
Enhancing REST API Testing with NLP Techniques
Myeongsoo Kim

Georgia Institute of Technology

Atlanta, Georgia, USA

mkim754@gatech.edu

Davide Corradini

University of Verona

Verona, Italy

davide.corradini@univr.it

Saurabh Sinha

IBM Research

Yorktown Heights, New York, USA

sinhas@us.ibm.com

Alessandro Orso

Georgia Institute of Technology

Atlanta, Georgia, USA

orso@cc.gatech.edu

Michele Pasqua

University of Verona

Verona, Italy

michele.pasqua@univr.it

Rachel Tzoref-Brill

IBM Research

Haifa, Israel

rachelt@il.ibm.com

Mariano Ceccato

University of Verona

Verona, Italy

mariano.ceccato@univr.it

ABSTRACT
RESTful services are commonly documented using OpenAPI speci-

fications. Although numerous automated testing techniques have

been proposed that leverage the machine-readable part of these

specifications to guide test generation, their human-readable part

has been mostly neglected. This is a missed opportunity, as natural-

language descriptions in the specifications often contain relevant

information, including example values and inter-parameter depen-

dencies, that can be used to improve test generation. In this spirit,

we propose NLPtoREST, an automated approach that applies nat-

ural language processing techniques to assist REST API testing.

Given an API and its specification, NLPtoREST extracts additional

OpenAPI rules from the human-readable part of the specification.

It then enhances the original specification by adding these rules to

it. Testing tools can transparently use the enhanced specification

to perform better test case generation. Because rule extraction can

be inaccurate, due to either the intrinsic ambiguity of natural lan-

guage or mismatches between documentation and implementation,

NLPtoREST also incorporates a validation step aimed at eliminating

spurious rules. We performed studies to assess the effectiveness of

our rule extraction and validation approach, and the impact of en-

hanced specifications on the performance of eight state-of-the-art

REST API testing tools. Our results are encouraging and show that

NLPtoREST can extract many relevant rules with high accuracy,

which can in turn significantly improve testing tools’ performance.

CCS CONCEPTS
• Information systems→ RESTful web services; • Software
and its engineering→ Software testing and debugging.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

ISSTA ’23, July 17–21, 2023, Seattle, WA, USA
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 979-8-4007-0221-1/23/07.

https://doi.org/10.1145/3597926.3598131

KEYWORDS
Natural Language Processing for Testing, Automated REST API

Testing, OpenAPI Specification Analysis

ACM Reference Format:
Myeongsoo Kim, Davide Corradini, Saurabh Sinha, AlessandroOrso,Michele

Pasqua, Rachel Tzoref-Brill, and Mariano Ceccato. 2023. Enhancing REST

API Testing with NLP Techniques. In Proceedings of the 32nd ACM SIG-
SOFT International Symposium on Software Testing and Analysis (ISSTA ’23),
July 17–21, 2023, Seattle, WA, USA. ACM, New York, NY, USA, 12 pages.

https://doi.org/10.1145/3597926.3598131

1 INTRODUCTION
The REST (REpresentational State Transfer) architectural style [10]

is becoming the de-facto standard for designing and implementing

modern web APIs. Developers of RESTful (or simply REST) services

usually provide, together with the API, a structured document that

describes how the API can be accessed. The most popular standard

for these documents is OpenAPI [32], which provides a formal

syntax for documenting REST APIs and allows for specifying essen-

tial information such as endpoints, HTTP methods, authentication

details, and input/output information (e.g., input parameters for

requests and their schema, request responses and their schema, and

parameter descriptions). REST API documentation that adheres

to the OpenAPI standard is called an OpenAPI specification. To
illustrate, Figure 1 presents two sample OpenAPI specifications.

OpenAPI specifications are for the most part machine-readable,

but they also let developers add, in description fields, natural-

language descriptions of some aspects of an API. In fact, many

OpenAPI specifications rely heavily on natural-language comments

to describe additional details of operation parameters.

Although many automated testing tools have been presented

in the literature that leverage the machine-readable part of Ope-
nAPI specifications to guide test generation, most of these tools

completely ignore the human-readable descriptions in these speci-

fications. We believe that this is a major limitation of the state of

the art in REST API testing, as these natural-language descriptions

can contain relevant and useful information for testing.

https://doi.org/10.1145/3597926.3598131
https://doi.org/10.1145/3597926.3598131

ISSTA ’23, July 17–21, 2023, Seattle, WA, USA Myeongsoo Kim, Davide Corradini, Saurabh Sinha, Alessandro Orso, Michele Pasqua, Rachel Tzoref-Brill, and Mariano Ceccato

1 paths:
2 /check:
3 post:
4 summary: Check a text
5 description: >- The main feature - check a text with LanguageTool
6 for possible style and grammar issues.
7 parameters:
8 - name: text
9 in: formData
10 type: string
11 description: The text to be checked. This or ‘data’ is required.
12 required: false
13 - name: data
14 in: formData
15 type: string
16 description: The text to be checked.
17 required: false
18 - name: language
19 in: formData
20 type: string
21 description: >- A language code like ‘en-US’, ‘de-DE’, ‘fr’
22 or ‘auto’.
23 required: true

(a) LanguageTool [21] OpenAPI specification excerpt

1 paths:
2 /search:
3 get:
4 operationId: Web_Search
5 parameters:
6 - name: Accept-Language
7 in: header
8 type: string
9 description: A comma-delimited list of one or more languages
10 to use for user interface strings.
11 - name: count
12 in: query
13 type: integer
14 format: int32
15 description: The maximum value is 50.

(b) Bing Web Search OpenAPI specification excerpt

Figure 1: Sample OpenAPI specification fragments to illus-
trate rule extraction from human-readable descriptions.

Consider, for instance, the description field associated with the

parameter language in lines 21–22 of Figure 1(a), which provides ex-

amples of valid values (i.e., language codes) that the parameter can

take. This information can be leveraged by a testing tool to create

requests with valid parameter values. Conversely, testing tools that

ignore this information often generate requests with random values

for language, which is likely to result in trivial failures. Figure 1(b)

shows two other forms of useful information in parameter descrip-

tions: parameter constraints and parameter formats. For example,

the description in line 15 specifies the constraint that parameter

count must have a maximum value of 50, while the description for

Accept-Language (lines 9–10) states that values for that parameter

must be a comma-delimited list. This additional information can

clearly help testing tools generate more effective tests.

Natural-language descriptions in OpenAPI specifications can

also help identify inter-parameter dependencies [26]. Consider line 11
in Figure 1(a), which states that either the text or data parameter

must be specified when invoking endpoint /check.

To the best of our knowledge, no existing technique can auto-

matically extract all these types of information from descriptions

in OpenAPI specifications in a flexible way and leverage it to im-

prove testing. To bridge this gap, we present NLPtoREST, a fully

automated technique that (1) leverages specially tailored natural

language processing (NLP) techniques to infer different types of

rules from the human-readable part of OpenAPI specifications,

(2) encodes these rules using OpenAPI-compliant keywords, and

(3) adds the encoded rules to the original specification to produce

an enhanced specification that can be transparently utilized by any

REST API test generator.

The set of rules extracted through NLP techniques can contain

spurious or incorrect rules due to the ambiguity of natural-language

descriptions, limitations of NLP-based rule inference, or mismatch

between API specification and implementation (schema-mismatch

faults, for example, are common [24]). To mitigate this issue, NLP-

toREST includes a validation step that checks the NLP-extracted

rules against the API implementation by crafting and executing

validation test cases and discards rules that fail such validation.

To evaluate our approach, we performed multiple studies using a

set of nine REST services, including popular services such as Spotify

and the FDIC Bank Data API. First, we assessed the effectiveness

of rules extraction and validation against a manually-computed

ground truth. NLPtoREST achieved ~50% precision and ~94% re-

call in the purely NLP-based rules extraction; after validation, the

precision increased to ~79%, with a 3% reduction in recall.

Second, we compared our approach with RestCT [39]. To the

best of our knowledge, RestCT is the only other approach in the lit-

erature that uses NLP to extract rules from the human-readable part

of an OpenAPI specification, but it only supports inter-parameter

dependencies. Our approach was considerably more effective, as it

extracted 15 of the 19 inter-parameter dependencies in the bench-

mark considered, whereas RestCT was unable to extract any.

Finally, we evaluated whether the enhanced specifications cre-

ated by NLPtoREST can improve the performance of existing REST

API testing tools. We studied the performance of eight state-of-the-

art REST test generation tools, when provided with the original and

enhanced specifications, in terms of (1) code coverage, (2) rate of

successful requests, rejected requests, and server error responses,

and (3) unique faults found. Using the enhanced specification, the

coverage achieved by the testing tools increased, on average, from

11.35% to 23.10% for branch coverage, from 24.96% to 37.52% for

statement coverage, and from 22.13% to 33.54% for method cov-

erage. The enhanced specifications contributed to increasing the

rate of successful requests (+20%) and server error responses (+2%)

and decreasing the rate of rejected requests (-7%). The number of

unique server error responses returned by the API increased, on

average, by 4%, with a maximum increase of 98.9%. We believe these

results are promising, especially considering that there are several

directions in which the technique can be extended and improved.

The main contributions of this work are:

• A novel technique for extracting rules from natural-language

descriptions in OpenAPI specifications, validating the rules to

improve their accuracy, and generating enhanced OpenAPI spec-

ifications that existing REST API testing tools can transparently

use. It is worth noting that the enhanced OpenAPI specifica-

tions may also be useful in other contexts, such as to provide

developers with additional documentation.

• Empirical results showing that NLPtoREST can extract rules

accurately, and the extracted rules can considerably improve

the performance of existing REST API testing tools.

