). �

This proves the flatness theorem, and the assertion that {x̄µ}, the local
Euclidean frame (LEF), always exists. While the constant tensor can be
diagonalized to the principal axes (with length adjusted correctly) so that
ḡµν(0) becomes the standard flat space metric ηµν , it is apparent that the
second derivatives of ḡµν , related to the intrinsic curvature of the space,
cannot be eliminated by adjusting the coordinate system.

Now we have shown that the transformation in (11.39) can perform
the task of changing any coordinates to one which is explicitly flat in the
infinitesimal region around a given point. How did one find this transforma-
tion in the first place? One can motivate the result (11.39) by comparing
it to (11.27) for the case of Vµ = xµ: the covariant derivative term, being
valid in every coordinate system (including the frame of {xµ} = {x̄µ}), is
identified with the identity matrix Dxµ/Dx̄ν = δ

µ
ν . Its difference with the

coordinate transformation ∂xµ/∂ x̄ν must then be the Christoffel symbols
as dictated by (11.27).

Just as the covariant constancy of the metric tensor is the key ingredient in
the proof that the LEF exists (Box 11.1), we also have the reverse statement
that the existence of an LEF proves that the metric tensor must be covariantly
constant, (Problem 11.4).

11.2 Parallel transport

Parallel transport is a fundamental notion in differential geometry. It illumin-
ates the idea of covariant differentiation, and the associated Christoffel symbols.
Furthermore, using this operation, we can present another view of the geodesic
as the “straightest possible curve”—geodesic line as the curve traced out by
the parallel transport of its tangent vector. In Section 11.3 we shall derive
the Riemann curvature tensor by way of parallel transporting a vector around
a closed path.

11.2.1 Component changes under parallel transport

Equation (11.27) follows from (11.18) and expresses the relation between
ordinary and covariant derivatives. To simplify the notation we write
DVµ = (DνVµ)dxν and dVµ = (∂νVµ)dxν . Thus (11.18) takes on the form of

dVµ = DVµ − �
µ
νλV νdxλ. (11.41)

We will show that the Christoffel symbols in the above equation reflect the
effects of parallel transport of a vector by a distance of dx. First, what
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is a parallel transport? Why does one need to perform such a displace-
ment? Recall the definition of the differentiation for the case of a scalar
function �(x),

d�(x)

dx
= lim

�x→0

�(x +�x)−�(x)

�x
. (11.42)

Namely, it is the difference of functional values at two different positions.
For the coordinate-independent scalar function �(x), this issue of two locations
does not introduce any complication. This is not the case for vector components.
The differential dVµ on the left-hand side (LHS) (11.41) is the difference

dVµ = lim
�x→0

[Vµ(x +�x)− Vµ(x)]
≡ [Vµ

(2) − Vµ

(1)]
of the vector components Vµ = eµ · V evaluated at two different positions
(1) and (2) separated by dx. There are two sources for their difference: the
change of the vector itself, V(2) �= V(1), and a coordinate change eµ

(2) �= eµ

(1),
corresponding to the two terms on the RHS of (11.18). Thus the total change,
as given by dVµ, is the sum of two terms

[�Vµ]total = [�Vµ]true + [�Vµ]coord (11.43)

with one term representing the change of the vector itself eµ · dV = DVµ which
may be called the “true change,” and another term

V · deµ = −�
µ
νλV νdxλ (11.44)

representing the coordinate change between the two points separated by dx.
The coordinate change is expected to be proportional to the vector component
V ν and to the separation dxλ with the proportional constants in (11.44) being
identified with the Christoffel symbols.

This discussion motivates us to introduce the geometric concept of parallel
transport. It is the process of moving a vector without changing the vector itself
[�Vµ]true = eµ · dV = DVµ = 0. As a result, the entire change of vector
components under parallel displacement is due to coordinate changes. In a flat
space with a Cartesian coordinate system, this is trivial as there is no coordinate
change from point-to-point. But even in a flat space with a curvilinear coordi-
nate system, such as the polar coordinates, this parallel transport itself induces

O

e(1)
f

e(2)
f

er
(1) er

(2)

V(1)

V(2)

Fig. 11.1 Parallel transport of a vector V in a flat plane with polar coordinates: from the position-1
at the origin V(1) = (V (1)

φ , V (1)
r ) to another position-2, V(2) = (V (2)

φ , V (2)
r ). The differences of the

basis vectors at these two positions (e(1)
φ , e(1)

r ) �= (e(2)
φ , e(2)

r ) bring about component differences

(V (1)
φ , V (1)

r ) �= (V (2)
φ , V (2)

r ).
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component changes. In Fig. 11.1 we have parallel transported a vector from
position 1 to another position 2, V(1) → V(2). As one can see, the components
have changed. In particular, V (1)

φ = 0 �= V (2)
φ , and V (1)

r = {[V (2)
φ ]2+[V (2)

r ]2}1/2.
We can now see the connection of differentiating tensor components and

parallel transport of the tensor. Differentiation always involves taking the dif-
ference of a tensor at two different positions; since tensor components are
coordinate dependent, we must first parallel transport the tensor to one point, to
make this comparison. The process of parallel displacement introduces changes
because of coordinate changes. Thus, the total change, as represented by
the ordinary differentiation, is the sum of the change of the vector itself (“truce
change” as measured by the covariant differential) and of the coordinate change
incurred by parallel transport, as represented by the affine connection term.

11.2.2 The geodesic as the straightest possible curve

The above discussion leads us to a mathematical expression for a “parallel
transport of vector components,” by setting the true change to zero in Eq. (11.41)
as the vector itself does not change under such a transport:

DVµ = dVµ + �
µ
νλV νdxλ = 0. (11.45)

Remark: Recall that we have shown the metric tensor to be covariantly con-
stant, Dµgνλ = 0. We now understand covariant constancy to mean the change
of tensor components due to coordinate change only. But a change of the met-
ric, by definition, is a pure coordinate change. Hence, it must be covariantly
constant.

(a)

(b)

Fig. 11.2 Straight line as the geodesic in a flat
plane: (a) As a curve traced out by parallel
transport of its tangents. (b) When the vector
is parallel transported along the straight line,
the angle between them is unchanged.

The process of parallel transporting a vector Vµ along a curve xµ(σ ) can be
expressed according to (11.45) as

DVµ

Dσ
= dVµ

dσ
+ �

µ
νλV ν dxλ

dσ
= 0. (11.46)

From this we can define the geodesic line, as the straightest possible curve,
by the condition of it being the line constructed by parallel transport of its
tangent vector. See Fig. 11.2(a) for an illustration of such an operation in the
flat space. In this way the condition can be formulated by setting Vµ = dxµ/dσ

in (11.46):

D

Dσ

(
dxµ

dσ

)
= 0. (11.47)

Or, more explicitly,

d

dσ

dxµ

dσ
+ �

µ
νλ

dxν

dσ

dxλ

dσ
= 0. (11.48)

This agrees with the geodesic equation as shown in Chapter 5, Eq. (5.9).
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Example 11.1 When a vector Vµ is parallel transported along a geodesic,
we can show that the angle subtended by the vector and the geodesic (i.e. the
tangent of the geodesic) is unchanged, see Fig. 11.2(b). Namely, we need
to show

D

Dσ

(
Vµ

dxµ

dσ

)
= 0. (11.49)

The proof is straightforward:

D

Dσ

(
Vµ

dxµ

dσ

)
= DVµ

Dσ

(
dxµ

dσ

)
+ Vµ

D

Dσ

(
dxµ

dσ

)
. (11.50)

The RHS indeed vanishes: the first term is zero because we are parallel
transporting the vector (11.46); the second term is zero because the curve
is a geodesic satisfying Eq. (11.47).

11.3 Riemannian curvature tensor

Curvature measures how much a curved space is curved because it measures
the amount of deviation of any geometric relations from their corresponding
Euclidean equalities. We have already proven in Section 4.3.3 a particular rela-
tion showing that for a 2D curved surface the angular excess ε (sum of the
interior angles in excess of its Euclidean value) of an infinitesimal polygon is
proportional to the Gaussian curvature K at this location:

ε = Kσ , (11.51)

where σ is the area of the polygon. In the following section, this relation (11.51)
will be used to generalize the notion of curvature K to that of an n-dimensional
curved space.

Angular excess ε and directional change of a vector
How can an angular excess be “measured” in general? To implement this, we
first use the concept of parallel transport to cast this relation (11.51) in a form
that allows for such an n-dimensional generalization. It can be shown that
angular excess ε is related to the directional change of a vector after it has been
parallel transported around the perimeter of the polygon. The simplest example
is a spherical triangle with three 90◦ interior angles. In Fig. 11.3 we see that
a parallel transported vector changes its direction by 90◦, which is the angular
excess of this triangle. The generalization to an arbitrary triangle, hence to any
polygon, is assigned as an exercise (Problem 11.6).

1

2

4 3

908

908 908

Fig. 11.3 A triangle with all interior angles
being 90◦ on a spherical surface. The paral-
lel transport of a vector around this triangle
(clockwise from 1, to 2, to 3, and finally back
to the starting point at 4) leads to a directional
change of the vector by 90◦ (the angular
difference between the vectors at point 4 and
point 1).

Recall the definition of an angle being the ratio of arc length to the radius,
Fig. 11.4(a). Hence, the directional angular change can be written as the ratio
of change of a vector to its magnitude. In this way we can relate the angular
excess ε to the change of a vector after a transport: εV = dV . Substituting this
into (11.51), we obtain

dV = KVσ . (11.52)

Namely, the change of a vector after a round-trip parallel transport is propor-
tional to the vector itself and the area of the closed path. The coefficient of
proportionality is identified as the curvature.

V9

V

dV

B

A

rDu du

u

rDu(a)

s(b)

Fig. 11.4 (a) The directional change of a
vector can be expressed as a fractional change
of the vector: dθ = |dV|/|V|. (b) Area of
parallelogram as the cross product of its two
sides, σ = A× B.
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The area pseudo-tensor
We will use this relation (11.52) to seek out the curvature for a higher dimen-
sional curved space. To do so, we need to write the 2D (11.52) in the proper
index form so as to be generalized to an n-dimensional space. Recall the 2D
area (of a parallelogram spanned by two vectors A and B) can be calculated
as a vector product, Fig. 11.4(b): σ = A× B. Or, using the antisymmetric
Levi–Civita symbol in the index notation,22Levi–Civita symbols are discussed in side-

note 3 of Chapter 10.
σk = εijkAiB j. (11.53)

Namely, σ has the magnitude AB sin θ and the direction given by the right-
hand-rule. But (11.53) is not a convenient form to use in higher dimension
space: (i) it refers to the embedding space with a 3-valued index i = 1, 2, 3.
(ii) For different dimensions we would need to use the antisymmetric tensor
with a different number of indices, for example, for four dimensions, εijkl, etc.
We will instead use a two-index object σ ij to represent the area:

σ ij ≡ εijkσk = εijkεmnkAmBn = 1

2
(AiB j − AjBi), (11.54)

where we have used the identity

εijkεmnk = 1

2
(δi

mδ j
n − δi

nδ
j
m). (11.55)

Furthermore, since the index i = 3 is irrelevant, we can write this entirely
with the 2D indices (i = 1, 2, 3) → (a = 1, 2) without any reference to the
embedding space. For an area in an n-dimensional space, we can represent the
area by σµν with µ = 1, 2, . . . , n

σλρ = 1

2
(AλBρ − BλAρ). (11.56)

11.3.1 The curvature tensor in an n-dimensional space

Equation (11.52) with the area tensor of (11.56) suggests that we can represent
the change dVµ of a vector due to a parallel transport around a parallelogram
spanned by Aλ and Bρ by a tensor equation,

dVµ = Rµ
νλρV νσ λρ . (11.57)

The change is proportional to the vector itself and to the area of the closed path.
The coefficient of proportionality is a quantity with four indices and defined
to be the curvature of this n-dimensional space, called the Riemann curvature
tensor. We can plausibly expect this coefficient Rµ

νλρ to be a tensor because the
differential dVµ, being taken at the same position, is itself a good vector. With
V ν and σλρ being tensors, the quotient theorem tells us that Rµ

νλρ should be a
good tensor of rank 4 (i.e. a tensor with four indices). Explicit calculation of the
parallel transport of a vector around an infinitesimal parallelogram in Box 11.2
leads to the expression:

Rµ
λαβ = ∂α�

µ
λβ − ∂β�

µ
λα + �µ

να�ν
λβ − �

µ
νβ�ν

λα . (11.58)

The Christoffel symbol � being first derivative, the Riemann curvature
R = d� + �� is then a nonlinear second derivative function of the metric
[∂2g+ (∂g)2].
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Q9 P9

P Q

(b + db)b

(a + da)a

aa

b
b

Fig. 11.5 The parallelogram PQP′Q′ is
spanned by two vectors aα and bβ . The
opposite sides (a + da)α and (b + db)β are
obtained by parallel transport of aα and bβ ,
respectively.

Box 11.2 Rµ
λαβ from parallel transporting a vector around a closed path

To fix the form of the Riemann tensor as in (11.57), we carry out the opera-
tion of parallel transport for a vector around an infinitesimal parallelogram
(PQP′Q′) spanned by two infinitesimal vectors, aα and bβ in Fig. 11.5.
Recall that parallel transport of a vector DVµ = 0 means that the total
vectorial change is due entirely to coordinate change, see (11.45):

dVµ = −�
µ
νλV νdxλ. (11.59)

The opposite sides of the parallelogram in Fig. 11.5, (a + da)α and
(b + db)β are obtained by parallel transport of aα and bβ , respectively.
Namely, daµ = bµ and dbµ = aµ. Applying (11.59) to these cases:

(a+ da)α = aα − �α
µνaµbν ,

(b+ db)β = bβ − �β
µνaµbν . (11.60)

We now calculate, via (11.59), the change of a vector Vµ due to parallel
transport from P → Q → P′:

dVµ
PQP′ = dVµ

PQ + dVµ
QP′

= −(�µ
ναV ν)Paα − (�

µ
νβV ν)Q(b+ db)β . (11.61)

The subscripts P and Q denote the respective positions where these func-
tions are to be evaluated. Since eventually we shall compare all quantities
at one position, say P, we will Taylor expand the quantities (· · · )Q around
the point P:

(�
µ
νβ)Q = (�

µ
νβ)P + aα(∂α�

µ
νβ)P,

(V ν)Q = (V ν)P + aα(∂αV ν)P = (V ν)P − aα(�ν
λαVλ)P,

(11.62)

where we have used (11.59) to reach the last expression. From now on
we shall drop the subscript P. Substitute into (11.61) the expansions of
(11.60) and (11.62):

dVµ
PQP′ = −�µ

ναV νaα − (�
µ
νβ + aα∂α�

µ
νβ)(V ν − aα�ν

λαVλ)

× (bβ − �β
ρσ aρbσ ). (11.63)

Multiply it out and keep terms up to O(ab), we have

dVµ
PQP′ = −�µ

ναV νaα − �
µ
νβV νbβ + V ν�

µ
νβ�β

ρσ aρbσ

− ∂α�
µ
λβVλaαbβ + �

µ
νβ�ν

λαVλaαbβ . (11.64)

The vectorial change due to parallel transport along the other sides: P →
Q′ → P′ can be obtained from the above equation simply by the interchange
of a ↔ b.

dVµ
PQ′P′ = −�µ

ναV νbα − �
µ
νβV νaβ + V ν�

µ
νβ�β

ρσ aρbσ

− ∂β�
µ
λαVλaαbβ + �µ

να�ν
λβVλaαbβ . (11.65)

For a round-trip parallel transport from P back to P, the vectorial change
dVµ corresponds to the difference of the above two equations (which results
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in the cancellation of the first three terms on the RHS):

dVµ = dVµ
PQ′P′ − dVµ

PQP′

= [∂α�
µ
λβ − ∂β�

µ
λα + �µ

να�ν
λβ − �

µ
νβ�ν

λα]Vλaαbβ . (11.66)

Because the combination in the square bracket is antisymmetric with respect
to the indices α and β, only the antisymmetric combination 1

2 (aαbβ −
aβbα) contributes. This is just the area tensor σαβ identified in (11.56). We
conclude, after a comparison of (11.66) with (11.57), that the sought-after
Riemann curvature tensor in terms of Christoffel symbols is just the quoted
result of (11.58).

Since this expression (11.58) for the curvature is in terms of �
µ
λβ which are not

tensor components, it is not clear that Rµ
λαβ has the proper tensor transformation

property. However, we can show (Problem 11.7) that it can be written as the
commutator of covariant derivatives:

[Dα , Dβ ]Vµ = Rµ
λαβVλ. (11.67)

Since the covariant differentials Dαs, together with V νs, are good vectors—thus,
according to the quotient theorem, Rµ

λαβ must be a tensor. This is in agreement
with our expectation, based on a heuristic argument given just prior to (11.58).

In a flat space, one can always find a coordinate system so that the metric
is position-independent. Namely, not only do the first derivatives vanish, ∂g = 0
(as in any LEF), but also the second derivatives of the metric ∂2g = 0 likewise.
In such a coordinate frame, Rµ

λαβ ∝ [∂2g+(∂g)2] = 0. Since it is a good tensor,
if it vanishes in one set of coordinates, it vanishes for all coordinates. In fact
we can also show that this is a sufficient condition for a space to be flat.

11.3.2 Symmetries and contractions of the curvature tensor

We discuss the symmetries of the Riemann curvature tensor, and counting its
independent components. We note that the Riemann curvature tensor with all
lower indices

Rµναβ = gµλRλ
ναβ (11.68)

has the following symmetry features (Problem 11.8):

• It is antisymmetric with respect to the interchange of the first and second
indices, and that of the third and fourth indices, respectively:

Rµναβ = −Rνµαβ , (11.69)

Rµναβ = −Rµνβα . (11.70)

• It is symmetric with respect to the interchange of the pair made up of first
and second indices with the pair of third and fourth indices:

Rµναβ = +Rαβµν . (11.71)

• It also has the cyclic symmetry of

Rµναβ + Rµβνα + Rµαβν = 0. (11.72)
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Knowing its symmetry properties, we can calculate the number of
independent components of a curvature tensor in an n-dimensional space
(Problem 11.9),

N(n) = 1

12
n2(n2 − 1). (11.73)

For various dimensions n this gives the following numbers:

• Line: N(1) = 0. It is not possible for a one-dimensional inhabitant to see
any curvature.

• Surface: N(2) = 1. This is just the Gaussian curvature. One can check
(Problem 11.11) that the expression in (11.58) corresponds to

K = −R1212

det g
, (11.74)

where det g = g11g22 − g2
12 is the determinant of the metric tensor.

• Spacetime: N(4) = 20. There are twenty independent components in the
curvature tensor for our curved spacetime.

• Metric’s second derivatives: It can be shown (Problem 11.10) that
the number in (11.73) just matches that for the independent second
derivatives of the metric tensor.

Contractions of the curvature tensor
Because of the symmetry properties discussed above, contractions of the cur-
vature tensor are essentially unique. We also show how the covariantly constant
Einstein tensor, which appears in the GR field equation (the Einstein equation)
arises from contractions of the Riemann tensor.

Ricci tensor Rµν It is the Riemann curvature tensor with the first and third
indices contracted,

Rµν ≡ gαβRαµβν = Rβ
µβν , (11.75)

which is a symmetric tensor,

Rµν = Rνµ. (11.76)

It is straightforward to show that, because of the symmetry relations, the
alternative contraction leads to the same Ricci tensor3: 3Note: in effect we have made a choice

for sign convention in the definition of the
Ricci tensor. For other sign conventions in
our presentation see further comments in the
next chapter when we present the GR field
equation.

Rµν = −gαβRµαβν . (11.77)

Ricci scalar R It is the Riemann curvature tensor contracted twice,

R ≡ gαβRαβ = Rβ
β . (11.78)

Bianchi identities and the Einstein tensor
There is set of constraints (called the Bianchi identities) on the curvature tensor:

DλRµναβ + DνRλµαβ + DµRνλαβ = 0. (11.79)

This can be most easily proven when we go to the locally Euclidean frame
(Problem 12.12). We note its resemblance to the homogeneous Maxwell equa-
tion as displayed in (10.65). There is a close analogy4 between the curvature

4In fact, the structure of electromagnetism
can best be understood through its basic
property of gauge symmetry, which has deep
Riemannian geometric interpretation.tensor Rµναβ and the electromagnetic field tensor Fµν .
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We now perform contractions on these Bianchi identities. Contracting with
gµα (the metric tensor being covariantly constant, Dλgαβ = 0, this metric
contraction can be pushed right through the covariant differentiation):

DλRνβ − DνRλβ + DµgµαRνλαβ = 0. (11.80)

Contracting another time with gνβ ,

DλR− DνgνβRλβ − DµgµαRλα = 0. (11.81)

At the last two terms, the metric just raises the indices,

DλR− DνRν
λ − DµRµ

λ = DλR− 2DνRν
λ = 0. (11.82)

Pushing through yet another gµλ in order to raise the λ index at the last term,

Dλ(Rgµλ − 2Rµλ) = 0. (11.83)

Thus we see that the combination,

Gµν = Rµν − 1

2
Rgµν (11.84)

is covariantly constant (i.e. divergence free with respect to covariant
differentiation),

DµGµν = 0. (11.85)

To summarize, Gµν , called the Einstein tensor, is a covariant-constant rank-2
symmetric tensor involving the second derivatives of the metric ∂2g as well as
the quadratic in ∂g.

Gµν has the property:

conserved (covariantly constant)
symmetric rank-2 tensor
∂�, �2 	 (∂2g), (∂g)2.

(11.86)

As we shall see in the next chapter, this is just the sought-after mathematical
quantity in the field equation of GR.

Review questions

1. Writing the coordinate transformation as a partial deriv-
ative matrix, give the transform law for a contravariant
vector Vµ → V ′µ, as well as that for a mixed tensor
Tµ

ν → T ′µν .

2. What is the fundamental difference between the coord-
inate transformations in a curved space and those in flat
space (e.g. Lorentz transformations in the flat Minkowski
space)?

3. Given the transformation of vector components as

Vµ → V ′µ =
∂xλ

∂x′µ
Vλ,

how do the derivatives ∂µVν change under the general coord-
inate transformation? How do the covariant derivatives DµVν

transform? Why is it important to have differentiations that
result in tensors?

4. What is the basic reason why ∂µVν is not a tensor?
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5. Write out the covariant derivative of a general tensor DµTλρ
ν

(in terms of the connection symbols).

6. The relation between Christoffel symbols and the metric
tensor is called “the fundamental theorem of Riemannian
geometry.” Write out this relation.

7. As the Christoffel symbol �
µ
αβ is not a tensor, how do we

know Rµ
λαβ = ∂α�

µ
λβ − ∂β�

µ
λα +�

µ
να�ν

λβ −�
µ
νβ�ν

λα is really
a tensor?

8. What are the two basic properties of the Einstein tensor
Gµν = Rµν − 1

2 Rgµν?

9. What is “the flatness theorem”? Use this theorem to show
that the metric tensor is covariantly constant, Dµgνλ = 0.

Problems

(11.1) Covariant derivative for a covariant vector Given
that the covariant derivative for a contravariant vector
has the form of Eq. (11.27), show that the covariant
derivative for the covariant vector is DνVµ =
∂νVµ − �λ

νµVλ. (Hint: VµVµ is an invariant.)

(11.2) Moving bases and Christoffel symbols in polar
coordinates for a flat plane Even in a flat space, one
can have moving bases. Recall the example of the polar
coordinates (r, θ) on a plane surface.

(a) Work out their respective (moving) base vec-
tors (er , eθ ) and (er , eθ ) in terms of the (fixed)
Cartesian bases (i, j).

(b) Calculate the Christoffel symbols through their
definition of ∂νeµ = −�

µ
νλeλ given in (11.26).

(c) Calculate the divergence in a polar coordinate
system: work out DµVµ = ∂µVµ + �

µ
µνV ν in

terms of component fields (Vr , V θ ).
(d) Calculate the Laplacian DµDµ�(x) in a polar

coordinate system.
(e) Use the Christoffel symbols obtained in (b) to

show that the metric tensors are constant with
respect to covariant differentiation.

(f) Use the fundamental theorem of Riemannian
geometry (11.37) to calculate a few �

µ
νλ to check

the results obtained in (b).
(g) Use the explicit form of the Christoffel symbols

calculated in (b) to show that the only
independent component for the curvature tensor
vanishes, R1212 = 0, as expected for a flat space.

(11.3) Symmetry property of Christoffel symbols Prove
�

µ
νλ = �

µ
λν by an explicit computation of the

double covariant derivatives of a scalar function �(x).
(Hint: Dµ� = ∂µ� because �(x) is coordinate-
independent.)

(11.4) Metric is covariantly constant: further proofs Besides
the proof given in Eqs (11.33) and (11.34), prove
Dλgµν = 0 in other ways by using:

(a) the fundamental theorem of Riemannian geo-
metry (11.37);

(b) the existence of LEF (with the definite properties
of gµν and �

µ
νλ in such a frame).

(11.5) DνVµ is a good tensor: another proof Use
Eq. (11.49) and the geodesic Eq. (11.48) to prove that

(DνVλ)
dxν

dσ

dxλ

dσ
= 0.

This is another way to see, via the quotient theorem,
that DνVµ is a good tensor.

(11.6) Parallel transport of a vector around a general spher-
ical triangle Prove that the directional change of a
vector, after being parallelly transported around the
perimeter of an arbitrary triangle, on a spherical sur-
face, is equal to the angular excess of the triangle. This
result then holds for any spherical polygon, since any
polygon can always be divided into triangles. This in
turn implies that such a relation is valid for any infinites-
imal closed geodesic path in a general 2D space.

(11.7) Riemann curvature tensor as the commutator
of covariant derivatives To show that Rµ

λαβ

is indeed a tensor, we can perform the fol-
lowing calculation: take the double derivative
DαDβVµ = Dα(∂βVµ + �

µ
βλVλ) = · · · as well as that

in the reverse order DβDαVµ = Dβ(∂αVµ+�
µ
αλVλ) =

· · · . Show that their difference is just the expression
for the Riemann tensor as given by Eq. (11.58):

[Dα , Dβ ]Vµ = Rµ
λαβVλ. (11.87)

(11.8) Symmetries of Rµναβ Since the symmetry proper-
ties are not changed by coordinate transformations,
one can choose a particular coordinate frame to prove
these symmetry relations, and once proven in one
frame, we can then claim their validity in all frames.
An obvious choice is the locally Euclidean frame with
(� = 0, ∂� �= 0) where the curvature takes on a
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simpler form, Rµναβ = gµλ(∂α�λ
νβ − ∂β�λ

να), and the
symmetry properties are easy to inspect. In this way,
check the validity of the symmetry properties as shown
in Eqs (11.69)–(11.72).

(11.9) Counting independent elements of Riemann tensor
The Riemann curvature tensor has the symmetry prop-
erties shown in (11.69)–(11.72). Show that the number
of independent components of a curvature tensor in an
n-dimensional space is N(n) = 1

12 n2(n2 − 1).

(11.10) The number of metric’s independent second
derivatives and Riemann tensor

(a) Calculate A(n), the number of independent
elements in gµν , ∂αgµν and ∂α∂βgµν , taking
into consideration only the symmetry properties
of these tensors. First give the result A(4) in a 4D
space, and then record the number for ∂α∂βgµν

in a general n-dimensional space.
(b) The number A(n) obtained in (a) for the

independent elements in gµν , ∂αgµν , and ∂α∂βgµν

is an overcount, in the sense that some of them
can be eliminated by coordinate transformations.
If we are interested in the number of “truly
independent elements” that reflects the property
of the space itself (rather than the coordinate
system), we should subtract out the elements
that can be transformed away. Now count B(4),
the number of elements that can be transformed
away. (Suggestion: the transformation of the
metric gµν is given in (10.13). The relevant trans-
formation matrix can be written as a shorthand:

∂xβ

∂x′α
≡ (∂αxβ). (11.88)

From our proof (in Box 11.1) of the flatness the-
orem by way of power series expansions, we see
that transformations of tensor derivatives depend
on the derivatives of the transformation matrices.
For example, the first derivative ∂αgµν trans-
formation is determined by the first derivative

of the number of transformation ∂γ (∂αxβ), and
∂α∂βgµν by ∂γ ∂δ(∂αxβ), etc. The number of
parameters in these transformations (and their
derivatives) should be the number of elements
that can be transformed away by coordinate
transformations.)

(c) The difference N(4) = A(4) − B(4) obtained in
(a) and (b) should correspond to the number
of independent elements in gµν , ∂αgµν , and
∂α∂βgµν . Do these counts make physical sense?
Give your interpretation for each case.

(d) Write out N(n) for ∂α∂βgµν in the n-dimensional
space. You should find a result that matches
Problem 11.9.

(11.11) Reducing Riemann tensor to Gaussian curvature For
a 2D space, the curvature tensor has only one independ-
ent element. Show that it is just the Gaussian curvature
of (4.35) with the identification of

K = −R1212

det g
.

(11.12) Bianchi identities Demonstrate the validity of the
Bianchi identity (11.79) in the local inertial frame.

(11.13) Ricci tensor is symmetric From the definition of
Rµν ≡ gαβRαµβν , show that Rµν = Rνµ.

(11.14) Contraction of Christoffel symbols Show that

�µ
µα =

1√−g

∂

∂xα

√−g,

where g is the determinant of the matrix gµν .

(11.15) Contraction of Riemann tensor Show that Rµ
µαβ = 0.

(Hint: use the relation obtained in Problem 11.14.)
Recall that the Ricci tensor is obtained by contract-
ing the first and third indices of the Riemann tensor.
This result shows that all contractions of the Riemann
tensor, based on its symmetry properties, are either the
same as the Ricci tensor or are zero.
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• The mathematical realization of the equivalence principle (EP) is the
principle of general covariance. General relativity (GR) equations
must be covariant with respect to general coordinate transformations.

• To go from special relativity (SR) to GR equations, one replaces ordi-
nary by covariant derivatives. The SR equation of motion d2xµ/dτ 2 =
0 turns into D2xµ/Dτ 2 = 0, which is the geodesic equation.

• The Einstein equation, as the relativistic gravitation field equation,
relates the energy–momentum tensor to the Einstein curvature tensor.

• The Schwarzschild metric is shown to be the solution of the Einstein
equation for the case of a spherical source.

• The solutions of Einstein’s equation that satisfy the cosmological
principle must have a space with constant curvature—the Robertson–
Walker spacetime.

• The relation of the cosmological Friedmann equations to the Einstein
field equation is explicated.

• The mathematical compatibility of the cosmological constant term
with Einstein equation’s structure, and its interpretation as the vacuum
energy tensor, are discussed.

In Chapter 5 we have presented arguments for a geometric theory of gravity.
The gravitational field is identified with the warped spacetime described by the
metric function gµν(x). After one accepts that spacetime can be curved and
the Riemannian geometry as the appropriate mathematics to describe such a
space, we can now use the tensor calculus learned in Chapters 10 and 11 to
write down the physics equations satisfying the principle of general relativity
(GR). In Section 12.1 we present the principle of general covariance, which
guides us to GR equations in a curved spacetime. A proper derivation of the
geodesic equation as the GR equation of motion will be presented, and we
can finally write down the GR field equation, the Einstein equation. Its con-
nection to the Newton/Poisson equation is discussed. Finally, we show how to
obtain the Schwarzschild metric as the solution to the Einstein equation with
a spherical source. In Section 12.4, the geometric formalisms used in cosmo-
logy as discussed in Chapters 7–9 are studied as solutions of Einstein equation
compatible with the cosmological principle.

12.1 The principle of general covariance

According to the strong principle of equivalence, gravity can always be
transformed away locally. The physical laws, or the field equation for gµν(x),
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must have the same form no matter what generalized coordinates are used to
locate or label worldpoints (events) in spacetime. One expresses this by the
requirement that the physics equations must satisfy the principle of general
covariance. This is a two-part statement:

1. Physics equations must be covariant under the general coordinate
transformations which leave the infinitesimal spacetime separation ds2

invariant.
2. Physics equations should reduce to the correct special relativistic form in

the local inertial frames. Namely, we must have the correct SR equations
in the free fall frames, in which gravity is transformed away. Addition-
ally, gravitational equations reduce to Newtonian equations in the limit
of low velocity particles in a weak and static field.

