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Implications of astronomical 
data.  

�  James Jeans (1922): Local Dark Matter 
- vertical motions of stars near the plane of 
our Galaxy – spatial density of known stars 
insufficient.  

 
 
�  Fritz Zwicky (1933): Global Dark Matter 

- velocities in the Coma cluster of Galaxies  
-   velocities too large by factor of 10 if 
taking into account estimated visible mass.  

 
 
�  Bancock (1939): rotation curves of 

galaxies in spiral galaxies – Andromeda 
Galaxy M31 – unexpectedly high rotational 
velocity in outer region.  

 



 Implications of astronomical 
data 

�  Einasto (1974) -  dynamics and 
morphology of companion 
galaxies (pairs of galaxies ) – 
Dwarf Spheroidal Galaxies (M/L 
ratio up to 1000 in solar units)  - 
the mass of galactic coronas or halos exceeds the 
mass of polulations of known stars by one order of 
magnitude.  

 
�  This astronomical evidence of dark matter is 

confirmed by recent observations and analysis, note 
that local dark matter is probably baryonic ( low 
mass and luminosity stars, jupiters,…), global dark 
matter, if it corresponds to an exotic particle 
species, is probably non-baryonic ( primordial 
nucleosynthesis constraints ). Another way to 
explain the observations correpsonds to 
Modified Newtonian Gravity or 
generally modified gravity 
models.  



Arguments for Dark Matter from 
Cosmology 

 
�  Cosmological expansion: from the 

expansion speed one can estimate the critical 
density ( flat FLRW universe model ) The 
mean density can be estimated from 
( luminous ) masses of galaxies and of 
intergalactic gas – the mean  (luminous) 
density of universe is a few percent of the 
critical density. Observations (CMBR, Cosmic 
Microwave Background Radiation) imply that 
on large scales the universe is very close to 
flatness.  

 
 
�  Structure formation and the 

CMBR: primordial density fluctuations are 
the seeds for structure formation – this 
process is rather slow – in the radiation 
dominated epoch baryonic matter does not 
reach suitable perturbation amplitude  - 
radiation pressure slows the process - 
collisionless but gravitating dark matter is not 
affected significantly.  



Implications for the nature of 
Dark Matter from cosmology 

�  Primordial nucleosynthesis: the total 
amount of baryonic matter cannot be 
higher than 0.04 of the critical 
density – the denser the primordial 
proton and neutron plasma, the 
greater the amount of light elements 
that will be formed.   



Methods.  

�  Velocity dispersions – using virial 
relations one obtains the total mass 
M.  

�  Analysis of rotation curves in spiral 
galaxies – need for additional mass 
distributions.  

 



Methods 

 
�  Considering tidal effects on 

satellite or companion galaxies  - 
one obtains a constraint the total 
mass.  

  



 Methods 
�  X-ray data on galaxies and galaxy 

clusters: hot gas moves under the 
influence of the gravitational field of 
the systems. Advantages: collisional 
fluid is isotropically distributed and 
the hydrostatic method yields mass 
as function of radius ( not only total 
mass ).  

 



Methods  
�  Galactic and extragalactic 

lensing: 
  strong, weak and micro-lensing.  

 
 
 
 
 
 
Both previous methods ( X-rays and 

gravitational lensinig )  
CONFIRM 

the results for the mass using the 
virial method, see Jaan Einasto, 
“Dark Matter”, ArXiv:0901.0632 

(2010), asro-ph.CO 

 
 



Prerequisites for the Virial Method: newtonian gravity.  

MT 

The value of G is known only empirically.   



Newton’s insight 

An apple close to the earth should fall 4,9 m in 1 s;  
In the same time, the moon should fall 0,14 cm. 

> 

Prediction of 
Newton for the fall 
of the moon in 1s. 



Pithagoras: 
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The Virial 
Theorem 

 It is sometimes referred to as a 
statistical theorem, and states that, 

if the system is in a steady state 
then:  

 

0 VT2 =+

T Is the mean (total) kinetic energy 
averaged over an indetermined 

interval of time  

 

 V Is the mean (total) potential energy 
averaged over an indetermined 

interval of time  

 



The Virial 
Theorem 

 In the case of a two body system, 
with one the of masses being much 

greater than the other: 
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and thus one gets keplerian 
velocities:  
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The Virial 
Method 

 1) Measure the average radial 
velocity w.r.t. the sun 

 
2) Determine the velocity dispersion   

 

3) Determine the total mass of the 
system   

 



The Virial 
Method 
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In the case of an isotropic velocity 
dispersion, the mean square 
velocity can be expressed as:    

 

The effective virial relation implies:    

 



Tidal effects  
 

The effects of gravity can be expressed as 
a combination of two parts:    

 

Gravity = “Volume contracting part” 
+ “Volume preserving distortion-

tidal part” 

The second part is due to the non-
uniformity of the gravitational field and 

generates tidal distortions    

 



Tidal effects  
 

Tidal  distorsions are a  

“differential” effects.     
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A Taylor-McLaurin expansion yields:    
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Tidal effects  
 

In order for the compianion or satellite 
galaxy to resist to tidal disruption, the 

intensity of its own gravitational field must 
balance the tidal differential:      
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This equation is satisfied only for a given 
radius of the companion galaxy:       

 

M
mRr 3  3   

16
1     ≈



Modified Gravity, see 
“Modified Newtonian Dynamics”, Benoit Famaey, 

Stacy McGaugh – ArXiv: 1112.3960 ( 2012), 
astroph.CO 

-210 10 msa −≈

A critical acceleration seems to play an 
important role in the dynamics of 
systems ranging from galaxies to 
clusters of galaxies, of the order:       

 

       

 
Note that the acceleration scale related 
to the cosmological constant is of the 

same order:        

 

Λ≈       2a



Milgrom’s emprirical Law.  
Newton’s gravity is valid if:         

 a    g 〉

Modified Newtonian Gravity is taken 
into account if:  
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Formally, this law can be expressed as:          
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With g(n) being the newtonian 
acceleration and           
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Dieletric analogy. 
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Is the “gravitational permittivity” 



Bekenstein-Milgrom MOND 
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This generalises non-linearly the 
Poisson equation, and is analoguous to 
Gauss’ law for a free electric charge 

distribution:   
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Challenges to MOND 

�  Dynamical mass of clusters of 
galaxies 

 
 
 
�  Second:third acoustic peak in the 

CMBR 
 
 
 
�  The “Bullet cluster” (1E0657-56), 

and the “rich cluster” (Cl0024+17) 
observations – dark matter 
concentrations   

 



The non-linearity of the Bekenstein-Milgrom 
model implies that convergence regions can be 
different from baryon concentration zones.  A 
residual missing mass is needed, as for clusters in 
general: hot baryonic matter, like 2eV neutrinos.              

         The “Bullet” cluster 



 
�  A weak lensing mass recontruction 

shows the presence of a ring-like 
structure, offset from both gas and 
galaxies in the cluster.  

 
 
 
�   In certain MOND models, this effect 

can occur. In the simplest models, 
however, additional collisionless 
matter required, like 2eV neutrinos.  

 

         The “rich” cluster 



Challenges to CDM 
models 
�  the challenges are mainly 

unobserved predictions, 
 
�   astrophysical complexity to 

explain data,  
 
�  no explanation of the critical 

acceleration a.  

Neither the CDM models or the 
MOND models ought to be 
discarded: both have challenges to 
address and deserve attention and 
need to be developed.              