• An artifact [30] with the NLPtoREST tool and experiment data

that can be used for replicating and extending our work.

Enhancing REST API Testing with NLP Techniques ISSTA ’23, July 17–21, 2023, Seattle, WA, USA

OpenAPI
Spec for SUT

Enhanced OpenAPI
Spec for SUT

Spec
Parsing
Spec

Parsing
Spec

Writing
Spec

Writing

Rule ValidationRule Validation
Static Pruning Dynamic Checking

NLP-based Rule ExtractionNLP-based Rule Extraction
Vocabulary Terms
Identification

Value and Parameter
Name Detection Rule Generation

Deployed instance of SUT
Deployed instance of SUT

Human-readable
part

Machine-readable
part

Validated rules

Validation test cases Server responses

Parsed rules

Figure 2: Overview of our NLPtoREST approach.

Table 1: Types of rules identified from natural-language de-
scriptions in API specifications in our preliminary study.

Rule Categories
No. of Param Param Param Oper

REST service API endpoint(s) Params type/fmt cons ex cons

Bing Web Search Search 21 15 10 14 9

Forte Create application 99 13 67 41 8

Foursquare Search venues 14 2 0 0 3

GitHub Get user repos 5 1 0 3 2

Google Geocoding Geocode request 9 4 0 4 5

Google Maps Nearby search 11 0 1 2 4

PayPal Create invoice 114 12 43 5 2

Create coupon

Stripe

Create product

28 5 9 3 9

Tumblr

Create post

35 10 2 10 1

Get blog likes

Yelp Search businesses 14 0 0 9 4

Total 350 62 132 91 47

2 PRELIMINARY STUDY
To assess the kind of information available in the human-readable

part of OpenAPI specifications, we manually analyzed the specifica-

tions of a set of API endpoints from a benchmark used in previous

work [26], which includes 10 real-world REST APIs. This analysis

led to the identification of four categories of rules.

Parameter type/format. Rules that define the type and format

of a parameter (e.g., type: string and format: date).

Parameter constraint. Rules that restrict the possible values
of a parameter (e.g., a parameter’s maximum value).

Parameter example. Rules that specify sample values that a

parameter can take.

Operation constraint. Rules that define some specific condi-

tions parameters must satisfy (e.g., inter-parameter dependencies).

Table 1 lists, for each of the OpenAPI specifications and end-

points we analyzed, the number of parameters, the number of

rules we identified in the natural-language descriptions, and their

categories. In total, we identified over 330 rules, consisting of 62 pa-

rameter types/formats, 131 parameter constraints, 91 parameter

examples, and 47 operation constraints. These data show that there

is considerable scope for identifying meaningful rules from natural-

language descriptions in OpenAPI specifications, and guided the

development of our approach.

3 OUR APPROACH
In this section, we first provide an overview of the whole NLPto-

REST approach (§3.1), and then describe its two main components

in detail: NLP-based Rule Extraction (§3.3) and Rule Validation

(§3.4).

3.1 Approach Overview
Figure 2 presents an overview of our technique. The inputs to the

technique are the OpenAPI specification of the service under test

(SUT) and a deployed instance of the SUT. The output of the tech-

nique is an enhanced version of the specification, in which rules

extracted from natural-language descriptions have been added us-

ing OpenAPI-supported keywords (i.e., part of the core OpenAPI

syntax or OpenAPI extensions [34]). For instance, the rules ex-

tracted from the descriptions in lines 21–22 of Figure 1(a) and

line 15 of Figure 1(b) would be added using core OpenAPI syntax

“examples: {1:en-US, 2:de-DE, 3:fr, 4:auto}” and “maximum: 50”, re-

spectively. Conversely, the inter-parameter dependency rule in-

ferred from the description in line 11 of Figure 1(a) would be added

using the OpenAPI extension keyword “OnlyOne(text, data)” [25].

(For this example, as we discuss later, the NLP-based analysis of NLP-

toREST extracts the rule as inclusive or, i.e., Or(text, data), and the
validation step modifies it to exclusive or, i.e., OnlyOne(text, data)
based on the actual service implementation).

Initially, NLPtoREST parses the OpenAPI specification to extract

its human-readable and machine-readable parts, where the former

consists of natural-language text contained in description fields

associated with parameters in the specification. After this prelimi-

nary step, NLPtoREST takes these two parts as input and performs

NLP-based Rule Extraction and Rule Validation. Specifically, the NLP-
based Rule Extraction module analyzes the human-readable part

of a specification to find useful information to extract as rules that

could be added to the machine-readable part of the specification,

whereas the Rule Validation module validates the extracted rules

and discards rules that fail such validation.

The NLP-based Rule Extraction phase looks for potential rules

by scanning for a set of search terms using a customWord2Vec [12]

model, pre-trained on OpenAPI terminology (Vocabulary Terms

ISSTA ’23, July 17–21, 2023, Seattle, WA, USA Myeongsoo Kim, Davide Corradini, Saurabh Sinha, Alessandro Orso, Michele Pasqua, Rachel Tzoref-Brill, and Mariano Ceccato

Identification). If a description contains one of the search terms, it

next looks for values and inter-parameter dependencies using a con-

stituents grammar (Value and Parameter Name Detection). Finally,
this phase creates a rule for each (1) keyword and corresponding

value and (2) inter-parameter dependency detected. The rules are in

the form of key-value pairs (e.g., “maximum: 50”) or inter-parameter

constraints (e.g., “Or(text, data)”, “IF videoDef THEN type==video”).

The Rule Validation phase checks the candidate rules gener-

ated by the previous phase against the service specification and

implementation. It (1) statically analyzes combinations of rules to

discard incompatible ones (Static Pruning) and (2) generates valida-

tion test cases (i.e., HTTP requests) for various rule combinations

and executes them against the deployed SUT. When a test case

is successfully executed (i.e., a 2XX status code is obtained), the

corresponding rules are further processed by a fine-tuning phase.

Rules that pass the complete validation process are marked as valid.
The final step of NLPtoREST (Spec Writing) adds the validated

rules, in machine-readable format, to the original specification,

yielding an enhanced OpenAPI specification for the SUT.

3.2 Terminology
OpenAPI specifications describe a RESTful API in terms of its op-
erations (i.e., endpoints and HTTP verbs) and their correspond-

ing input and output parameters (names, types, and possibly for-

mats). We use the term OpenAPI vocabulary to indicate the set

of keywords and string literals used in OpenAPI specifications,

where string literals correspond to predetermined values for a given

keyword, such as the value string for keyword type. We refer to

an entry in the OpenAPI vocabulary as an OpenAPI vocabulary
term. A complete list of such terms can be found in the OpenAPI

specification standard [11]. The term rule indicates either a key-
value pair, for rules that involve a keyword and possible values for

that keyword, or an inter-parameter constraint, for rules that in-

volve inter-parameter dependencies. In turn, an inter-parameter con-
straint can have one of three formats: IF condition THEN constraint,

Operator(parameter1, ..., parameter𝑛), or a combination of the

two (e.g., IF condition THEN Operator(parameter1, ..., parameter𝑛),

where Operator is one of four inter-parameter dependency types Or,

OnlyOne, AllOrNone, and ZeroOrOne [25]. Our approach currently sup-

ports extraction of simpler forms of these rules where the Operator

arguments are simple parameters; in the more general formulation

of these operators, an argument can be a predicate [25].

3.3 NLP-based Rule Extraction
Extracting rules from description fields is challenging due to the

many ways in which concepts can be expressed in natural language.

For instance, the fact that the maximum value of a parameter is

50 can be stated as “the maximum value is 50”, “the value is up

to 50”, “the value can’t be larger than 50”, and so on. Similarly,

inter-parameter dependencies can be described in many ways, such

as “you must also set X” or “X must also be specified” [26]. There-

fore, simple pattern-based approaches tend to be ineffective, as our

evaluation comparing NLPtoREST against one such technique [40]

shows (§4.3). We instead propose a more flexible approach that

leverages a custom pre-trained NLP model and constituency-parse-

tree-based sentence analysis [20] and consists of three main parts:

Algorithm 1 Search term detection

1: procedure SearchTermDetection(s, vocabularyTerms, sentencesTermsMap)

2: similarityThreshold← 0.7 ⊲ Threshold for cosine similarity

3: for vt in vocabularyTerms do ⊲ loop1

4: searchTerms← getSearchTerms(vt)
5: for w in s do ⊲ loop2

6: for st in searchTerms do ⊲ loop3

7: if CosineSimilarity(w, st) ≥ similarityThreshold then
8: sentencesTermsMap.add(s, vt)
9: continue loop1
10: end if
11: end for
12: end for
13: end for
14: end procedure

vocabulary terms identification (§3.3.1), value and parameter name

detection (§3.3.2), and rule generation (§3.3.3).

3.3.1 Vocabulary Terms Identification. This step analyzes the de-

scription field of each parameter to identify sentences that may

contain rules. To define this part of the technique, we first identified

common linguistic patterns used to describe rules and involving

OpenAPI vocabulary terms based on our preliminary study in §2

and the common patterns for inter-parameter dependencies de-

scribed in [26]. From these linguistic patterns, we then identified

search terms that, if present, may indicate that the sentence contains

the corresponding rule or OpenAPI vocabulary term. This resulted

in a total of 55 mappings. Although we do not show the mappings

here for space reasons, they are available in our artifact [30]. We

note that, although these relations were derived from our manual

analysis of the REST services in Table 1, our evaluation was per-

formed on a different set of services to avoid overfitting and provide

evidence of the generalizability of the results.