This provides us with a well-defined path to go from SR equations, valid
in the local inertial frames with no gravity, to GR equations that are valid
in every coordinate system in the curved spacetime—curved because of the
presence of gravity. Such GR equations must be covariant under general local
transformations. The key feature of a general covariance transformation, in
contrast to the (Lorentz) transformation in a flat spacetime, is its spacetime-
dependence. The tensor formalism in a curved spacetime differs from that
for a flat spacetime of SR in its derivatives. To go from an SR equation to
the corresponding GR equation is simple: we need to replace the ordinary
derivatives [∂] in SR equations by covariant derivatives [D]:

∂ −→ D = ∂ + �. (12.1)

Since Christoffel symbols � are the derivatives of the metric—hence the deriv-
atives of the gravitational potential (i.e. the gravitational field), the introduction
of covariant derivatives naturally brings the gravitational field into the physics
equations. In this way we can, for example, find the equations that describe
electromagnetism in the presence of a gravitational field. In Table 12.1, we
show how GR equations arise from the SR results.

This discussion of introducing gravitational coupling in GR illustrates how a
local symmetry can dictate the form of dynamics—in this case, the precise way
the Christoffel symbol �λ

µu (gravitational field) enters into physics equations.
For example, in the last line of Table 12.1, starting from the familiar special
relativistic Eq. (10.62), we have the set of GR equations in curved spacetime,

∂µFµν + �
µ
µλFλν + �ν

µλFµλ = −1

c
jν , (12.2)

Table 12.1 SR electromagnetic equations in the flat spacetime vs. GR
equations in a curved spacetime

SR equations GR equations

Lorentz force law in flat spacetime in curved spacetime

Eq. (10.60)
dUµ

dτ
= q

c
FµνUν −→ DUµ

Dτ
= q

c
FµνUν

Maxwell’s equation in flat spacetime in curved spacetime

Eq. (10.66) ∂µF̃µν = 0 −→ DµF̃µν = 0

Eq. (10.62) ∂µFµν = −1

c
jν −→ DµFµν = −1

c
jν
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which are interpreted as Gauss’s and Ampere’s laws in the presence of a
gravitational field.

12.1.1 Geodesic equation from SR equation of motion

Now that we have the GR equations for electromagnetism, what about the
GR equations for gravitation? The procedure illustrated in the above case fails
because there is no SR equation for the gravitational field. Thus, for gravitational
field equations we need a fresh start—for guidance we need to go back to the
Newtonian theory of gravitation, cf. Section 3.1.

In Table 12.1, we have already written down the gravitational equation of
motion: the equation that allows us to find the motion of a test charge in the
presence of electromagnetic, as well as gravitational, fields. Just concentrating
on the gravitational part, hence setting the EM field tensor Fµν = 0, we have
the equation of motion for a particle in a gravitational field:

DUµ

Dτ
= 0, (12.3)

where Uµ is the 4-velocity of the test particle, and τ is the proper time. In fact,
we should think its derivation more directly as the generalization from the
special relativistic equation of motion for a free particle:

dUµ

dτ
= 0, (12.4)

which simply states that in the absence of an external force the test particle
follows a trajectory of constant velocity.

We now demonstrate that this Eq. (12.3) is just the geodesic Eq. (5.9).
Using the explicit form of the covariant differentiation (11.27), the above
equation can be written as

DUµ

Dτ
= dUµ

dτ
+ �

µ
νλUν dxλ

dτ
= 0. (12.5)

Plug in the expression of 4-velocity in terms of the position vector1 1For the 4-velocity, we have Uµ = Dxµ/Dτ

= dxµ/dτ because dxµ/dτ is already a
“good vector” as can been seen from the fact
that (ds/dτ)2 = gµν(dxµ/dτ)(dxν/dτ) is
a scalar.

Uµ = dxµ

dτ
, (12.6)

we immediately obtain an equation

d2xµ

dτ 2
+ �

µ
νλ

dxν

dτ

dxλ

dτ
= 0, (12.7)

which is recognized as the geodesic equation (5.9). This supports our heuristic
argument—“particles should follow the shortest and straightest possible
trajectories”—used in Section 5.2 to suggest that the GR equation of motion
should be the geodesic equation.
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12.2 Einstein field equation

The equation of motion of the Newtonian theory is generalized to be the geodesic
equation:

[
d2r
dt2

= −∇�

]
→
[

d2xµ

dτ 2
+ �

µ
νλ

dxν

dτ

dxλ

dτ
= 0

]
. (12.8)

The next step is to generalize its field equation:

[�2� = 4πGNρ] → [?], (12.9)

where GN is Newton’s constant, and ρ is the mass density function,
cf. Sections 3.1 and 5.1.

12.2.1 Finding the relativistic gravitational
field equation

We have already learned that the metric tensor is the relativistic generalization of
the gravitational potential (Section 5.1) and mass density is the (0, 0) component
of the energy–momentum tensor (Section 10.3):

(
1+ 2�(x)

c2

)
→ g00(x) and ρ(x)→ T00(x). (12.10)

The GR field equation, being the relativistic generalization of the Newtonian
field Eq. (12.9), should have the structure, when written out in operator form,

[Ôg] = κ[T ]. (12.11)

Namely, some differential operator [Ô] acting on the metric [g] to yield the
energy–momentum tensor [T ] with κ being the “conversion factor” propor-
tional to Newton’s constant GN that allows us to relate energy density and
the spacetime curvature. Since we expect [Ôg] to have the Newtonian limit of
�2�, [Ô]must be a second-order differential operator. Besides the ∂2g terms, we
also expect it to contain nonlinear operators of the type of (∂g)2. The presence
of the nonlinear terms (∂g)2 is suggested by the fact that energy, just like
mass, is a source of gravitational fields, and gravitational fields themselves hold
energy—just as electromagnetic fields hold energy, with density being quadratic
in fields (E2+B2). Namely, gravitational field energy density must be quadratic
in the gravitational field strength, (∂g)2. In terms of Christoffel symbols
� ∼ ∂g, we anticipate [Ôg] to contain not only ∂� but also �2 terms as well.
Furthermore, because the right-hand side (RHS) is a symmetric tensor of rank
2 which is covariantly constant, DµTµν = 0 (reflecting energy–momentum
conservation), the left-hand side (LHS) [Ôg] must have these properties also.
The basic properties that the LHS of the field equation must have are
summarized below:

Ôg must have the property:

conserved (covariantly constant)
symmetric rank-2 tensor
(∂2g), (∂g)2 	 ∂�, �2.

(12.12)



12.2 Einstein field equation 237

There is only one such second rank tensor: the Einstein tensor Gµν , see
Section 11.3.2, Eq. (11.86). Thus Einstein proposed the GR field equation to be

Gµν = κTµν , (12.13)

where the proportional constant κ will be determined when we compare
this field equation with that in the Newtonian theory. Writing out the Einstein
equation in terms of the Ricci scalar and tensor we have

Rµν − 1

2
Rgµν = κTµν . (12.14)

This equation can be written in an alternative form by taking the trace of the
above equation:

−R = κT , (12.15)

where T is the trace of the energy–momentum tensor, T = gµνTµν . In this
way we can rewrite the field equation in an equivalent form by replacing Rgµν

by −κTgµν :

Rµν = κ

(
Tµν − 1

2
Tgµν

)
. (12.16)

12.2.2 Newtonian limit of the Einstein equation

Here we shall show that the familiar Newtonian field Eq. (12.9) is simply
the leading approximation to the Einstein Eq. (12.16) in the Newtonian limit
defined in Section 5.2.1 as being for a nonrelativistic source particle producing
a weak and static gravitational field.

Nonrelativistic velocity. In the nonrelativistic regime of small v/c, the rest
energy density term T00 being dominant, we shall concentrate on the (0, 0)

component of (12.16), as other terms are down by O(ν/c):

R00 = k

(
T00 − 1

2
Tg00

)
(12.17)

with

T = gµνTµν � g00T00 = 1

g00
T00. (12.18)

Thus (12.17) becomes

R00 = 1

2
κT00. (12.19)

To recover the Newtonian field equation, we need to show that R00 → �2g00:
from the definition of Ricci tensor (in terms of the Riemann curvature tensor),
we have

R00 = gµνRµ0ν0 = g ijRi0j0, (12.20)

where (i = 1, 2, 3) and in reaching the last equality we have used the fact that
the tensor components such as R0000 and Ri000 all vanish because of symmetry
properties of the curvature tensor.
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Weak field limit. The Newtonian limit also corresponds to weak field limit,
hence we will keep as few powers of the metric tensor as possible: that is, keep
∂∂g terms rather than (∂g)2s, etc.

Rµναβ = 1

2
(∂µ∂αgνβ − ∂ν∂αgµβ + ∂ν∂βgµα − ∂µ∂βgνα). (12.21)

Substituting this into (12.20) we have

R00 = g ijRi0 j0 = g ij

2
(∂i∂jg00 − ∂0∂jgi0 + ∂iµ∂0g0j − ∂0∂0βgij). (12.22)

Static limit. The Newtonian limit also corresponds to a static situation; we
can drop in (12.22) all terms having a time derivative ∂0 factor,

R00 = 1

2
�2 g00.

After using the relation in (5.20) and T00 = ρc2, Eq. (12.19) becomes

−1

2
�2
(

1+ 2
�

c2

)
= 1

2
κρc2 (12.23)

or

�2� = −1

2
κρc4. (12.24)

Thus we see that the Einstein equation indeed has the correct Newtonian limit
of �2φ = 4πGNρ when we identify

κ = −8πGN

c4
. (12.25)

The Einstein equation
Putting this value of (12.25) into the field Eq. (12.14) we have the
Einstein equation22Beware of various sign conventions

[S] = ±1 used in the literature:

ηµν = [S1] × diag(−1, 1, 1, 1),

Rµ
λαβ = [S2] × (∂α�

µ
λβ − ∂β�

µ
λα ,

+ �µ
να�ν

λβ − �
µ
νβ�ν

λα)

Gµν = [S3] × 8πG

c4
Tµν .

Thus our convention is [S1, S2, S3] =
(++−). The sign in the Einstein equation
[S3] is related to the sign convention in the
definition of the Ricci tensor Rµν = Rα

µαν .

Rµν − 1

2
Rgµν = −8πGN

c4
Tµν , (12.26)

or, written in its equivalent form as (12.16):

Rµν = −8πGN

c4

(
Tµν − 1

2
Tgµν

)
. (12.27)

This is a set of 10 coupled nonlinear partial differential equations. In general
they are extremely difficult to solve. However, for the spherically symmetric
(in the three spatial dimensions) situation, an analytic solution can be obtained.
We shall study this solution in the following section.

Box 12.1 Newtonian limit for the general source having mass density
and pressure

In certain situations, with cosmology being the notable example, we con-
sider the source of gravity being a plasma having mass density and pressure.
Usually we can drop the pressure term, which is negligible for nonrelativ-
istic matter. However, if the corresponding matter density is particularly
low, or just comparable to the pressure contribution, we need to work out
the Newtonian limit for a general source with an energy–momentum tensor
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of the ideal fluid as in (10.88). As shown in (12.17 ), the dominant term in
this limit is the 00-component of the Einstein Eq. (12.16),

R00 = κ

(
T00 − 1

2
Tg00

)
= κ

2
(T00 + T11 + T22 + T33)

= κ

2
(ρc2 + 3p). (12.28)

The trace (T) of the energy–momentum tensor, to the leading order in the
Newtonian limit, has been calculated by using the flat spacetime metric:
T = ηµνTµν with ηµν = diag(−1, 1, 1, 1). From this we obtain the quasi-
Newtonian equation for the gravitational potential �, as first displayed
in (9.4):

�2
� = 4πGN

(
ρ + 3

p

c2

)
. (12.29)

This makes it clear that not only mass, but also pressure, can be a source
of gravitational field.

12.3 The Schwarzschild exterior solution

We now solve the Einstein equation for a spherically symmetric (nonrotating)
source with total mass M. The solution is the metric function gµν(x) for the
spacetime geometry outside the source, and is called the Schwarzschild exterior
solution. In Section 6.1.1 we have shown that a spatially spherical symmetric
metric tensor (6.12) has only two scalar unknown functions:

ds2 = g00(r, t)c2dt2 + grr(r, t)dr2 + r2(dθ2 + sin2 θdφ2). (12.30)

Here we shall use the Einstein equation to solve for g00 and grr . The first step
involves expressing the Ricci tensor elements Rµν in terms of these metric
elements.

The spherical symmetric Christoffel symbols
We begin by calculating the connection symbols based on the spherically
symmetric form of (12.30). It will be convenient to introduce the notation:

g00 = 1

g00
≡ −eν , grr = 1

grr
≡ eρ (12.31)

so that the unknown metric functions are now ν(r, t) and ρ(r, t). Here we state
the result (see Box 12.2 for comments on the calculational procedure):

�0
00 = −

ν̇

2
, �0

rr =
ρ̇

2
eρ−ν , �0

0r =
ν′

2
,

�r
00 =

ν′

2
eν−ρ , �r

rr =
ρ′

2
, �r

0r =
ρ̇

2
,

�r
θθ = −re−ρ , �r

φφ = −r sin2 θe−ρ , �θ
φφ = − sin θ cos θ ,

�θ
rθ = r−1, �

φ
φθ = cot θ , �

φ
rφ = r−1,

(12.32)
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where dot denotes differentiation with respect to the coordinate time x0 =
ct, while the prime is a differentiation with respect to the radial coord-
inate r: for example,

ν̇ = 1

c

∂ν

∂t
, ν′ = ∂ν

∂r
. (12.33)

Box 12.2 �
µ
νλ via the Euler–Lagrange equation

In principle, we can obtain the result in (12.32) by differentiating the
metric tensor as in (11.37). A more efficient procedure will be through
the interpretation of the geodesic equation

d2xµ

dσ 2
+ �

µ
νλ

dxν

dσ

dxλ

dσ
= 0 (12.34)

as the Euler–Lagrange equation

d

dσ

∂L

∂ ẋµ
− ∂L

∂xµ
= 0 (12.35)

with the Lagrangian being (see Section 4.2.1 for more detail)

L = 1

2
gµν

dxµ

dσ

dxν

dσ
= 1

2

[
−eν

(
dx0

dσ

)2

+ eρ

(
dr

dσ

)2

+ r2
(

dθ

dσ

)2

+ r2 sin2 θ

(
dφ

dσ

)2
]

. (12.36)

Once the geodesic equation is written out this way as in (12.35), we can
then extract the value of �

µ
νλ by comparing it to (12.34). For example,

because we have

∂L

∂x0
= 1

2

[
−ν̇eν

(
dx0

dσ

)2

+ ρ̇eρ

(
dr

dσ

)2
]

and
∂L

∂ ẋ0
= −eν

(
dx0

dσ

)

the µ = 0 component of the Euler–Lagrange Eq. (12.35) reads as

d

dσ

[
−eν

(
dx0

dσ

)]
− 1

2

[
−ν̇eν

(
dx0

dσ

)2

+ ρ̇eρ

(
dr

dσ

)2
]
= 0

or

−eν

[
d2x0

dσ 2
+ ν′

dr

dσ

dx0

dσ
− ν̇

2

(
dx0

dσ

)2

+ ρ̇

2
eρ−ν

(
dr

dσ

)2
]
= 0.

This is to be compared to the µ = 0 component of (12.34), which with
only the nonvanishing (dxν/dσ)(dxλ/dσ) factors displayed, has the form:

d2x0

dσ 2
+ 2�0

r0
dr

dσ

dx0

dσ
+ �0

00

(
dx0

dσ

)2

+ �0
rr

(
dr

dσ

)2

= 0.

Hence we can extract the result:

�0
r0 =

ν′

2
, �0

00 = −
ν̇

2
, �0

rr =
ρ̇

2
eρ−ν , (12.37)

as displayed in (12.32).
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The spherically symmetric curvature
From the Christoffel symbols we then use (11.58) to calculate the curvature
tensor Rα

µβν from which we can contract the indices Rα
µαν to form the Ricci

tensor:

R00 = −
(

ν′′

2
+ ν′ 2

4
− ν′ρ′

4
+ ν′

r

)
eν−ρ +

(
ρ̈

2
+ ρ̇2

4
− ν̇ρ̇

4

)
,

Rrr =
(

ν′′

2
+ ν′ 2

4
− ν′ρ′

4
− ρ′

r

)
−
(

ρ̈

2
+ ρ̇2

4
− ν̇ρ̇

4

)
eρ−ν ,

R0r = − ρ̇

r
,

Rθθ =
[
1+ r

2

(
ν′ − ρ′

)]
e−ρ − 1,

Rφφ = sin2 θRθθ .

(12.38)

So far we have only discussed the restriction that spherical symmetry places
on the solution, and have not sought the actual solution to the Einstein field
equation. This we shall do in the following section.

The Einstein equation for the spacetime exterior
to the source
Here we wish to find the metric in the region outside a spherically symmetric
source. Because the energy–momentum tensor Tµν vanishes in the exterior,
the Einstein field equation becomes

Rµν = 0. (12.39)

Do not be deceived by the superficially simple form of this equation. Keep
in mind that the Ricci tensor is a set of a second-order nonlinear differential
operators acting on the metric functions, as displayed in (12.38). In this spherical
symmetrical case with only two nontrivial scalar functions ν(r, t) and ρ(r, t),
we expect this represents two coupled partial differential equations.

Remark: One should keep in mind that a vanishing Ricci tensor Rµν = 0
does not imply a vanishing Riemann tensor Rµναβ = 0. Namely, an empty
space (Tµν = 0) does not need to be flat, even though a flat space Rµναβ = 0
must have a vanishing Ricci tensor. (It may be helpful to compare the situation
to the case of a matrix having a vanishing trace. This certainly does not require
the entire matrix to vanish.)

Isotropic metric is time independent
Before getting the solution for the two unknown metric functions g00(r, t) ≡
−eν(r, t) and grr(r, t) ≡ eρ(r, t), we first point out that the metric must necessarily
be time-independent (the Birkhoff theorem, see Box 12.3)

ν(r, t) = ν(r) and ρ(r, t) = ρ(r). (12.40)

After substituting in this condition that all t-derivative terms vanish ν̇ =
ρ̇ = ρ̈ = 0, the Einstein vacuum relations in (12.38) yield three component
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equations:
R00 = 0:

ν′′

2
+ ν′ 2

4
− ν′ρ′

4
+ ν′

r
= 0, (12.41)

eρ−νR00 + Rrr = 0:

ν′ + ρ′ = 0, (12.42)

Rθθ = 0:
[
1+ r

2
(ν′ − ρ′)

]
e−ρ − 1 = 0. (12.43)

Actually one of these three equations is redundant. It can be shown that
the solution to two equations, for example, (12.42) and (12.43), automatically
satisfies the remaining Eq. (12.41).

Box 12.3 The Birkhoff theorem

Theorem: Every spherically symmetric vacuum solution to Rµν = 0 is
static. That is, ν̇ = ρ̇ = 0.

Proof: That ρ has no time dependence follows simply from the equa-
tion R0r = −ρ̇/r = 0 in (12.38). That ν has no time dependence
can be demonstrated as follows: because ρ and, hence also, ρ′ have no
t-dependence, the Einstein equation

Rθθ =
[
1+ r

2
(ν′ − ρ′)

]
e−ρ − 1 = 0, (12.44)

implies that ν′ is also time independent (as there is no time dependence in
the entire equation). The statement

ν′ ≡ dν

dr
= f (r) (12.45)

means that the function ν must depend on the variables r and t, separately:

ν(r, t) = ν(r)+ n(t). (12.46)

The appearance of ν(r) and n(t) in the infinitesimal interval ds2 has a form
so that a possible time-dependence n(t) can be absorbed in a new time
variable t′:

−eν(r) en(t) c2dt2 ≡ −eν(r)c2dt′2.

In terms of these coordinates, the metric functions are time independent.
This completes our proof of the Birkhoff theorem. �


 Recall the simple physical argument for the Newtonian analog of the
Birkhoff theorem, given at the end of Section 6.1.


 Historically, Schwarzschild obtained his solution by explicitly assum-
ing a static spherical source. Only several years later did Birkhoff provide
his theorem showing that the solution Schwarzschild obtained was actually
valid for an exploding, collapsing, or pulsating spherical star.
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Solving the Einstein equation
We now carry out the solution to (12.42) and (12.43). After an integration over r
of (12.42), we obtain the equality

ν(r) = −ρ(r), (12.47)

where we have set the integration constant to zero by a choice of new time
coordinates in exactly the same manner as done in the proof of the Birkhoff
theorem (Box 12.3). Because ν and ρ are exponents of the metric scalar
functions (12.31), this relation (12.47) translates into

−g00 = 1

grr
. (12.48)

(12.42) also allows us to rewrite (12.43) as

(1− rρ′)e−ρ − 1 = 0. (12.49)

We can simplify this equation by introducing a new variable:

λ(r) ≡ e−ρ(r),
dλ

dr
= −ρ′e−ρ

so that (12.49) becomes
dλ

dr
+ λ

r
= 1

r
, (12.50)

which has the general solution λ(r) = λ0(r) + λ1 where λ0 is the solution to
the homogeneous equation

dλ0

dr
= −λ0

r
. (12.51)

This can be solved by straightforward integration, ln λ0 = − ln r + c0. It thus
implies that the product of λ0r is a constant, which we label

λ0r ≡ −r∗. (12.52)

Combining this with a particular solution of λ1 = 1, we have the general
solution of

λ = 1− r∗

r
= 1

grr
= −g00, (12.53)

where we have used (6.17) and noted that the λ function is just g−1
rr . This solution

is called the Schwarzschild metric:

gµν = diag

[(
−1+ r∗

r

)
,

(
1− r∗

r

)−1

, r2, r2 sin2 θ

]
, (12.54)

and is quoted in (6.18). The parameter r∗ is then related to Newton’s constant and
source mass r∗ = 2GNM/c2 through the relation between the metric element
and gravitational potential in the Newtonian limit:

g00 = −
(

1+ 2�

c2

)
= −1+ 2GNM

c2r
= −1+ r∗

r
. (12.55)

This Schwarzschild solution (12.54) to the Einstein field equation must be
considered as a main achievement of GR in the field of astrophysics. It is an
exact solution which corresponds historically to Newton’s treatment of the 1/r2

force law (12.9) in the classical gravitational theory. Numerous GR applications,
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from the bending of a light-ray to black holes, are based on this solution
(cf. Chapter 6.)

As nonlinear equations are very difficult to solve, it is astonishing that Karl
Schwarzschild, the Director of Potsdam Observatory, discovered these exact
solutions3 only two months after Einstein’s final formulation of GR at the end3There is also the Schwarzschild interior

solution for the Einstein field equation with
Tµν �= 0 (e.g. that for the ideal fluid). Such
solutions are relevant for the discussion of
gravitational collapse.

of November 1915. At this time Schwarzschild was already in the German army
on the Russian front. Tragically by the summer of 1916 he died there (of an
illness)—one of the countless victims of the First World War.

12.4 The Einstein equation for cosmology

Cosmological study must be carried out in the framework of GR. The basic
dynamical equation is the Einstein equation. In Section 12.4.1 we find the
solution of Einstein’s equation that is compatible with a 3D space being homo-
geneous and isotropic as required by the cosmological principle. This solution
is the Robertson–Walker metric presented in Chapter 7. The Einstein equation
with a Robertson–Walker metric leads to Friedmann equations discussed in
Chapter 8. Finally in Section 12.4.3 we show how the Einstein equation can
be modified by the addition of the cosmological constant term. The physical
implications of such a � term have been studied in Chapter 9.

12.4.1 Solution for a homogeneous and isotropic
3D space

The cosmological principle gives us a picture of the universe as a system of
“cosmic fluid.” It is convenient to pick the coordinate time t to be the proper time
of each fluid element. The 4D metric in this comoving coordinate system has
the form as discussed in Section 7.3: gµν = diag(−1, gij) so that the spacetime
separation

ds2 = −c2dt2 + dl2 (12.56)

with

dl2 = gijx
ix j = [R(t)]2dl̂ 2, (12.57)

where R(t) is the dimensionful scale factor, equal to a(t)R0. The 3D separa-
tion dl̂ 2 is then dimensionless. Previously we argued that the requirement of a
homogeneous and isotropic space means that the space must have constant cur-
vature. Then we used the result obtained in Section 4.3.2 for a constant curvature
3D space (heuristically from the result of 2D surfaces of constant curvature):

dl̂2 = dξ2

1− kξ2
+ ξ2dθ2 + ξ2 sin2 θdφ2 (12.58)

with ξ being the dimensionless radial distance. This is the Robertson–Walker
metric. Here in this subsection, we shall use the intermediate steps of
Section 12.3 (in arriving at the Schwarzschild solution) to provide another
derivation of this result (12.58). The purpose is to make it clear that such a
metric is indeed the solution of the Einstein equation for a homogeneous and
isotropic space.4

4It should nevertheless be emphasized the
Robertson–Walker metric follows from the
symmetry of 3D space, rather from any
specific property of gravity as encoded in the
Einstein equation. A more rigorous deriva-
tion would involve the mathematics of sym-
metric spaces, Killing vectors, and isometry.
See Weinberg, “Gravitation and cosmology,”
Chapter 13, Wiley, 1972.
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Homogeneity and isotropy means that the space must be spherically sym-
metric with respect to every point in that space. We can work out the metric
that satisfies this requirement as follows:

Spherically symmetric with respect to the origin. This means that the metric
for the 3D space (ξ , θ , φ) should have the form as discussed in Sections 6.1.1
and 12.3.1. Keeping only the spatial part of (12.30), we have

dl̂2 = ĝξξ dξ2 + ξ2
(

dθ2 + sin2 θdφ2
)

. (12.59)

Birkhoff’s theorem (Box 12.3) then implies that the metric element ĝξξ

is independent of the coordinate time. (This shows the consistency of our
assumption that the reduced metric ĝij, after factoring out the scale factor
a2(t), does not change with time.) We will also follow the previous notation of
ĝξξ ≡ eρ(ξ) as shown in (12.31).

Spherically symmetric with respect to every point. To broaden from the
spherical symmetry with respect to one point (the origin) as discussed in
Section 12.3.1 to that with respect to every point (as required by homogeneity
and isotropy), we demand that the Ricci scalar (for this 3D space), which in
general is a function of ξ , be a constant; with some foresight we set it equal to
−6k,

[R(3)] ≡ −6k. (12.60)

This just says that the 3D space should be one with constant curvature. We
can look up the expression for the Ricci tensor in (12.38), and after setting
ν = ν̇ = ν′ = ν′′ = ρ̇ = ρ̈ = 0, we obtain the Ricci tensor elements for the
3D space:

[
R(3)

ξξ

]
= −1

ξ

dρ

dξ
,

[
R(3)

θθ

]
=
(

1− ξ

2

dρ

dξ

)
e−ρ − 1,

[
R(3)

φφ

]
= sin2 θ

[
R(3)

θθ

]
,

(12.61)

which is to be contracted with the inverse metric ĝ ij of (12.59),

ĝξξ = e−ρ(ξ), ĝθθ = ξ−2, ĝφφ = 1

ξ2 sin2 θ
, (12.62)

to obtain the Ricci scalar:

[R(3)] =
∑

i

[R(3)
ii ]ĝii = [R(3)

ξξ ]ĝξξ + 2[R(3)
θθ ]ĝθθ

= −e−ρ

ξ

dρ

dξ
+ 2

ξ2

[(
1− ξ

2

dρ

dξ

)
e−ρ − 1

]
.

Setting it to −6k as in (12.60)

2

ξ2

d

dξ
(ξe−ρ − ξ) = −6k. (12.63)

We can solve this differential equation by straightforward integration

d(ξe−ρ − ξ) = −3kξ2dξ ,

(1− e−ρ)ξ = kξ3 + A,
(12.64)
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where the integration constant A = 0, as can be seen in the ξ = 0 limit.
We obtain the desired solution

ĝξξ = eρ(ξ) = 1

1− kξ2
. (12.65)

Plugging this into (12.59), we have the dimensionless separation in the 3D
space as given by (12.58), confirming the heuristic results of (4.46) and (7.43).

12.4.2 Friedmann equations

In this subsection, we shall explicate the exact relation between the Einstein
and Friedmann equations used in Chapter 8. In the Einstein equation Gµν =
κTµν (with κ = −8πGN/c4) for the homogeneous and isotropic universe, the
LHS is determined by the Robertson–Walker metric with its two parameters;
the curvature constant k and the scale factor R(t). We still need to specify
the energy–momentum tensor on the RHS, which must be compatible with
cosmological principle. The simplest plausible choice is to take the cosmic
fluid as an ideal fluid as discussed in Section 10.3. In special relativity, we have
already shown in (12.30) that

Tµν = pgµν +
(
ρ + p

c2

)
UµUν , (12.66)

where p is pressure, ρ mass density, and Uµ 4-velocity field of the fluid. Since
there is no derivative, the same form also holds for GR. In the cosmic rest frame
(the comoving coordinates) in which each of the fluid element (galaxy) carries
its own position label, all the fluid elements are at rest Uµ = (c, 0). In such
a frame with a metric given by gµν = diag(−1, gij), the energy–momentum
takes on a particularly simple form

Tµν =
(

ρc2 0
0 pgij

)
. (12.67)

The cosmological Friedmann equations are just the Einstein equation with
Robertson–Walker metric and with ideal fluid energy–momentum tensor.

1. The G00 = −8πGNρ/c2 equation can then be written (again after a long
calculation) in terms of the R–W metric elements R(t) and k. We have
the first Friedmann equation,

Ṙ2(t)+ kc2

R2(t)
= 8πGN

3
ρ. (12.68)

2. From the Gij = −8πGNpgij/c4 equation, we have the second Friedmann
equation,

R̈(t)

R(t)
= −4πGN

c2

(
p+ 1

3
ρc2
)

. (12.69)

As we have shown in Chapter 8 these Friedmann equations, because of
cosmological principle, have simple Newtonian interpretation. Nevertheless,
they must be understood in the context of GR as they still involve the geometric
concepts like curvature, etc. The proper view is that they are Einstein equations
applied to cosmology.
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12.4.3 The Einstein equation with a cosmological
constant term

Einstein’s desideratum for a static universe led him to modify his original field
equation for GR. Given the strong theoretical arguments (cf. Section 12.2)
used in arriving at (12.13) and its success in describing gravitation phenomena
(at least up to the solar system), how can we go about making such a modifica-
tion? The possibility is that there is some gravitational feature which is too small
to be observed for systems at sub-cosmic scales, but becomes important only
on the truly large dimensions. Still, whatever we add to the Einstein equation,
it must be compatible with its tensor structure—a symmetric rank-2 tensor that
is covariantly constant (i.e. its covariant derivative vanishes). Recall that the
Einstein tensor Gµν , being a nonlinear second order derivative of the metric,
is such a tensor. But the metric tensor gµν itself is also symmetric, rank-2,
and covariantly constant, see (11.32). Thus it is mathematically consistent to
include such a term on the LHS of the field equation:

Gµν −�gµν = κTµν ,

where

κ = −8πGN

c4
. (12.70)

� is some unknown coefficient. The addition will alter the Newtonian limit of
the field equation as discussed in Section 12.2.2, and leads to a nonrelativistic
equation different from the Newton/Poisson equation, cf. (9.5). This difficulty
can, however, be circumvented by assuming that � is of such a small size as
to be unimportant except for cosmological applications. Hence � is called the
cosmological constant.

While it is more straightforward to see, from a mathematical viewpoint, how
the geometry side of Einstein’s equation can be modified by this addition, the
physical interpretation of this new term can be more readily gleaned if we move
it to the energy–momentum side:

Gµν = κ(Tµν + κ−1�gµν) = κ(Tµν + T�
µν), (12.71)

where T�
µν = κ−1�gµν can be called the “vacuum energy tensor.” In the

absence of ordinary mass/energy distribution Tµν = 0 (hence, the vacuum),
the source term T�

µν can still bring about a gravitational field in the form of
a nontrivial spacetime curvature.

In the cosmic rest frame (the comoving coordinates) with the velocity field
being Uµ = (c, 0, 0, 0) and the metric gµν = diag(−1, gij) of (7.37), this
vacuum energy–momentum tensor can be written in a form analogous to the
conventional ideal fluid stress tensor (12.67):

T�
µν =

�

κ

(−1 0
0 gij

)
≡
(

ρ�c2 0
0 p�gij

)
. (12.72)

Comparing it to Eq. (12.67), this implies a constant vacuum energy density,

ρ� = − �

κc2
= �c2

8πGN
, (12.73)
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which is the result quoted in Chapter 9 (cf. (9.2)). If we take � > 0, so that
ρ� > 0, it implied a negative vacuum pressure:

p� = −ρ�c2 < 0. (12.74)

Thus the cosmological constant corresponds to an energy density which is
constant in time and in space. No matter how we change the volume, this
energy density is unchanged. As we have discussed in Chapter 9, such negative
pressure is the source of gravitational repulsion which can drive the inflationary
epoch of the big bang, and can give rise to an universe undergoing an accelerated
expansion.