The use of a fixed set of search terms is limited because different

words with similar meanings could be used instead of a specific

term. To address this problem, we use word embeddings [12] to de-

tect semantic similarity between words. Althoughmany pre-trained

models are publicly available, they are trained using general data

sources and may not be ideal in the specific domain of OpenAPI doc-

uments. We therefore trained a custom Word2Vec model, restW2V,

on parameter descriptions taken from numerous OpenAPI docu-

ments. Specifically, we trained the model on 1,875,607 text sets

taken from 4,064 REST API specifications, using FastText [16], so

as to create a custom model more suited to the terminology and

phrases commonly used in OpenAPI specifications.

Given the mappings we identified and restW2V, NLPtoREST pro-

cesses, using Algorithm 1, each sentence in each description of

each parameter in the OpenAPI specification of the SUT. The algo-

rithm takes as input a sentence 𝑠 , a set of vocabulary terms, and a

map (𝑠𝑒𝑛𝑡𝑒𝑛𝑐𝑒𝑠𝑇𝑒𝑟𝑚𝑠𝑀𝑎𝑝) that associates sentences with the vo-

cabulary terms. In this context, the set of vocabulary terms used

is the complete set of OpenAPI vocabulary terms. The outer loop

(loop1) iterates over all the possible OpenAPI vocabulary terms. For

each vocabulary term 𝑣𝑡 , it first extracts the relevant search terms

associated with that term (line 3) and then iterates over each word

𝑤 in 𝑠 (loop2) and search term 𝑠𝑡 (loop3). If the cosine similarity

(according to restW2V) of 𝑤 and 𝑠𝑡 is 0.7 or greater (line 7), the

algorithm adds 𝑠 and 𝑣𝑡 to the map provided as input (line 8) and

Enhancing REST API Testing with NLP Techniques ISSTA ’23, July 17–21, 2023, Seattle, WA, USA

SS

PPPP

ININ

ForFor

NPNP

NPNP

NNNN

exampleexample

,,

,,

NPNP

NPNP

FWFW

enen

HYPHHYPH

--

NPNP

NNPNNP

USUS

..

..

Sentence constituent Part-of-Speech tag Sentence word

Figure 3: An example of a constituency parse tree.

continues with the next vocabulary term (line 9). When all the sen-

tences have been processed by the algorithm, 𝑠𝑒𝑛𝑡𝑒𝑛𝑐𝑒𝑠𝑇𝑒𝑟𝑚𝑠𝑀𝑎𝑝

contains a map from each sentence to any OpenAPI vocabulary

term related to that sentence.

Intuitively, this step identifies all the sentences that describe

something related to an OpenAPI vocabulary term, such as a key-

word, and that may therefore contain a rule. For instance, for the

sentence “A language code like ‘en-US’, ‘de-DE’, ‘fr’ or ‘auto”’ from

Figure 1(a), Algorithm 1 would detect the search terms like, which

is associated with the OpenAPI vocabulary term example [30], and

would therefore map that sentence to such term. In the next sec-

tion (§3.3.2), we describe how NLPtoREST would then identify, in

that same sentence, values en-US, de-DE, fr and auto. These val-

ues, together with keyword example would define the possible rule

“examples: {1:en-US, 2:de-DE, 3:fr, 4:auto}”.

3.3.2 Value and Parameter Name Detection. The NLP-based Rule

Extraction module employs two strategies to detect the values

associatedwith the previously identifiedOpenAPI vocabulary terms

in a sentence. First, it uses regular expressions to parse enumerated

or quoted strings. If this approach does not yield results, it leverages

the constituency parse tree [17] as a fallback method.

The constituency parse tree represents the grammatical structure

of a sentence in tree format. This method utilizes part-of-speech

(PoS) tagging and sentence constituents for its operation. PoS tag-
ging categorizes each word in a sentence into its grammatical func-

tion (e.g., noun, verb, adjective, adverb), while sentence constituents
refer to the structural components of a sentence, such as phrases

or clauses. For instance, Figure 3 illustrates the constituency parse

tree for the sentence “For example, en-US.”, a simplified version of a

sentence in Figure 1(a). Each terminal node in the tree corresponds

to a word in the sentence, its parent node is a PoS tag, and its other

ancestor nodes correspond to its constituent nodes.

Our preliminarywork suggests that enumerated or quoted strings

frequently contain critical values in OpenAPI descriptions. Hence,

we introduced a regular expression-based detector to directly ex-

tract such values. Currently, the detector recognizes enumerated

strings starting with "- " or "* ", and quoted strings using double

quotes ("), single quotes (’), backticks (‘), along with bold strings

wrapped in asterisks (*). We intend to further enhance our regular

Algorithm 2 Value detection

1: procedure ValueDetection(sentence)
2: values← ∅
3: stopwords← GetStopwords() ⊲ Load NLTK based stopwords

4: regexValues← RegularExpDetection(sentence) ⊲ First try detection using

regular expressions

5: if regexValues = ∅ then ⊲ If no values detected using regular expressions

6: tree← sentence.getConstituencyParseTree()
7: constituents← tree.getConstituents(np)
8: pos← tree.getPoS(noun, num)
9: for node in constituents do
10: leafNodes← node.getLeaves()
11: childPos← [child.getPoS()forchildinnode.getChildren()]
12: if "," is in childPos then
13: commaSets← node.getCommaSeparatedSets()
14: for set in commaSets do
15: if set ≠ ’and’ and set ≠ ’or’ then
16: values← values ∪ set

17: end if
18: end for
19: else
20: for leaf in leafNodes do
21: if leaf.getParent() ∈ pos then
22: values← values ∪ leaf

23: end if
24: end for
25: end if
26: end for
27: else
28: values← regexValues ⊲ If values were detected using regular

expressions, use them

29: end if
30: values← values − stopwords ⊲ Filter out stopwords

31: return values

32: end procedure

expression detection capabilities to accommodate more markdown

features in future work.

NLPtoREST employs Algorithm 2 to detect values in a sentence

via regular-expression and constituency-parse-tree analyses. The

algorithm first initializes a set of stopwords, which are derived from

NLTK [14] and supplemented with OpenAPI-specific vocabulary

terms (line 3). It then attempts to detect values using regular ex-

pressions (line 4) and saves them if successful (line 28). Conversely,

if no values are detected using regular expressions, the algorithm

analyzes the constituency parse tree for the sentence to identify all

the NP (noun phrase) constituents (lines 6–7). A noun phrase is a

group of words that function as a single unit within a sentence and

include a noun. If a noun phrase contains commas, the algorithm

assumes that these commas separate different sets of words, each

of which could potentially represent a value. It then extracts these

comma-separated sets and considers each set as a potential value

(lines 13–18). If a comma is not present within the noun phrase, the

algorithm identifies all the words whose PoS tag corresponds to a

noun or a number as potential values (lines 20–24). The algorithm

then filters out any stopwords from the detected values (line 30)

and returns the remaining values as the final result (line 31).

In addition to identifying relevant values, NLPtoREST also needs

to pinpoint parameter names within sentences, which is crucial

for detecting dependencies between different parameters. To ac-

complish this task, NLPtoREST employs the Inter-Parameter De-

pendency Parser (IPDParser), as outlined in Algorithm 3. This al-

gorithm takes as input a sentence and its corresponding operation

(i.e., the operation that contains the parameter described within

that sentence). Utilizing Algorithms 1 and 2, IPDParser extracts

ISSTA ’23, July 17–21, 2023, Seattle, WA, USA Myeongsoo Kim, Davide Corradini, Saurabh Sinha, Alessandro Orso, Michele Pasqua, Rachel Tzoref-Brill, and Mariano Ceccato

Algorithm 3 Inter-parameter dependency parser

1: procedure IPDParser(sentence, operation)
2: tree← sentence.getConstituencyParseTree()
3: sbar_node← tree.getConstituents(SBAR) ⊲ Subtree node representing a

subordinate clause

4: main_node← tree.getConstituents(S) − sbar_node ⊲ Subtree node

representing a sentence without subordinate clauses

5: main← main_node.getLeavesAsSentence()
6: sbar← sbar_node.getLeavesAsSentence()
7: main_voc← ∅, main_param← ∅, main_val← ∅
8: sbar_voc← ∅, sbar_param← ∅, sbar_val← ∅
9: IPDTerms← subset of OpenAPI vocabulary terms relevant for IPDs

10: sentencesTermsMap← ∅
11: SearchTermDetection(main, IPDTerms, sentencesTermsMap)
12: main_voc←sentencesTermsMap[main]

13: sentencesTermsMap← ∅
14: SearchTermDetection(sbar, IPDTerms, sentencesTermsMap)
15: sbar_voc←sentencesTermsMap[sbar]

16: for pm in operation.getParameters do
17: for word in main do
18: if CosineSimilarity(word, pm) ≥ 0.7 then
19: main_param← main_param ∪ pm

20: end if
21: end for
22: for word in sbar do
23: if CosineSimilarity(word, pm) ≥ 0.7 then
24: sbar_param← sbar_param ∪ pm

25: end if
26: end for
27: end for
28: ExampleTerms← relevant terms for Parameter example (see §2)

29: sentencesTermsMap← ∅
30: SearchTermDetection(main, ExampleTerms, sentencesTermsMap)
31: if sentencesTermsMap[main] ≠ ∅ then ⊲ There is a match

32: main_val← ValueDetection (main)
33: end if
34: sentencesTermsMap← ∅
35: SearchTermDetection(sbar, ExampleTerms, sentencesTermsMap)
36: if sentencesTermsMap[sbar] ≠ ∅ then ⊲ There is a match

37: sbar_val← ValueDetection (sbar)
38: end if
39: return (main_voc,main_param,main_val, sbar_voc, sbar_param, sbar_val)
40: end procedure

inter-parameter constraints, parameter names, and values from the

main and subordinate clauses of the sentence. To do so, it first gen-

erates a constituency parse tree for the given sentence and extracts

the main subordinate clauses from this tree (lines 2–6), which forms

the foundation for the extraction process. (Note that, for simplicity,

the current version of IPDParser in Algorithm 3 does not handle

multiple main or subordinate clauses.)