Review questions

1. What is the principle of general covariance?

2. Since SR equations are valid only in the absence of gravity,
turning SR into GR equations implies the introduction of a
gravitational field into relativistic equations. If the physics
equation is known in the special relativistic limit, how does
one turn such an SR equation into a general relativistic
one? Also discuss the difference of coordinate symmetries
involved in SR and GR.

3. How can one “deduce” the GR equation of motion from
that of SR?

4. Why did Einstein expect the relativistic gravitational field
equation to have the form of [Ôg] = κ[T ] with the LHS
being a covariantly constant symmetric tensor of rank-2
involving (∂2g) as well as (∂g)2 terms?

5. Write out the two equivalent versions of the Einstein field
equation, with the coupling expressed in terms of Newton’s
constant.

6. How can we use the result of a metric for a spherical sym-
metric space to derive that for a space that is homogeneous
and isotropic?

7. What is the relation between the Friedmann equations and
the Einstein equation?

8. What are the mathematical properties of the cosmological
constant term that allow it to be added to the Einstein
equation?

9. Write out the Einstein equation with the � term. Explain
why such a term can be interpreted as the vacuum energy–
momentum source of gravity.

Problems

(12.1) Another derivation of geodesic equation Starting
from the no-force condition (dp)µ = Dpµ = 0 in a
curved spacetime with the 4-momentum pµ = mUµ,
show how to arrive at the geodesic equation by using the
covariant derivative expression of (11.45).

(12.2) Vacuum Einstein equations

(a) Show that a vanishing Einstein tensor implies a
vanishing Ricci tensor.

(b) The three Eqs (12.41) to (12.43) are redundant.
Show that the solution to two equations, for
example, Eqs (12.42) and (12.43), automatically
satisfies the remaining Eq. (12.41).

(12.3) Friedmann equations and energy conservation Show
that energy conservation statement (8.3) that results

from the linear combination of these two Friedmann
Eqs (12.68) and (12.69) can also be derived directly
from the energy–momentum conservation equation of
DµTµν = 0.

(12.4) The equation of geodesic deviation We have derived
an expression for the curvature (11.58) on pure geomet-
ric considerations. A more physics approach would be to
seek the GR generalization of tidal forces as discussed
in Section 5.3. Following exactly the same steps used
to derive the Newtonian deviation equation in Box 5.2,
one can obtain its GR version, called the equation of
geodesic deviation,

D2sµ

Dτ 2
= −Rµ

ανβsν dxα

dτ

dxβ

dτ
. (12.75)
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Namely, the tensor of gravitational potential’s second
derivative is replaced by the Riemann curvature tensor
(11.58). This derivation requires a careful discussion of
the second derivative along a geodesic curve, cf. (11.46).

(12.5) From geodesic deviation to NR tidal forces Show that
the equation of geodesic deviation (12.75) reduces to the
Newtonian deviation Eq. (5.32) in the Newtonian limit.
The GR Eq. (12.75) is reduced to

d2si

dt2
= −c2R j

0j0s j

in the NR limit of a slow moving particle with 4-velocity
of dxα/dτ � (c, 0, 0, 0). We have also set s0 = 0
because we are comparing the two particles’ acceler-
ation at the same time. Thus, (5.32) can be recovered by
showing the relation

R j
0j0 =

1

c2

∂2�

∂xi∂x j

in the Newtonian limit. You are asked to prove this limit
expression for the Riemann curvature.
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• In the weak-field limit Einstein’s equation can be linearized and takes
on the familiar wave equation form.

• Gravitational waves may be viewed as ripples of curvature propagating
in a background of flat spacetime.

• The strategy of detecting such tidal forces by a gravitational wave
interferometer is outlined.

• The rate of energy loss due to quadrupole radiation by a circulating
binary system is calculated, and found in excellent agreement with
the observed orbit decay rate of the relativistic binary pulsar PSR
1913+16.

Newton’s theory of gravitation is a static theory. The Newtonian field due to
a source is established instantaneously. Thus, while the field has nontrivial
dependence on the spatial coordinates, it does not depend on time. Einstein’s
theory, being relativistic, is symmetric with respect to space and time. Just
like Maxwell’s theory, it has the feature that a field propagates outward from
the source with a finite speed. In this chapter, we study the case of a weak
gravitational field. This approximation linearizes the Einstein theory. In this
limit, a gravitational wave may be viewed as small curvature ripples propagating
in a background of flat spacetime. It is a transverse wave having two independent
polarization states, traveling at the speed of light.

Because gravitational interaction is so weak, any significant emission of
gravitational radiation can come only from a strong field region involving
dynamics that directly reflects GR physics. Once gravitational waves are
emitted, they will not scatter and they propagate out undisturbed from the inner
core of an imploding star, from the arena of black hole formation, and from
the earliest moments of the universe, etc. They come from regions which are
usually obscured in electromagnetic, even neutrino astronomy: gravitational
waves can provide us with a new window into astrophysical phenomena.

These ripples of curvature can be detected as tidal forces. We provide an out-
line of the detection strategy using the gravitational wave interferometers, which
can measure the minute compression and elongation of orthogonal lengths that
are caused by the passage of such a wave. In the final section, we present the
indirect, but convincing, evidence for the existence of gravitational waves as
predicted by general relativity (GR). This came from the observation, spanning
more than 25 years, of orbital motion of the relativistic binary pulsar1system:

1A pulsar is a magnetized neutron star whose
rapid rotation generates a circulating plasma
that serves as a source of beamed radio waves
detectable on earth as periodic pulses.

PSR 1913+16. Even though the binary pair is 5 kpc away, the basic parameters
of the system can be deduced by carefully monitoring the radio pulses emitted
by the pulsar, which effectively acted as an accurate and stable clock. From
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this record we can verify a number of GR effects. In particular the orbit period
is observed to decrease. According to GR, this is brought about by the grav-
itational wave quadrupole radiation from the system. The observed rate is in
splendid agreement with the prediction by Einstein’s theory.

13.1 The linearized Einstein theory

The production of gravitational waves usually involves strong-field situations,
but, because of the weakness of the gravitational interaction, the produced grav-
itational waves are only tiny displacements of the flat spacetime metric. Thus,
it is entirely adequate for the description of gravity wave to restrict ourselves
to the situation of a weak gravitation field. The Newtonian limit corresponds to
nonrelativistic motion in a weak static field. Here we remove the restriction of
slow motion and allow for a time-dependent field. In a weak field, the metric is
almost Minkowskian:

gµν = ηµν + hµν ≡ g(1)
µν , (13.1)

where |hµν | 	 1 everywhere in spacetime. Thus, we will keep only first-order
terms in hµν , and denote the relevant quantities with a superscript (1). The idea
is that slightly curved coordinate systems exist and they are suitable coordinates
to use in the weak-field situation. We can still make coordinate transformations
among such systems—from one slightly curved one to another. In particular we
can make a “background Lorentz transformation.” Distinguishing the indices,
{µ} vs. {µ′}, to indicate the untransformed and transformed coordinates,
we have

xµ → xµ′ = [L]µ′ν xν , (13.2)

where [L] is the position-independent Lorentz transformation of special
relativity (cf. (10.9) and (10.10)). The key property of such transformations
is that they keep the Minkowski metric invariant, see (10.13),

[L̄]µα′ [L̄]νβ ′ηµν = ηα′β ′ . (13.3)

This leads to the transformation of the full metric as

[L̄]µα′ [L̄]νβ ′g(1)
µν = ηα′β ′ + [L̄]µα′ [L̄]νβ ′hµν = g(1)

α′β ′ . (13.4)

Thus
hα′β ′ = [L̄]µα′ [L̄]νβ ′hµν . (13.5)

Namely, hµν is just a Lorentz tensor. Thus, this part of the metric can be taken
as a tensor defined on a flat Minkowski spacetime. Since the nontrivial physics
is contained in hµν , we can have the convenient picture of a weak gravitational
field as being described by this symmetric field hµν in a flat spacetime.2 2Eventually in a quantum description, hµν

is a field for the spin-2 gravitons, and
the perturbative description of gravitational
interactions as due to the exchanges of
massless gravitons.

Dropping higher order terms of hµν , we have the Riemann curvature tensor

R(1)
αµβν =

1

2
(∂α∂νhµβ + ∂µ∂βhαν − ∂α∂βhµν − ∂µ∂νhαβ), (13.6)

the Ricci tensor

R(1)
µν = η αβR(1)

αµβν

= 1

2
(∂α∂νh α

µ + ∂µ∂αh α
ν −�hµν − ∂µ∂νh), (13.7)
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and the Ricci scalar
R(1) = ∂µ∂νhµν −�h, (13.8)

where � = ∂µ∂µ and h = hµ
µ is the trace. Clearly the resultant Einstein tensor

G(1)
µν = R(1)

µν −
1

2
R(1)ηµν (13.9)

is also linear in hµν , and so is the Einstein equation:

G(1)
µν = −

8πGN

c4
T (0)

µν . (13.10)

NB: On the right-hand side (RHS) the energy-momentum tensor T (0)
µν has no hµν

dependence because Tµν must already be small Tµν = O(hµν) to be consistent
with a spacetime being slightly curved, and its conservation is expressed as

∂µT (0)
µν = 0 (13.11)

in terms of ordinary derivatives.

13.1.1 The coordinate change called gauge transformation

In the following, we shall make coordinate transformations so that the linearized
Einstein Eq. (13.10) can be written more compactly in terms of hµν . This class
of coordinate transformations (within the slightly curved spacetime) is called,
collectively, gauge transformations because of their close resemblance to the
electromagnetic gauge transformations. Consider a small shift of the position
vector:

xµ′ = xµ + χµ(x), (13.12)

where χµ(x) are four arbitrary small functions. Collectively they are called
the “vector gauge function” (as opposed to the scalar gauge function in elec-
tromagnetic gauge transformation, cf. Box 10.3). Clearly this is not a tensor
equation, as indices do not match on the two sides. (Our notation indicates the
relation of the position vector as labeled by the transformed and pre-transformed
coordinates.) The smallness of the shift χ 	 x means

|∂µχν | 	 1. (13.13)

The corresponding transformation (for the contravariant components) can be
obtained by differentiating (13.12):

∂xµ′

∂x α
= δµ

α + ∂αχµ. (13.14)

This also implies an inverse transformation of

∂xµ

∂x α′ = δµ
α − ∂αχµ + O(|∂χ |2). (13.15)

Apply it to the metric tensor:

g(1)
α′β ′ =

∂xµ

∂x α′
∂xν

∂xβ ′ g
(1)
µν

= δµ
α δν

βg(1)
µν − ∂αχµηµβ − ∂βχνηνα

= g(1)
αβ − ∂αχβ − ∂βχα , (13.16)
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Table 13.1 Analog between the electromagnetic and linearized
gravitational field theory

Electromagnetism Linearized gravity

Source jµ Tµν

Conservation law ∂µ jµ = 0 ∂µTµν = 0
Field Aµ hµν

Gauge transformation Aµ → Aµ − ∂µχ hµν → hµν − ∂µχν − ∂νχµ

Preferred gauge ∂µAµ = 0 ∂µh̄µν = 0
(Lorentz gauge) h̄µν = hµν − 1

2 hηµν

Field equation in the � Aµ = 4π
c jµ � h̄µν = (16πGN/c4)Tµν

preferred gauge

where χα = χµηµα . Expressing both sides in terms of hαβ , we have the gauge
transformation of the perturbation field

hα′β ′ = hαβ − ∂αχβ − ∂βχα , (13.17)

which closely resembles the transformation (10.69) for the electromagnetic
4-vector potential Aα(x) (Table 13.1).

13.1.2 The wave equation in the Lorentz gauge

Just as in electromagnetism, one can streamline some calculation by an appro-
priate choice of gauge conditions. Here this means that a particular choice of
coordinates can simplify the field equation formalism for gravitational waves.
We are interested in the coordinate system (cf. Problem 13.1) for which the
Lorentz gauge (also known as the harmonic gauge) condition holds:

∂µh̄µν = 0, (13.18)

where

h̄µν = hµν − h

2
ηµν (13.19)

has a trace of opposite sign, h̄µ
µ ≡ h̄ = −h. It can then be shown that this

trace reversed perturbation has the gauge transformation of

h̄α′β ′ = h̄αβ − ∂αχβ − ∂βχα + ηαβ(∂µχµ). (13.20)

From (13.18) and (13.19), we have the Lorentz gauge relation ∂µhµν = 1
2∂νh,

which implies, in (13.7) and (13.8), a simplified Ricci tensor R(1)
µν = − 1

2�hµν ,
scalar R(1) = − 1

2�h thus turning the linearized Einstein Eq. (13.10 ) into the
form of a standard wave equation:

�h̄µν = 16πGN

c4
T (0)

µν . (13.21)

Its retarded field solution

h̄µν(x, t) = 4GN

c4

∫
d3x′

T (0)
µν (x′, t − |x − x′|/c)

|x − x′| (13.22)

is certainly compatible with the gauge condition ∂µh̄µν = 0 because of energy-
momentum conservation (13.11).
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To reiterate, in this linear approximation of the Einstein theory, the metric
perturbation hµν may be regarded as the symmetric field of gravity waves prop-
agating in the background of a flat spacetime. A comparison of the linearized
Einstein theory with the familiar electromagnetic equations can be instructive.
Such an analog is presented in Table 13.1.

13.2 Plane waves and the polarization tensor

We shall first consider the propagation of a gravitational wave in vacuum. Such
ripples in the metric can always be regarded as a superposition of plane waves.
A gravity wave has two independent polarization states. Their explicit form
will be displayed in a particular coordinate system, the transverse-traceless
(T T) gauge.

Plane waves
The linearized Einstein equation in vacuum, (13.21) with T (0)

µν = 0, is

�h̄µν = 0. (13.23)

Because the trace h̄ = −h satisfies the same wave equation, we also have

�hµν = 0. (13.24)

Consider the plane wave solution in the form of

hµν(x) = εµνeikαx α

, (13.25)

where εµν , the polarization tensor of the gravitational wave, is a set of constants
forming a symmetric tensor

εµν = ενµ (13.26)

and k α is the 4-wavevector k α = (ω/c, #k). Substituting (13.25) into (13.24),
we obtain k2εµνeikx = 0; thus the wavevector must be a null-vector

k2 = kαk α = −ω2

c2
+ #k2 = 0. (13.27)

Gravitational waves propagate at the same speed ω/|#k| = c as electromagnetic
waves. Furthermore, because the wave Eq. (13.24) is valid only in the coor-
dinates satisfying the Lorentz gauge condition (13.18), the polarization tensor
must be “transverse”:

kµεµν = 0. (13.28)

The transverse-traceless gauge
There is still some residual gauge freedom left: one can make further coordinate
gauge transformations as long as the transverse condition (13.28) is not violated.
This requires that the associated gauge vector function χµ be constrained by
the condition:

�χµ = 0. (13.29)
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Such coordinate freedom can be used to simplify the polarization tensor
(see Problem 13.1): one can pick εµν to be traceless,

εµ
µ = 0, (13.30)

as well as

εµ0 = ε0µ = 0. (13.31)

This particular choice of coordinates is called the “transverse-traceless gauge,”
which is a subset of coordinates satisfying the Lorentz gauge condition.

The 4 × 4 symmetric polarization matrix εµν has 10 independent
elements. Equations (13.28), (13.30), and (13.31) which superficially represent
9 conditions actually fix only 8 parameters because the condition kµεµ0 = 0
is trivially satisfied by (13.31). Thus εµν has only two independent elements.
The gravitational wave has two independent polarization states. Let us dis-
play them. Consider a wave propagating in the z direction k α = (ω, 0, 0, ω)/c,
the transversality condition together with (13.31) implies that ωε3ν = 0, or
ε3ν = εν3 = 0. Together with the conditions (13.30) and (13.31), the metric
perturbation has the form

hµν(z, t) =




0 0 0 0
0 h+ h× 0
0 h× −h+ 0
0 0 0 0


 eiω(z−ct)/c. (13.32)

The two polarization states can be taken to be

ε
µν

(+) = h+




0 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 0


 and ε

µν

(×) = h×




0 0 0 0
0 0 1 0
0 1 0 0
0 0 0 0




with h+ and h× being the respective “plus” and “cross” amplitudes.

13.3 Gravitational wave detection

The coordinate-independent feature of any gravitational field is its tidal effect.
Thus, the detection of gravitational waves involves the recording of minute
changes in the relative positions of a set of test particles. In this section, we shall
first deduce the oscillatory pattern of such displacements, then briefly describe
the principle underlying the gravitational wave interferometer as detector of
such ripples in spacetime.

13.3.1 Effect of gravitational waves on test particles

Consider a free particle before its encounter with a gravitational wave. It is at
rest with a 4-velocity Uµ = (c, 0, 0, 0). The effect of the gravitational wave on
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this test particle is determined by the geodesic equation

dUµ

dτ
+ �

µ
νλUνUλ = 0. (13.33)

Since only U0 is nonvanishing at the beginning, it reduces to an expression for
the initial acceleration of (

dUµ

dτ

)

0
= −c2�

µ
00. (13.34)

The Christoffel symbols on the RHS

�
µ
00 =

1

2
ηµν(∂0hν0 + ∂0h0ν − ∂νh00), (13.35)

actually vanish because the metric perturbation hµν has, in the T T gauge,
polarization components of εν0 = ε0ν = ε00 = 0. The vanishing of initial
acceleration means that the particle will be at rest a moment later. Repeating
the same argument for later moments, we find the particle at rest for all times.
In this way we conclude

dUµ

dτ
= 0. (13.36)

The particle is stationary with respect to the chosen coordinate system—the
T T gauge coordinate labels stay attached to the particle. Thus one cannot
discover any gravitational field effect on a single particle. This is compatible
with our expectation, based on the equivalence principle (EP), that gravity can
always be transformed away at a point by an appropriate choice of coordinates.
We need to examine the relative motion of at least two particles in order to
detect the oncoming change in the curvature of spacetime.

(a) (b)

Fig. 13.1 Tidal force effects on a circle of
test particles due to gravitational waves in
(a) the plus-polarization, and (b) the cross-
polarization states.

Consider the effect of a gravitational wave with “plus-polarization” ε
µν

(+) on
two test particles at rest: one at the origin and the other located at an infinitesimal
distance ξ away on the x-axis, hence at an infinitesimally small separation
dxµ = (0, ξ , 0, 0). This translates into a proper separation of

ds = √gµνdxµdxν = √g11ξ �
[
η11 + 1

2
h11

]
ξ

=
[

1+ 1

2
h+ sin ω(t − z/c)

]
ξ (13.37)

showing that the proper distance does change with time. Similarly for
two particles separated along the y-axis dxµ = (0, 0, ξ , 0) the effect of the
gravitational wave is to alter the separation according to

ds =
[

1− 1

2
h+ sin ω(t − z/c)

]
ξ . (13.38)

Thus, the separation along the x direction is elongated while along the
y direction compressed. There is no change in the longitudinal separation along
the z direction. Just like the electromagnetic waves, gravitational radiation is
a transverse field. To better exhibit this pattern of relative displacement we
illustrate in Fig. 13.1(a) the effect of a plus-polarized wave, but instead of
impinging on two particles as discussed above, acting on a set of test particles
when the second particle is replaced by a circle of particles with the first test
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particle at the center. The outcome that generalizes (13.37) and (13.38) is shown
through the wave’s one cycle of oscillation.

The effect of a wave with cross-polarization ε
µν

(×) on two particles
with a differential interval of dxµ=(0, 1, ± 1, 0) ξ/

√
2 alters the proper sep-

aration as ds = [1 ± 1
2 h× sin ω(t − z/c)]ξ . The generalization to a circle of

particles through one cycle of oscillation is shown in Fig. 13.1(b), which is just
a 45◦ rotation of the plus-polarized wave result of Fig. 13.1(a). While the two
independent polarization directions of an electromagnetic wave are at 90◦ from
each other, those of a gravity wave are at 45◦. This is related to the feature that,
in the dual description of wave as streaming particles, the associated particles
of these waves have different intrinsic angular momenta: the photon has spin 1
while the graviton has spin 2. It is also instructive to compare the tidal force
effects on such test-particles’ relative displacement in response to an oncoming
oscillatory gravitational field to that of a static gravitational field as discussed
in Section 5.3.1.

13.3.2 Gravitational wave interferometers

A gravitational wave can be thought of as a propagating metric, affecting dis-
tance measurements. Thus, as a wave passes through, the distance between two
test masses changes with time. The fractional change l−1δl, called strain, is
directly related to the wave amplitude h. Although we can obtain an expression
of h by using the two energy-flux results (13.55) and (13.66), at this stage it is
more instructive to get an estimate by the “hand-waving” argument given in the
following paragraph.

The separation between two test masses are given by the equation of
geodesic deviation (cf. Problems 12.4 and 12.5), but we shall estimate it by
using the simpler Newtonian deviation equation of (5.32), which expresses the
acceleration per unit separation by the second derivative of the gravitational
potential. We assume that the relativistic effect can be included by a multiplica-
tive factor. The Newtonian potential for a spherical source is � = −GNMr−1.
A gravitational wave propagating in the z direction is a disturbance in the
gravitational field:

δ� = −ε
GNM

r
sin(kz − ωt), (13.39)

where k = ω/c. A dimensionless factor of ε has been inserted to represent the
relativistic correction. The second derivative can be approximated by

∂2

∂z2
δ� = ε

GNM

rc2
ω2 sin(kz − ωt), (13.40)

where we have dropped subleading terms coming from differentiation of the
r−1 factor. This being the acceleration as given in (5.32), the separation
amplitude (for the time interval ω−1) per unit separation is then given by

h =
(

δs

s

)

amp
= ε

GNM

rc2
. (13.41)

A similar approximation of the radiation formula (13.66) suggests that the relat-
ivistic correction factor ε as being the nonspherical velocity squared (v/c)2. The
first generation of gravitational wave interferometers have been set up with the
aim of detecting gravitation wave emission by neutron stars from the richest
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source of galaxies in our neighboring part of the universe, the Virgo cluster at
r ≈ 15 Mpc distance away. Thus, even for a sizable ε = O(10−1) from a solar
mass source M = M� the expected strain is only h = O(10−21). For two test
masses separated by a distance of 10 km the gravity wave induced separation
is still one hundredth of a nuclear size dimension. This has been described as
showing that spacetime is a very stiff medium, as a large amount of energy can
still bring about a tiny disturbance in the spacetime metric. This fact poses great
challenge to experimental observation of gravitational waves.

The above discussion makes it clear that one needs to design sensitive
detectors to measure the minute length changes between test masses over long
distances. Several detectors have been constructed based on the Michelson
interferometer configuration (Fig. 13.2). The test masses are mirrors suspended
to isolate them from external perturbation forces. Light from a laser source is
divided into the two arms by a beam splitter. The light entering into an arm of
length L is reflected back and forth in a Fabry–Perot cavity for n times so that
the optical length is greatly increased and the storage time is n(L/c) = �tn.
The return light-beams from the two arms are combined after they pass through
the beam splitter again. By choosing the path length properly, the optical elec-
tric field can be made to vanish (destructive interference) at the photodetector.
Once adjusted this way, a stretch in one arm and a compression in the other,
when induced by the polarization of a passing gravitational wave, will change
the optical field at the photodetector in proportion to the product of the field
times the wave amplitude. Such an interferometer should be uniformly sensi-
tive to wave frequencies less than 1

4�t−1
n (and a loss of sensitivity to higher

frequencies). The basic principle to achieve high sensitivity is based on the
idea that most of the perturbation noise forces are independent of the baseline
lengths while the gravitational-wave displacement grows with the baseline.

The Laser Interferometer Gravitational Observatory (LIGO) is comprised of
two sites: one at the Hanford Reservation in Central Washington (Fig. 13.3)
housing two interferometers one 2 km- and another 4 km-long arms, while

Fig. 13.2 Schematic diagram for gravita-
tional wave Michelson interferometer. The
four mirrors M1,2, M ′

1,2 and the beam splitter
mirror are freely suspended. The two arms are
optical cavities that increase the optical paths
by many factors. A minute length change
of the two arms, one expands and the other
contracts, will show up as changes in fringe
pattern of the detected light.

Laser

Detector

M1

M2M92

S

M91
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Fig. 13.3 LIGO Hanford Observatory in
Washington state.

the other site at Livingston Parish, Louisiana. The three interferometers are
being operated in coincidence so that the signal can be confirmed by data
from all three sites. Other gravitational wave interferometers in operation
are the French/Italian VIRGO project, the German/Scottish GEO project,
and the Japanese TAMA project. Furthermore, study is underway both at
the European Space Agency and NASA for the launching of three space-
craft placed in solar orbit with one AU radius, trailing the earth by 20◦.
The spacecraft are located at the corners of an equilateral triangle with sides
5 × 106 km long. Laser Interferometer Space Antenna (LISA) consists of
single-pass interferometers, set up to observe a gravitational wave at low fre-
quencies (from 10−5 to 1 Hz). This spectrum range is expected to include
signals from several interesting interactions of black holes at cosmological
distances.

Besides planning and building ever larger scale gravitational wave detectors,
a major effort by the theoretical community in relativity is involved in the
difficult task of calculating wave shapes in various strong gravity situations
(e.g. neutron-star/neutron-star collision, black hole mergers, etc.) to guide the
detection and comparison of theory with experimental observations.

13.4 Evidence for gravitational wave

Although, as of this writing, there has not been any generally accepted proof
for a direct detection of a gravitational wave, there is nevertheless convincing,
albeit indirect, evidence for the existence of such wave as predicted by Einstein’s
theory. Just as any shaking of electric charges produces electromagnetic waves,
a shaking of masses will result in the generation of a gravitational wave, which
carries away energy. A system of orbiting binary stars thus loses energy and
this results in a decrease of its orbit period. In the following two subsections we
present the formula that relates the energy flux of a gravitational wave to the
metric perturbation field hµν ; and then calculate hµν produced by the quadrupole
radiation as given by the linearized Einstein equation. In the final subsection we
present the relativistic binary pulsar system showing that its decrease of orbit
period due to gravitational wave radiation is in excellent agreement with what
is predicted by GR.
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13.4.1 Energy flux in linearized gravitational waves

In the linearized Einstein theory, gravitational waves are regarded as small
curvature ripples propagating in a background of flat spacetime. But gravity
waves, just like electromagnetic waves, carry energy and momentum; they will
in turn produce additional curvature in the background spacetime. Thus we
should have a slightly curved background and (13.1) should be generalized to

gµν = g(b)
µν + hµν , (13.42)

where g(b)
µν = ηµν + O(h2) is the background metric. The Ricci tensor can

similarly be decomposed as

Rµν = R(b)
µν + R(1)

µν + R(2)
µν + · · · ,

where R(n)
µν = O(hn) with n = 1, 2, . . .. In the free space the Einstein equation

being Rµν = 0, terms corresponding to different orders of metric perturbation
on the RHS must vanish separately:

R(1)
µν = 0, (13.43)

which is just (13.10) for the free space with Tµν = 0, and

R(b)
µν + R(2)

µν = 0 (13.44)

because both terms are quadratic in the metric perturbation O(h2). The energy
momentum tensor carried by the gravity wave tµν provides the slight curvature
of the background spacetime. It must therefore be related to the background
Ricci tensor by way of the Einstein Eq. (12.14) at this order,

R(b)
µν −

1

2
ηµνR(b) = −8πGN

c4
tµν .

Thus tµν is fixed by R(b)
µν , which in turn is related to R(2)

µν by way of (13.44). This
allows us to calculate tµν through the second-order Ricci tensor and scalar:

tµν = c4

8πGN

(
R(2)

µν −
1

2
ηµνR(2)

)
. (13.45)

Before carrying out the calculation of tµν , we should clarify one point: the
concept of local energy of a gravitational field does not exist. Namely, one
cannot specify the gravitational energy at any single point in space. This is
so because the energy being a coordinate-independent function of field, one
can always, according to the EP, find a coordinate (the local inertial frame)
where the gravity field vanishes locally. Saying it in another way, just as
in electromagnetism, we expect the energy density to be proportional to the
square of the potential’s first derivative. But, according to the flatness theorem,
the first derivative of the metric vanishes in the local inertial frame. Thus we
cannot speak of gravity’s local energy. Nevertheless, one can associate an effec-
tive energy–momentum tensor with the gravitational field of a finite volume.
Specifically, we can average over a spatial volume that is much larger than the
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wavelength of the relevant gravitational waves to obtain

tµν = c4

8πGN

[〈
R(2)

µν

〉
− 1

2
ηµν

〈
R(2)

〉]
, (13.46)

where 〈· · · 〉 stands for the average over many wave cycles.
Let us calculate the energy flux carried by a linearly polarized plane wave,

say the h+ state, propagating in the z direction. The metric and its inverse,
accurate up to first order in perturbation, in the T T gauge can be written as

gµν =




−1 0 0 0
0 1+ h̃+ 0 0
0 0 1− h̃+ 0
0 0 0 1


 and gµν =




−1 0 0 0
0 1− h̃+ 0 0
0 0 1+ h̃+ 0
0 0 0 1


 ,

(13.47)

where
h̃+ = h+ cos [ω(t − z/c)] . (13.48)

To obtain the energy–momentum tensor of the gravity wave by way of R(2)
µν as

in (13.45), we need first to calculate the Christoffel symbols by differentiating
the metric of (13.47). It can be shown (Problem 13.3) that the nonvanishing
elements are

�1
10 = �1

01 = �0
11 =

1

2
(∂0h̃+ − h̃+∂0h̃+) (13.49)

and

�1
13 = �1

31 = −�3
11 = −

1

2
(∂0h̃+ − h̃+∂0h̃+). (13.50)

The Riemann tensor has the structure of (∂� + ��). Since we are interested
in calculating only O(h2), the above h̃+∂0h̃+ factor in the Christoffel symbols
can only enter in the ∂� terms, leading to the time-averaged term of 〈h̃+∂0h̃+〉 ∝
〈sin[2ω(t − z/c)]〉 = 0. Hence we will drop the h̃+∂0h̃+ terms in (13.49) and
(13.50), and calculate the (averaged) curvature tensor in (11.58) by dropping
the 〈∂�〉 factors,

〈R(2)
µν 〉 = 〈� α

αλ�
λ
µν − � α

µλ�
λ
αν〉. (13.51)

A straightforward calculation (Problem 13.3) shows that

R(2)
11 = R(2)

22 = 0 and R(2)
00 = R(2)

33 =
1

2
(∂0h̃+)2 (13.52)

leading to a vanishing Ricci scalar

R(2) = ηµνR(2)
µν = −R(2)

00 + R(2)
11 + R(2)

22 + R(2)
33 = 0. (13.53)

In particular, the effective energy density of the gravitational plane wave in
the plus polarization state as given by (13.46) and (13.52) is

t00 = c4

16πGN

〈
(∂0h̃+)2 + (∂0h̃×)2

〉
, (13.54)

where we have also added the corresponding contribution from the cross
polarization state. If we choose to write the transverse traceless metric per-
turbation as h̃+ ≡ hT T

11 = −hT T
22 and h̃× ≡ hT T

12 = hT T
21 and hT T

3i = 0
(with i = 1, 2, 3) as well as denote the time derivative ḣT T

ij ≡ ∂hT T
ij /∂t, we then
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have 〈(∂0h̃+)2 + (∂0h̃×)2〉 = 1
2 〈ḣT T

ij ḣT T
ij 〉. For a wave traveling at the speed c

the energy flux, being related to the density by f = ct00, hence can be expressed
in terms of the metric perturbation as

f = c3

32πGN

〈
ḣT T

ij ḣT T
ij

〉
(13.55)

with repeated indices summed over. It is useful to recall the counterpart in
the more familiar electromagnetism. The EM flux is given by Poynting vector
which is proportional to the product of time-derivatives of the vector potentials.
Equation (13.55) shows that a gravitational wave is just the same, with the
proportionality constant built out of c and GN. One can easily check that c3/GN

has just the right units (energy times time per unit area). It is a large quantity,
again reflecting the stiffness of spacetime—a tiny disturbance in the metric
corresponds to a large energy flux.

13.4.2 Emission of gravitational radiation

In the previous subsection we have expressed the energy flux of a gravita-
tional wave in terms of the metric perturbation hij = gij − ηij. Here we
will relate hij to the source of gravitational wave by way of the linearized
Einstein Eq. (13.22).