Next, IPDParser populates the sets of relevant vocabulary terms,

parameter names, and values from both the main and subordi-

nate clauses. It selects a set of OpenAPI vocabulary terms that

are pertinent to inter-parameter dependencies [26] and applies

the SearchTermDetection algorithm to identify these terms within

the main and subordinate clauses (lines 9–15). The algorithm then

enters a loop (lines 16–27), in which it inspects each parameter

name from the input operation, searching for corresponding terms

in the main and subordinate clauses. This matching process uses

cosine similarity based on restW2V, similarly to Algorithm 1. Subse-

quently, the algorithm selects a set of terms that are relevant for

parameter example rules (line 28, also see §2). It again leverages

the SearchTermDetection algorithm to identify these terms within

the main (lines 29–30) and subordinate (lines 34–35) clauses. When

a match is found, it utilizes the ValueDetection algorithm to pin-

point corresponding values for the main (line 32) and subordinate

(line 37) clauses.

Finally, IPDParser returns a tuple that encapsulates the iden-

tified relevant terms, parameters, and values for both the main

and subordinate clauses (line 39), and which is used to identify

inter-parameter dependencies within the given sentence.

3.3.3 Rule Generation. The final step of NLP-based Rule Extrac-

tion involves generating OpenAPI-compliant rules based on the

information computed in the previous steps. Rule generation is

performed in a syntax-driven manner for each vocabulary term

identified in each description. For example, consider the description

in lines 21–22 of Figure 1(a). The search term detection step would

match the word “like” with the vocabulary term examples [30], and

the value-detection step would discover the values en-US, de-DE, fr,

and auto. This information would then be combined in the format

conforming to the syntax of the examples keyword:

“examples: {1:en-US, 2:de-DE, 3:fr, 4:auto}”.

For inter-parameter dependencies, IPDParser identifies inter-

parameter dependency terms, parameter names, and values for

both the subordinate and main clauses, as described above. Rules

would then be generated for each clause, separately, again in a

syntax-driven way. For example, for the description in line 11 of

Figure 1(a), the vocabulary term “or” and parameter names “text”

and “data” would be identified in the main clause, from which a rule

would be created as Or(text, data). In the presence of a subordinate

clause, and inter-parameter dependencies within it, rules would be

generated for both the subordinate and the main clauses and would

then be concatenated using the Requires dependency.

3.4 Rule Validation
The NLP-based rule extractor may generate spurious or incorrect

rules for different reasons, such as ambiguity in natural-language

descriptions, limitations of NLP-based rule inference, ormismatches

between API specification and implementation. To mitigate this

problem, NLPtoREST includes the Rule Validation step, which per-

forms validity checks and eliminates rules that fail such checks.

In some cases, Rule Validation can also make corrections to the

extracted rules and fix rules that failed the validity check.

Rule Validation consists of a static-pruning phase, in which com-

binations of rules are discarded by statically analyzing the com-

patibility among rules, and a dynamic-checking phase, in which

combinations of rules are validated dynamically by submitting re-

quests to a deployed instance of the API and checking the HTTP

responses obtained.

Rule Validation is combinatorial in nature, as it is necessary to

consider combinations of rules to validate them because each rule

depends on the context in which it is applied—an API operation, in

this case. For each operation in the API, our validation considers

all the rules associated with it, that is, (1) rules associated with the

individual parameters belonging to the operation (e.g., a constraint

for a parameter in the operation), and (2) rules involving multiple

parameters of the operation (e.g., inter-parameter dependencies).

As we discuss in more detail below, Rule Validation must check 2
𝑛

combinations in the worst case, with 𝑛 being the number of rules

Enhancing REST API Testing with NLP Techniques ISSTA ’23, July 17–21, 2023, Seattle, WA, USA

to validate. Fortunately, static pruning lets us dramatically reduce

the number of combinations to be checked dynamically.

3.4.1 Static Pruning. Given a set of rules associated with an API

operation, the static-pruning phase discards syntactically incompat-

ible rule combinations, that is, combinations that contain at least

one rule incompatible either with the other rules in the combination

or with those in the OpenAPI specification. To do this, we defined a

set of rule compatibility policies derived from the OpenAPI standard

and its extensions. If all the rules within a combination comply with

our policies, we consider the combination syntactically compatible.

For the sake of space, here we list only a subset of our policies,

which are provided in their entirety in our artifact [30].

• If a parameter is required (required: true), the same parame-

ter cannot appear in the inter-parameter dependency rules Or,

OnlyOne, ZeroOrOne, or AllOrNone, as these rules would imply

that the parameter is not actually required.

• A maximum: a rule is allowed only for numeric parameters and

only if, for the parameter in question, there are no minimum: b

rules such that 𝑏 > 𝑎.

• Rule exclusiveMaximum: true is only allowed if the parameter is

numeric and a maximum value is defined for the parameter.

• Example, enum, and default values must match the type defined

for the parameter.

• Multiple default values cannot exist for the same parameter.

When an incompatibility in a combination is identified, we dis-

card all other combinations that contain the same incompatible

rules. This pruning can dramatically reduce the number of combi-

nations to actually check, thus considerably improving the overall

efficiency of static pruning.

3.4.2 Dynamic Checking. Dynamic checking tries to verify the va-

lidity of rule combinations by interacting with a deployed instance

of the REST API. In general, each rule can be:

• correct and necessary to drive test generation to a successful

request (e.g., a correct enum value);

• incorrect without causing the request to fail (e.g., a required

parameter that is not actually required in the implementation);

• incorrect causing the request to fail (e.g., a wrong enum value).

Using different combinations of rules, starting from the largest

one, will eventually allow the technique to identify a maximal

combination that (1) includes all the rules necessary to generate a

valid request (i.e., 2XX response code), and (2) does not contain any

of the rules that cause the request to fail (4XX response code). Note

that we currently do not consider server error responses (5XX) as
successful for rule validation purposes—in our experience, a server

error might occur during the processing of a request and hide a

subsequent 4XX response that would occur had the processing of

the request been completed. It is worth noting, however, that there

is a tension between eliminating these cases and possibly discarding

valid rule combinations that may lead to the identification of actual

failures in the services under test. We plan to explore this tradeoff in

future work. For each combination of rules, our approach generates

a request that considers all of its rules, along with the rules in the

original specification. When a request is valid, NLPtoREST classifies

the rules in the current combination as potentially valid, indicating
that the combination may contain both correct rules and incorrect

rules that do not cause the request to fail. Rules are further checked,

and possibly fixed, in the subsequent fine-tuning phase.

Fine tuning. Fine tuning is meant to further assess the validity of

rules. Consider, for instance, an API operation that accepts a non-

mandatory parameter p and an incorrectly extracted required: true

rule for that parameter. This rule is semantically incorrect, but

would not cause the request to fail with a 4XX return code. Therefore,
the rule would not be discarded during the above described dynamic

checking and would be considered as potentially valid.

Fine tuning implements a strategy that replays the successful

requests identified in the previous phase while applying a series of

mutations, so as to further validate the each potentially valid rule.

Different types of rules are validated with different strategies, and

fine-tuning provides a precise validation strategy for 22 out of the 26

rule types supported by NLP-based Rule Extraction. For example,

to validate rules of type required, the request is replayed twice,

with and without the required parameter. If the request without the

parameter is also successful, it is discarded. For another example, to

validate if-then rules, the request is replayed twice, once applying

the predicate and once applying its negation. If the former request

is successful and the latter is rejected, the rule is confirmed as valid.

In addition to validating rules, fine tuning can also attempt to re-

pair inter-parameter dependency rules Or, OnlyOne, AllOrNone, and

ZeroOrOne. Consider, for instance, the Or(text, data) rule extracted

from the specification of LanguageTool in Figure 1(a). During fine

tuning, the successful request obtained in the previous step is mu-

tated and replayed four times: (1) with both text and data parame-

ters; (2) with the text parameter only; (3) with the data parameter

only; and (4) with neither text nor data. Based on the status codes

of the responses obtained in the four cases, fine tuning computes a

new rule that better complies with the API implementation. In this

particular case, the new rule would be OnlyOne(text, data) because

requests (2) and (3) are accepted by the API, while requests (1) and

(4) result in errors. In particular, the rejection of request (1) indicates

that the two parameters cannot be used simultaneously, contrary

to what an Or rule states.

In summary, our approach considers as validated those rules

that belong to a combination not discarded by static pruning, for

which dynamic checking could generate a successful request, and

that could be successfully processed by fine tuning. These rules are

included in the enhanced OpenAPI specification.

4 EVALUATION
In this section, we present an empirical evaluation of NLPtoREST.

Specifically, we assess the effectiveness of NLP-based Rule Extrac-

tion and Rule Validation, compare our approach with RestCT [39]

(a related tool that performs pattern-matching-based rule extrac-

tion from OpenAPI specifications), and investigate how enhanced

specifications generated by NLPtoREST can help in improving the

performance of state-of-the-art REST API testing tools.

4.1 Research Questions
We formulated the following research questions for the evaluation:

RQ1: How effective is NLP-based Rule Extraction in inferring

rules from natural-language descriptions in OpenAPI speci-

fications?

ISSTA ’23, July 17–21, 2023, Seattle, WA, USA Myeongsoo Kim, Davide Corradini, Saurabh Sinha, Alessandro Orso, Michele Pasqua, Rachel Tzoref-Brill, and Mariano Ceccato

RQ2: How effective is Rule Validation in pruning incorrect rules?

RQ3: How does NLPtoREST compare with related NLP-based

rule-extraction tools?

RQ4: Can the enhanced specification generated by NLPtoREST

improve the performance of REST API testing tools?

To answer RQ1, we compared the rules inferred by NLP-based

Rule Extraction against a manually created ground truth and com-

puted true positives, false positives, false negatives, precision, recall,

and F1 score. The ground truth was created by four graduate stu-

dents with expertise in REST API specifications. These students

were not privy to the rules identified in our preliminary experi-

ment (§2). Instead, we provided them with documentation of the

OpenAPI syntax and the OpenAPI specifications, and instructed

them to infer rules from descriptions. We did not impose any other

restrictions on their interpretation. The students worked indepen-

dently and compared their results, resolving any discrepancies

through discussion until they reached a consensus.

To answer RQ2, we compared the validated rules against the

ground truth, computing the same metrics that we used for RQ1.

To answer RQ3, we compared NLPtoREST with RestCT [39], a

test generation tool that uses pattern matching to extract inter-

parameter dependencies from text descriptions. Specifically, we

compared the tools in terms of the number of correct rules extracted.

To answer RQ4, we compared the performance of state-of-the-

art REST API testing tools in two settings: (1) the tools take as

input the original OpenAPI specification, and (2) the tools take

as input the enhanced OpenAPI specification generated by NLP-

toREST. To measure tool performance, we used line, branch, and

method coverage achieved, and the frequency of successful (2XX),
client error (4XX), and server error (5XX) status codes. We expected

the enhanced specifications generated by NLPtoREST to help the

testing tools generate a higher number of successful requests (2XX
status codes) and a higher number of requests that trigger server

errors (5XX status codes), while generating fewer invalid requests

(4XX status codes). Consequently, we expected the testing tools to

achieve higher code-coverage and fault-detection rates (the latter

indicated by the number of server errors triggered).

4.2 Experiment Setup
4.2.1 REST API Benchmark. To build the evaluation benchmark, we

started with the services used in two recent empirical studies in the

area: the first one evaluating online testing of REST APIs [28], and

the second one comparing automated REST API testing tools [18].

To the best of our knowledge, the first study includes the largest

number of commercial REST APIs in the literature, whereas the

second one contains the largest number of open-source REST APIs,

with 33 REST services in total.

We put this set of services through a filtering process. Our goal

was to focus on industrial-sized services, as current testing tools are

already very effective on small services but tend to struggle with

larger ones [18]. Following the approach of Martin-Lopez, Segura,

and Ruiz-Cortés [28], we consider a service to be industrial-sized

if its source code consists of more than 10,000 lines of code (LoC).

Therefore, we excluded from the benchmark services with less than

10k LoC. We also excluded services that we had used to build the

NLP model for NLPtoREST, so as to avoid potential overfitting. This

filtering resulted in a benchmark of 12 services. We then tested

each service using each REST API testing tool considered (§4.2.2)

for one hour to check for any execution problems. Unfortunately,

we found that one service, Amadeus v2, had an authentication issue.

We contacted the Amadeus developers, who informed us that they

were in the process of fixing the issue; however, the fix was not

available at the time of our experimentation. Additionally, three

services—DHL, Marvel, and YouTube—implement rate limiting (i.e.,

they limited the number of allowed requests per hour), which caused

more than half of the requests in our testing sessions to be blocked.

We therefore had to exclude DHL and Marvel and replaced YouTube

with YouTubeMock (a locally-hosted version of the YouTube service

included in one of the benchmark we considered [28]).

After this process, our final benchmark consisted of nine REST

services: Federal Deposit Insurance Corporation (FDIC), Language-

Tool, OhSome, Open Movie Database (OMDb), REST Countries,

Genome Nexus, OCVN, Spotify, and YouTube Mock.

4.2.2 REST API Testing Tools. To select the tools for our study, we

evaluated state-of-the-art black-box testing tools for REST APIs

that generate tests based on OpenAPI specifications. Specifically,

we first selected the top seven performers from the tools we studied

in our previous work [18]. We then considered two additional tools,

Morest [23] and RestCT [39], which were developed recently. How-

ever, we had to exclude RestCT [39] due to compatibility issues

with most of the APIs in our benchmark. (We notified the develop-

ers of RestCT about these issues; unfortunately, they were still in

the process of addressing them at the time of our experimentation,

so we could not include the tool.) Our final set of eight tools in-

cludes EvoMasterBB [2], bBOXRT [22], Morest [23], RESTest [27],

RESTler [3], RestTestGen [9], Schemathesis [15], and Tcases [19].

4.2.3 Experiment Procedure. We ran the experiments using the

cloud computing service provided by Google Cloud. In particular,

we used ten e2-standard-4 machines running Ubuntu 20.04. Each

machine had 24 2.2GHz Intel-Xeon processors and 128 GB of RAM.

We ran the testing tools with a time budget of one hour. This

choice was based on our experience in previous work [18], which

showed that the code coverage achieved by fuzzers tends to plateau

within one hour. To account for randomness, we repeated the ex-

periments 10 times and collected average metrics across the 10 runs,

resulting in 10 hours of execution per testing tool for each service.

To collect code coverage information, we used JaCoCo [35],

which allowed us to instrument the service code. We could measure

coverage for only the four open-source services in our benchmark

(Genome Nexus, LanguageTool, OCVN, and YouTube Mock); for the

remaining services, source code is unavailable for instrumentation.

4.3 Experiment Results
4.3.1 RQ1: Effectiveness of NLP-based Rule Extraction. Table 2

presents the results for RQ1. In the table, Column 2 shows the

number of rules in the ground truth for each service. Columns 3–8

present data on the accuracy of NLP-based Rule Extraction: the

number of rules extracted correctly (true positives or TP), the num-

ber of erroneous rules extracted (false positives or FP), the number

of rules missed (false negatives or FN), and the aggregate metrics

(precision, recall, and F1 score).

Enhancing REST API Testing with NLP Techniques ISSTA ’23, July 17–21, 2023, Seattle, WA, USA

Table 2: Effectiveness of NLP-based Rule Extraction and Rule Validation.

No. of Rules in NLP-based Rule Extraction Rule Validation
REST Service Ground Truth TP FP FN Precision Recall F1 TP FP FN Precision Recall F1
FDIC 45 42 36 3 54% 93% 68% 42 25 3 63% (+16%) 93% (-) 75% (+10%)

Genome Nexus 81 79 3 2 96% 98% 97% 79 3 2 96% (-) 98% (-) 97% (-)

LanguageTool 20 20 12 0 63% 100% 77% 18 2 2 90% (+44%) 90% (-10%) 90% (+17%)

OCVN 17 15 2 2 88% 88% 88% 13 1 4 93% (+5%) 76% (-13%) 84% (-5%)

OhSome 14 13 66 1 16% 93% 28% 12 11 2 52% (+217%) 80% (-14%) 63% (+126%)

OMDb 2 2 0 0 100% 100% 100% 2 0 0 100% (-) 100% (-) 100% (-)

REST Countries 32 28 1 4 97% 88% 92% 28 0 4 100% (+4%) 88% (-) 93% (+2%)

Spotify 88 83 68 5 55% 94% 69% 82 28 6 75% (+36%) 93% (-1%) 83% (+19%)

YouTube 34 30 126 4 19% 88% 32% 28 9 6 76% (+294%) 82% (-7%) 79% (+150%)

Total 333 312 314 21 50% 94% 65% 304 79 29 79% (+58%) 91% (-3%) 85% (+31%)

The results demonstrate that NLP-based Rule Extraction is effec-

tive in extracting rules from the human-readable part of OpenAPI

specifications, with an overall recall of 94% (i.e., missing only 21

of the 338 rules in the ground truth). This high recall rate is fairly

consistent across services, ranging from a minimum of 88% (for

YouTube) to a maximum of 100% (for LanguageTool and OMDb).

The precision results were not as good, with approximately half

of the 626 extracted rules being false positives (i.e., 50% precision on

average, across services). However, for four of the services (Genome

Nexus, OCVN, OMDb, and REST Countries), the technique achieved

high precision (96%, 88%, 100%, and 97%, respectively). Most im-

portantly, as we also discuss in §4.3.2, our technique is designed to

(1) initially achieve high recall, possibly at the cost of low precision,

and (2) improve precision by aggressively filtering the initial set of

rules.

We discuss two examples of false positives and false negatives in

the rules computed by NLP-based Rule Extraction. The first example

is a false positive for the OhSome service, whose GET /elements/area

operation has a parameter called filter. By analyzing the parameter

description “Combines several attributive filters, e.g. OSM type, the

geometry (simple feature) type, as well as the OSM tag; no default

value”, NLP-based Rule Extraction identifies “OSM” as an example

value for the parameter, creating the rule “example: OSM”. This is

incorrect because “OSM” is an acronym for OpenStreetMap; that

is, the parameter description is not providing literal examples for

the OSM attributes that could be provided as filters, so no actual

example can be extracted from the description. To address such

cases, NLP-based Rule Extraction would have to leverage additional

sources of domain-specific information. For instance, in this case,

the OpenAPI specification of graphhopper.com contains relevant

example values for OSM types (e.g., “node”, “way”, and “relation”).

The second example is a false negative for the FDIC service.

The GET /institutions operation has a parameter sort_order with

description “Indicator if ascending (ASC) or descending (DESC)”.