Calculate wave amplitude due to quadrupole moments
We shall be working in the long wavelength limit for a field-point far away from
the source. Let D be the dimension of the source, this limit corresponds to

r � D large distance from source,

λ� D long wavelength.

The long wavelength Dλ−1 ∼ Dωc−1 approximation means a low velocity
limit for the source particles. In such a limit we can approximate the integral
over the energy–momentum source in (13.22) as

∫
d3x′

Tµν(x′, t − |x − x′|/c)

|x − x′| −→ 1

r

∫
d3x′Tµν

(
x′, t − r

c

)

because the harmonic source, in the long wave limit Tµν ∝ cos[ωt− (2π/λ)×
|x − x′|], will not change much when integrated over the source. To calculate
the energy flux through (13.55) we have from (13.22)

hij(x, t) = 4GN

c4r

∫
d3x′Tij

(
x′, t − r

c

)
, (13.56)

where we have not distinguished between hij and h̄ij as they are the same in the
T T gauge.

To calculate
∫

d3x′Tij(x′)we find it convenient to convert it into a second mass
moment by way of the energy–momentum conservation relation ∂µTµν = 0.
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Differentiating ∂0 one more time, the equations ∂0∂µTµ0 = 0 leads to

∂2T00

c2∂t2
= − ∂2Ti0

c∂t∂xi
= − ∂

∂xi

∂T0i

c∂t
.

We can apply the conservation relation ∂T0i + ∂jT ij = 0 one more time to get

∂2T00

c2∂t2
= + ∂2Tij

∂xi∂x j
.

Multiply both sides by xkxl and integrate over the source volume:

∂2

c2∂t2

∫
d3xT00xkxl =

∫
d3x

∂2Tij

∂xi∂x j
xkxl = 2

∫
d3xTkl. (13.57)

To reach the last equality we have performed two integrations-by-parts
and discarded the surface terms because the source dimension is finite.
Combining (13.56) and (13.57) we have

hij(x, t) = 2GN

c4r
Ï ij

(
t − r

c

)
, (13.58)

where Iij is the second mass moment, after making the Newtonian approxima-
tion of T00 = ρc2 with ρ(x) being the mass density, given by

Iij =
∫

d3xρ(x)xixj (13.59)

and the double dots over Iij indicate second-order time-derivatives.
We have already explained that, just as the electromagnetic case, there is no

monopole radiation (Birkhoff’s theorem). But unlike electromagnetism, there
is also no gravitational dipole radiation because the time derivative of the dipole
moment,

d̈ =
∫

d3xρ(x)v̇ = 0, (13.60)

which is the total force on the system, vanishes for an isolated system (reflecting
momentum conservation). Thus, the leading gravitational radiation must be
quadrupole radiation.

Summing over the flux in all directions in the T T gauge
Since our calculations are performed in the transverse traceless gauge, the
relation in (13.58) suggests that the mass moment should have the same traceless
and transverse structure as the metric perturbation hT T

ij . We shall work with the
“reduced mass moment” which is traceless:

Ĩij = Iij − 1

3
δijIkk , (13.61)

Ikk being the trace of Iij and for a plane wave propagating in the z direction
it has the form of (13.32)

Ĩij =



Ĩ+ Ĩ× 0
Ĩ× −Ĩ+ 0
0 0 0


 .

The combination of fields in (13.55) and (13.54) implies that we calculate the
sum

Ĩ2+ + Ĩ2× =
1

4
(Ĩ11 − Ĩ22)

2 + Ĩ2
12. (13.62)
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For the calculation to be performed below we need to rewrite (Problem 13.4) this
result explicitly as the mass moment for a wave propagating in the z direction as

[Ĩ2+ + Ĩ2×]z =
1

4
[2Ĩij Ĩij − 4Ĩi3 Ĩi3 + Ĩ33 Ĩ33], (13.63)

where we have used Ĩ33 = −Ĩ11− Ĩ22 because the reduced moment is traceless.
To calculate the total power emitted by the source, we need to integrate over

the flux for a wave propagating out in all directions. We need to generalize
the result in (13.63) to moments for a plane wave propagating in an arbitrary
direction, specified by the unit vector n:

[Ĩ2+ + Ĩ2×]n =
1

4
[2Ĩij Ĩij − 4Ĩik Ĩil nk nl + Ĩij Ĩkl ni nj nk nl]. (13.64)

Integrating over all directions, we obtain
∫

1

4
[2Ĩij Ĩij − 4Ĩik Ĩil nk nl + Ĩij Ĩkl ni nj nk nl]d�

= π

(
2− 4

3
+ 2

15

)
Ĩij Ĩij = 4π

5
Ĩij Ĩij (13.65)

after using the formulae
∫

d� = 4π ,

∫
nknld� = 4π

3
δkl,

∫
ninjnknld� = 4π

15
(δijδkl + δkjδil + δikδjl).

These integration results are easy to understand: the only available symmetric
tensor that is invariant under rotation is the Kronecker delta δij. After fixing
the tensor structure of the integrals, the coefficients in front, 4π/3 and 4π/15,
can be obtained by contracting the indices on both sides and using the relation
δijδij = 3.

Integrating the flux (13.55) over all directions by using the result of (13.65)
we arrive at the expression for the total luminosity

dE

dt
=
∫

f · r2d� = GN

5c5

〈
Ĩ

...

T T
ij Ĩ

...

T T
ij

〉
. (13.66)

Let us recapitulate: the energy carried away by gravitational waves must be
proportional to the square of the time-derivative of the wave amplitude (recall
the Poynting vector), which is the second derivative of the quadrupole moment
(cf. (13.58)). The energy flux falls off like r−2. To get the total luminosity by
integrating over a sphere of radius r, the dependence of radial distance dis-
appears. The factor of GNc−5 must be present on dimensional grounds. The
detailed calculation fixes the proportional constant of 1

5 and we have the grav-
itational wave luminosity in the quadrupole approximation displayed above.

13.4.3 Binary pulsar PSR 1913+16

A radio survey, using the Arecibo Radio Telescope in Puerto Rico (Fig. 13.4),
for pulsars in our galaxy made by Russel Hulse and Joseph Taylor discovered
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Fig. 13.4 The Arecibo Radio telescope.

the unusual system PSR 1913+16. Observations made since 1974 allowed them
to check GR to great precision including the verification for the existence of
gravitational waves as predicted in Einstein’s theory.

From the small changes in the arrival times of the pulses recorded in the
past decades a wealth of the properties of this binary system can be extracted.
This is achieved by modeling the orbit dynamics and expressing these in terms
of the arrival time of the pulse. Different physical phenomena (such as bending
of the light, periastron advance, etc.) are related to the pulse time through
different combinations of system parameters. In this way the masses and
separation of the stars and the inclination and eccentricity of their orbit can
all be deduced. In the following we present a recent compilation given by
Weisberg and Taylor (2003):

pulsar mass Mp = 1.4408± 0.0003 M�,

companion mass Mc = 1.3873± 0.0003 M�,

eccentricity e = 0.6171338± 0.000004, (13.67)

binary orbit period Pb = 0.322997462727 d,

orbit decay rate Ṗb = (−2.4211± 0.0014)× 10−12 s/s.

It is interesting to note that these two neutron stars have just the masses 1.4M�
of the Chandrasekhar limit.

In this section, we shall demonstrate that from these numbers, without any
adjustable parameters, we can compute the decrease (decay) of orbit period due
to gravitational radiation by the orbiting binary system. Instead of a full scale
GR calculation, we shall consider the simplified case of two equal mass stars
in a circular orbit (Fig. 13.5), as all essential features of gravitational radiation
and orbit decay can be easily calculated. At the end we then quote the exact
result when Mp �= Mc in an orbit with high eccentricity as a straightforward
modification of the result obtained by our simplified calculation.

M

M

vbt
R

Fig. 13.5 Two equal masses circulating
each other in a circular orbit with angular
frequency of ωb.
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Energy loss due to gravitational radiation
Let us first concentrate on the instantaneous position of one of the binary stars
as shown in Fig. 13.5:

x1(t) = R cos ωbt, x2(t) = R sin ωbt, x3(t) = 0.

From this we can calculate the second mass moment according to (13.59),

I11 = 2MR2 cos2 ωbt,

I22 = 2MR2 sin2 ωbt,

I12 = 2MR2 sin ωbt cos ωbt,

leading to the traceless reduced moment as defined in (13.61),

Ĩab = Iab − 1

2
δabIcc = Iab −MR2δab,

so that

Ĩ11 = MR2 cos 2ωbt,

Ĩ22 = −MR2 cos 2ωbt,

Ĩ12 = MR2 sin 2ωbt.

The quadrupole formula (13.66) for luminosity involves time derivatives. For
the simple sinusoidal dependence given above, each derivative just brings down
a factor of 2ωb; together with the averages 〈sin2〉 = 〈cos2〉 = 1

2 , we obtain the
rate of energy loss:

dE

dt
= GN

5c5
(2ωb)

6〈Ĩ2
11 + Ĩ2

22 + 2Ĩ2
12〉 =

128GN

5c5
ω6

bM2R4. (13.68)

From energy loss to orbit decay
Energy loss through gravitational radiation leads to orbit decay, namely the
decrease in orbit period Pb of the binary system. We start the calculation of this
orbit period change through the relation (dPb)/Pb ∝ −(dE)/E. Again we shall
only work out the simpler situation of a binary pair of equal mass M separated
by 2R in circular motion. The total energy being

E = MV2 − GNM2

2R
(13.69)

with velocity determined by Newtonian equation of motion

M
V2

R
= GNM2

(2R)2

or

V2 = GNM

4R
, (13.70)

so that the total energy of the binary system (13.69) comes out to be

E = −GNM2

4R
. (13.71)
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We wish to have an expression of the energy in terms of the orbit period by
replacing R using (13.70):

R = GNM

4V2
= GNM

4

(
2πR

Pb

)−2

or R3 = GNM

16π2
P2

b. (13.72)

Plugging this back into (13.71), we have

E = −M

(
πMGN

2

)2/3

P−2/3
b . (13.73)

Through the relation, dE/E = − 2
3 dPb/Pb, so that the rate of period-decrease

Ṗb ≡ dPb/dt can be related to the energy loss rate:

Ṗb = −3Pb

2E

(
dE

dt

)
. (13.74)

Substituting in the expression (13.73) for E, (13.68) for dE/dt where the wave
frequency is given by the orbit frequency ωb = 2π/Pb and where R is given
by (13.72), we have

Ṗb = −48π

5c5

(
4πGNM

Pb

)5/3

. (13.75)

That the orbit for PSR 1913+16, rather than circular, is elliptical with high
eccentricity can be taken into account (Peters and Mathews, 1963) with the
result involving a multiplicative factor of

1+ (73/24)e2 + (37/96)e4

(1− e2)7/2
= 11.85681, (13.76)

where we have used the observed binary orbit eccentricity as given in (13.67).
That the pulsar and its companion have slightly different masses, Mp �= Mc
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Fig. 13.6 Gravitational radiation damping
causes orbit decay of the binary pulsar
PSR 1913+16. Plotted in Weisberg and
Taylor (2003) is the accumulating shift in
the epoch of periastron (the point of closest
approach between the pulsar and its compan-
ion star). The parabola is the GR prediction,
and observations are depicted by data points.
In most cases the measurement uncertainties
are smaller than the line widths. The data gap
in the 1990s reflects the downtime when the
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means we need to make the replacement (2M)5/3 −→ 4MpMc(Mp +Mc)
−1/3.

The exact GR prediction is found to be

Ṗb GR = −192πMpMc

5c5(Mp +Mc)1/3

1+ (73/24)e2 + (37/96)e4

(1− e2)7/2

(
2πGN

Pb

)5/3

= −(2.40247± 0.00002)× 10−12 s/s. (13.77)

This is to be compared to the observed value corrected for the galactic accel-
eration of the binary system and the sun, which also causes a change of orbit
period Ṗb gal = −(0.0125 ± 0.0050) × 10−12 s/s. From the measured values
given in (13.67), we then have

Ṗb corrected = Ṗb observed − Ṗb gal

= −(2.4086± 0.0052)× 10−12 s/s (13.78)

in excellent agreement with the theoretical prediction shown in (13.77). This
result (Fig. 13.6) provides strong confirmation of the existence of gravitational
radiation as predicted by Einstein’s theory of GR.

With the confirmation of the existence of gravitational radiation according
to Einstein’s general theory of relativity, the next stage will be the detec-
tion of gravitational waves through interferometer observations to confirm the
expected wave kinematics, and tests of various strong field situations. But just
like all pioneering efforts of fresh ways to observe the universe, gravitational
wave observatories will surely discover new phenomena that will deepen and
challenge our understanding of astronomy, gravitation, and cosmology.

Review questions

1. Give a qualitative discussion showing why one would
expect gravitational waves from Einstein’s GR theory of
gravitation, but not from Newton’s theory.

2. Why is it important to have a gravitational wave
observatory?

3. What approximation is made to have the linearized theory
of GR? In this framework, how should we view the
propagation of gravitational waves?

4. What are the differences and similarities between electro-
magnetic and gravitational waves?

5. What is a gauge transformation in the linearized theory?
What is the Lorentz gauge? Can we make further gauge
transformations within the Lorentz gauge?

6. Consider a set of test particles, all of them lying in a circle
except one at the center. When a gravitational wave with
the + polarization passes through them what will be the
relative displacements of these particles going through one

period of the wave? How would the relative displacement
be different if the polarization is of the × type?

7. Give a qualitative argument showing that the wave strain
is of the order εGNM/rc2 where ε is a relativistic correc-
tion factor typically less than unity. Such a strain would
be O(10−21) when the wave is generated by a solar mass
source in the Virgo cluster (r ≈ 15 Mpc) from us.

8. Using what you know of the Poynting vector as the energy
flux of an EM wave, guess the form of energy flux in terms
of the gravitational wave amplitude. What should be the
proportionality constant (up to some numerical constant
that can only be derived by detailed calculation)?

9. The leading term in gravitational radiation is quadrupole.
Why is there no monopole and dipole radiation?

10. PSR 1913+16 is a binary pulsar system. What is a
pulsar? What is being observed? Which results show strong
evidence for the existence of gravitation waves as predicted
by GR?
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Problems

(13.1) Gauge transformations

(a) Show that the gauge transformation for the trace-
reversed perturbation h̄µν in (13.20) follows from
(13.17) and (13.19).

(b) Demonstrate the existence of the Lorentz gauge by
showing that, starting with an arbitrary coordinate
system where ∂µh̄µν �= 0, one can always
find a new system such that ∂µh̄′µν = 0 with
a gauge vector function χµ being the solution
to the inhomogeneous wave equation �χν =
∂µh̄µν . This also means that one can make further
coordinate transformations within the Lorentz
gauge, as long as the associated gauge vector
function satisfies the wave equation

�χν = 0. (13.79)

(c) The solution to Eq. (13.79) may be written as χν =
Xνeikx where k α is a null-vector. Show that the four

constants Xν can be chosen such that the polar-
ization tensor in the metric perturbation hµν(x)
is traceless ε

µ
µ = 0 and every 0th component

vanishes εµ0 = 0.

(13.2) Wave effect via the deviation equation As we have
shown in Section 13.3.1, a gravitational wave can only
be detected through the tidal effect. Since the equation
of geodesic deviation is an efficient description of the
tidal force, show that the results of (13.37) and (13.38)
can be obtained by using this equation.

(13.3) �
µ
νλ and R(2)

µν in the TT gauge Show that the Christoffel
symbols of (13.49) and (13.50), as well as the second-
order Ricci tensor (13.52), are obtained in the T T gauge
with the metric given in (13.47).

(13.4) Checking the equivalence of (13.62) and (13.63)
Show that

(Ĩ11 − Ĩ22)
2 + 4Ĩ2

12 = 2Ĩij Ĩij − 4Ĩi3 Ĩi3 + Ĩ33 Ĩ33.
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• These appendices contain the supplementary material for various
sections in the main text (marked by the bracket in the headings).

A.1 The twin paradox (Section 2.3.4)

The well-known “twin paradox” is an instructive example that sheds light on
several basic concepts in relativity. We shall work it out in detail, and arrive
at the resolution of the paradox (as a reciprocity puzzle) when realizing that
non-inertial frames are involved. (See, for example, Ellis and Williams, 1988.)

The paradox of a twin’s asymmetric aging
Two siblings, Al and Bill, are born on the same day. Al goes on a long journey
at high speed in a spaceship; Bill stays at home. The biological clock of Al will
be measured by the stay-at-home Bill to run slow. When Al returns he should
be younger than Bill.

A definite example with numbers
For simplicity, let us consider a definite case where Al travels outward at β = 4

5
for 15 years, then returns (i.e. coming inward) at β = − 4

5 for 15 years. Both
periods of 15 years are measured in Al’s rocketship; and γ = 5

3 for both
β = ± 4

5 . When A and B meet again, Al should be younger: while A has aged
30 years, B would have aged 5

3 × 30 = 50 years according to SR time dilation:

A vs. B = 30 vs. 50 (B’s viewpoint). (A.1)

Of course, this SR prediction of asymmetric aging of the twins, while counter-
intuitive according to our low-velocity experience, is nothing “paradoxical”—
just an example of time-dilation, which is counter-intuitive, but true. The “twin
paradox” is just a more dramatic way of saying that any two travelers A and B
would find their watches no longer synchronized when they meet again after a
journey following two separate routes. It is easy to understand this because their
separate worldlines will have different spacetime lengths, which are readings
of their respective proper times. These quantities being invariants (independent
of the coordinate frames), we can choose to calculate them in their respective
rest frames: Al’s proper time is 15 + 15 = 30, while Bill’s proper time is 50
(see Fig. A.1). Nevertheless, it is worthwhile to work through some details as it
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will provide us with further insight as to the nature of time coordinate changes
when we change reference frames. Before doing this, we will state below a
question which is somewhat more “paradoxical.”

The twin paradox as a reciprocity puzzle
If relativity is truly relative, we could just as well consider this separation and
reunion from the viewpoint of Al, who sees Bill as in a moving frame. So, when
Bill “returns,” it is Bill who should have stayed younger. From the viewpoint
of A, Bill should be younger: while A has aged 30 years, B would have aged
( 5

3 )−1 × 30 = 18 years.

A vs. B = 30 vs. 18 (A’s viewpoint). (A.2)

Thus Bill’s age has been found in one case, Eq. (A.1), to be 50 and in another
case 18—a full 32 years difference. Which viewpoint, which theory, is the
correct one?

Checking theories by measurements
To answer this question, we can carry out the following measurement of Bill’s
age. Let the stay-at-home Bill celebrate his birthdays by setting off firework
displays, which Al, with a powerful telescope on board his spaceship, can
always observe. So the theory can be checked with experiments by the number
of firework flashes Al sees during his 30-year long journey. If he sees 18 flashes
A’s viewpoint is right, if 50, then B is right.

Let us carry out this measurement:

During the outward-bound journey. Al sees a flash at every �tA interval,
which differs from �tB = 1 year: first of all there is the time dilation effect
γ�tB, but there is also the fact that between the flashes A and B have increased
their separation by an amount of v�tB. Therefore, to reach Al in the space-ship,
the light signal (i.e. the flashes) has to take an extra interval of v�tB/c, which
also has to be dilated by a factor of γ . (This is a particular realization of the
nonsynchronicity of clocks as discussed in reference to Fig. 2.14. Keep in mind
that the fireworks act as clocks in this situation.)

�t(out)
A = γ (1+ β)�tB = 5

3

(
1+ 4

5

)
= 3 years.

Namely, during the 15-years’ outward bound journey, Al sees Bill’s flashes
every 3 years, thus a total of 5 flashes.

During the inward-bound journey. β reverses sign, hence Al sees a flash at
an interval of11We can also understand the difference in the

observed frequency of birthday fireworks by
the Doppler formula. The relative velocities
for the outward and inward bound trips are
β = ± 4

5 . Equation (10.48) yields ω′ = 3ω,
and ω′ = ω/3, respectively. This is just
the frequency changes of birthday fireworks
observed.

�t(in)
A = 5

3

(
1− 4

5

)
= 1

3
year,

and thus altogether 45 flashes.

In this way, Al sees a total of 50 flashes. This proves that B’s viewpoint is
correct: while the traveling twin Al has aged 30 years, the stay-at-home twin
has aged 50 years.
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Reciprocity nature of relativistic effects
Applying the basic formula for time dilation, we see that Al observes Bill’s
clock to run slow:

tB = γ tA, (A.3)

while Bill observes Al’s clock to run slow:

tA = γ tB. (A.4)

Each observer sees the other’s clock to run slow. Thus we can conclude
“relativity is truly relative.” But, there is an apparent contradiction: “which
set of time intervals is actually longer?!” The resolution is based on the realiza-
tion that two different types of time are being compared. Failure to distinguish
them have led to the confusion. Equation (A.3) is from Al’s view point, and
Eq. (A.4) is from Bill’s view point. Thus to be precise we should have labeled
the times in these two equations differently:

t(A)
B = γ t(A)

A , and t(B)
A = γ t(B)

B . (A.5)

and t(A)
A,B �= t(B)

A,B. In fact since t(A)
A and t(B)

B are the respective proper times of A
and B, we have the usual time dilation relations

t(B)
A = γ t(A)

A , and t(A)
B = γ t(B)

B . (A.6)

From this, it is straightforward to check the two relations in (A.5) are entirely
compatible with each other.

In connection with this discussion of the reciprocity relation, it will be useful
to work through another measurement when it is the traveling Al who celebrates
his birthdays by sending out light signals. In this arrangement, Al’s yearly
flashes are received every 3 years by Bill at home during the outward bound
journey, thus a total 45 years before Al turns around. Thereafter, the flashes are
received every 4 months, thus a total 15 flashes in 5 years, hence 30 flashes in
50 years of Bill’s time. This agrees with the above measurements. This example
shows explicitly the consistency of the result, even though each observer sees
the other’s clock to run slow.

The reciprocity puzzle resolved
Although we properly recognize that two types of time measurements are
involved (hence resolving the reciprocity puzzle), we still have the question
of why B’s viewpoint is correct, and not A’s? The reciprocity relation is not
applicable here: while B stays as an inertial frame observer throughout the
journey, A cannot be—he must turn around! Thus A’s viewpoint cannot be
represented by a single inertial frame of reference. We have to use at least two
inertial frames to describe A’s trip. The turn-around must necessarily involve
acceleration to go from one to the other inertial frame. Non-inertial frames must
be invoked and this goes beyond special relativity (SR).

In the above, we have considered the simplest possible case having only the
minimum number of inertial frames: O = rest frame of B, and O′ and O′′ = rest
frames of A during his outward and inward bound segments of the journey. They
are represented by three straight worldlines in the spacetime diagram, plotted
from the viewpoint of B, in Fig. A.1. The OP interval corresponds to the duration
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Fig. A.1 Three worldlines of the twin
paradox: OQ is that for the stay-at-home Bill,
OP that for the outward-bound part (β = 4

5 ),

PQ that for the inward-bound part (β = − 4
5 )

of the Al’s journey. M is the midpoint between
O and Q. These three lines define three inertial
frames: O, O′, and O′′ systems. When Al
changes from the O′ to the O′′ system at P
the point that is simultaneous (with P) along
Bill’s worldline OQ jumps from point P′ to
P′′. From the viewpoint of Bill, this is a leap
of 32 years. O

Lightcones
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of �t′ = 15 years, while the PQ interval to �t′′ = 15 years. Let us examine
this journey from the viewpoints of these three inertial frames.

1. The system O (the viewpoint of stay-at-home Bill): the worldpoints P and
M are simultaneous.

OM = γ�t′ = 5

3
× 15 = 25,

MQ = γ�t′′ = 5

3
× 15 = 25.

Adding up, Bill ages a total of OQ = 50 years.
2. The system O′ (the viewpoint of outward bound Al): the worldpoints P

and P′ are simultaneous so that �t′(P′) = �t′(P) = 15, with P′ being stationary
in the O frame, �x(P′) = 0. The Lorentz transformation states:

�t′(P′) = γ
[
�t(P′)− β�x(P′)/c

] = γ�t(P′).

Thus

OP′ = �t(P′) = γ−1�t′(P′) = 3

5
× 15 = 9.

3. The system O′′ (the viewpoint of inward bound Al): the worldpoints P
and P′′ are simultaneous. We can similarly obtain

QP′′ = γ−1�t′′ = 3

5
× 15 = 9.

Thus OP′′ represents an interval of 50− 9 = 41—as compared to OP′ being 9.

Namely, an instant before the turning point P, the two points P and P′ are
(with respect to the spaceship) simultaneous; an instant after P (after the ship
has turned around) it is P and P′′ that are simultaneous. But P′ has its time
coordinate in the O frame as t(P′) = 9 years; the worldpoint P′′ is viewed to
have the t(P′′) = 41 years.
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What we have learned here emphasizes again the point that time is just
another coordinate label. When we change the frame of reference, all coord-
inates (x, y, z, t) make their corresponding changes. Two points P′ and P′′, being
respectively 9 and 41 as measured in the O system are simultaneous to P when
viewed from two different inertial frames, the O′ and O′′ systems, respectively.
Thus a difference of 32 years is brought about simply by a change of coordinate:
O′ −→ O′′.

Remark: We can also understand this difference formally as a time dilation
effect between the two inertial frames of O′ and O′′. Let us first find out the
relative velocity β̄ between these two frames by the velocity addition rule of
(2.24) for β ′ = 4

5 and β ′′ = − 4
5 :

β̄ = β ′ − β ′′

1− β ′β ′′
= 40

41
. (A.7)

This translates into a gamma factor γ̄ = 41
9 . The time dilation effect between

the O′ and O′′ frames is such that a time interval of t(P′) = 9 years in O′ is
viewed as t(P′′) = γ̄ t(P′) = 41 years in the O′′ frame.

This accounts for the reason why Al, without taking this missed 32 years into
the calculation, erroneously concluded that Bill had only aged 18 years.

This is as far as SR can go. To understand the physical origin of this extra
32 years we need to consider accelerating frames of reference. As we find in
Chapter 3, accelerating frames are equivalent to inertial frames with gravity, this
extra 32 years is due to the gravitational time-dilation effect, see Section 3.3.1.
Thus, in principle, we need to go to general relativity (GR) (see Problem 3.3)
in order to completely resolve the twin paradox.

A.2 A glimpse of advanced topics in black hole
physics (Section 6.4)

In this Appendix, we shall offer some brief remarks on the results that have
been discovered about black holes, beyond the simplest non-rotating spherical
case discussed in Section 6.4. Any detailed discussion of these advanced topics
is beyond the scope of this introductory exposition. Our purpose here is merely
to alert the readers to the existence of a vast body of knowledge on topics such
as rotating and charged black holes, nonspherical gravitational collapse, black
hole thermodynamics, Hawking radiation, and quantum gravity, etc.

Beyond Schwarzschild black holes
• The Schwarzschild black hole is characterized by a single parameter,

the stellar mass M. The GR solutions for the warped spacetime outside
rotating and electrically charged mass sources are also known: they are,
respectively, the Kerr geometry and the Reissner–Nordström geometry.
This set of solutions is characterized by at most three parameters: the
total mass M, angular momentum J , and electric charge Q. The lack of
any detailed feature on a black hole has been described as “black holes
have no hair.”
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• The singularity theorem of GR states that any gravitational collapse that
has proceeded far enough along its destiny will end in a physical singu-
larity. Thus the r = 0 singularity encountered in the geometry outside
a spherical source is not a peculiar feature of the spherical coordinate
system.

• It is conjectured, and has not been proven in generality, that for the
general nonspherical symmetric collapse GR also predicts the formation
of an event horizon, shielding the physical singularity from all outside
observers. This is called the cosmic censorship conjecture.

Black holes and quantum gravity

GR, as a classical field theory, is the � → 0 limit of the quantum theory of
gravity. Putting it another way, quantum gravity, as the quantum description
of space, time, and the universe, represents the union of GR with quantum
mechanics.2 All indications are that it is the fundamental theory of physics2In the same sense a quantum field theory

(e.g. quantum electrodynamics) is an union
of SR (as embodied in a classical field
theory such as Maxwell’s electrodynamics)
and quantum mechanics.

because its candidate theories (such as superstring theory) also encompass the
description of strong, weak, and electromagnetic interactions. Thus, it is a the-
ory of quantum gravity and unification. Although impressive advances have
been made, this program is still very much a work-in-progress. It represents a
major forefront in current theoretical physics research.

The Planck scale This is the scale at which physics must be described by
quantum gravity. Soon after the 1900 discovery of Planck’s constant in fitting
the blackbody spectrum, Planck noted that a self-contained unit system of mass–
length–time can be obtained from various combinations of Newton’s constant
GN (gravity), Planck’s constant � (quantum theory), and the velocity of light c
(relativity). When we recall that GN· (mass)2 · (length)−1 has the unit of energy,
and the natural scale of energy·length in relativistic quantum theory is �c, we
have the natural mass scale for quantum gravity, the Planck mass,

MPl =
(

�c

GN

)1/2

. (A.8)

From this we can immediately derive the other Planck scales:

Planck energy EPl = MPlc
2 =

(
�c5

GN

)1/2

= 1.22× 1019 GeV

Planck length lPl = �c

EPl
=
(

�GN

c3

)1/2

= 1.62× 10−33 cm

Planck time tPl = lPl

c
=
(

�GN

c5

)1/2

= 5.39× 10−44 s

(A.9)

Such extreme scales are vastly beyond the reach of any laboratory setups.
(Recall that the rest energy of a nucleon is about 1 GeV, and the highest energy
the current generation of accelerators can reach is about 103 GeV.) The natural
phenomena that can reach such an extreme density of MPl/(lPl)

3 = c5/(�GN) =
5.16×1096 g/cm3 are the physical singularities in GR: end points of gravitational
collapse hidden inside a black hole horizon and the origin of the cosmological
big bang. It is expected that quantum gravity will modify such GR singularity
features.
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Hawking radiation The black hole physics of GR is a classical macroscopic
description. For a microscopic theory we would need quantum gravity. We
are familiar with the macroscopic physics as given by thermodynamics, which
is obtained by averaging over atomic motions. While we do not have a fully
developed theory of quantum gravity, one is curious to see whether the vari-
ous candidate theories of quantum gravity have the correct features that can
be checked by this micro–macro connection. It turns out that the blackbody
radiation emitted by black holes, the Hawking radiation, provides such a handle.

The surprising theoretical discovery by Stephen Hawking that a black hole
can radiate (contrary to the general expectation that nothing can come out of
a black hole) was made in the context of a quantum description of particle fields
in the background Schwarzschild geometry. Namely, the theoretical framework
involves only a partial unification of gravity with quantum theory: while the
fields of photons, electrons, etc., are treated as quantized fields (uniting SR
and quantum theory), gravity is still described by the classical (non-quantum)
theory of GR.

The quantum uncertainty principle of energy and time, �E � t � �/2,
implies that processes violating energy conservation can occur, provided they
take place in a sufficiently short time interval �t. Such quantum fluctuations
cause the empty space to become a medium with particle and antiparticle pairs
appearing and disappearing. In normal circumstances such energy noncon-
serving processes cannot survive in the classical limit. (Hence the temporarily
created and destroyed particles are called “virtual particles”.) However, if such
random quantum fluctuations take place near an event horizon of a black hole,
the virtual particles can become real because in such a situation energy conser-
vation can be maintained on the macroscopic timescale. To understand this we
need to take a deeper look at energy conservation. Conservation laws are usu-
ally associated with some symmetry in physics. Energy conservation reflects
the invariance of physics laws under displacement in the time coordinate. This
can be expressed in terms of invariance of the scalar product pµgµνξ

ν , where
pµ = (E, pc) is the 4-momentum (cf. Section 10.1.2, also Problem 5.2), gµν the
metric tensor, ξν (called a Killing vector3) singles out the invariance direction— 3A Killing vector ξµ characterizes a sym-

metry and its associated conservation law
(along a geodesic). The conserved quantity
in Eq. (6.43) is related to the Killing vector
by ∂L/∂ q̇ = −ξµgµν(dxν/dτ).

in this case, ξµ = (1, 0, 0, 0). Thus, for a quantum fluctuation from the vacuum
into pair creation of a particle and antiparticle (with momenta pµ and p̃µ, respec-
tively), we must have 0 = pµgµνξ

ν + p̃µgµνξ
ν . In a flat spacetime geometry,

this relation takes on the familiar form of energy conservation: 0 = E + Ẽ,
which cannot be satisfied because both E and Ẽ are positive. On the other
hand, if such a fluctuation takes place near the black hole horizon and one
particle travels across the event horizon (during the short time �t), we have
one particle outside the horizon r > r∗ and another inside r < r∗. According
to Eq. (6.17), the Schwarzschild metric term g00 has opposite signs across the
horizon g00(r = r∗ − ε) = −g00(r = r∗ + ε) = ε/r∗. In such a situation,
the constraint condition becomes 0 = E − Ẽ, allowing its realization in the
classical � → 0 limit. To a distant observer, the emitted radiation (made up of
r > r∗ particles) is accompanied by an addition, to the black hole, of negative
energy (due to the r < r∗ particles), that is, a loss of positive energy.

Such a thermal radiation has been shown by Hawking to have a blackbody
temperature and a thermal energy inversely proportional to its mass M:

kBT = 1

8π

E2
Pl

Mc2
, (A.10)



278 Supplementary notes

where kB is Boltzmann’s constant, and E2
Pl = �c5/GN is the Planck energy

squared (cf. (A.9)). Temperature’s inverse proportionality with mass T ∼ M−1

means that for astrophysical black holes (large M) the Hawking radiation is
rather weak and this emission is less significant than the in-falling material.
On the other hand, for small-mass “mini black holes,” because any loss of
energy/mass will result in a hotter black hole (hence an even faster radiation),
Hawking radiation will lead to an eventual total evaporation.

Entropy and black hole area increasing theorem Knowing the black-
body temperature, one can associate a thermodynamic entropy S with a black
hole (the Bekenstein–Hawking entropy) by a straightforward application of
thermodynamic formulae, as dS = T−1dU. Using (A.10) and U = Mc2 for
energy, we integrate the result to obtain the entropy associated with a black hole
in units of Boltzmann’s constant:

S

kB
= 1

4
4π

(
2GNM

c2

)2 c3

�GN
= 1

4

A∗

l2
Pl

, (A.11)

where A∗ is the horizon area 4πr∗2 = 16πc−4G2
NM2, and lPl is the Planck

length. Since entropy is an ever-increasing function, the relation (A.11) between
black hole entropy and area also implies that the black hole’s horizon area is
ever-increasing. This Bekenstein–Hawking “area increasing theorem” was in
fact discovered before the advent of Hawking radiation. Even then it had been
speculated that black hole formulae had a thermodynamic interpretation.

Black holes and advances in current study of quantum gravity Black holes
are a unique arena to study quantum gravity. The singularity hidden behind
the horizon demands both GR and quantum descriptions. Thus, a black hole
is an ideal laboratory for thought experiments relating to quantum gravity. For
instance, the Schwarzschild event horizon is seen to give rise to the phenomenon
of infinite gravitational redshift, infinitely stretching the wavelength. Thus,
Planck length phenomena near the horizon can be greatly amplified. It should
be fruitful to investigate quantum gravitational processes associated with black
holes. In this connection, we mention two important developments:

1. The number of quantum states in a black hole. Recall the well-known
connection in statistical mechanics between entropy and information: S =
kB ln W , where W is the number of microstates in the system under study. For
a black hole, one can assume that W is given by the number of ways a quantum
black hole can be formed. In string theory, for example, W has been calculated
and found to be in perfect agreement with the Bekenstein–Hawking entropy
of (A.11). That theories, such as superstring theory, give the correct count of
quantum states of a black hole certainly encourages us to believe that they
contain essentially correct ingredients for a true quantum gravity theory.

2. The holographic principle. The fact that the entropy of a black hole is
proportional to its area, as in (A.11), has led to the conjecture that states in a
spacetime region can equally well be represented by bits of information con-
tained in its surface-boundary. This “holographic principle” by Gerard ’t Hooft
and Leonard Susskind has become one of the leading principles in the studies
of theories of quantum gravity and unification.
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A.3 False vacuum and hidden symmetry
(Section 9.2.2)

In Section 9.2.2 we discussed the theoretical suggestion that the cosmolog-
ical inflationary epoch is associated with a “false vacuum” of an inflation/Higgs
field. This involves the concept of a “spontaneous breakdown of a symmetry,”
also described as a “hidden symmetry,” for a symmetric theory having asym-
metrical solutions. Namely, even though the theory is symmetric, its familiar
symmetry properties are hidden. This can happen, as we shall see, when there
are “degenerate ground states”—an infinite number of theoretically possible
states (related to each other by symmetry transformations) all having the same
lowest energy. But the physical vacuum is one of this set, and, by itself, it is not
symmetric because it singles out a particular direction in the symmetry space. In
this Appendix, we illustrate this phenomenon by the example of the breakdown
of rotational symmetry in a ferromagnet near the Curie temperature.

A ferromagnet can be thought of as a collection of magnetic dipoles. When
it is cooled below certain critical temperature, the Curie temperature Tc, it
undergoes spontaneous magnetization: all its dipoles are aligned in one par-
ticular direction (a direction determined not by dipole interactions, but by
external boundary conditions). Namely, when T > Tc the ground state has zero
magnetization #M0 = 0 because the dipoles are randomly oriented; but below
the critical temperature T < Tc, all the dipoles line up, giving arise to a nonzero
magnetization #M0 �= 0, (Fig. A.2). This can happen even though the underlying
dynamics of dipole–dipole interaction is rotationally symmetric—no preferred
direction is built into the dynamics, that is, the theory has rotation symmetry.

(a)

(b)

Fig. A.2 (a) Ground state with zero mag-
netization #M0 = 0 for randomly oriented
dipoles. (b) Asymmetric ground state with
#M0 �= 0 because a particular direction is

singled out.

For a mathematical description we shall follow the phenomenological theory
of Ginzburg and Landau. When T ≈ Tc, the rotationally symmetric free energy
F( #M) of the system can be expanded in a power series of the magnetization #M:

F( #M) =
(
∇i #M

)2 + a(T)( #M · #M)+ b( #M · #M)2
︸ ︷︷ ︸

V( #M)

. (A.12)

In the potential energy function V( #M) we have kept the higher order
( #M · #M)2 term, with a coefficient b > 0 (as required by the positivity of
energy at large M), because the coefficient a in front of the leading ( #M · #M)

term can vanish: a(T) = γ (T − Tc). With γ being some positive constant, the
temperature-dependent coefficient a is positive when T > Tc, negative when
T < Tc. Since the kinetic energy term (∇i #M)2 is non-negative, to obtain the
ground state, we need only to minimize the potential energy:

dV

d #M ∝ #M
[
a+ 2b

( #M · #M
)]
= 0. (A.13)

The solution of this equation gives us the ground state magnetization #M0. For
T > Tc, hence a positive a, we get the usual solution of a zero magnetization
#M0 = 0 (i.e. randomly oriented dipoles). This situation is shown in the plot of

V( #M) of Fig. A.3(a), where the potential energy surface is clearly symmetric
with any rotation (in the 2D plane) around the central axis. (We have simplified
the display to the case when #M is a 2D vector in a plane having two components
M1 and M2.) However, for subcritical temperature T < Tc, the sign change
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of a brings about a change in the shape of the potential energy surface as in
Fig. A.3(b). The surface remains symmetric with respect to rotation, but the
zero magnetization point M = 0 is now a local maximum. There are an infinite
number of theoretically possible ground states at the bottom ring of the wine-
bottle shaped surface—all having nonzero magnetization M0 = √−a/2b, but
pointing in different directions in the 2D field space. These possible ground
states are related to each other by rotations. The physical ground state, picked
to be one of them by external conditions, singles out one specific direction, and
hence is not rotationally symmetric. Below the Curie temperature, rotational
symmetry in the ferromagnet is spontaneously broken and the usual symmetry
properties of the underlying dynamics (in this case, rotational symmetry) are
not apparent. We say spontaneous symmetry breaking corresponds to a situation
of hidden symmetry.

a > 0

Potential
energy

M1

M2

Vacuum

Potential
energy

a < 0

True vacuum

False
vacuum

M1

M2

(a)

(b)

Fig. A.3 Symmetric potential energy sur-
faces in the 2D field space: (a) the normal
solution, when the ground state is at a sym-
metric point with M0 = 0, and (b) the
broken symmetry solution, when the energy
surface has the shape of a “Mexican hat” with
M = 0 being a local maximum and the true
ground state being one point in the trough
(thus singling out one direction and breaking
the rotational symmetry).

In particle physics we have a system of fields. Particularly it is postulated that
there are scalar fields (for particles with zero spin) which have potential energy
terms displaying the same spontaneous symmetry properties as ferromagnetism
near Tc. The magnetization #M in (A.12) is replaced, in the case of particle
physics, by a scalar field φ(x). Thus at high energy (i.e. high temperature)
the system is in a symmetric phase (normal solution with a(T) > 0) and the
unification of particle interactions is manifest (cf. the main text in this section);
at lower energy (low temperature) the system enters a broken symmetry phase
because of a(T) < 0. The ground state of a field system is, by definition, the
vacuum. In this hidden symmetry phase we have a nonvanishing scalar field
φ0(x) �= 0. The relevance to cosmology is as follows: at higher temperature we
have a symmetric vacuum. When the universe cools below the critical value,
the same state becomes a local maximum and is at a higher energy than, and
begins to roll toward, the true vacuum. We say the system (the universe) is
temporarily, during the rollover period, in a false vacuum (cf. Fig. 9.3). This
semiclassical description indicates the existence of constant field φ0(x) �= 0
permeating everywhere in the universe.

A.4 The problem of quantum vacuum energy as �

(Section 9.4)

It is very natural to identify the zero-point energy of the quantum fields as
the cosmological constant � (the simplest form of the dark energy). Here we
discuss very briefly the difficulty of such an association.

The quantum vacuum energy The introduction of the cosmological constant
in the GR field equation does not explain its physical origin. In the inflation
model it represents the false vacuum energy of an inflation/Higgs field. How-
ever, one natural contribution to � is the quantum mechanical vacuum energy44The inflationary cosmology discussion

presupposes that the quantum vacuum
contribution to the cosmological constant is
negligibly small.

(also called the zero-point energy). From the view of quantum field theory, a
vacuum state is not simply “nothingness.” The uncertainty principle informs us
that the vacuum has a constant energy density.5

5In fact, QFT also pictures the vacuum as a
sea of sizzling activities with constant creation
and annihilation of particles.

The simplest way to see that a quantum vacuum state has energy is to start
with the observation that the normal modes of a field are simply a set of
harmonic oscillators. Summing over the quantized oscillator energies of all
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the modes, we have

Eb =
∑

i

(
1

2
+ ni

)
�ωi, with ni = 0, 1, 2, 3, . . . , . (A.14)

(The subscript b stands for “boson.” See later discussion.) From this we can
identify the vacuum energy as

E� =
∑

i

1

2
�ωi. (A.15)

At the atomic and subatomic levels, there is abundant empirical evidence for
the reality of such a vacuum energy. For macroscopic physics, a notable mani-
festation of the zero point energy is the Casimir effect6, which has been verified 6The summation of the modes in Eq. (A.15)

involves the enumeration of the phase
space volume in units of Planck’s constant∫

d3xd3p(2π�)−3, cf. Eq. (A.16). Since the
zero-point energy has no dependence on posi-
tion, one obtains a simple volume factor∫

d3x = V and the result that the corre-
sponding energy per unit volume E�V−1 is
a constant with respect to changes in volume.
As explained in Sec 9.1, this constant energy
density implies a−∂E/∂x force that is attrac-
tive, pulling-in the piston in Fig 9.1. This is the
key property of the cosmological constant and
is the origin of the Casimir effect — an attrac-
tive force between two parallel conducting
plates.

experimentally.

Natural size of quantum vacuum energy is 10120-fold too large for �

Nevertheless, a fundamental problem exists because the natural size of a quan-
tum vacuum energy is enormous. Here is a simple estimate of the sum of (A.15).
The energy of a particle with momentum k is

√
k2c2 + m2c4, see (10.36).

From this we can calculate the sum by integrating over the momentum states
to obtain the vacuum energy/mass density,

ρ�c2 =
∫ ∞

0

4πk2dk

(2π�)3

(
1

2

√
k2c2 + m2c4

)
, (A.16)

where 4πk2dk is the usual momentum phase space volume factor. This is
a divergent quantity when we carry the integration to its infinity limit. Infinite
momentum means zero distance; infinite momentum physics means zero
distance scale physics. It seems natural that we should cut off the integral
at the Planck momentum,

KPl =
√

�c3

GN
� 1019 GeV/c. (A.17)

This is the scale when a quantum description of spacetime (i.e. quantum gravity)
will be necessary (cf., Eq. (A.9)), and any GR singularities are expected to be
modified. In this way, the integral (A.16) yields

ρ�
∼= K4

Pl

16π2�3c
� 1074 GeV4

c2(�c)3
� 2× 1091 g/cm3 (A.18)

This density is more than 10120 larger than the measured value of dark energy
density, which is comparable to the critical density ρ� ≈ ρc = 2×10−29 g/cm3.

Partial cancellation of boson and fermion vacuum energies We should
note that in the above calculation, we have assumed that the field is a boson
field (such as the photon and graviton fields), having integer spin and obeying
Bose–Einstein statistics. The oscillator’s creation and annihilation operators
obey commutation relations, leading to symmetric wavefunctions. On the other
hand, fermions (such as electrons, quarks, etc.) have half-integer spins, and
obey Fermi–Dirac statistics. Their fields have normal modes behaving like
Fermi oscillators. The corresponding creation and annihilation operators obey
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anti-commutation relations, leading to antisymmetric wavefunctions. Such
oscillators have a quantized energy spectrum as (see, for example, Das, 1993)

Ef =
∑

i

(
−1

2
+ ni

)
�ωi, with ni = 0 or 1 only. (A.19)

For a fermion field, the zero point energy is negative! Therefore, there will
be a cancellation in the contributions by bosons and fermions. Many of the
favored theories, attempting to extend the Standard Model of particle physics
to the Planck scale, incorporate the idea of supersymmetry. In such theories the
bosonic and fermionic degrees of freedom are equal. In fact, the vacuum energy
of systems with exact supersymmetry must vanish (i.e. an exact cancellation).
However, we know that in reality supersymmetry cannot be exact because its
implication of equal boson and fermion masses mF = mB in any supersymmetric
multiplet is not observed in nature. (For example, we do not see a spin-zero
particle, a “selectron,” having the same properties, and degenerate in mass,
as the electron; similarly we have not detected the photon’s superpartner, a
massless spin- 1

2 particle called “photino,” etc. A plausible interpretation is that
they are much more massive and are yet to be produced and detected in our high
energy accelerators.) So this supersymmetry must be broken and we expect only
a partial cancellation between bosons and fermions. The cosmological constant
problem, in this context, is the puzzle why such a fantastic cancellation takes
place: a cancellation of the first 120 significant figures (yet stops at the 121st
place)! If it merely reflects a broken supersymmetry, one would still have a
vacuum energy, by comparing the first-order fermion and boson contributions
in Eq. (A.16), leading to a result that modifies the boson Eq. (A.18) as

ρ�
∼= K4

Pl

16π2�3c

(
�m2c2

K2
Pl

)
, (A.20)

where �m2 is the fermion and boson mass difference m2
F − m2

B. But the phe-
nomenologically allowed value of �m2 � (102 GeV/c)2 can only produce a
suppression factor of (�m2c2/K2

Pl) = 10−36 at the most—thus still some 80 to
90 orders short of the required O(10−120). Clearly, something fundamental is
missing in our understanding of the physics behind the cosmological constant.

The energy scale associated with a quantum description of the dark
energy Another simple way of looking at this cosmological constant
problem is as follows: Assuming that the above-discussed quantum zero-point
energy is somehow absent, Eq. (A.18) is then interpreted as a dimensional
analysis of the cosmological constant if a quantum description is involved—
EPl = cKPl being then taken as the energy scale EX of whatever physics is
associated with the dark energy. The observed dark energy, being compara-
ble to the critical density ρcc2 (cf. Eq. (7.19)), then corresponds to an energy
scale of

EX ∼= [16π2
�

3c5ρc]1/4 = O(10−3 eV). (A.21)

Phrased in this way the cosmological constant problem is, there is no known
physics that one can naturally associate it with such an energy scale.



Answer keys to review
questions B
Here we provide sketchy answers to the review questions presented at the end
of each chapter.

Chapter 1: Introduction and overview

1. Relativity is the coordinate symmetry. SR is the one with respect to
inertial frames; GR, to general coordinate frames.

2. Covariance of the physics equations (i.e. physics is not changed) under
symmetry transformations. Not able to detect a particular physical
feature means physics is unchanged. It is a symmetry. If one cannot
detect the effect after changing the orientation it means the physics equa-
tion is covariant under rotation—thus rotationally symmetric. Similar
statements can be made for the coordinate symmetry of relativity.

3. A tensor is a mathematical object having definite transformation
properties under coordinate transformation. A tensor equation, having
the same transformation for every term, maintains the same form and is
thus symmetric under coordinate changes.

4. (a) The frames in which Newton’s first law holds. (b) The frames moving
with constant velocity with respect to the fixed stars. (c) The frames in
which gravity is absent.

5. Equations of Newtonian physics are covariant under Galilean trans-
formations; electrodynamics, under Lorentz transformations. Galilean
transformations are the Lorentz transformations with low relative
velocity.

6. The coordinate transformations in GR are necessarily position-dependent.
7. See Section 1.2.1.
8. In GR the gravitational field is the curved spacetime. The Einstein equa-

tion is the GR field equation. The geodesic equation is the GR equation
of motion.

9. In Newtonian physics, space is the arena in which physical events take
place. In GR, space simply reflects the relationship among physical
events taking place in the world and has no independent existence.

Chapter 2: Special relativity and the flat spacetime

1. Equations (2.13) and (2.10).
2. First paragraph in Box 2.2.
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3. �s2 = �x2− c2�t2 is invariant and “absolute”—the same value to all
observers, because �s is the interval of proper time. There is only one
rest frame; all observers must agree on this value. �s is the “length”
because �s2 = gµν�xµ�xν with �x0 = c�t. And a length invariant
transformation is a rotation.

4. Einstein clarified the meaning of time measurement when the signal
transmission could not be instantaneous and showed that �t′ �= �t
was physical.

5. (a) ei · ej ≡ gij, and (b) ds2 = gij�xi�xj. Diagonal elements are
lengths of basis vectors and off-diagonal elements the deviation from
orthogonality. Cartesian system: gij = δij.

6. ¯[Rᵀ][g] ¯[R] = [g] reduces to ¯[Rᵀ] ¯[R] = [1] in the Cartesian coordinate
with [g] = [1].

7. Cf. (2.60).
8. Figure 2.6.
9. “simultaneity is relative” means that it is possible to have �t �= 0 even

though �t′ = 0. See Fig. 2.14.
10. See Fig. 2.9.
11. t1 = t2, thus �t = 0 in (2.65).
12. x′1 = x′2, thus �x′ = 0 in (2.65).
13. See Fig. 2.9.

Chapter 3: The principle of equivalence

1. Newton’s field equation is (3.6). The equation of motion is (3.8), which
is totally independent of any properties of the test particle.

2. Equations (3.9) and (3.10). Experimental evidence: (r̈)A = (r̈)B for any
two objects A and B.

3. The equivalence principle (EP) is the statement that the physics in a
freely falling frame in a gravitational field is indistinguishable from the
physics in an inertial frame without gravity. Weak EP is EP restricted
only to Newtonian mechanics; strong EP is EP applied to all physics
including electrodynamics.

4. Cf. Fig. 3.3.
5. (a) Equation (3.22); (b) Eq. (3.52).
6. (a) Equation. (3.33); (b) Eq. (3.36).
7. Cf. Eq. (3.38).
8. Cf. Eq. (3.40). The speed of light is absolute as long as it is measured

with respect to the proper time of the observer. It may vary if measured
by the coordinate time. Example: light deflection in a gravitational field.

Chapter 4: Metric description of a curved space

1. An “intrinsic geometric description” is one that an inhabitant living
within the space can perform without referring to any embedding.

2. The metric elements can be found by distance measurement once the
coordinates have been fixed. See Eq. (4.16).

3. The geodesic equation is the Euler–Lagrange equation resulting from
extremization of the length integral

∫
gab ẋ a ẋ b dσ .
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4. The metric is an intrinsic quantity because it can be determined through
intrinsic operations (cf. Question 2). Other intrinsic geometric quant-
ities, such as angle, geodesic curves, etc. can then be derived from the
metric function.

5. A flat surface can also have a position-dependent metric. Example:
polar coordinates on a flat plane.

6. Transformation in a curved space must be position-dependent.
7. A small region of any curved space can be approximated by a flat space:

can always find a coordinate transformation at a given point so that the
new metric is a constant up to second-order correction.

8. K vanishes only for a flat surface independent of coordinate choices,
and it measures the deviation from Euclidean geometric relations.

9. 2-sphere, 2-pseudosphere, and flat plane.
10. In a 4D Euclidean space W2 + X2 + Y2 + Z2 = R2 describes a

3-sphere; in a 4D Minkowski space −W2 + X2 + Y2 + Z2 = −R2,
a 3-pseudosphere.

11. The circumference of a circle is related to its radius r as S = 2πr +
πr3K/3 for small r.

12. Cf. (4.50) and Fig. 4.7(a).

Chapter 5: GR as a geometric theory of gravity - I

1. In a “geometric theory of physics” the physical results can be directly
attributed to the underlying geometry of space and time. Example:
latitudinal distances decrease as they approach either of the poles,
cf. Fig. 4.2, reflects the geometry of the spherical surface (rather than
the physics of ruler lengths). See Section 5.1.

2. Time interval changes because the spacetime metric is position
dependent, cf. (5.2) with the metric element being directly related to
the gravitational potential, g00 = −(1+ 2�/c2).

3. The relation between circumference and radius deviates from the
Euclidean S = 2πR, cf. Section 5.1.1.

4. Curved spacetime is the gravitational field. See Section 5.1.2.
5. Space and time are described by a metric function, which is the solution

to the GR field equation.
6. We expect the particle trajectory to be the straightest and shortest

possible worldline in spacetime.
7. Newtonian limit: v 	 c particles in a weak and static gravitational

field. Cf. Eqs (5.23) and (5.25).
8. The tidal forces are the relative gravitational forces on neighboring test

particles. They are the second derivatives of gravitational potential,
thus ∝ r−3 for a spherical source. The extra power in the denominator
means that solar tidal force can be smaller than lunar ones even though
the leading gravitational force due to the sun is larger. Relativistic
gravitational potential being the metric, the tidal forces must be second
derivatives of the metric, hence the curvature.

9. GR field equation has the structure of the curvature being proportional
to the energy–momentum tensor Gµν = κTµν with the proportionality
constant κ ∼ GN. The curvature and energy density having different
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measurement units, Newton’s is the basic “conversion factor” in GR.
Light speed c in SR (space–time symmetry), and Planck’s constant h
in quantum theory (wave–particle duality).

10. Box 5.3

Chapter 6: Spacetime outside a spherical star

1. See Eq. (6.12). Curved space because dρ = √grr dr and time because
dτ = √−g00 dt.

2. Newtonian gravity for a spherical source is the same as if all the mass
is concentrated at the center. Thus, time dependence of source does not
show up in the exterior field, and there is no monopole radiation.

3. g00 = −1+ r∗/r = −(1+ 2�/c2). Thus � = −GNM/r.
4. Cf. Eqs (6.26) and (6.27).
5. When the source, lensing mass, and observer are perfectly aligned, the

resultant azimuthal symmetry leads to an “Einstein ring.” When the
lensing mass is not huge, the separations among multiple images are
small, and the images cannot be resolved. This results in the overlap of
images and an enhancement of the brightness.

6. Equation (6.50).
7. It disappears in some coordinates such as the Eddington–Finkelstein

system.
8. (a) Infinite gravitational time dilation (6.77), and (b) lightcones tipping

over, forcing all worldlines toward r = 0.
9. Through their gravitational effects on other objects. Evidence for black

holes in (a) X-ray binaries, (b) supermassive galactic centers.

Chapter 7: The homogeneous and
isotropic universe

1. v = H0r is linear if H0 is independent of v and r. This means that
every galaxy sees all other galaxies as rushing away according to
Hubble’s law (cf. discussion relating to Fig. 7.3).

2. tH = H−1
0 = t0 for an empty universe. In a universe full of matter and

energy we expect tH > t0 because the expansion rate was faster in the
past as gravitational attraction has been slowing down the expansion.
[t0]gc � 12.5 Gyr.

3. The “rotation curves” are the plots of matter’s rotational speed as a
function of radial distance to the center of the mass distribution (e.g. a
galaxy). Gravitational theory would lead us to expect a rotational curve
to drop as v ∼ r−1/2 outside the matter distribution. Rotation curves
are observed to stay flat, v ∼ r0, way beyond the luminous matter
distribution.

4. A simple example: two masses M � m illustrates the content of the
virial theorem 〈V〉 = −2〈T〉 for a gravitational system: GNM〈s−1〉 =
〈v2〉.

5. �M � 0.3, �LM � 0.005, and �B � 0.04. Thus �exotic =
�M −�B � 0.26.
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6. The cosmological principle: at any given instance of cosmic time,
the universe appears the same at every point: space is homogeneous
and isotropic. The comoving coordinates are a system where the time
coordinate is chosen to be the proper time of each cosmic fluid element;
the spatial coordinates are coordinate labels carried along by each fluid
element (thus each fluid element has a fixed and unchanging comoving
spatial coordinate).

7. See Eqs (7.38), (7.42), and (7.43) for the Robertson–Walker metric in
the spherical polar and cylindrical coordinate systems. The input used
in the derivation is the cosmological principle.

8. a(t) is the dimensionless scale which changes along with the cosmic
time, and k = ±1, 0 is the curvature parameter. The Hubble constant
is related to the scale factor by H(t) = ȧ(t)/a(t).

9. The scaling behavior of wavelength being

λrec

λem
= a(trec)

a(tem)
,

the definition of redshift z ≡ (λrec − λem)/λem leads to

a(t0)

a(tem)
= 1+ z.

10. Summarize the derivation of (7.49), (7.51), and (7.55): starting from
the d� = 0 invariant separation ds2 = −c2 dt2 + R2

0a2(t) dr2, the
proper distance for dt = 0 can be obtained by straightforward integra-
tion over ds. The result has the form of dp(r, t) = R0a(t)r. The proper
distance measured at t0 to a light source at r is the light (ds2 = 0)

path given by dp(r, t0) = R0r = ∫ t0

tem
cdt/a(t). The time integral can be

converted to one over redshift:
∫ t0

tem

cdt

a(t)
=
∫ 1

a

cda

aȧ
=
∫ 1

a

cda

a2H
=
∫ z

0

cdz

H
.

11. Luminosity distance is defined through the observed flux in relation to
the intrinsic luminosity of the source dL =

√
L/4π f , and is related to

proper distance by dL = (1+ z)dp.

Chapter 8: The expanding universe and
thermal relics

1. The Friedmann equation is the Einstein equation subject to the cosmo-
logical principle, that is, the Robertson–Walker metric and ideal fluid
Tµν . Newtonian interpretation: energy balance equation Etot being the
sum of kinetic and potential energies. Newtonian interpretation is possi-
ble because of cosmological principle—large region behaves similarly
as the small. Only quasi-Newtonian because we still need to supplement
it with geometric concepts like curvature and scale factor, etc.

2. Both the critical density and escape velocity are used to compare the
kinetic and potential terms to determine whether the total energy is
positive (bound system) or negative (unbound system).
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3. Radiation energy, being proportional to frequency (hence inverse wave-
length), scales as a−1. After dividing by the volume (a3), the density
∼ a−4. Since matter density scales as a−3, radiation dominates in the
early universe.

4. p = wρc2 with wR = 1/3 and wM = 0. Flat RDU a ∼ t1/2 and
t0 = 1

2 tH; MDU a ∼ t2/3 and t0 = 2
3 tH. Since radiation–matter equality

time tRM 	 t0, MDU should be a good approximation.
5. Figure 8.2.
6. Stefan–Boltzmann law: ρR ∼ T4 and radiation density scaling law

ρR ∼ a−4. Therefore T 	 a−1. Blackbody radiation involves
only scale invariant combinations of (volume)×E2dE (recall radiation
energy 	 a−1) and E/T .

7. Reaction rate faster than expansion rate. Cf. (8.45) and (8.46).
8. From Ebbn ≈ MeV we have Tbbn ≈ 109 K. Boltzmann distribu-

tion yields nn/np � exp[−�mc2/kbTbbn] with �m = mn − mp.
Equation (8.55) leads to mass fraction of 1

4 , if nn/np � 1
7 .

9. Because the theoretical prediction of deuterium abundance by big bang
nucleosynthesis is sensitive to �B and number of neutrino flavors. The
observed abundance can fix these quantities, cf. Fig. 8.3.

10. At tγ the reversible reaction of e+ p ←→ H+ γ stopped proceeding
from right to left. All charged particles turned into neutral atoms.
The universe became transparent to photons. Average thermal energy
O (eV) translates into T(zγ ) � 3, 000 K. By the temperature scaling law

T(tγ )

T(t0)
= a(t0)

a(tγ )
= 1+ zγ

leading to T(t0) � 3 K.
11. tbbn � 102 s, tRM � 10, 000 year, and tγ � 350, 000 year.
12. See discussion leading to (8.77).
13. Motion leads to frequency blueshift in one direction and redshift in

the opposite direction. Frequency shift means energy change, hence
temperature change.

14. Primordial density perturbation as amplified by gravity and resisted by
radiation pressure set up acoustic waves in the photon–baryon fluid.
Photons leaving denser regions would be gravitationally redshifted and
thus bring about CMB temperature anisotropy.

15. Because cosmological theories predict only statistical distribution of
hot and cold spots. To compare theory to experiment we need to average
over an ensemble of identically prepared universes. Having only one
universe, all we can do is to average samples from regions correspond-
ing to different m moment number (for the same l). But for a given l,
there are only 2l + 1 values of m. For low l distributions there is large
variance. Cf. (8.89).

Chapter 9: Inflation and the accelerating
universe

1. Constant density means dE = εdV . The first law dE = −pdV leads to
p = −ε.
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2. Cf. Section 9.1.1.
3. Cf. Eq. (9.16).
4. We see the same CMB temperature across patches of the sky �1◦

which is the horizon angular separation at tγ . Since they could not
have been causally connected and thermalized, how could they have
the same property?

5. Cf. Fig. 9.3.
6. Repulsive expansion by the constant energy density is self-reinforcing:

the more the volume increases the more gain in energy, leading in turn
to more repulsive expansion, ȧ(t)∝ a(t). Rapid expansion stretches out
any curvature, solving the flatness problem. Also because it is possible
to have ȧ(t) > c, one thermalized volume could be stretched out into
such a large region with many horizon lengths across, resolving the
horizon puzzle.

7. All came from the potential energy of inflation/Higgs field which turned
into the false vacuum energy during the phase transition. Quantum fluc-
tuation of the Higgs field became the density fluctuations that seeded
the cosmic structure. Cf. Section 9.2.3.

8. (I) The large angle region (>1◦): we see the initial density perturbation.
(II) The subdegree region: we see the signals of the acoustic waves of
photon–baryon fluid, with gravity the driving force and radiation pres-
sure the restoring force. (III) The small angle (less than arc-minute)
region: photon decoupling shows up as exponential damping during
this finite interval of small intervals.

9. The primary peak should correspond to the fundamental wave with
a wavelength given by the sound horizon of the photon-baryon fluid.
The corresponding angular separation is the sound horizon length at
tγ divided by the angular diameter distance from tγ to us at t0. This
diameter distance would be affected by the curvature of space. The
observation that the first peak at l ≈ 200 agrees with the prediction of
a flat universe.

10. An accelerating expansion means that expansion was slower in the past,
hence a longer age of the universe.

11. Cf. sidebar 5, p. 184.
12. Their intrinsic luminosities can be reliably calibrated, and they are

extremely bright.
13. An accelerating expansion means that expansion was slower in the past.

It would take a longer period, thus longer separation, before reaching
a given redshift (recession velocity). The longer distance to the galaxy
translates into a dimmer light.

14. If we live in an accelerating universe powered by the constant energy
density of the cosmological constant, at earlier epochs the universe
must be dominated by ordinary radiation and matter: instead of being
a constant, ρR and ρM increases as a−4 and a−3 as a → 0. Thus the
accelerating phase must be preceded by deceleration.

15. Why should �M � �� now, or equivalently the matter-� equality time
tM� � t0?

16. See bullet summary at the beginning of the chapter.
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Chapter 10: Tensors in special relativity

1. The covariant components are the projection of the vector onto the basis
vectors Vµ = V · eµ and the contravariant components onto the inverse
bases Vµ = V · eµ. These two kinds of vector (tensor) components are
needed to construct invariants such as VµUµ.