NLP-based Rule Extraction failed to identify “ASC” or “DESC” as

example values. The reason is that the search terms used for vo-

cabulary terms identification were inadequate for detecting this

sentence as potentially containing a parameter-example rule. This

limitation could be addressed in different ways, such as expanding

the set of search terms used for vocabulary terms identification

and/or fine-tuning the restW2Vmodel with a larger training dataset.

NLP-based Rule Extraction effectively infers rules from

OpenAPI specifications with high recall (88%–100%, 94%

on average). However, its precision is lower and variesmore

across services (16%–100%, 50% on average), supporting

the need of a validation phase to reduce false positives.

4.3.2 RQ2: Effectiveness of Rule Validation. Columns 8–14 of Ta-

ble 2 present data on the effectiveness of Rule Validation in terms of

the six metrics computed on the validated rules. For precision, recall,

and F1 score the table also shows, in parentheses, the percentage

difference from the corresponding scores before validation.

Overall, the data show that Rule Validation is effective in improv-

ing the accuracy of NLPtoREST. Across services, Rule Validation

filtered out 235 of the 314 false positives, causing the precision

to increase from 50% to 79%—a 58% improvement. Moreover, this

was accompanied by only a small reduction in recall from 94% to

91% (i.e., 9 additional false negatives). It is worth noting that the

decrease in recall occurs mostly due to inconsistencies between

OpenAPI specifications and API implementations. In general, the

validation phase results in an enhanced specification that is more

aligned with the service implementation and is, therefore, more

helpful to test generators in crafting successful requests.

It is worth mentioning that, although rule validation is effec-

tive in improving the precision of rule extraction, the effective

of its dynamic part is limited when Rule Validation fails to pro-

duce successful requests. Consider, for instance, the incorrect rule

example: OSM inferred by NLP-based Rule Extraction for the OhSome

service. Rule Validation was unable to remove this incorrect rule be-

cause it failed to generate a valid request for the GET /elements/area

operation, which contained the parameter.

Rule Validation eliminates ~75% of the false positives (235

out of 314), increasing precision by 58% (from 50% to 79%),

while only causing a 3% decrease in recall.

4.3.3 RQ3: Comparison with State-of-the-art NLP-based Rule Extrac-
tors. We compared NLPtoREST with RestCT, a REST API test gen-

eration tool that uses pattern matching to extract inter-parameter

dependencies from text descriptions. Note that, due to compatibility

issues with most of the evaluated REST APIs, RestCT was excluded

from the RQ4-related experiment. However, these issues did not

graphhopper.com

ISSTA ’23, July 17–21, 2023, Seattle, WA, USA Myeongsoo Kim, Davide Corradini, Saurabh Sinha, Alessandro Orso, Michele Pasqua, Rachel Tzoref-Brill, and Mariano Ceccato

Figure 4: Comparison of branch, line, and method coverage results for original (Org) and enhanced (Enh) specifications.

Table 3: Improvement in performance of the testing tools
considered when fedwith enhanced specifications, compared
to their baseline performance with original specifications.

Freq. of 2XX Freq. of 4XX Freq. of 5XX
Tool Name Original Enhanced Original Enhanced Original Enhanced

bBOXRT 11.5% 20.6% (+79%) 87.4% 77.9% (-11%) 1.1% 1.6% (+36%)

EvoMaster 14.3% 21.5% (+50%) 67.2% 54.5% (-23%) 18.5% 24.0% (+30%)

Morest 5.5% 8.3% (+51%) 73.4% 72.8% (-1%) 21.1% 18.9% (-10%)

RESTest 55.2% 61.6% (+12%) 34.2% 29.6% (-13%) 10.6% 8.9% (-17%)

RESTler 14.6% 11.3% (-23%) 50.4% 47.3% (-6%) 35.0% 41.4% (+18%)

RestTestGen 29.2% 32.1% (+10%) 68.4% 67.8% (-1%) 2.5% 0.1% (-96%)

Schemathesis 31.2% 36.9% (+18%) 52.5% 49.8% (-5%) 16.3% 13.3 (-18%)

Tcases 12.5% 17.7% (+42%) 46.0% 47.9% (-4%) 41.5% 40.8% (-2%)

Average 21.8% 26.2% (+20%) 59.9% 56.0% (-7%) 18.3% 18.6% (+2%)

involve RestCT’s NLP module for inter-parameter dependencies

detection, so we were able to use it to investigate RQ3.

We compared NLPtoRESTwith RestCT’s NLPmodule by running

both of them on the nine services in our benchmark and counting

the number of inter-parameter dependency rules each tool detected.

Because RestCT is based on pattern-matching alone, it was unable

to identify any inter-parameter dependencies in the benchmark.

In contrast, NLPtoREST uses constituency parse tree analysis to

perform a more flexible matching, which allowed it to identify 15

out of the 19 inter-parameter dependencies in the benchmark.

NLPtoREST is more effective than RestCT, a state-of-the-art

NLP-based approach for OpenAPI rule extraction; NLPto-

REST was able to identify 15 out of 19 inter-parameter

dependencies, whereas RestCT was unable to identify any.

4.3.4 RQ4: Improving Testing Tools Performance. Table 3 and Fig-

ure 4 present data on how the REST API testing tools perform when

provided with the original and the enhanced OpenAPI specifica-

tions: Table 3 shows the frequency of status codes obtained, whereas

Figure 4 shows the line, branch, and method coverage achieved. (As

mentioned earlier, we performed coverage measurement only for

the four open-source services in our benchmark.)

Table 3 shows, for each tool and the original and enhanced

specifications, the ratio of the number of successful requests to

the total number of requests sent (Freq. of 2XX), the ratio of the

number of rejected requests to the total number of requests sent

(Freq. of 4XX), and the ratio of requests triggering server errors

to the total number of requests sent (Freq. of 5XX). The results

show that, on average, enhanced specifications helped increase the

rate of successful requests considerably (+20%) and server error

responses slightly (+2%). They also helped decrease the rate of

rejected requests moderately (-7%). For 5XX responses, we also

computed the number of unique responses returned by the API. On

average, the number of unique server errors increased by 4%, from

56.8 to 59. We note that the limited increase in the number of errors

generated is partly due to the way in which our dynamic checking

phase treats server error responses (5XX), which we plan to revisit

in future work, as we discussed in §3.4.2.

Figure 4 depicts the comparison of branch, line, and method

coverage achieved by each testing tool using the original (Orig) and

enhanced (Enh) specifications. The figure is divided into subplots,

one for each tool, where each subplot compares the original and

enhanced specifications for the three coverage types. The data is

presented in the form of box plots that show the four quartiles

along with the minimum, maximum, and outlier values. The mean

value is shown as a (black) square marker, whereas the median

value is depicted with a (orange) line. The results illustrate that

the NLPtoREST-enhanced specifications led to a significant im-

provement in coverage across all the tools considered, with average

improvements of 103% (from 11.35% to 23.10%) for branch coverage,

50% (from 24.96% to 37.52%) for line coverage, and 52% (from 22.13%

to 33.54%) for method coverage.

Overall, these results demonstrate the usefulness of the enhanced

specifications generated by NLPtoREST in improving the perfor-

mance of REST API testing tools. The increase in both the number

of successful requests and code coverage suggest that the rules

generated by NLPtoREST can have a significant impact on the

performance of test generation tools.

The enhanced specifications generated by NLPtoREST sig-

nificantly improve the performance of REST API testing

tools, helping them (1) generate a larger number of success-

ful requests (+20%) and fewer bad requests (-7%), (2) trigger

more unique server responses (+4%), and (3) achieve higher

branch (+103%), method (+52%), and line (+50%) coverage.

4.4 Threats to Validity
Like all empirical evaluations, our study may suffer from external

and internal threats to validity.

4.4.1 External Validity. The main threat to external validity for our

evaluation is that the services and testing tools we considered might

not be representative, and our results may therefore not generalize.

To mitigate this threat, we selected nine services based on two

existing comprehensive studies on REST API testing, one focusing

on commercial REST APIs [28] and the other on open-source REST

APIs [18]. Furthermore, we selected eight testing tools based on the

Enhancing REST API Testing with NLP Techniques ISSTA ’23, July 17–21, 2023, Seattle, WA, USA

results presented in [18] and more recent publications. Additionally,

the settings used for the testing tools and RESTful services might

also not be optimal. However, we attempted to minimize the impact

of hardware and software configurations on the results by using

the same settings as a previous study [18] and default settings for

all RESTful services during the experiments.

4.4.2 Internal Validity. A first internal threat to the validity of our

evaluation is that the training set for the restW2V model might not

be representative, which could impact the accuracy of the model.

To mitigate this threat, we tried to make the training dataset as

large and diverse as possible by using 1,875,607 text sets taken from

4,064 REST API specifications.

Another possible internal threat is the manual creation of the

ground truth, as the individual interpretation of the specifications

by the students involved could have affected the results. To address

this, the students were asked to reach a consensus on any discrep-

ancies, and they were not made aware of the specific rules elicited

in our preliminary experiment, thus reducing the risk of bias.

Lastly, the experiment results reported in this paper might also

be influenced by errors in the implementation of the NLPtoREST

technique. To address this threat, we thoroughly examined and

tested our code and made it publicly accessible to allow for review

(as well as extensions) by others.

5 RELATEDWORK
In general, our work is related to research on enhancing OpenAPI

specifications and test generation via NLP techniques.

RestCT [40] generates automated REST tests by inferring inter-

parameter dependencies through pattern matching. It uses a com-

binatorial testing approach to handle complex APIs and employs

a popular covering array generation tool, ACTS, to generate con-

strained covering arrays. However, it relies on a set of hard-coded

patterns, while NLPtoREST adopts a more flexible, general, and ul-

timately effective approach, as shown in our evaluation (see §4.3.3).

ARTE [1] generates test inputs for web APIs by querying the

DBpedia knowledge base [5] using parameter names identified by

processing parameter descriptions. First, ARTE is more limited in

scope than NLPtoREST, as it only generates example input values.

Second, ARTE does not take into account the constraints provided

in the human-readable part of the specifications, such as default,

minimum, and maximum values for parameters. Consequently,

even the example input values it identifies are not as good as the

OpenAPI example rules than NLPtoREST can generate.

Some existing techniques [8, 41] aim to extract OpenAPI specifi-

cations or parts thereof from semi-structured web API documenta-

tion pages using a machine-learning based approach. While these

methods also aim to generate OpenAPI specifications from docu-

mentation, they differ from NLPtoREST in the information they

target, the approach they use to extract the information, and the

information they extract. As a result, these approaches are mostly

orthogonal to our technique.

Other research [4, 6, 7, 29, 33, 37, 38] uses NLP techniques to

generate tests from program specifications. While these methods

can be effective in generating tests, they operate differently from

NLPtoREST and do not aim to enhance OpenAPI specifications.

6 CONCLUSION AND FUTUREWORK
We presented NLPtoREST, a novel approach that (1) extracts infor-

mation from the human-readable parts of OpenAPI specifications,

(2) uses the extracted information to enhance the specifications, and

(3) feeds the enhanced specification to (specification-based) REST

API testing tools to improve their performance. Our empirical eval-

uation show that NLPtoREST is effective and accurate in generating

enhanced specifications and that these enhanced specifications can

indeed benefit testing tools by allowing them to generate larger

numbers of valid requests, trigger more unique server responses,

and achieve higher coverage.

There are several possible directions for future work, in addition

to performing additional experiments with more services and test

generation tools to confirm our current findings. One first direc-

tion involves investigating the use of alternative NLP techniques,

NLP models, and training datasets for these models. We will also

explore the possibility of analyzing server messages, that is, textual

responses received by REST servers after they process requests. We

believe that such messages contain relevant information that can

be used to derive additional rules. As we discussed in the paper,

our rule validation approach currently filters out rules that result

in 5XX errors. These rules or a subset thereof, however, are likely
to be valid and useful to detect errors in the REST APIs under test.

We will therefore investigate alternative validation approaches that

preserve, in part or completely, rules resulting in 5XX errors; and
we will study the tradeoffs between having a higher number of

spurious rules and detecting additional REST API errors. An ad-

ditional future research direction consists of using our validation

approach to help developers detect inconsistent or ambiguous spec-

ifications. When there is an inconsistency between a rule and the

corresponding implementation or specification, NLPtoREST could

present that information to the developers as a possible problem

with the implementation or the specification, instead of simply dis-

carding the rule as it currently does. A final future work direction is

the investigation of how generative AI techniques (e.g., [13, 31, 36])

could help refine and expand the capabilities of NLPtoREST.

ACKNOWLEDGMENT
We thank the developers of the testing tools we used in our em-

pirical evaluation (i.e., EvoMasterBB, bBOXRT, Morest, RESTest,

RESTler, RestTestGen, Schemathesis, Tcases, and RestCT) for mak-

ing their tools available. A special thank goes to the developers of

RestCT for offering to investigate and attempting to fix the issues

we encountered when using their tool. This research was partially

supported by NSF, under grant CCF-0725202, DARPA, under con-

tract N66001-21-C-4024, DOE, under contract DE-FOA-0002460, the

European Union’s Horizon Europe research and innovation pro-

gramme, under grant 101070238, the Italian Ministry of University

and Research, under the PNRR programme for the Interconnected

Nord-Est Innovation Ecosystem (iNEST), the Italian Ministry of

University and Research, under agreement 40-G-14702-3 for the

PON programme for Research and Innovation (Action IV.6), and

gifts from Facebook, Google, IBM Research, and Microsoft Research.

This publication reflects the views only of the authors, and the spon-

soring agencies cannot be held responsible for such views and any

use which may be made of the information contained therein.

ISSTA ’23, July 17–21, 2023, Seattle, WA, USA Myeongsoo Kim, Davide Corradini, Saurabh Sinha, Alessandro Orso, Michele Pasqua, Rachel Tzoref-Brill, and Mariano Ceccato

REFERENCES
[1] J. C. Alonso, A. Martin-Lopez, S. Segura, J. Garcia, and A. Ruiz-Cortes. 2023. ARTE:

Automated Generation of Realistic Test Inputs for Web APIs. IEEE Transactions
on Software Engineering 49, 01 (jan 2023), 348–363. https://doi.org/10.1109/TSE.

2022.3150618

[2] Andrea Arcuri. 2019. RESTful API Automated Test Case Generation with Evo-

Master. ACM Transactions on Software Engineering and Methodology (TOSEM) 28,
1, Article 3 (jan 2019), 37 pages. https://doi.org/10.1145/3293455

[3] Vaggelis Atlidakis, Patrice Godefroid, and Marina Polishchuk. 2019. RESTler:

Stateful REST API Fuzzing. In Proceedings of the 41st International Conference on
Software Engineering (Montreal, Quebec, Canada) (ICSE ’19). IEEE Press, Piscat-

away, NJ, USA, 748–758. https://doi.org/10.1109/ICSE.2019.00083

[4] Mourad Badri, Linda Badri, and Marius Naha. 2004. A Use Case Driven Testing

Process: Towards a Formal Approach Based on UML Collaboration Diagrams. In

Formal Approaches to Software Testing, Alexandre Petrenko and Andreas Ulrich

(Eds.). Springer Berlin Heidelberg, Berlin, Germany, 223–235. https://doi.org/10.

1007/978-3-540-24617-6_16

[5] Christian Bizer, Jens Lehmann, Georgi Kobilarov, Sören Auer, Christian Becker,

Richard Cyganiak, and Sebastian Hellmann. 2009. Dbpedia-a crystallization point

for the web of data. Journal of web semantics 7, 3 (2009), 154–165.
[6] Arianna Blasi, Alberto Goffi, Konstantin Kuznetsov, Alessandra Gorla, Michael D.

Ernst, Mauro Pezze, and Sergio Delgado Castellanos. 2018. Translating Code

Comments to Procedure Specifications. In Proceedings of the 2018 International
Symposium on Software Testing and Analysis (ISSTA 2018) (Amsterdam, Nether-

lands) (ISSTA ’18). Association for Computing Machinery, New York, NY, USA,

242–253. https://doi.org/10.1145/3213846.3213872

[7] Arianna Blasi, Alessandra Gorla, Michael D. Ernst, and Mauro Pezze. 2022. Call

Me Maybe: Using NLP to Automatically Generate Unit Test Cases Respecting

Temporal Constraints. In Proceedings of the 37th IEEE/ACM International Con-
ference on Automated Software Engineering (Rochester, MI, USA) (ASE ’22). As-
sociation for Computing Machinery, New York, NY, USA, Article 19, 11 pages.

https://doi.org/10.1145/3551349.3556961

[8] Hanyang Cao, Jean-Rémy Falleri, and Xavier Blanc. 2017. Automated Generation

of REST API Specification from Plain HTML Documentation. In Service-Oriented
Computing, Michael Maximilien, Antonio Vallecillo, Jianmin Wang, and Marc

Oriol (Eds.). Springer International Publishing, New York, NY, USA, 453–461.

https://doi.org/10.1007/978-3-319-69035-3_32

[9] Davide Corradini, Amedeo Zampieri, Michele Pasqua, Emanuele Viglianisi,

Michael Dallago, and Mariano Ceccato. 2022. Automated black-box testing

of nominal and error scenarios in RESTful APIs. Software Testing, Verification
and Reliability 32 (01 2022). https://doi.org/10.1002/stvr.1808

[10] Roy Thomas Fielding. 2000. Architectural Styles and the Design of Network-Based
Software Architectures. Ph. D. Dissertation. University of California, Irvine.

[11] The Linux Foundation. 2022. OpenAPI specification. https://spec.openapis.org/

oas/v3.1.0.

[12] Yoav Goldberg and Omer Levy. 2014. word2vec Explained: deriving Mikolov et

al.’s negative-sampling word-embedding method. arXiv:1402.3722 [cs.CL]

[13] Google. 2023. Google Bard. https://bard.google.com/

[14] Nitin Hardeniya, Jacob Perkins, Deepti Chopra, Nisheeth Joshi, and Iti Mathur.

2016. Natural language processing: python and NLTK. Packt Publishing Ltd,

Birmingham, UK.

[15] Zac Hatfield-Dodds and Dmitry Dygalo. 2022. Deriving Semantics-Aware Fuzzers

fromWeb API Schemas. In Proceedings of the ACM/IEEE 44th International Confer-
ence on Software Engineering: Companion Proceedings (Pittsburgh, Pennsylvania)
(ICSE ’22). Association for Computing Machinery, New York, NY, USA, 345–346.

https://doi.org/10.1145/3510454.3528637

[16] Armand Joulin, Edouard Grave, Piotr Bojanowski, Matthijs Douze, Hérve Jégou,

and Tomas Mikolov. 2016. FastText.zip: Compressing text classification models.

arXiv:1612.03651 [cs.CL]

[17] Daniel Jurafsky and James H. Martin. 2021. Speech and Language Processing:

Constituency Parsing. https://web.stanford.edu/~jurafsky/slp3/13.pdf.