2. (
ct′
x′
)
=
(

γ −βγ

−βγ γ

)(
ct
x

)

(
c−1∂ ′t

∂ ′x

)
=
(

γ βγ

βγ γ

)(
c−1∂t

∂x

)

3. The position 4-vector xµ is naturally contravariant, as opposed to covari-
ant with components xµ = (−ct, x) and the del operator ∂µ naturally
covariant while the contravariant del components ∂µ = (−c−1∂t , �) are
“unnatural.”

4. Contravariant and covariant vectors transform differently.

V ′µ = [L]µνV ν ,

V ′µ = [L̄] ν
µ Vν ,

where [L̄] = [L]−1.
5.

T
′µ
ν = [L]µλ[L̄] ρ

ν Tλ
ρ

6. dxµ/dt is not a 4-vector because t is not a scalar. The velocity 4-vector
dxµ/dτ = γ (dxµ/dt).

7. The relativistic energy E = γ mc2 and 3-momentum p = γ mv.
With pµ = m(dxµ/dτ) = ((E/c), p), we have the invariant pµpµ =
−m2c2 = −(E/c)2 + p2.

8. Given ∂µFµν + jν/c = 0 we can show ∂ ′µF
′µν + j

′ν/c = 0
(
∂ ′F ′ + j′/c

) = [L̄]∂[L][L]F + [L] j/c = [L](∂F + j/c) = 0

Namely, because every term is a 4-vector, the form of the equation
is unchanged under the Lorentz transformation. This equation includes
the statement of electric charge conservation ∂µ jµ = 0 because
∂µ∂νFµν = 0 as Fµν = −Fνµ and ∂µ∂ν = ∂ν∂µ.

9. T00 = energy density, T0i = momentum density or energy current-
density, and Tij = normal force per unit area (pressure) for i = j, shear
force for unit area for i �= j.

10. Equation (10.88).

Chapter 11: Tensors in general relativity

1. Equations (11.8) and (11.13).
2. Transformations in a curved space must necessarily be position-

dependent.
3. Equations (11.16) and (11.19). Tensor equations are automatically

relativistic.
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4. Vµ = eµ ·V, being coordinate dependent, their derivative will have extra
term ∼ (∂v eµ) as in (11.18).

5. DνTλρ
µ = ∂νTλρ

µ − �σ
νµTλρ

σ + �λ
νσ Tσρ

µ + �
ρ
νσ Tλσ

µ .
6. Equation (11.37).
7. We can express the Riemann tensor as a commutator of covariant

derivatives (11.67). Since every other term is known to be a good tensor,
by the quotient theorem Rµ

λαβ must also be a good tensor.
8. Gµν = Gνµ and DµGµν = 0.
9. At every point one can always find a coordinate system (LEF) in which

∂µgνλ = 0 and �λ
νσ = 0 . Therefore, we have Dµgνλ = 0 in the LEF.

Since this is a tensor equation, it must be valid in every frame.

Chapter 12: GR as a geometric theory
of gravity - II

1. See first part of Section 12.1.
2. Just replace ordinary derivatives by covariant derivatives. This is required

because the coordinate symmetry in GR is local. It involves position-
dependent transformations. Covariant derivatives include the Christoffel
symbols which, being the derivatives of the gravitational potential
(i.e. the metric), constitute the gravitational field.

3. Following the procedure stated in Question 2, EOM in SR
(dUµ/dτ) = 0 leads to (DUµ/Dτ) = (dUµ/dτ)+ �

µ
νλUν(dxλ/dτ) = 0.

4. Section 12.2.1.
5. Equations (12.26) and (12.27).
6. Set the Ricci scalar for the 3D spatial metric for a spherically sym-

metric space to a constant, because homogeneous and isotropic space
corresponds to a space having spherical symmetry with respect to every
point. Namely, a homogeneous and isotropic space must be a space with
constant curvature.

7. Friedmann equations are components of just the Einstein equation with
Robertson–Walker metric and an energy-momentum tensor given by that
of an ideal fluid.

8. gµν = gνµ and Dµgµν = 0, cf. Question 8 in Chapter 11.

9.

Gµν = κ(Tµν + κ−1�gµν) = κ(Tµν + T�
µν).

Thus, even in the absence of matter/energy source Tµν = 0, space can
still be curved by the � term.

Chapter 13: Linearized theory and
gravitational waves

1. Newton’s is a static theory: it has no nontrivial time dependence. Ein-
stein’s theory, being relativistic, treats space and time on an equal
footing, hence has nontrivial time dependence.
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2. This new window to the universe allows us to observe strong gravity
regions which are often at the core of many interesting astrophysical
phenomena.

3. Metric is slightly different from flat Minkowski metric gµν = ηµν +
hµν with hµν 	 1. All GR equations taken only to the first order in
hµν . Propagation of a gravitational wave can be viewed as ripples of
curvature moving in the Minkowski spacetime.

4. Both are long range forces. Their quanta are massless. EM waves
(photon) have spin 1 and gravitational waves (graviton) spin 2. Leading
EM radiation is dipole, gravitational radiation is quadrupole.

5. Coordinate transformations among the slightly curved coordinates.
∂µh̄µν = 0 is the Lorentz gauge condition. Can make further gauge
transformations as long as the vector gauge function satisfies the
�χµ = 0 constraint.

6. Figure 13.1.
7. Equation (13.41)
8. Poynting vector S = E×B ∝ (Ȧ)2 where A is the EM vector potential.

We expect the gravitational wave energy flux to be proportional to
ḣ2 also. The dimensionful proportionality constant can be fixed by
dimensional analysis to be c3/GN.

9. No monopole by Birkhoff’s theorem. The amplitude must be the second
derivative of the mass moments. No dipole radiation because the dipole
amplitude is just the rate of total momentum change, which vanishes
for an isolated system, cf. Eq. (13.60).

10. See the first sidenote in this chapter for a description of pulsars. From
the observed increase in the rate of pulse arrival time, one can deduce
that the binary orbit period is decreasing, which matches perfectly the
GR prediction of energy loss due to gravitational wave emission by
the circulating system.
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(2.2) Inverse Lorentz transformation The Lorentz transformation (2.73),
and its inverse, written out only for the nontrivial components, are

(
ct′
x′
)
= γ

(
1 −β

−β 1

)(
ct
x

)
,

(
ct
x

)
= γ

(
1 β

β 1

)(
ct′
x′
)

.

(C.1)

The inverse matrix relation is demonstrated by

γ 2
(

1 −β

−β 1

)(
1 β

β 1

)
=
(

1 0
0 1

)

after using γ 2 = (1− β2)−1.
(2.3) Lorentz transformation of derivative operators

(a) Starting with the chain rule,

∂

∂x′
= ∂x

∂x′
∂

∂x
+ ∂t

∂x′
∂

∂t
= γ

∂

∂x
+ γβ

∂

c∂t
.

To reach the last equality, we have used (C.1) showing (ct, x) as
functions of (ct′, x′) to calculate ∂x/∂x′ and ∂t/∂x′. Similarly,
we have

∂

c∂t′
= γ

∂

c∂t
+ γβ

∂

∂x
.

(b) [L̄] can be found by substituting into δν
µ = ∂(x′ν)/∂x′µ ≡

∂ ′µx′ν the respective Lorentz transformations [L] and [L̄] for
coordinates and coordinate derivatives Eqs (2.74) and (2.75):

δν
µ = ∂ ′µx′ν =

∑
λ,ρ

([L̄]λµ∂λ)([L]νρxρ) =
∑

λ

[L̄]λµ[L]νλ.

(C.2)

Namely, 1 = [L̄][L]. Thus, the transformation for the derivative
is just the inverse shown in (C.1).

(2.4) Lorentz covariance of Maxwell’s equations Given (2.78), we show
the validity of (2.77) by applying the Lorentz transformations for
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the fields and spacetime derivatives:

∇′·B′ = ∂B′x
∂x′

+ ∂B′y
∂y′

+ ∂B′z
∂z′

= γ

(
∂

∂x
+ β

∂

c∂t

)
Bx + ∂

∂y
γ (By + βEz)+ ∂

∂z
γ (Bz − βEy)

= γ

(
∂Bx

∂x
+ ∂By

∂y
+ ∂Bz

∂z

)

︸ ︷︷ ︸
∇·B=0

+ γβ

[
∂Bx

c∂t
+
(

∂Ez

∂y
− ∂Ey

∂z

)]

︸ ︷︷ ︸
((1/c)(∂B/∂t)+∇×E)x=0

,

(C.3)

where we have used the Lorentz transformation of (2.76) and (2.18)
to reach the second line. The x-component of Faraday’s equation
being singled out is due to the fact that we have assumed a Lorentz
boost in the x direction.

(2.5) From Coulomb’s to Ampere’s law To derive Faraday’s law from
the magnetic Gauss’s we note that given the validity of the
magnetic Gauss laws in both frames ∇ · B = 0 and ∇′ · B′ = 0,
(C.3) then implies that the x component of the equation
∇ × E + (1/c)(∂B/∂t) = 0. Hence the vector equation
∇ × E+ (1/c)(∂B/∂t) = 0 as the y and z components can be sim-
ilarly deduced by considering Lorentz boosts in y and z directions.

(2.8) Group property of Lorentz transformations Only display the group
property of the boost transformation: given the Lorentz boost (2.57),
we have the combined transformation

[L(ψ1)][L(ψ2)] =
(

c1 s1

s1 c1

)(
c2 s2

s2 c2

)
,

where c1≡ cosh ψ1 and s1≡ sinh ψ1. A straightforward matrix
multiplication and the trigonometric identities, with c12 ≡
cosh(ψ1 + ψ2) and s12 ≡ sinh(ψ1 + ψ2), of c12 = c1c2 + s1s2

and s12 = s1c2 + c1s2 lead to

[L(ψ1)][L(ψ2)] =
(

c12 s12

s12 c12

)
= [L(ψ1 + ψ2)],

which is the result we set out to show.
(2.9) Transformation multiplication leads to velocity addition rule With

the identification of (2.59) β = − tanh ψ

u

c
= β1 = − tanh ψ1, −v

c
= β2 = − tanh ψ2

and the transformation multiplication (2.79)

u′

c
= β12 = − tanh ψ12 = − tanh(ψ1 + ψ2),

the velocity addition rule (2.24) follows from the trigonometric
identity of

tanh(ψ1 ± ψ2) = tanh ψ1 ± tanh ψ2

1± tanh ψ1 tanh ψ2
.
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(2.10) Spacetime diagram depicting relativity of simultaneity

(a) The diagram for the observer at rest: The two lightening bolts
taking place simultaneously (say at t = 0), their worldpoints lie
equidistant from the origin (the observer). The observer’s world-
line being the vertical time-axis, and the light coming from the
lightnings trace out two 45◦ null worldlines, one with positive
and other with negative slope; they meet the vertical worldline
of the observer at one point.

(b) The diagram for the moving observer: The new space and time
axes now “close in” as in Fig. 2.10. The worldline for the
observer is now the tilted new time axis. The light worldlines
are still the same two 45◦ lines as in (a). Consequently they will
meet the observer’s worldline (the new time axis) at two different
points. They will no longer be perceived to be simultaneous.

(2.11) Length contraction and light-pulse clock In the rest frame of the
clock, the total time �t′ for a light pulse to go from one end to
another, and back, is the sum �t′ = �t′1 + �t′2 where �t′2 is the
time for the pulse to make the return trip. Clearly�t′1 = �t′2 = L′/c,
where L′ is the rest frame length of this clock. Now consider the clock
in motion, moving (with velocity v) from left to right. The path the
pulse must travel is lengthened when going from left to right, and
shortened on the return trip, by the fact that the ends are moving to
the right:

c�t1 = L + v�t1, c�t2 = L − v�t2,

where L and �t are the length and time measured in the moving
frame,

�t = �t1 +�t2 = L

c− v
+ L

c+ v
= γ 2 2L

c
. (C.4)

Using the time dilation formula, we can compare

�t = γ � t′ = γ
2L′

c

to the result of (C.4) to obtain the Lorentz length contraction formula
of L = L′/γ .

(2.12) Pion decay-length in the laboratory The naive calculation is incor-
rect because the half-life time τ0 = 1.77 × 10−8 s is the lifetime
measured by a clock at rest with respect to the pion. The speed
of 0.99c corresponds to γ = 7.1. (a) In the laboratory, the
observer will see the pion decay time dilated to τ = γ τ0 =
7.1 × 1.77 × 10−8 s = 1.26 × 10−7 s, hence a decay length seven
times longer, close to 38 m. (b) In the rest frame of the pion, this
38 m is viewed as having a contracted length of 5.3 m, which when
divided by the particle speed of 0.99c yields its half-life time of
τ0 = 1.77× 10−8 s.
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(2.14) Invariant spacetime interval and relativity of simultaneity

(a) Invariant spacetime interval:

−c2�t′ 2 +�x′ 2 = �x2

or
c�t′ =

√
�x′ 2 −�x2.

(b) Lorentz transformation for the space coordinate �x′ = γ�x
implies

γ = (1− β2)−1/2 =
(

�x′

�x

)
.

Hence

γβ =
√

γ 2 − 1 =
√(

�x′
�x

)2

− 1.

The Lorentz transformation for the time coordinates then leads
to the same result as in (a),

c�t′ = γβ�x =
√

�x′2 −�x2.

(2.15) More simultaneity calculations

(a) Given the Lorentz transformation

�x′ = γ (�x − βc�t), (C.5)

c�t′ = γ (c�t − β�x), (C.6)

and its inverse

�x = γ (�x′ + βc�t′), (C.7)

c�t = γ (c�t′ + β�x′), (C.8)

it is clear that �t′ = 0 implies, through (C.6),

�t = β

c
�x,

through (C.8),

�t = β

c
γ�x′. (C.9)

These two equalities require the consistency condition:

�x = γ�x′, (C.10)

which is compatible with the Lorentz transformation (C.7) with
�t′ = 0.

(b) Our derivation of length contraction in Section 2.4 would have
us expecting this result of �x′ = γ−1�x because the key input
of the two ends of an object being measured at the same time in
the “moving frame” is satisfied by our �t′ = 0 condition.

(c) In Section 2.2.2 we have shown that the time intervals, respect-
ively from approaching bulb and receding bulb, for the light
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signals to reach the platform observer are

t1 = Lp

2c

1

1+ β
, t2 = Lp

2c

1

1− β
,

where Lp is the length of the moving rail-car as seen by the
platform observer. Because of length contraction, it should be
γ−1�x′ as the rail car length seen by the O′ observer is �x′. In
this way we have the time difference

�t = t2 − t1 = β

c
γ 2Lp = β

c
γ�x′

in agreement with (C.9). With respect to the O observer, the
emission points are located at

x1 = −ct1 = −�x′

2γ

1

1+ β
, x2 = ct2 = �x′

2γ

1

1− β
.

Hence, according to the platform observer, the two emission
events have a separation of

�x = x2 − x1 = �x′

2γ

(
1

1− β
+ 1

1+ β

)
= γ�x′,

which agrees with the result (C.10) obtained from Lorentz
transformation.

(3.1) Inclined plane, pendulum and EP

(a) Inclined plane: The F = ma equation along the inclined
plane, is mIa = mGg sin θ , leading to a material-dependent
acceleration:

aA = g sin θ

(
mG

mI

)

A
.

(b) Pendulum: For the simple pendulum with a light string of
length L, we have

mIL
d2θ

dt2
= −mGg sin θ .

This has the form of a simple harmonic oscillator equation when
approximated by sin θ ≈ θ , leading to a period of

TA = 2π

ω
= 2π

√
L

g

(
mI

mG

)

A

for a blob made up of a particular material A.

(3.2) Two EP brain-teasers

(a) Forward leaning balloon: According to EP the effective
gravity is the vector sum geff = g+ (−a), where g is the normal
gravity (pointing vertically downward) while a is the accelera-
tion of the vehicle. The buoyant force is always opposite to geff .

(b) A toy for Einstein: What is normally difficult to do is to have a
net force pulling the ball back into the bowl. The net force is the
combination of gravity and spring restoring force. But the task
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can be made easy by dropping the whole contraption—because
EP informs us that gravity would disappear in this freely falling
system. Without the interference of gravity, the spring will pull
back the ball each time without any difficulty.

(3.3) Gravitational time dilation and the twin paradox According to EP,
the (de)acceleration needed to turn the spaceship around is equival-
ent to a gravitational field, which has an effect on the rate of time
evolution. Now the clock on the turn-around rocketship is accelerat-
ing along with the spaceship, hence in “free fall” in this equivalent
gravitational field (pointing toward the earth). According to the EP,
this can be treated as an inertial observer. It can compare the outward-
bound and inward-bound clocks in exactly the same way as the
free-fall observer comparing the two clocks located at two differ-
ent gravitational potential points as discussed in Section 3.3.1 in the
paragraph with the sub-heading of “A more direct derivation.” (Since
this clock is just the onboard clock we have β1 = β2 = 0, τ1 = tff

1 ,
and τ2 = tff

2 in (3.35).) The relative speed of the rocket ship before
and after the turnaround has been computed in Section 3.4, (A.7), to
be β12 = 40

41 , the SR time dilation formula, being applicable to this

inertial frame, yields tff
1 = tff

2 /

√
1− β2

12. Putting all these relations

together we have the expected result of τ1 = 9
41τ2.

(3.4) The global position system

(a) A satellite’s centripetal acceleration is produced by earth’s
gravity:

v2
s

rs
= GN

M⊕
r2

s
.

The orbit period Ts is related to the radius and tangential velocity:

Ts = 2πrs

vs
.

Knowing that Ts = 12 h = 4.32 × 104 s we can find rs and vs

from these two equations:

rs � 2.7× 107 m � 4.2R⊕, vs � 3.9 km/s,

where R⊕ is earth’s radius.
(b) The SR time dilation factor being γs = (1 − β2

s )−1/2 =
1+ β2

s /2+ · · · the fractional change is then

1

2
β2

s =
1

2

(vs

c

)2 � 0.85× 10−10.

Here we have neglected the rotational speed of the clock on the
ground—the corresponding β2 value is a hundred times smaller
even for the largest value on the equator.
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(c) The gravitational time dilation effect is given by (3.31) with
� = −GNM/r:

�⊕ −�s

c2
= −GN

M⊕
c2

(
1

R⊕
− 1

rs

)
� −5.2× 10−10.

Thus, the general relativity (GR) effect is about six times larger
than the special relativity (SR) effect.

(d) In one minute duration

(�t)GR � −30 ns, (�t)SR � 5 ns.

The gravitational effect makes the satellite clock go faster
because it is at a higher gravitational potential. The SR dila-
tion slows it down. The net effect is to make the clock in the
satellite, when compared to the clock on the ground, run faster
by about 25 ns for every passage of 1 min.

Here is an example of the practical application in our daily
life of this “pure science” of general relativity.

(4.2) Basis vectors on a spherical surface The respective basis vectors are

er = ûr , eφ = R sin
r

R
ûφ ,

where ûr is the unit vector in the radial direction, and ûφ is per-
pendicular to ûr in the “tangential” direction. The resultant metric
matrix, according to Eq. (4.7), is

gab =
(

er · er er · eφ

eφ · er eφ · eφ

)
=
(

1 0
0 R2 sin2 (r/R)

)
.

(4.3) Coordinate transformation of the metric Given the transformation
(4.18), we have the inverse matrix

[R̄] =
(

(cos(r/R))−1 0

0 1

)
.

Use Eq. (2.45) to act on the metric in the polar system to obtain that
for the cylindrical system:

[R̄ᵀ][g][R̄] = [R̄ᵀ]
(

1 0

0 R2 sin2(r/R)

)
[R̄]

=
(

(cos2(r/R))−1 0

0 R2 sin2(r/R)

)

=
(
[1− (ρ2/R2)]−1 0

0 ρ2

)
= [g′].

(4.4) Geodesics on simple surfaces

(a) Flat plane: For this 2D space with Cartesian coordinates
(x1, x2) = (x, y), the metric is gab = δab. The second term in the
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geodesic Eq. (4.30) vanishes, as well as the two components of
the equation dẋν/dσ

ẍ = 0 and ÿ = 0,

which have respective solutions of

x = A + Bσ and y = C+ Dσ .

They can be combined as

y = α + βx

with (A, B, C, D) and (α, β) being constants. We recognize this
as the equation for a straight line.

(b) Spherical surface: For a 2-sphere, we choose the coordinates
(x1, x2) = (θ , φ) with a diagonal metric similar to (4.13) with
elements gθθ = R2 and gφφ = R2 sin2 θ . For the θ component
of the geodesic Eq. (4.30) is

θ̈ = sin θ cos θ θ̇ φ̇2, (C.11)

the φ component equation,

2 sin θ cos θ θ̇ φ̇ + sin2 θφ̈ = 0. (C.12)

Instead of working out the full parametric representation, we will
just check that φ = constant and θ = α + βσ solve these two
equations. Clearly these solutions describe longitudinal great
circles on the sphere.

(4.5) Locally flat metric The distance between two neighboring points
can be rearranged by ±(g12dx2)2/g11:

ds2 = g11(dx1)2 + 2g12dx1dx2 + g22(dx2)2

=
(√

g11dx1 + g12dx2

√
g11

)2

+
(

g22 − g2
12

g11

)
(dx2)2.

The new coordinate system (x̄1, x̄2) has the metric ḡab = δab because
ds2 = (dx̄1)2 + (dx̄2)2 where

dx̄1 = √g11dx1 + g12dx2

√
g11

, dx̄2 =
√

g22 − g2
12

g11
dx2.

On the other hand, if the original metric determinant is negative,
g11g22 − g2

12 < 0, then ds2 = (dx̄1)2 − (dx̄2)2 with

dx̄2 =
√

g2
12

g11
− g22dx2.

(4.7) 3-sphere and 3-pseudosphere

(a) 3D flat space

x = r sin θ cos φ, y = r sin θ sin φ, z = r cos θ .

The relation for the solid angle factor follows simply from the
two expressions for the invariant separations in two coordinate
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systems:

ds2 = dx2 + dy2 + dz2 = dr2 + r2d�2. (C.13)

(b) 3-sphere Given the metric for 3-sphere being

ds2 = dr2 +
(

R sin
r

R

)2
d�2. (C.14)

The relation from part (a) r2d�2 = dx2 + dy2 + dz2 − dr2

suggests
(

R sin
r

R

)2
d�2 = dX2 + dY2 + dZ2 − d

(
R sin

r

R

)2
.

Substituting this into (C.14), we have

ds2 = dW2 + dX2 + dY2 + dZ2

if we identify dW = sin(r/R)dr. This invariant interval implies
a Euclidian metric gµν = diag(1, 1, 1, 1). Also, we have

W = R cos
r

R
, X =

(
R sin

r

R

)
sin θ cos φ,

Y =
(

R sin
r

R

)
sin θ sin φ, Z =

(
R sin

r

R

)
cos θ .

This set of relations lead immediately to the constraint W2 +
X2 + Y2 + Z2 = R2.

(c) 3-pseudosphere With W = R cosh(r/R), the relations

W = R cosh
r

R
, X =

(
R sinh

r

R

)
sin θ cos φ,

Y =
(

R sinh
r

R

)
sin θ sin φ, Z =

(
R sinh

r

R

)
cos θ ,

lead, through the trigonometric relation cosh2 χ−sinh2 χ = 1 to

ds2 = −dW2 + dX2 + dY2 + dZ2

thus a Minkowski metric ηµν = diag(−1, 1, 1, 1) and the
condition

−W2 + X2 + Y2 + Z2 = −R2.

(4.8) Volume of higher dimensional space

dV = √det g
∏

i

dxi. (C.15)

(a) 3D flat space For Cartesian coordinates
√

det g = 1, (C.15)
reduces to dV = dx dy dz, and for spherical coordinates√

det g = r2 sin θ and dV = r2 sin θdr dθ dφ.
(b) 3-sphere From (C.14) we have

√
det g = R2 sin2(r/R) sin θ ,

thus the volume of a 3-sphere with radius R can be calculated:

R2
∫ πR

0
sin2 r

R
dr
∫ π

0
sin θdθ

∫ 2π

0
dφ

to be 2π2R3.
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(4.9) Non-Euclidean relation between radius and circumference of
a circle

(a) The case of a sphere: The radius of a circle being the displace-
ment ds along a constant radial coordinate (dr = 0), we have
from either (4.40) or (4.42), ds = R sin(r/R)dφ. Thus, making a
Taylor series expansion of the circumference S = ∫ ds, we have:

S = 2πR sin
r

R
= 2πR

(
r

R
− 1

3!
r3

R3
+ · · ·

)

= 2πr − 1

R2

πr3

3
+ · · ·

which is just the claimed result in (4.49) with K = 1/R2.
(b) The case of a pseudosphere: For k = −1 surface, the dis-

placement, according to either (4.40) or (4.42), is given by ds =
R sinh(r/R)dφ, giving a circumference of S = 2πR sinh(r/R).
Since the Taylor expansion of the hyperbolic sine differs from
that for the sine function in the sign of the cubic term, again
we obtain the result in agreement with (4.49) with K = −1/R2.
Thus, on a pseudospherical surface, the circumference of a circle
with radius r is S > 2πr.

(4.10) Angular excess and polygon area
Any polygon is made up of triangles.

(5.2) Spatial distance and spacetime metric
The spacetime separation vanishes (ds2 = 0) for a light pulse:

g00(dx0)2 + 2g0i dxidx0 + gij dxidx j = 0.

Solving this quadratic equation for the coordinate time interval that
takes the pulse going from A to B

dx0
AB = −

g0idxi

g00
−
√

(g0ig0j − g00gij)dxidx j

g00

and the time for it to go from B to A (involving the change of
dxi →−dxi)

dx0
BA = +

g0idxi

g00
−
√

(g0ig0j − g00gij)dxidx j

g00
.

Therefore the total coordinate time

dx0 = dx0
AB + dx0

BA,

which is related to the proper time interval dτA (cf. Problem 5.1),
hence the spatial distance dl,

dl ≡ cdτA

2
=
√−g00dx0

2
=
√(

gij − g0ig0j

g00

)
dxidx j.

Namely

γij = gij − g0ig0j

g00
.

Thus γij �= gij when g0i �= 0.
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(5.3) Non-Euclidean geometry of a rotating cylinder Let us denote the
spatial coordinates as follows:

(ct, r, φ, z) lab observer,

(ct, r0, φ0, z) observer on the rotating disc.

They are related by (cf. Fig. 5.1)

r = r0, φ = φ0 + ωt.

We shall ignore the vertical coordinate z below.
The invariant separation written in terms coordinates at rest with

respect to the observer on the rotating disc is (cf. (4.33))

ds2 = −c2dt2 + dr2
0 + r2

0dφ2
0 ,

which can be written in terms of the lab coordinate (cf. (Cook, 2004))
by substituting in dφ0 = dφ − ωdt:

ds2 = −
[

1−
(ωr

c

)2
]

c2dt2 + dr2 + r2dφ2 − 2ωr2dt dφ.

Namely the metric with respect to the (ct, r, φ) coordinate has
elements

g00 = −
[

1−
(ωr

c

)2
]

, grr = 1, gφφ = r2, g0φ = −ωr2

c
.

From Problem 5.2, we have the spatial distance

dl2 =
(

gij − g0ig0j

g00

)
dxidx j = dr2 + r2dφ2

1− (ωr/c)2

showing clearly length contraction of the circumference, but not the
radius.

(5.5) The geodesic equation and light deflection The curve parameter σ

can be taken to be the proper time τ . The geodesic Eq. (5.9)

d

dτ

dxµ

dτ
+ �

µ
νλ

dxν

dτ

dxλ

dτ
= 0,

which, after using pµ ∝ dxµ/dτ , can be written as

d

dτ
pµ + �

µ
νλpν dxλ

dτ
= 0

or equivalently
dpµ = −�

µ
νλpνdxλ.

We are interested in the µ = 2 component

dpy = −�2
00p0dx0 − �2

11p1dx1 − �2
10p1dx0 − �2

01p0dx1

= −(�2
00 + �2

11 + 2�2
10)pdx, (C.16)

where we have used dxµ = (dx, dx, 0, 0) and pµ = (p, p, 0, 0).
Christoffel symbols can be calculated by (5.10). Since we are work-
ing in the weak-field approximation, that is, the metric is very close
to being the flat space Minkowski metric ηµν = diag (−1, 1, 1, 1),
and the Christoffel symbols (being the derivatives of the metric) must
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also be small. Thus the metric on the left-hand side (LHS) of (5.10)
can be taken to be ηµν and can be “moved” to the right-hand side
(RHS) by contracting both sides by ηλρ and using ηλρηρσ = δλσ ,

�2
µν =

1

2
η2ρ

[
∂gµρ

∂xν
+ ∂gνρ

∂xµ
− ∂gµν

∂xρ

]

= 1

2

[
∂gµ2

∂xν
+ ∂gν2

∂xµ
− ∂gµν

∂x2

]
.

If the only position-dependent metric element is g00 = −1−�/c2

(as suggested by EP physics) and thus the only nonzero term on the
RHS of (C.16) is

�2
00 =

−1

c2

∂�

∂y
.

This way we get

δEP =
∫

dpy

p
= 1

c2

∫
∂�

∂y
dx (C.17)

which is the result obtained by Huygens’ principle in Eq. (3.44). For
the argument that the GR value is twice that of the EP value, see
Section 6.2.1.

(5.7) The matrix for tidal forces is traceless We can take the trace of the
tidal force matrix as

δij
∂2�

∂xi∂x j
= ∂

∂xi

∂

∂xi
� = �2�.

Since the mass density vanishes (ρ = 0) at any field point away
from the source, the Newtonian field Eq. (5.5) informs us that the
gravitational potential satisfies the Laplace equation �2� = 0.

(5.8) GN as a conversion factor One easily finds that this yields the
dimension relation (curvature) = (length)−2. This is consistent with
the fact that curvature is the second derivative of the metric, which
is dimensionless.

(6.1) Energy relation for a particle moving in the Schwarzschild
spacetime. The r∗ = 0 limit (6.40) is

−c2
(

dt

dτ

)2

+
(

dr

dτ

)2

+ r2
(

dφ

dτ

)2

= −c2,

where τ is the proper time d/dτ = γ d/dt with γ = (1−v2/c2)−1/2.
Multiplying by a factor of m2c2 on both sides, we obtain

γ 2m2[c4 − c2v2] = m2c4,

where v2 = (dr/dt)2 + r2(dφ/dt)2 is the velocity (squared) in
the spherical coordinate system (r, θ , φ) when the polar angle θ

is fixed. We recognize this is the energy–momentum relation E2 =
p2c2 + m2c4 after identifying the relativistic expression for energy
E = γ mc2 and momentum p = γ mv.

(6.2) Equation for a light trajectory For a lightlike worldline ds2 = 0
the Lagrangian L = ds2/dσ 2 must also vanish. Following the same
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steps as (6.44) to (6.50), we have
(

dr

dσ

)2

+
(

1− r∗

r

)
λ2

4r2
= c2η2.

and, after the usual change of variables,

u′′ + u− εu2 = 0.

For a perturbative solution of u = u0 + εu1,

(u′′0 + u0)+ ε(u′′1 + u1 − u2
0)+ · · · = 0.

The zeroth order, being a “simple harmonic oscillator” equation,
has the solution u0 = r−1

min sin φ. To solve the first-order equation

d2u1

dφ2
+ u1 = 1− cos 2φ

2r2
min

one tries u1 = α + β cos 2φ, and finds α = (2r2
min)

−1 and β =
(6r2

min)
−1. Putting the zeroth and first order terms together we get

1

r
= sin φ

rmin
+ 3+ cos 2φ

4

r∗

r2
min

.

In the absence of gravity (r∗ = 0), the asymptotes (r = ∓∞) corre-
spond to φ−∞ = π and φ+∞ = 0, and the trajectory is straight line
(no deflection). When gravity is turned on, there is an angular deflec-
tion δ = (φ−∞−φ+∞−π). Picking our coordinates so that φ−∞ =
π + δ/2 and φ+∞ = −δ/2 and the trajectory equations yields

0 = − sin
δ

2
+ 3+ cos δ

4

r∗

rmin
.

For small deflection angle δ,

0 = − δ

2
+ r∗

rmin
.