[18] Myeongsoo Kim, Qi Xin, Saurabh Sinha, and Alessandro Orso. ’22. Automated

test generation for REST APIs: no time to rest yet. In ISSTA ’22: 31st ACM SIGSOFT
International Symposium on Software Testing and Analysis, Virtual Event, South
Korea, July 18 - 22, 2022, Sukyoung Ryu and Yannis Smaragdakis (Eds.). ACM,

New York, NY, USA, 289–301. https://doi.org/10.1145/3533767.3534401

[19] Kerry Kimbrough. 2023. Tcases. https://github.com/Cornutum/tcases

[20] Dan Klein and Christopher D. Manning. 2003. Accurate Unlexicalized Parsing.

In Proceedings of the 41st annual meeting of the association for computational
linguistics. Association for Computational Linguistics, Edinburgh, Scotland, 423–

430.

[21] LanguageTool. 2023. LanguageTool REST API. https://languagetool.org/

proofreading-api.

[22] Nuno Laranjeiro, João Agnelo, and Jorge Bernardino. 2021. A Black Box Tool

for Robustness Testing of REST Services. IEEE Access 9 (2021), 24738–24754.

https://doi.org/10.1109/ACCESS.2021.3056505

[23] Yi Liu, Yuekang Li, Gelei Deng, Yang Liu, Ruiyuan Wan, Runchao Wu, Dandan

Ji, Shiheng Xu, and Minli Bao. 2022. Morest: Model-Based RESTful API Testing

with Execution Feedback. In Proceedings of the 44th International Conference
on Software Engineering (Pittsburgh, Pennsylvania) (ICSE ’22). Association for

Computing Machinery, New York, NY, USA, 1406–1417. https://doi.org/10.1145/

3510003.3510133

[24] Bogdan Marculescu, Man Zhang, and Andrea Arcuri. 2022. On the Faults Found

in REST APIs by Automated Test Generation. ACM Trans. Softw. Eng. Methodol.
31, 3, Article 41 (mar 2022), 43 pages. https://doi.org/10.1145/3491038

[25] Alberto Martin-Lopez, Sergio Segura, Carlos Müller, and Antonio Ruiz-Cortés.

2022. Specification and Automated Analysis of Inter-Parameter Dependencies

in Web APIs. IEEE Transactions on Services Computing 15, 4 (2022), 2342–2355.

https://doi.org/10.1109/TSC.2021.3050610

[26] Alberto Martin-Lopez, Sergio Segura, and Antonio Ruiz-Cortés. 2019. A Cata-

logue of Inter-Parameter Dependencies in RESTful Web APIs. In Service-Oriented
Computing: 17th International Conference, ICSOC 2019, Toulouse, France, October
28–31, 2019, Proceedings (Toulouse, France). Springer-Verlag, Berlin, Heidelberg,
399–414. https://doi.org/10.1007/978-3-030-33702-5_31

[27] Alberto Martin-Lopez, Sergio Segura, and Antonio Ruiz-Cortés. 2021. RESTest:

Automated Black-Box Testing of RESTful Web APIs. In Proceedings of the 30th
ACM SIGSOFT International Symposium on Software Testing and Analysis (Virtual,
Denmark) (ISSTA 2021). Association for Computing Machinery, New York, NY,

USA, 682–685. https://doi.org/10.1145/3460319.3469082

[28] Alberto Martin-Lopez, Sergio Segura, and Antonio Ruiz-Cortés. 2022. Online

Testing of RESTful APIs: Promises and Challenges. In Proceedings of the 30th
ACM Joint European Software Engineering Conference and Symposium on the
Foundations of Software Engineering (Singapore, Singapore) (ESEC/FSE ’22). As-
sociation for Computing Machinery, New York, NY, USA, 408–420. https:

//doi.org/10.1145/3540250.3549144

[29] Manish Motwani and Yuriy Brun. 2019. Automatically Generating Precise Ora-

cles from Structured Natural Language Specifications. In Proceedings of the 41st
International Conference on Software Engineering (Montreal, Quebec, Canada)

(ICSE ’19). IEEE Press, Piscataway, NJ, USA, 188–199. https://doi.org/10.1109/

ICSE.2019.00035

[30] Myeongsoo Kim and Davide Corradini. 2023. Experiment infrastructure and data

for NLPtoREST. https://github.com/codingsoo/nlp2rest.

[31] OpenAI. 2023. GPT-4 Technical Report. arXiv:2303.08774 [cs.CL]

[32] OpenAPI. 2023. OpenAPI standard. https://www.openapis.org.

[33] Johannes Ryser and Martin Glinz. 1999. A scenario-based approach to validating

and testing software systems using statecharts. https://doi.org/10.5167/uzh-

205008

[34] SmartBear Software. 2023. OpenAPI Extensions. https://swagger.io/docs/

specification/openapi-extensions/.

[35] EclEmma Team. 2023. JaCoCo. https://www.eclemma.org/jacoco/.

[36] Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne

Lachaux, Timothée Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro,

Faisal Azhar, Aurelien Rodriguez, Armand Joulin, Edouard Grave, and Guil-

laume Lample. 2023. LLaMA: Open and Efficient Foundation Language Models.

arXiv:2302.13971 [cs.CL]

[37] Chunhui Wang, Fabrizio Pastore, and Lionel Briand. 2018. Automated Generation

of Constraints from Use Case Specifications to Support System Testing. In 2018
IEEE 11th International Conference on Software Testing, Verification and Validation
(ICST). IEEE, Piscataway, NJ, USA, 23–33. https://doi.org/10.1109/ICST.2018.00013

[38] Chunhui Wang, Fabrizio Pastore, Arda Goknil, and Lionel C. Briand. 2022. Auto-

matic Generation of Acceptance Test Cases From Use Case Specifications: An

NLP-Based Approach. IEEE Transactions on Software Engineering 48, 2 (2022),

585–616. https://doi.org/10.1109/TSE.2020.2998503

[39] Huayao Wu, Lixin Xu, Xintao Niu, and Changhai Nie. 2022. Combinatorial

Testing of RESTful APIs. In Proceedings of the 44th International Conference on
Software Engineering (ICSE ’22). Association for Computing Machinery, New

York, NY, USA, 426–437. https://doi.org/10.1145/3510003.3510151

[40] Huayao Wu, Lixin Xu, Xintao Niu, and Changhai Nie. 2022. Combinatorial

Testing of RESTful APIs. In Proceedings of the 44th International Conference
on Software Engineering (Pittsburgh, Pennsylvania) (ICSE ’22). Association for

Computing Machinery, New York, NY, USA, 426–437. https://doi.org/10.1145/

3510003.3510151

[41] Jinqiu Yang, Erik Wittern, Annie T. T. Ying, Julian Dolby, and Lin Tan. 2018.

Towards Extracting Web API Specifications from Documentation. In Proceedings
of the 15th International Conference on Mining Software Repositories (Gothenburg,
Sweden) (MSR ’18). Association for Computing Machinery, New York, NY, USA,

454–464. https://doi.org/10.1145/3196398.3196411

Received 2023-02-16; accepted 2023-05-03

https://doi.org/10.1109/TSE.2022.3150618
https://doi.org/10.1109/TSE.2022.3150618
https://doi.org/10.1145/3293455
https://doi.org/10.1109/ICSE.2019.00083
https://doi.org/10.1007/978-3-540-24617-6_16
https://doi.org/10.1007/978-3-540-24617-6_16
https://doi.org/10.1145/3213846.3213872
https://doi.org/10.1145/3551349.3556961
https://doi.org/10.1007/978-3-319-69035-3_32
https://doi.org/10.1002/stvr.1808
https://spec.openapis.org/oas/v3.1.0
https://spec.openapis.org/oas/v3.1.0
https://arxiv.org/abs/1402.3722
https://bard.google.com/
https://doi.org/10.1145/3510454.3528637
https://arxiv.org/abs/1612.03651
https://web.stanford.edu/~jurafsky/slp3/13.pdf
https://doi.org/10.1145/3533767.3534401
https://github.com/Cornutum/tcases
https://languagetool.org/proofreading-api
https://languagetool.org/proofreading-api
https://doi.org/10.1109/ACCESS.2021.3056505
https://doi.org/10.1145/3510003.3510133
https://doi.org/10.1145/3510003.3510133
https://doi.org/10.1145/3491038
https://doi.org/10.1109/TSC.2021.3050610
https://doi.org/10.1007/978-3-030-33702-5_31
https://doi.org/10.1145/3460319.3469082
https://doi.org/10.1145/3540250.3549144
https://doi.org/10.1145/3540250.3549144
https://doi.org/10.1109/ICSE.2019.00035
https://doi.org/10.1109/ICSE.2019.00035
https://github.com/codingsoo/nlp2rest
https://arxiv.org/abs/2303.08774
https://www.openapis.org
https://doi.org/10.5167/uzh-205008
https://doi.org/10.5167/uzh-205008
https://swagger.io/docs/specification/openapi-extensions/
https://swagger.io/docs/specification/openapi-extensions/
https://www.eclemma.org/jacoco/
https://arxiv.org/abs/2302.13971
https://doi.org/10.1109/ICST.2018.00013
https://doi.org/10.1109/TSE.2020.2998503
https://doi.org/10.1145/3510003.3510151
https://doi.org/10.1145/3510003.3510151
https://doi.org/10.1145/3510003.3510151
https://doi.org/10.1145/3196398.3196411

	Abstract
	1 Introduction
	2 Preliminary Study
	3 Our Approach
	3.1 Approach Overview
	3.2 Terminology
	3.3 NLP-based Rule Extraction
	3.4 Rule Validation

	4 Evaluation
	4.1 Research Questions
	4.2 Experiment Setup
	4.3 Experiment Results
	4.4 Threats to Validity

	5 Related Work
	6 Conclusion and Future Work
	References