Thus the result δGR = 2r∗/rmin.
(6.5) Circular orbits For a circular orbit, the radial distance and the

orbital angular momentum must satisfy a definite relation so that
the effective potential is minimized (at this radial distance):

∂�eff

∂r
= 0,

which turns out to be

l2 = GNMm2r

(
1− 3

2

r∗

r

)−1

. (C.18)

Furthermore, the total energy must be just equal to the potential
energy:

K = m�eff

or, using the suggested form for K and �eff , it may be written as

η2 − 1

2
= 1

2

[(
1− r∗

r

)(
1+ l2

m2r2c2

)
− 1

]
.
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After plugging the result in (C.18), one finds

η2 =
(

1− r∗

r

)2 (
1− 3

2

r∗

r

)−1

. (C.19)

(7.2) Luminosity distance to the nearest star The observed flux being
f = L/4πd2, we have

d∗ =
(

f�
f∗

)1/2

× AU = 3× 105AU = 1.5 pc.

(7.3) Gravitational frequency shift contribution to the Hubble redshift
Given that the gravitational redshift is given by (3.26), the redshift
the photon suffers to overcome the gravitational pull of a galaxy,
which has a mass MG = O(1011M�) with a linear dimension
RG = O(1012R�), can be estimated to be

zG = MG

M�
R�
RG

z� = O(10−7),

where we have approximated the galaxy as a spherical system and
used solar redshift z� = O(10−6). Thus, the shift due to gravity is
quite negligible.

(7.4) Energy content due to star light Let us denote the average stellar
luminosity by L∗ and star number density by n. Their product is then
the luminosity density as given by (7.21),

nL∗ = 0.2× 109 L�
(Mpc)3

= 2.6× 10−33 W m−3,

which is the energy emitted per unit volume per unit time. Stars have
been assumed to be emitting light at this luminosity during the entire
t0 � tH � 13.5 Gyr = 4.3 × 1017 s, leading to an energy density
contribution at present of

ρ∗c2 = nL∗tH � 10−15 J m−3

or, using (7.19), a density ratio

�∗ = ρ∗
ρc
� 10−6.

(7.5) Night sky as bright as day Flux being the watts per unit area, the
total flux due to all the starlights is, according to (7.2),

f∗ = nL∗cH−1
0 �

(
0.2× 109 L�

Mpc3

)
(cH−1

0 )

= 0.8× 1012 L�
Mpc2

= 2.5× 10−10 L�
4π(AU)2

.

Thus, we need to lengthen the age by a factor of 4 billion before we
can get a night sky as bright as day!



Solutions of selected problems 307

(7.6) The Virial theorem Differentiating G ≡ ∑
n pn · rn with respect

to time
dG

dt
=
∑

n
Fn·rn +

∑
n

pn · ṙn

and taking the time average on both sides, we have the LHS

〈
dG

dt

〉
= lim

T→∞
1

T

∫ T

0

dG

dt
dt = lim

T→∞
G(T)− G(0)

T
,

which vanishes because this is a bound system. We then have, with∑
n pn · ṙn =∑mv2 = 2T ,

2〈T〉 = −
〈∑

n

Fn·rn

〉
=
〈∑

n

∇Vn·rn

〉
=
〈∑

n

∂Vn

∂rni
rni

〉

for inverse square force Vn ∝ r−1
n , thus

∂Vn

∂rni
rni = −Vn

and finally the virial theorem result of 2〈T〉 = −〈V〉.
(7.8) Wavelength in an expanding universe A radial light signal follows

the null worldline in the RW geometry and its proper distance is given
by (7.49). Consider two successive wavecrests with wavelength λ;
the second one is emitted (and observed) later by a time interval
δt = λ/c. Both wavecrests travel the same distance dp(ξ , t0):

dp =
∫ t0

tem

cdt

a(t)
=
∫ t0+λ0/c

tem+λem/c

cdt

a(t)
.

After cancelling out the common interval of (tem + λem/c, t0) from
both sides of the integral equality, we have

∫ tem+λem/c

tem

cdt

a(t)
=
∫ t0+λ0/c

t0

cdt

a(t)
.

Since the scale factor would not have changed much during the small
time interval between these two crests

1

a(tem)

∫ tem+λem/c

tem

dt = 1

a(t0)

∫ t0+λ0/c

t0

dt

which immediately leads to the expected result of

λ0

λem
= a(t0)

a(tem)
.

(7.9) The steady-state universe

(a) “Perfect CP” means that the universe is not only homogeneous
in space but also in time.
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(b) From (7.48) we have

da

dt
= H0a

which has the solution a(t) = exp[H0(t − t0)]. Thus ȧ = H0a
and ä = H2

0 a so that q0 = −1.
(c) According to (4.38), the curvature for the 3D space in the Steady-

State Universe (SSU) is K = kR−2(t). Since the scale factor
does depend on t, an unchanging K can come about only for the
curvature signature k = 0. Namely, an SSU requires a 3D space
with a flat geometry.

(d) The rate of mass creation per unit volume for a constant
density

Ṁ

V
= ρM

V̇

V
= 3H0ρM � 0.7× 10−24 g/year/km3.

Given that mp = 1.7× 10−24 g, this means the creation of one
hydrogen atom, in a cubic kilometer volume, every 2–3 years.

(7.10) The deceleration parameter and Taylor expansion of the scale
factor

a(t) � a(t0)+ (t − t0)ȧ(t0)+ 1

2
(t − t0)

2ä(t0)

= 1+ (t − t0)H0 − 1

2
(t − t0)

2q0H2
0 (C.20)

and

1

a(t)
� 1− (t − t0)H0 + (t − t0)

2
(

1+ q0

2

)
H2

0 . (C.21)

(7.11) z2 correction to the Hubble relation

(a) From (7.49)

dp(t0) = a(t0)
∫ t0

tem

cdt

a(t)

and the first two terms of the Taylor series (C.21) we have

dp(t0) = c(t0 − tem)+ c

2
H0(t0 − tem)2. (C.22)

The first term on the RHS is just the distance traversed by a light
signal in a static environment; the second term represents the
correction due to the expansion of the universe.

(b) (t0 − tem) can be related to the redshift z through (7.54)
and (C.21).

z = −1+ 1

a(tem)
= (t0−tem)H0

[
1+ (t0 − tem)H0

(
1+ q0

2

)]
.

(C.23)
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(c) Equation (C.23) can be inverted to yield

t0 − tem � z

H0

[
1− (t0 − tem)H0

(
1+ q0

2

)]

� z

H0

[
1− z

(
1+ q0

2

)]
. (C.24)

Plug this expression for the look-back time into (C.22), we have

Dp(t0) �
[

cz

H0
− cz2

H0

(
1+ q0

2

)]
+ cz2

2H0

= cz

H0

(
1− 1+ q0

2
z

)
.

(8.2) Newtonian interpretation of second Friedmann equation For the
pressureless matter used for our Newtonian system, cf. Fig. 8.1, the
gravitational attraction by the whole sphere being−GNM/r2 = r̈, or

−4πGNaρ

3
= ä

which is just Eq. (8.2) without the pressure term.
(8.4) The empty universe The nontrivial solution to

ȧ2 = −kc2

R2
0

is a negatively curved open universe k = −1 and, with t0 = c−1R0,

a = t

t0

which is just the straight-line a(t) in Fig. 8.2. From (7.49) we can
obtain the proper distance in terms of z.

dp(t0) =
∫ t0

tem

cdt

a(t)
= ct0

∫ t0

tem

t−1dt = ct0 ln

(
t0

tem

)
= ct0 ln(1+ z),

where we have used t0/tem = (a(tem))−1 = (1+ z). It is clear that
for small redshift this equation reduces to the Hubble relation (7.5)
with H0 = t−1

0 . Namely, in an empty universe the age is given by
the Hubble time t0 = tH, and the “radius” by the Hubble length
R0 = lH = ctH.

(8.5) Hubble plot in matter-dominated flat universe Since distance
modulus is a simple logarithmic expression (7.66) of luminosity
distance dL, which in turn is related to our proper distance dp by
dL = (1+ z)dp of (7.61), all we need is to calculate the proper dis-
tance according to (7.49). This integration can be performed for this
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matter dominated flat universe, which has a(t) = (t/t0)2/3 as given
in (8.30).

dp(t0) =
∫ t0

tem

cdt

a(t)
= ct2/3

0

∫ t0

tem

t−2/3dt = 3ct0

[
1−

(
tem

t0

)1/3
]

= 3ct0
(

1− [a (tem)]1/2
)
= 2c

H0
(1− [1+ z]−1/2),

where we have used a(tem) = (tem/t0)2/3 one more time as well
as the basic redshift relation of (7.54) and the age of a flat MDU
t0 = 2

3 H−1
0 of (8.30). This way one finds the distance modulus to be

m −M = 5 log10
2cH−1

0 (1+ z − [1+ z]1/2)

10 pc
.

(8.7) Time and redshift of a light emitter Plug (8.27), a(t) = (t/t0)x into
Eq. (7.49)

dp(t0) =
∫ t0

tem

cdt′

a(t′)
= ct0

1− x

[
1−

(
tem

t0

)1−x
]

. (C.25)

We can also express the time of light emission from a receding galaxy
with redshift z. Through (7.54) and (8.27) we obtain

1+ z = a(t0)

a(tem)
=
(

t0
tem

)x

or

tem = t0
(1+ z)1/x

. (C.26)

Plugging into (C.25), we have

dp(t0) = ct0
1− x

[
1− 1

(1+ z)(1−x)/x

]
. (C.27)

We note in particular for a matter-dominated flat universe x = 2
3

we have

dp(t0) = 3ct0

[
1− 1

(1+ z)1/2

]
, (C.28)

which agrees with the result obtained in Problem 8.5 and for a
radiation-dominated flat universe x = 1

2 we have

dp(t0) = 2ct0

[
1− 1

1+ z

]
. (C.29)
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NB: These simple relations between redshift and time hold only
for a universe with a single-component on energy content; more-
over, it does not apply to the situation when the equation-of-state
parameter is negative (w = −1), even though the energy content is
a single-component case.

(8.8) Scaling behavior of number density and Hubble’s constant

(a) For material particles the number density scales as the inverse
volume factor.

n(t)

n0
= [a(t)]−3.

The basic relation (7.54) between scale factor and redshift leads to

n(t)

n0
= (1+ z)3.

This scaling property also holds for radiation because n ∼ T3 ∼
a−3 as given in (8.35) and (8.40).

(b) We can obtain the scaling behavior of the Hubble parameter from
Friedmann equation (8.1) for a flat universe:

ȧ2

a2
= 8πGNρ

3
. (C.30)

which can be written as

H2

H2
0

= ρ

ρc,0
. (C.31)

For an epoch when the density is dominated by radiation ρ �
ρR = ρR,0a−4, the above expression for H becomes

H2

H2
0

= �R,0(1+ z)4. (C.32)

In the entirely same way we can show that the Hubble parameter
in a matter dominated epoch obeys

H2

H2
0

= �M,0(1+ z)3. (C.33)

(8.9) Radiation and matter equality time Since the universe from tRM to
tγ is matter-dominated, we have from (8.30)

a(tRM)

a(tγ )
=
(

tRM

tγ

)2/3
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or

tRM =
[

a(tRM)

a(tγ )

]3/2

tγ =
[

1+ zRM

1+ zγ

]−3/2

tγ

� tγ
103/2

� 10, 000 year.

(8.10) Density and deceleration parameter Use the definition of w in
(8.4), the second Friedmann Eq. (8.2) becomes

ä(t)

a(t)
= −4πGN

3

∑
i

ρi(1+ 3wi).

In terms of the deceleration parameter (7.67)

q0 ≡ −ä(t0)

a(t0)H2
0

and the critical density (8.6)

ρc,0 = 3H2
0

8πGN

the second derivative equation leads to the claimed result

q0 = 1

2

∑
i

�i,0(1+ 3wi) = �R,0 + 1

2
�M,0 + · · ·

(8.13) Cosmological limit of neutrino mass Even if we assume that all
the nonbaryonic dark matter is made of three species (flavors) of
neutrinos

ρexotic =
3∑

i=1

ρ(νi) = 3nνm̄,

where nν is the neutrino number density and m̄ is the average neutrino
mass. From the neutrino and photon temperature of (8.75) and
density being the cubic power of temperature (8.35),

nν =
(

Tν

Tγ

)3

nγ � (1.7)−3 × 400 � 150 cm−3.

The energy density ratio becomes

�exotic = 3nνm̄c2

ρcc2
� 0.26

Using the critical energy density value of (7.19), we have

m̄c2 � 0.26× 5, 500

3× 150
� 3 eV.
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(8.14) Temperature dipole anisotropy as Doppler effect Recall that tem-
perature scales as a−1, that is, as inverse wavelength, or as frequency:

δT

T
= δω

ω
.

But the nonrelativistic Doppler effect (the small β limit of (10.47))
reads

ω′ =
(

1− v

c
cos θ

)
ω

or (δω/ω) = (v/c) cos θ .
(9.1) Another form of the expansion equation Consider the energy

balance equation (8.11)

1

2
ṙ2 − GNM

r
= const.

leading to

ȧ2 − 8πGN

3
ρa2 = const′.

which can also be obtained easily from (8.1). Dividing through by
the second term and using the definition of critical density we have

�−1 − 1 = const.

ρa2
.

(9.2) The epoch-dependent Hubble constant and a(t) Using (8.7) to
replace the curvature parameter k in the Friedmann Eq. (8.1),
we have

ȧ2(t)

a2(t)
= 8πGN

3
ρ + ȧ2(t0)

a2(t)
(1−�0) = H2

0

(
ρ

ρc
+ 1−�0

a2(t)

)
.

(C.34)

Putting the time-dependence of the densities

ρ

ρc
= �(t) = �R,0

a4
+ �M,0

a3
+��,0,

Eq. (C.34) becomes

H2(t)

H2
0

= �R,0

a4
+ �M,0

a3
+��,0 + 1−�0

a2
.

(9.4) Negative � and the “big crunch” For the �0 = 1 flat universe
with matter and dark energy, we have the Friedmann Eq. (8.10)

H(a) = H0[�M,0a−3 +��]1/2.
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At a = amax the universe stops expanding and H(amax) = 0, thus

amax =
(
−�M,0

��

)1/3

.

The cosmic time for the big crunch being twice the time for the uni-
verse to go from amax to a = 0, we calculate in a way similar to (9.43)

2tH

∫ amax

0

da

[�M,0a−1 +��a2]1/2
= 4tH

3
√−��

∫ a3/2
max

0

dx

[a3
max − x2]1/2

= 4tH
3
√−��

[
sin−1

(
x

a3/2
max

)] a3/2
max

0

= 2π

3
√−��

tH = t∗.

(9.5) Another estimate of deceleration/acceleration transition time We
define the matter and dark energy equality time tM� as

ρM(tM�) = ρ�(tM�).

Using the scaling properties of these densities we have

ρM,0

a3
M�

= ρ�,0

or

1+ zM� = (aM�)−1 =
(

��

�M,0

)1/3

which differs from the result in (9.47) only by a factor of 21/3 ≈ 1.2.
(10.1) Basis and inverse basis vectors: a simple exercise

(a) Given the basis vectors

e1 = a

(
1
0

)
, e2 = b

(
cos θ

sin θ

)
.

The inverse basis vectors are

e1 = 1

a
(1, − cot θ), e2 = 1

b
(0, csc θ).

The condition e1 ·e1 = e2 ·e2 = 1 and e1 ·e2 = e2 ·e1 = 0 can be
easily checked by explicit vector multiplication. For example,
e2 · e1 = (b/a)(cos θ − cos θ) = 0

(b) Similarly by explicit vector multiplications, we have

gij = ei · e j =
(

a2 ab cos θ

ab cos θ b2

)
,

gij = ei · e j =




1

a2 sin2 θ
− cos θ

ab sin2 θ

− cos θ

ab sin2 θ

1

b2 sin2 θ




so that gijg jk = δik can be checked by matrix multiplication.
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(c) We can verify the completeness condition by calculating the
direct-products of basis vectors,

∑
i

ei ⊗ ei =
(

1
0

)
(1 − cot θ)+

(
cos θ

sin θ

)
(0 csc θ)

=
(

1 − cot θ
0 0

)
+
(

0 cot θ
0 1

)
= 1.

(10.4) Transformations: components vs. basis vectors Vi transform
“oppositely” from the bases vectors ei

ei −→ e′i = [L̄] j
i ej (C.35)

because the vector itself V =Vi ei does not change under the
coordinate transformations.

(10.5) gij is a tensor

(a) Plugging in the transformations of the basis vectors (C.35) in
the metric definition g′ij = e′i · e′j we immediately obtain that for
the metric, (10.13).

(b) The invariance of the scalar product U · V can also expressed as

UiVjg
ij = U ′kV ′l g′kl = UiVj[L̄]ik[L̄] j

lg
′kl

or

gij = [L̄]ik[L̄] j
l g′kl.

We can invert this equation by multiplying two [L] factors on
both sides and using the relation Eq. (10.15) on the RHS to obtain

g′ij = [L]ik[L] j
l gkl.

This shows, cf. Eq. (10.11), that the (inverse) metric is indeed
a bona fide contravariant tensor.

(10.6) The quotient theorem Given that the product UiV jgij is a scalar,
and vectors Ui and V j are known to be tensors, their quotient gij

must also be a tensor.
(10.7) Lorentz transform and velocity addition rule Suppressing the

transverse components, the 4-velocities have components Uµ =
(U0, U1) = γu(c, u) and U ′µ = γ ′u(c, u′), which are connected by
Lorentz transformation U ′µ = [L]µν Uν :
(

γ ′uc
γ ′uu′

)
=
(

γv −γvβv

−γvβv γv

)(
γuc
γuu

)
= cγvγu

(
1− βvβu

−βv + βu

)
.

Equating the first elements leads to γ ′u = γvγu(1−βvβu). When this
is substituted into the equality of the second elements, we obtain the
velocity addition rule of (2.24).

(10.8) Gravitational frequency shift: another derivation The receiver
being in motion, moving with nonrelativistic velocity β = �u/c,
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the SR Lorentz frequency transformation (10.48) becomes

ωrec

ωem
=
√

1− β

1+ β
� 1− β.

Or, equivalently
�ω

ω
= −�u

c
which is just the expression shown in (3.22).

(10.9) Antiproton production threshold The minimum energy needed to
produce the final state of three protons and one antiproton in the
center-of-mass frame is 4mc2. The square of the total 4-momentum
of the final state, total momentum being zero, must then be 16m2c4.
By energy–momentum conservation, this must also be the square
of the total 4-momentum of the initial state of two protons. If we
denote the total energy and total 3-momentum of the initial state by
(E, p), we then have from (10.36)

16m2c4 = E2 − |p|2c2. (C.36)

In the lab frame the target proton is at rest p2 = 0, we have

E = E1 + mc2, |p|2c2 = |p1|2c2 = E2
1 − m2c4.

Substitute these two relations into (C.36) and solve for the projectile
proton’s lab energy E1 = 7mc2 to obtain its kinetic energy

Klab = E1 − mc2 = 5.6 GeV.

(10.10) Covariant Lorentz force law

K0 = q

c
F0iUi = γ

q

c
E · v (C.37)

is indeed γ F · v/c because the dot product with the magnetic field
term in the Lorentz force vanishes.

(10.12) Homogeneous Maxwell’s equations To show that ∂µFνλ+∂λFµν+
∂νFλµ = 0 follows from ∂µF̃µν = 0: from the definition of a dual
field tensor, we have ∂µFλρεµνλρ = 0, which is a trivial relation
(0 = 0) if any pair of indices in (µ, λ, ρ) are equal. Thus, only
when the indices are unequal do we get a nontrivial relation: take
the example of equation of ∂µF̃µ0 = ∂µFλρεµ0λρ = 0 we have

∂1F23 + ∂3F12 + ∂2F31 = 0.

We can regard this as a relation in a particular coordinate frame with
µ = 1, ν = 2, and λ = 3. Once written in the Lorentz covariant
version, it must be valid in every frame. This is just the relation we
set out to prove:

∂µFνλ + ∂λFµν + ∂νFλµ = 0.

To prove the converse statement, all we need to do is to contract
εµνλρ onto the above equation.
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(10.16) Tµν for a system of EM field and charges We first calculate the
divergence of Tµν

charge = ρ′massU
µUν to find that

∂µTµν

charge = ρ′mass(U
µ∂µ)Uν ,

where we have also used the mass conservation law of
∂µ(ρ′massU

µ) = 0. The Lorentz invariant product Uµ∂µ can be eval-
uated in any convenient reference frame; we choose the comoving
frame Uµ = γ (c, 0) to obtain Uµ∂µ = γ ∂t = ∂τ , the differentiation
with respect to the proper time τ . The term ρ′mass∂τ Uν is the 4-force
density. Using the formula for the Lorentz force (density) of (10.60),
we then have

∂µTµν

charge = ρ′mass∂τ Uν = ρ′charge

c
FνλUλ = 1

c
Fνλjλ,

where we have used the expression (10.75) for the electromagnetic
current for free charges, jλ = ρ′chargeUλ.

We now calculate the divergence of Tµν

field in (10.94) to find

∂µTµν

field = ηαβ(∂µFµα)Fνβ .

Here we have used the calculation performed in (10.96) and by
noting the fact that, in the presence of charges, the inhomogeneous
Maxwell’s equation ∂µFµα = −(1/c)jα has a nonvanishing RHS:

∂µTµν

field = −
1

c
ηαβ jαFνβ = −1

c
Fνλjλ.

This shows clearly that the sum Tµν = Tµν

field + Tµν

charge has zero
divergence. Because fields and particles can exchange energy and
momenta between them, energy and momentum are conserved only
for the combined system.

(10.17) Radiation pressure and energy density The system of an elec-
tromagnetic field can be viewed either as a system of a field with
energy–momentum tensor

Tµν

field = ηαβFµαFνβ − 1

4
ηµνFαβFαβ

or as a system of an ideal fluid made up of photons with, cf. (10.88),

Tµν

γ fluid =




ρ′c2

p
p

p




with ρ′c2 and p being the radiation energy density and pressure,
respectively. Since these two representations both describe the same
system we should expect Tµν

γ fluid = Tµν

field, in particular their traces

should be equal: ηµνTµν

γ fluid = ηµνTµν

field. But a simple inspection

shows that ηµνTµν

field = 0 because ηµνη
µν = 4. The vanishing trace

ηµνTµν

γ fluid = 0 leads to the result p = ρ′c2/3.
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(11.1) Covariant derivative for a covariant vector Given that
VµVµ is an invariant, in the notation of (11.43), we also have
[�(VµVµ)]coord = 0:

Vµ[�Vµ]coord + Vµ[�Vµ]coord = 0.

Substituting (11.44) in [�Vµ]coord = −�
µ
νλV νdxλ, we get

Vµ[�Vµ]coord = Vµ�
µ
νλV ν dxλ = Vµ(�ν

µλVν dxλ).

The last expression is reached by relabelling µ ↔ ν. The result
[�Vµ]coord = +�ν

µλVνdxλ implies that

DνVµ = ∂νVµ − �λ
νµVλ.

(11.2) Moving bases and Christoffel symbols in polar coordinates
for a flat plane

(a) Explicitly differentiating the relation

r = r cos θ i+ r sin θ j

we have

dr ≡ dr er + dθeθ = dr cos θ i− r sin θdθ i

+ dr sin θ j+ r cos θdθ j.

Collecting the dr and dθ terms,

er = cos θ i+ sin θ j,

eθ = −r sin θ i+ r cos θ j.

The inverse bases can be found by contracting with the inverse
metric gµν = diag(1, r−2):

er = cos θ i+ sin θ j,

eθ = −r−1 sin θ i+ r−1 cos θ j.

(b) To calculate the Christoffel symbols through their definition of
∂νeµ = −�

µ
νλeλ we first observe:

∂er

∂r
= 0,

∂eθ

∂r
= −1

r2
(− sin θ i+ cos θ j) = −1

r
eθ .

Then the definitions

∂er

∂r
= �r

rrer + �r
rθ eθ ,

∂eθ

∂r
= �θ

rrer + �θ
rθ eθ

allow us to read off the Christoffel symbols �r
rr = �r

rθ = �θ
rr =

0 and �θ
rθ = 1/r. Similarly, from

∂er

∂θ
= − sin θ i+ cos θ j = reθ ,

∂eθ

∂θ
= −r−1 cos θ i− r−1 sin θ j = −r−1er

we obtain �r
θr = �θ

θθ = 0, �r
θθ = −r and �θ

θr = r−1.
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(c) Work out the components in

DµVµ = ∂µVµ + �µ
µνV ν

= ∂rVr + ∂θ V θ + (�r
rr + �θ

θr)V
r + (�r

rθ + �θ
θθ )V

θ

= ∂rVr + ∂θ V θ + 1

r
Vr = 1

r

∂

∂r
(rVr)+ ∂

∂θ
V θ

=
(

1

r

∂

∂r
r

∂

∂θ

)(
Vr

V θ

)
.

(d) Because the scalar function �(x) is coordinate independent,
Dµ� = ∂µ�. To raise the index we must multiply it by the
inverse metric gµν∂µ�. Using the result obtained in (c) we have

DµDµ�(x) = Dµ(gµν∂µ�)

=
(

1

r

∂

∂r
r

∂

∂θ

)(
1 0
0 r−2

)(
∂r�

∂θ�

)

= 1

r

∂

∂r

(
r
∂�

∂r

)
+ 1

r2

∂2�

∂θ2
.

(e) The metric in polar coordinates has only one nontrivial element
gθθ = r2. Checking the covariant differentiation with respect to
the radial coordinate r, we get

Drgθθ = ∂rgθθ − 2�
µ
rθ gµθ = 2r − 2

1

r
r2 = 0.

(f) Substituting gθr = 0 and gθθ = r2 into (11.37), we have

�r
θθ =

1

2
grµ(∂θ gθµ + ∂θ gθµ − ∂µgθθ )

= 1

2
grr(2∂θ gθr − ∂rgθθ ) = −r,

�θ
θθ =

1

2
gθθ ∂θ gθθ = 0.

(11.3) Symmetry property of Christoffel symbols Because a scalar field
�(x) is coordinate-independent, there is no difference between their
covariant and ordinary derivatives, Dµ� = ∂µ�. We then apply
the result of Problem 11.1 to obtain

DνDµ� = ∂ν∂µ�− �λ
νµ∂λ�.

Because the first two terms are manifestly symmetric in (µ, ν), the
last term (i.e. �λ

νµ) must also be symmetric in (µ, ν).
(11.4) Metric is covariantly constant: further proofs

(a) Take the covariant derivative of the metric tensor (with covari-
ant indices) and then express the resulting Christoffel symbols
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in terms of derivatives of the metric:

Dµgνλ = ∂µgνλ − �ρ
µνgρλ − �

ρ
µλgρν

= ∂µgνλ − 1

2
gρσ (∂µgνσ + ∂νgµσ − ∂σ gµν)gρλ

− 1

2
gρσ (∂µgλσ + ∂λgµσ − ∂σ gµλ)gρν .

After summing over repeated indices, we find all terms cancel.
(b) The metric’s first derivatives and the connection symbol vanish

in the locally Euclidean coordinates: ∂λgµν = 0 and �
µ
νλ = 0.

We thus have Dλgµν = 0 in the LEF frame. Since this is a
covariant equation, it must be valid in every frame.

(11.5) DνVµ is a good tensor: another proof We can use the geodesic
equation in the form of (D/Dσ)× (dxµ/dσ) = 0 to obtain

D

Dσ

(
Vµ

dxµ

dσ

)
=
(

D Vµ

Dσ

)
dxµ

dσ
= 0.

which may be written as

(DνVµ)
dxµ

dσ

dxν

dσ
= 0.

The quotient theorem then informs us that DνVµ is a good tensor,
because it is contracted into a good tensor: (dxµ/dσ)(dxν/dσ).

(11.6) Parallel transport of a vector around a general spherical triangle
The triangle has three vertices (A, B, C) connected by geodesic
curves with interior angles (α, β, γ ). We now transport a vector
around this triangle, along the three geodesic sides of the triangle.
The key observation is that the angle subtended by the vector and
the geodesic is unchanged (cf. the worked example in the text).

1. At vertex A, the vector makes an angle θ1 with the tangent
along AB.

2. At vertex B, the vector makes the same angle θ1 with the tangent
along AB, thus it makes θ2 = θ1 + (π − β) along BC.

3. At vertex C, the vector makes θ3 = θ2 + (π − γ ) along CA.
4. Returning to A, the vector makes θ4 = θ3 + (π − α) along the

original AB.

Plug in θi sequentially and take out a trivial factor of 2π , we obtain
the directional change of the vector

δθ = θ1 − θ4 = α + β + γ − π ,

which is just the angular excess ε.
(11.9) Counting independent elements of Riemann tensor Write the

curvature tensor as R{[µν],[αβ]} to remind ourselves of the symmetry
properties of (11.69)–(11.71): antisymmetry of Eq. (11.69) as [µν],
that of (11.70) as [αβ], and the symmetry of (11.71) as {[µν], [αβ]}.
An n×n matrix has 1

2 n(n+1) independent elements if it is symmet-
ric, and 1

2 n(n−1) elements if antisymmetric. Hence, for the purpose
of counting independent components, we can regard R{[µν],[αβ]} as
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a 1
2 n(n − 1) by 1

2 n(n − 1) matrix, which is symmetric. This yields
a count of

M(n) = 1

2

[
1

2
n(n− 1)

]
×
[

1

2
n(n− 1)+ 1

]

= 1

8
n(n− 1)(n2 − n+ 2).

There are not as many independent elements as M(n) because
we also need to factor-in further the cyclic symmetry constraint of
(11.72). Actually, (11.72) represents extra conditions that reduce
the number of independent elements only if all four indices are
different—because otherwise this cyclic condition reduces to the
first three symmetry conditions. Thus the number of additional
constraint conditions as represented by (11.72) is given by:

C(n) =
(

n

4

)
= n(n− 1)(n− 2)(n− 3)

4! .

Subtracting C(n) from M(n) leads to the the number of independent
components of a curvature tensor in an n-dimensional space:

N(n) = M(n) − C(n) = 1

12
n2(n2 − 1). (C.38)

For the 4D spacetime, N(4) = 20.
(11.10) The number of metric’s independent second derivatives and

Riemann tensor

(a) Remembering that the number of independent elements of a
symmetric n × n matrix is n(n + 1)/2, we see that the tensor
gµν has 10 elements, and its first derivative ∂αgµν has 40, and
its second derivative ∂α∂βgµν has 100 elements, when we used
the fact that ∂α∂β = ∂β∂α . Namely,

Index sym A(4)

gµν {µν} (4× 5)/2 = 10
∂αgµν α{µν} 4× 10 = 40

∂α∂βgµν {αβ}{µν} 10× 10 = 100

In particular the number of components for the second
derivative ∂α∂βgµν in an n-dimensional space is

A(n) =
[

1

2
n(n+ 1)

]2

. (C.39)

(b) Using the same notation as in (a), we find the number of
parameters in the transformations for the 4D space:

Index sym B(4)

(∂αxβ) αβ 4× 4 = 16
∂γ (∂αxβ) {γα}β 10× 4 = 40

∂γ ∂δ(∂αxβ) {αγ δ}β 20× 4 = 80
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where, on the last line for the second derivative ∂γ ∂δ(∂αxβ), we
have used the fact that there are 20 possible totally symmetric
combinations of three indices (d = 3) when each index can take
on four possible values (n = 4). This is an example of the gen-
eral result N(d, n) being the number of symmetric combinations
of d objects each can take on n possible values:

N(d, n) =
(

d + n− 1

d

)
= (n+ d − 1)!

d!(n− 1)! . (C.40)

One can understand this result by thinking of the ways, for
example, of placing d identical balls into n boxes, which is
equivalent to the problem of permuting d identical balls and
n− 1 identical partitions.

(c) After a comparison of the results obtained in (a) and (b)

A(4) B(4)

gµν 10 (∂αxβ) 16
∂αgµν 40 ∂γ (∂αxβ) 40

∂α∂βgµν 100 ∂γ ∂δ(∂αxβ) 80

we comment on each case:
i. The gµν case: Do we need the 16 parameters of (∂αxβ) to

determine the 10 elements of gµν? Yes, because the transfor-
mation includes the six parameter Lorentz transformations
that leave the Euclidean metric gµν = ηµν invariant.

ii. The ∂αgµν case: There are just the correct number (40) of
parameters in ∂γ (∂αxβ) to set all the 40 independent elements
of ∂αgµν to zero. (See the flatness theorem.)

iii. The ∂α∂βgµν case: We still have 20 yet undetermined ele-
ments in the second derivative ∂α∂βgµν . This corresponds
to the number of independent elements in the 4D curvature
tensor N(4) = 20 as shown in Problem 11.9.

(d) For a general n-dimensional space, the number of second deriva-
tives of the transformation ∂γ ∂δ∂αxβ as given by (C.40) for d = 3
(with a further multiplication of n for the β index) is

B(n) = 1

6
n2(n+ 2)(n+ 1). (C.41)

The number of independent elements of the second derivative
must be the difference of (C.39) and (C.41)

N(n) = A(n) − B(n) = 1

12
n2(n2 − 1),

which exactly matches the result of (C.38).

(11.11) Reducing Riemann tensor to Gaussian curvature For a 2D space
with orthogonal coordinates, we have the metrics

gµν =
(

g11 0
0 g22

)
, gµν =

(
g11 0
0 g22

)
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with g11 = 1/g11 and g22 = 1/g22 so that gµνgνλ = δλ
µ. The

Christoffel symbols can be calculated from

�1
µν =

1

2
g11(∂µg1ν + ∂νg1µ − ∂1gµν)

so that

�1
11 =

1

2g11
∂1g11, �1

22 = −
1

2g11
∂1g22,

�1
12 = �1

21 =
1

2g11
∂2g11.

Similarly, we also have

�2
22 =

1

2g221
∂2g22, �2

12 = �2
21 =

1

2g22
∂1g22.

The only nontrivial (and independent) curvature element is

R1212 = g1µRµ
212

= g11(∂2�
1
21 − ∂1�

1
22 + �ν

21�
1
ν2 − �ν

22�
1
ν1)

= g11(∂2�
1
21 − ∂1�

1
22 + �1

21�
1
12 + �2

21�
1
22

− �1
22�

1
1ν1 − �2

22�
1
21)

= 1

2

{
∂2

2 g11 + ∂2
1 g22 − 1

2g11
[(∂1g11)(∂1g22)+ (∂2g11)

2]

− 1

2g22
[(∂2g11)(∂2g22)+ (∂1g22)

2]
}

which, when divided by the metric determinant det g = g11g22, the
ratio−R1212/ det g is recognized as the Gaussian curvature of (4.35).

(11.14) Contraction of Christoffel symbols The inverse matrix [gµν]−1 has
elements gµν , which are related to the determinant g of the matrix
[gµν] and the cofactors Cµν (associated with elements gµν) as

gµν = Cµν

g
. (C.42)

Also, the determinant g can be expanded as (for any fixed µ)

g =
∑

ν

gµνCµν , (C.43)

where we have displayed the summation sign to emphasize that there
is no summation over the index µ. Because the determinant is a func-
tion of the matrix elements gµν which in turn are position dependent,
we have

∂g

∂xα
= ∂g

gµν

∂gµν

∂xα
= Cµν ∂gµν

∂xα
= ggµν∂αgµν , (C.44)

where we have used (C.43) and (C.42) to reach the last two expres-
sions. Knowing this identity, we proceed to make a contraction of
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the Christoffel symbols

�µ
µα =

1

2
gµν[∂αgµν + ∂µgαν − ∂νgµα].

The last two terms ∂νgαν = ∂µgµα cancel so that the contraction
can be rewritten by (C.44) as

�µ
µα =

1

2
gµν∂αgµν = 1

2g

∂g

∂xα

which is equivalent to the sought after result of

�µ
µα =

1√−g

∂

∂xα

√−g.

(11.15) Contraction of Riemann tensor Contracting the first two indices
Rµ

µαβ (11.58):

∂α�
µ
µβ − ∂β�µ

µα + �µ
να�ν

µβ − �
µ
νβ�ν

µα .

The dummy indices in the last two terms can be relabeled µ ↔ ν;
we see that they cancel each other. A straightforward calculation of
the first two terms by using the result obtained in Problem 11.14
shows that they cancel each other also.

(12.4) The equation of geodesic deviation Let us consider two particles:
one has the spacetime trajectory xµ and another has xµ + sµ. These
two particles, separated by the displacement vector sµ, obey the
respective equations of motion:

d2xµ

dτ 2
+ �

µ
αβ(x)

dxα

dτ

dxβ

dτ
= 0

and

(
d2xµ

dτ 2
+ d2sµ

dτ 2

)
+�

µ
αβ(x+ s)

(
dxα

dτ
+ dsα

dτ

)(
dxβ

dτ
+ dsβ

dτ

)
= 0.

When the separation distance sµ is small, we can approximate the
Christoffel symbols �

µ
αβ(x + s) by a Taylor expansion

�
µ
αβ(x + s) = �

µ
αβ(x)+ ∂λ�

µ
αβsλ + · · · .

From the difference of the two geodesic equations, we obtain, to
first order in sµ,

d2sµ

dτ 2
= −2�

µ
αβ

dsα

dτ

dxβ

dτ
− ∂λ�

µ
αβsλ dxα

dτ

dxβ

dτ
. (C.45)

The relative acceleration is the second derivative of the separation
sµ along the worldline (i.e. the double differentiation along the
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geodesic curve). From (11.46) we have the first derivative

Dsµ

Dτ
= dsµ

dτ
+ �

µ
αβsα dxβ

dτ

and the second derivative

D2sµ

Dτ 2
= D

Dτ

(
Dsµ

Dτ

)
= d

dτ

(
Dsµ

Dτ

)
+ �

µ
αβ

(
Dsα

Dτ

)
dxβ

dτ

= d

dτ

(
dsµ

dτ
+ �

µ
αβsα dxβ

dτ

)
+ �

µ
αβ

(
dsα

dτ
+ �α

λρsλ dxρ

dτ

)
dxβ

dτ

= d2sµ

dτ 2
+ ∂λ�

µ
αβ

dxλ

dτ
sα dxβ

dτ
+ �

µ
αβ

dsα

dτ

dxβ

dτ
+ �

µ
αβsα d2xβ

dτ 2

+ �
µ
αβ

dsα

dτ

dxβ

dτ
+ �

µ
αβ�α

λρsλ dxρ

dτ

dxβ

dτ
. (C.46)

For the d2sµ/dτ 2 term we use (C.45); for the d2xβ/dτ 2 term we
use the geodesic equation

d2xβ

dτ 2
= −�

β
λρ

dxλ

dτ

dxρ

dτ
.

This way one finds

D2sµ

Dτ 2
= −2�

µ
αβ

dsα

dτ

dxβ

dτ
− ∂λ�

µ
αβsλ dxα

dτ

dxβ

dτ
+ ∂λ�

µ
αβ

dxλ

dτ
sα dxβ

dτ

+ 2�
µ
αβ

dsα

dτ

dxβ

dτ
− �

µ
αβsα�

β
λρ

dxλ

dτ

dxρ

dτ

+ �
µ
αβ�α

λρsλ dxρ

dτ

dxβ

dτ
.

After a cancellation of two terms and relabeling of several dummy
indices, this becomes

D2sµ

Dτ 2
= −∂λ�

µ
αβsλ dxα

dτ

dxβ

dτ
+ ∂α�

µ
λβ

dxα

dτ
sλ dxβ

dτ

− �
µ
λρsλ�

ρ
αβ

dxα

dτ

dxβ

dτ
+ �

µ
ρβ�

ρ
λαsλ dxα

dτ

dxβ

dτ
or

D2sµ

Dτ 2
= −Rµ

αλβsλ dxα

dτ

dxβ

dτ
,

where

Rµ
αλβ = ∂λ�

µ
αβ − ∂β�

µ
λα + �

µ
λρ�

ρ
αβ − �

µ
βρ�

ρ
λα

in agreement with (11.58).
(12.5) From geodesic deviation to NR tidal forces Besides slow mov-

ing particles, the Newtonian limit means a weak gravitational field:
gµν = ηµν + hµν with hµν being small. Thus (11.37) becomes

�
µ
αβ =

1

2
ηµρ[∂αhβρ + ∂βhαρ − ∂ρhαβ ].

Also, in this weak-field limit, we can drop the quadratic terms in the
curvature so that there are only two terms, related by the interchange
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of (β, λ) indices

Rµ
αλβ = ∂λ�

µ
αβ − ∂β�

µ
λα

= 1

2
ηµρ[∂λ∂αhβρ − ∂λ∂ρhαβ − ∂β∂αhλρ + ∂β∂ρhαλ]

after cancelling two terms. Thus

Ri
0j0 =

1

2
[∂j∂0h0i − ∂j∂ih00 − ∂0∂0hji + ∂0∂ih0j] = −1

2
∂i∂jh00.

Because the Newtonian limit also has the static field condition, to
reach the last line we have dropped all time derivatives. With h00 =
−2�/c2 as given by (5.20), we have the sought-after relation of

R j
0j0 =

1

c2

∂2�

∂xi∂x j
.

(13.1) Gauge transformations

(a) Consider a coordinate (gauge) transformation as given in (13.12)
so that, according to (13.17), h′αβ = hαβ − ∂αχβ − ∂βχα . This
implies (by contracting the indices on both sides) the transforma-
tion for the trace h′ = h − 2∂βχβ . These two relations can be
combined to yield the gauge transformation of h̄αβ ,

h′αβ −
h′

2
ηαβ = h̄′αβ = h̄αβ − ∂αχβ − ∂βχα + ηαβ(∂χ).

(C.47)

(b) Taking the derivative on both sides of (C.47),

∂α h̄′αβ = ∂α h̄αβ −�χβ

the new metric perturbation field can be made to obey the Lorentz
condition ∂α h̄′αβ = 0 if

�χβ = ∂α h̄αβ .

(c) Plugging h̄µν = εµνeikx and χν = Xνeikx into the gauge
transformation (C.47), we have

ε′µν = εµν − ikµXν − ikνXµ + iηµν(k · X) (C.48)

which implies the trace relation

ε′ µµ = ε µ
µ − 2ikµXµ.

This means that if we start with a polarization tensor that is not
traceless, it will be traceless ε

′µ
µ = 0 in a new coordinate if the

gauge vector function Xµ for the coordinate transformation is
chosen to satisfy the condition 2ikµXµ = ε

µ
µ . Now we have used

one of the four numbers in Xµ to fix the trace. How can we use
the remaining three to obtain εµ0 = 0 which would seem to rep-
resent four conditions? This is possible because we are working
in the Lorentz gauge and kµ is a null-vector. Here is the reason.
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Starting with εµ0 �= 0, new coordinate transformation leads to
(C.48) with

ε′µ0 = εµ0 − ikµX0 − ik0Xµ + iηµ0(k · X).

Formally ε′µ0 = 0 represents four conditions. But, because of
kµεµ0 = 0 and k2 = 0, these four equations must obey a
constraint relation, obtained by a contraction with the vector kµ:

kµεµ0 − ik2X0 − ik0(k · X)+ ik0(k · X) = 0.

Thus ε′µ0 = 0 actually stands for three independent relations.
(d) The polarization tensor being symmetric, εµν = ενµ, it has 10

independent elements. The Lorentz gauge condition kµεµν = 0
represents 4 constraints, ε

µ
µ = 0 is one, and εµ0 = 0, as dis-

cussed above, is three. Thus there are only 10− 4− 1− 3 = 2
independent elements in the polarization tensor.

(13.2) Wave effect via the deviation equation With a collection of nearby
particles, we can consider velocity and separation fields, Uµ(x) and
Sµ(x). The equation of geodesic deviation (Problem 12.4) may be
written as

D2

Dτ 2
Sµ = Rµ

νλρUνUλSρ .

Since a slow moving particle Uµ = (c, 0, 0, 0) + O(h) and the
Riemann tensor Rµ

νλρ = O(h), this equation has the structure

D2

Dτ 2
Sµ = c2ηµσ R(1)

σ00ρSρ + O(h2).

The Christoffel symbols being of higher order, the covariant deriva-
tive may be replaced by ordinary differentiation; this equation at
O(h) is

d2Sµ

dt2
= Sρ

2

d2

dt2
hµ

ρ .

On the RHS we have used (13.6) and the TT gauge condition of
h00 = h0µ = 0. The longitudinal component of the separation field
Sz is not affected because h3ρ = 0 in the TT gauge. For an incom-
ing wave in the “plus” polarization state, the transverse components
obey the equations

d2Sx

dt2
= Sx

2

d2

dt2
(h+eikx),

d2Sy

dt2
= −Sy

2

d2

dt2
(h+eikx).

These equations, to the lowest order, have solutions

Sx(x) =
(

1+ 1

2
h+eikx

)
Sx(0), Sy(x) =

(
1− 1

2
h+eikx

)
Sy(0)

in agreement with the result in (13.37) and (13.38).



328 Solutions of selected problems

(13.3) �
µ
νλ and R(2)

µν in the TT gauge

(a) Christoffel symbols: we give samples of the calculation

�1
00 =

1

2
g11(∂0g10 + ∂0g01 − ∂1g00) = 0

because h10 = h01 = h00 = 0 in the TT gauge.

�1
01 =

1

2
(1− h̃11)(∂0h̃11 + ∂1h̃01 − ∂1h̃10)

= 1

2
(∂0h̃+ − h̃+∂0h̃+).

(b) Ricci tensor: from what we know of Christoffel symbols having
the nonvanishing elements of

�1
10 = �1

01 = �0
11 =

1

2
∂0h̃+,

�1
13 = �1

31 = −�3
11 = −

1

2
∂0h̃+

together with the same terms with the replacement of indices
from 1 to 2, we can calculate the second-order Ricci tensor by

R(2)
µν = �α

αλ�
λ
µν − �α

µλ�
λ
αν .

Thus

R(2)
00 = �α

αλ�
λ
00 − �α

0λ�
λ
α0

= 0− 2�1
01�

1
10 =

−1

2
(∂0h̃+)2 = R(2)

33 ,

R(2)
11 = �α

αλ�
λ
11 − �α

1λ�
λ
α1

= 2�1
1λ�

λ
11 − �0

1λ�
λ
01 − �1

1λ�
λ
11 − �3

1λ�
λ
31

= 2�1
10�

0
11 + 2�1

13�
3
11 − �0

11�
1
01 − �1

10�
0
11

− �1
13�

3
11 − �3

11�
1
31

= 0 = R(2)
22 .

(13.4) Checking the equivalence of (13.62) and (13.63) We first
calculate

Ĩij Ĩij − 2Ĩi3 Ĩi3 = Ĩi1 Ĩi1 + Ĩi2 Ĩi2 − Ĩi3 Ĩi3

= Ĩ2
11 + Ĩ2

22 + 2Ĩ12 Ĩ12 − Ĩ2
33

= 2Ĩ12 Ĩ12 − 2Ĩ11Ĩ22,

where we have used

Ĩ2
33 = (Ĩ11 + Ĩ22)

2 = Ĩ2
11 + Ĩ2

22 + 2Ĩ11 Ĩ22.
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Thus

2Ĩij Ĩij − 4Ĩi3 Ĩi3 + Ĩ33Ĩ33 = 4Ĩ12 Ĩ12 − 4Ĩ11Ĩ22

+ Ĩ2
11 + Ĩ2

22 + 2Ĩ11Ĩ22

= (Ĩ11 − Ĩ22)
2 + 4Ĩ2

12

which is the claimed result.
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and the cosmological constant, 166, 183
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transition from decelerating universe, 187,
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acoustic waves in photon-baryon fluid, 178
aether, 6, 17
affine connection, see Christoffel symbols
age of the universe, 120, 187, 191

dependence on matter and dark-energy
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from globular clusters, 121

AGN, 110
Albrecht, A., 174
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angular excess

and curvature, 67, 225
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baryon-photon number ratio, 155
baryonic matter, 123, 152

baryonic dark matter, 97, 123
vs non-baryonic matter, 123, 125, 149,

178, 191
basis vectors, 15, 25, 197, 216, 231
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Bekenstein-Hawking entropy, 278
Bianchi identities, 207, 229
big bang, 120, 135, 136, 170
big bang nucleosynthesis, 137, 149
Birkhoff theorem, 92, 140, 242
Birkhoff, G., 242
black hole, 91, 102

and quantum gravity, 276
and time measurements, 102
black star of Michell/Laplace, 104
entropy and area increasing theorem, 278
has no hair, 275

in galactic center, 110
in X-ray binaries, 110
mass density, 91
orbit around, 108
research history, 109
rotating and electrically charged, 275
Schwarzschild singularity, 102

Bólyai, J., 68
Bondi, H., 134
Boomerang collaboration, 182
boost, 5, 16, 17
brightness (observed flux), 116

magnitude classification, 132
brown dwarf, 123

Casimir effect, 281
Cepheid variable stars, 131, 184
CfA survey of galaxies, 119
Chandrasekhar limit, 109, 184, 265
Chandrasekhar, S., 109
Christoffel symbols, 76, 219

and parallel transport, 223
and Riemann curvature tensor, 226
as derivatives of bases, 219, 231
as gravitational field, 234
as metric derivatives, 76, 221
in TT gauge, 261
spherically symmetric, 239
via Euler-Lagrange equation, 240

closed universe, 139, 169
CMB (Cosmic Microwave Background)

anisotropy, 152, 159, 178
acoustic waves in photon-baryon fluid, 178
and evidence for a flat universe, 178, 181
and exotic dark matter, 160, 178
angular power spectrum, 162, 179
cosmic variance, 162
dipole term, 159, 164
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scale, 179, 182
observation, 155, 159, 182, 190
physical origin and mathematical

description, 160, 179
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spherical harmonics, 161

COBE (Cosmic Background Explorer), 155,
159, 182, 190

Colgate, S., 184
components of a vector

as expansion coefficients, 15
connection symbols, see Christoffel symbols
conservation law

and equation of continuity, 208
electric charge, 208
energy and momentum, 209, 236, 252
energy in cosmology
see energy conservation

contravariant components, 198
covariant derivative of, 219

conversion factors in physics, 24, 84, 86
coordinate singularity, 102, 106, 110
coordinate symmetry, see relativity, 5, 197

and tensors, 11
coordinate systems

accelerating, see accelerating frames
and observers, 5
comoving, 126, 140, 210, 244, 246
Galilean, see inertial frames

coordinate transformation, 5, 7, 26, 216
as a matrix of partial derivatives, 217
boost, see boost
for contravariant and covariant

components, 199, 217
Galilean, see Galilean transformation
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transformation
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200
in curved space, 59, 215
linear vs. nonlinear, 7
Lorentz, see Lorentz transformation
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and ordinary vs covariant derivatives,
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Copernican principle, 118, 126
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scale invariance, 177, 179, 180
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119, 121, 189
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152, see CMB anisotropy
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cosmic redshift
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big bang nucleosynthesis time, 147, 151
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cosmological constant, 166, 280
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problem/difficulty, 191, 280

cosmological principle, 125
covariant components, 198

covariant derivative of, 220
covariant derivative, 218, 234
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critical density, 121, 138
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and Einstein field equation, 83, 236
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Einstein tensor, 83, 230
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see Gaussian curvature
Riemann tensor (higher D),

see Riemann curvature tensor, 226
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D’Alembertian as 4-Laplacian operator, 201
dark energy, 4, 137, 184, 189, 191, see

cosmological constant
associated quantum energy scale, 281
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density parameter
see � density parameter
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Einstein equation for cosmology, 137, 246
quasi-Newtonian interpretation, 139
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fundamental theorem of Riemannian
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g-(spin)-factor, 146, 152, 157
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Galilean transformation, 7, 16

as low velocity Lorentz transformation, 7,
18

Newtonian relativity, 6, 16
Galileo, G., 5, 9, 16, 40
Gamow condition, 147
Gamow, G., 145, 150, 170
gauge symmetry, 207

and dynamics, 8
gauge transformations

coordinate change in linearized
GR, 252, 269
EM potentials, 207

Gauss, C.F., 55, 63, 68
Gaussian coordinates, 55
Gaussian curvature, 63, 232

and Riemann tensor, 229
general coordinate transformation

as local Lorentz transformation, 7
general covariance

principle of, 4, 7, 233
general relativity (GR), 6

accelerating frames, 6
as a geometric theory, 10, 71, 75, 233
as a gravitational theory,
see gravitational theory
from SR equations, 234
Riemannian geometry and tensor calculus,

55, 233
three classical tests, 3

GEO, 259
geodesic curve

as the particle worldline, 75, 78
as the shortest curve, 59
as the straightest possible curve, 224
for a light trajectory, 85, 112

geodesic deviation, equation of, 82, 248, 249,
269

geodesic equation, 11, 61
as GR equation of motion, 76, 235
from SR equation of motion, 235
in a rotating coordinate, 85
in Schwarzschild geometry, 97, 103

geometric description
Gaussian coordinates, 56
instrinsic vs extrinsic, 56

Ginzburg, V., 279
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and age of the universe, 121, 184
Gold, T., 134
grand unified theories (GUTs), 173, 178
gravitational potential, 38

metric as, 72, 77
gravitational radiation

quadrupole vs dipole, 263

gravitational theory
GR, 3, 8

equation of motion, 75, 235
field equation, 83, 236

Newton’s, 3, 8, 38, 234
equation of motion, 39, 74, 77
field equation, 39, 74, 238

quantum theory, see quantum
gravity

gravitational wave, 4, 250
amplitudes in TT gauge, 254
and PSR 1913+16, 264
effect on test particles, 255
energy flux, 260
interferometer, 257

facilities, 258
polarization tensor, 255

graviton
spin, 2, 257
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-induced index of refraction, 49, 93
collapse of a massive star, 109
lensing effect, 94
light deflection, 43, 50, 93

and geodesic equation, 85, 112
pressure as source, 167, 238
redshift of light, 45, 78, 213

black hole, 104
CMB anisotropy, 160
vs Doppler blueshift, 45, 46
vs Hubble redshift, 134

repulsion due to the dark energy, 165, 167,
175, 177

strength: strong vs weak, 42, 78, 115
time dilation, 47, 53, 54, 72

Grossmann, M., 8
Guth, A.H., 173

harmonic gauge, see Lorentz gauge
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fermionic, 281

Harrison-Zel’dovich spectrum, 181
Hawking radiation, 277
Hawking temperature, 277
Hawking, S.W., 277
helium-3, 151
helium-4 abundance, 150
hidden symmetry, see spontaneous symmetry

breaking
High-z Supernova Search Team, 185
holographic principle, 278
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Hoyle, F., 134
Hubble constant, 118, 185, 191

and scale factor, 129

Hubble curve, 185
and matter and dark-energy densities, 185
bulge in, 188

Hubble length, 118
Hubble redshift, 118
Hubble relation, 118, 129, 135
Hubble time, 118

and age of the universe, 120, 184, 187
Hubble, E., 118, 131
Hulse, R.A., 264
Hydra-Centaurus supercluster, 116, 160

inertial frames
absence of gravity, 6
CMB, 5, 160
fixed stars, 5
Mach’s principle, see Mach’s principle
Newton’s first law, 5
special relativity, 6

inflation/Higgs matter (field), 173, 177, 189,
191, 279

inflationary cosmology, 4, 170, 190
and cosmological constant, 165, 173
and flat universe, 165, 176
flatness problem, 171, 176
horizon problem, 172, 176
origin of matter/energy and structure in the

universe, 177
invariant spacetime interval, 22, 24, 216

Kerr spacetime, 275
Killing vector, 277
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Lagrangian, 60, 97, 202
�, see cosmological constant
Landau, L., 109, 279
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latitudinal distance, 58
Lemaître, G., 169
length contraction, 33
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Levi-Civita symbol, 205, 226
light deflection

EP expectation, 50
GR result, 93
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in Schwarzschild spactime, 105

LIGO (Laser Interferometer Gravitational
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Linde, A., 174
linearized GR, 251

perturbation field, 251
trace reversed perturbation field, 253
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lithium, 149, 150, 151
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and local inertial frame, 74, 234
Local Group, 116, 118, 160
Local Supercluster, 116, 160
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Lorentz gauge, 253, 269
Lorentz transformation, 7

as rotation in Minkowski spacetime, 27,
201

background, 251
charge/current densities, 18, 207
coordinate differentials, 19
coordinates, 17, 201
derivation, 28
derivative operators, 36, 201
EM fields, 18
group property, 36
in the spacetime diagram, 31
Maxwell’s equations, 6, 18
physical basis of, 19
physical interpretation of terms in, 34

Lorentz, H.A., 6
luminosity, 116, 131

gravitational quadrupole radiation, 264
luminosity distance, 131

and distance modulus, 132
and proper distance, 132

Mössbauer effect, 46
Mach’s principle, 5, 10, 160

Mach’s paradox, 9
Mach, E., 5, 9
MACHOs (Massive Compact Halo
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inertial vs gravitational, 8, 40
rest vs dynamical, 203

mass density of the universe, 121–125
MAT/TOCO (Mobile Anisotropy Telescope,

Cerro Toco), 182
matter dominated universe (MDU)

age for a flat MDU, 143, 184
time evolution, 144

matter-antimatter asymmetry, 158
Maxima collaboration, 182
Maxwell, J.C., 6
Maxwell’s Equations, 6, 18
Mercury’s perihelion, precession of,

see precession
metric, 12, 25, 57

2-sphere, 62
cylindrical coordinates, 58
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2D with constant curvature, 65
3D with constant curvature, 66, 128, 244

and basis vectors, 25, 57, 198, 216
and coordinate transformation

in curved space, 26, 216
and scalar product, 25
as relativistic gravitational potential, 72, 77
as solution of Einstein equation, 84, 239,

244
covariantly constant, 220, 222, 247
cylindrical surface, 62
definition of an angle, 59
definition via distance measurements, 57,

58, 216
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Cartesian coordinates, 62
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geodesic curve, 61
matrix, 25, 57
Minkowski, 27, 200
raising and lowering indices, 199
Robertson-Walker, 128, 244
Schwarzschild, 90, 102, 243
second derivatives, 222, 226, 229
spherically symmetric, 88, 239
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Michelson, A.A., 6
Michelson-Morley experiment, 6, 19
microlensing, 96
Minkowski metric, 27, 200
Minkowski spacetime, 24
Minkowski, H., 24
missing energy problem, 183
Morley, E.W., 6

negative pressure
and constant energy density, 167, 248

neutrinos, 123
decoupling, 148
density and temperature, 148, 157
mass, 148, 164
three flavors, 152

neutron star, 109, 185, 259, 265
neutron/proton conversion, 148, 150
neutron/proton ratio, 151
Newton’s constant, 38, 74, 84, 238
Newton, I., 3, 5, 10, 16, 40
Newtonian deviation, equation of, 81, 249
Newtonian gravity, 8, 39, 74
Newtonian limit, 52

Einstein equation, 237, 239
geodesic equation, 76

Newtonian relativity, 5, 16
Galilean transformation, 16

non-Euclidean geometry
angular excess and area, 67
circumference and radius, 67
rotating cylinder, 73, 85

nuclear elements, lack of stable 5 and 8
elements, 149, 151

nucleon, 150

observer and coordinate system, 5
Olbers’ paradox, 116, 134
� density parameter, 121

baryonic matter, 125, 152, 191
dark matter, 121, 125
exotic, 123, 125, 191
luminous matter, 122, 125
matter (total), 125
total density and spatial curvature, 139

�� dark energy density parameter, 184, 186,
191

�M matter density parameter
total, 125

open universe, 139, 309
Oppenheimer, J.R., 109

parallel transport, 222
a vector along a curve, 224

parsec, 116
particle creation

in Hawking radiation, 277
in inflationary cosmology, 177

Peebles, P.J.E., 154
Penzias, A., 154
Perlmutter, S., 185
Phillips, M., 185
photon decoupling

temperature, redshift, and cosmic time,
152

photon reheating, 157
Planck scales, 170, 276, 281
Poincaré, J.H., 6, 17
positron disappearance, 149, 157
Pound, R.V., 46
Pound-Rebka-Snider experiment, 46
precession of Mercury’s perihelion, 97

energy balance equation, 98
orbit equation and solution, 100

proper distance
and coordinate distance, 90
and luminosity distance, 132
in RW geometry, 129

proper time, 23, 202
across Schwarzschild surface, 103
vs coordinate time, 49, 78, 90

pseudo-Euclidean space, 24
pseudospheres, 65, 66, 69, 128
PSR 1913+16, 264,

see pulsar
pulsar (PSR), 250
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QCD deconfinement phase transition, 149
quantum field theory, 173, 177, 280
quantum fluctuation

and Hawking radiation, 277
as origin of density perturbation, 126, 177

quantum gravity, 4, 276
and black hole, 278
as the fundamental theory of physics, 4,

276
quantum vacuum energy, 191, 280
quarks, 147, 149
quasar, 95, 110
quintessence, 189, 191
quotient theorem, 213

radiation dominated universe (RDU)
age for a flat RDU, 143
time evolution, 144

radiation pressure and energy density, 138,
143, 214

radiation temperature
and cosmic time, 147
and scale factor, 146
at big bang nucleosynthesis time, 147, 151
at photon decoupling, 153

radiation-matter equality time, 156
radius of the universe, 128, 164, 169
Reissner-Nordström spacetime, 275
relativistic energy-momentum, 29, 202
relativity

concept, 5
coordinate symmetry, 5
Einsteinian vs Newtonian, 6
general, see general relativity (GR)
of simultaneity, 20, 34, 36, 37
of spatial congruity, 20
principle of, 22
special, see special relativity (SR)

Ricci scalar, 229
Ricci tensor, 229

spherically symmetric, 241
Riemann curvature tensor, 55, 83, 225, 228

and Gaussian curvature, 229
from commutator of covariant derivatives,

228
from parallel transport around a closed

path, 227
in different D, 229
independent elements, 229
linearized, 251

Riemann, G.F.B., 55, 68
Riess, A., 185, 188
Robertson, H.P., 127, 169
Robertson-Walker (RW) metric, 127, 244
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scale factor, 129, 136

Roll, P., 154
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Rubin, V., 124

Sachs-Wolfe plateau, 179
scale factor, 128

and redshift, 130
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and Hubble constant, 129
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scaling behavior
dark energy, 143
matter density, 142
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radiation temperature, 146

Schmidt, B., 185
Schwarzschild coordinate time, 103
Schwarzschild radius, 90
Schwarzschild spacetime, 90, 243
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metric singularities, 102

Schwarzschild, K., 242, 244
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189
second mass moment, 263, 266
singularity theorem, 276
Sirius A and B, 46
Slipher, V., 118
Sloan Digital Sky Survey, see SDSS
Smoot, G, 155
SN1997ff, 188
Snyder, H., 109
space-time

as gravitational field, 11, 52, 75
coordinates, 7, 27, 200
GR concept of, 4, 8, 75
Newtonian, see absolute space
time, see time
spacetime diagram, 30, 31, 105
spatial distance and spacetime metric, 85

special relativity (SR), 6, 14, 197, 234
absence of gravity, 6, 84
and electromagnetism, 6, 17, 36
from SR to GR equations, 234
inertial frames, 6
reciprocity puzzle, 273

spherical harmonics, 161
spherical surface, see 2-sphere
spherically symmetric metric tensor, 88
spontaneous matter creation in SSU, 135
spontaneous symmetry breaking, 173, 279
standard candles, 131, 184
standard model of cosmology, see FLRW

cosmology
static universe, 166, 168
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Stefan-Boltzmann law, 146
Steinhardt, P., 174
superluminal expanding universe, 173, 176
supernova, 109

SNe Ia as standard candles, 184
Supernova Cosmological Project, 185
supersymmetry, 123, 282
Susskind, L., 278
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as guide to new theories, 4, 8, 233
automatic in covariant equations, 11, 14
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rotational, 5, 14

symmetry transformation, 5
coordinate, see coordinate transformation
gauge, see gauge symmetry
global, 7
local, 8

’t Hooft, G., 278
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Taylor, J.H., 264
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time
in Einsteinian relativity, 6, 20
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transformation, 6
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relativistic, 32
relativistic vs gravitational, 47–48

TOCO, 182
Tolman, R.C., 145
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transformation matrix, 7, 15, 59, 199, 217
transverse traceless (TT) gauge

Christoffel symbols and Ricci tensor, 261
polarization tensor, 255

twin paradox, 271
and gravitational time dilation, 53, 275
reciprocity puzzle, 272
spacetime lengths and proper times, 271
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metric, see metric/2-sphere
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relativistic, 19, 36, 213

VIRGO, 259
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virial theorem, 124, 134
Volkov, G., 109

w, see equation-of-state parameter w
Walker, A.G., 127, 169
weak gravitation field, 77, 238, 251
weak interactions, 123, 148
Wheeler, J.A., 11, 109
white dwarfs, 109, 123, 184
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WIMP, 123, 152
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worldline, 30
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Zel’dovich, Y.B., 109, 155
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quantum vacuum energy, 188
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