
Integrating Smart Contracts in Manufacturing for
Automated Assessment of Production Quality

Sebastiano Gaiardelli, Stefano Spellini, Michele Pasqua, Mariano Ceccato, Franco Fummi
University of Verona

[name].[surname]@univr.it

Abstract—Products and materials traceability is essential in
modern manufacturing, where the production must meet certain
standards that range from Quality Control (QC) to the quality of
the used materials. In this environment, blockchain applications
allow certifying data provenience and subsequent modification,
offering trust and security along the entire supply chain. Nonethe-
less, the design and the development of such applications are
usually performed manually and, thus, subject to errors.

In this paper, we propose a methodology allowing to automati-
cally generate smart contracts starting from a SysML model. This
approach allows easing the integration of blockchain applications
in a production system: by abstracting the implementations with
models, it is possible to generate smart contracts for different
blockchains, connecting to multiple production environments.

We applied the proposed methodology on a real manufacturing
system, assessing the quality of a case-study production.

Index Terms—Smart contracts, System modeling language,
Blockchains

I. INTRODUCTION

Industry 4.0 has been proposed to respond to the shifting
of the traditional market trend based on mass-production
towards a more customization-oriented manufacturing. Such
a paradigm shift typically involves bigger and more complex
production chains networks. The complete traceability of
materials and products along the entire chain is not guar-
anteed, especially considering the availability of distributed
infrastructures to coordinate multiple facilities [1]. In this
context, blockchain applications allow certifying data and
their elaboration on a transparent, secure, and distributed
infrastructure. Therefore, the manufacturing community has
started using blockchain applications, to cope specifically with
the trust problem among different participants [2]. Such a
class of applications are specified through specific “programs”
interacting with the blockchain: the smart contracts. The
integration of production Internet of Things (IoT) data and
smart contracts enables monitoring the consumption of raw
materials and tools and certifying the quality [3].

Designing blockchain-based applications is a process that
requires to manually specify the interactions between the
software (i.e., smart contracts) and the system to monitor.
Especially regarding manufacturing, it requires to define the
structure of the system, the data and the implemented pro-
cesses. Therefore, a methodology assisting the creation of
“manufacturing smart contracts” would be a step forward in
supporting the traceability and certification various production
aspects. A promising path in such a direction is to exploit
Model-based Design (MBD) principles, an approach that has
already been explored in the context of manufacturing: it

Figure 1: Overview of the proposed approach. The production recipe
and the target KPIs are modeled using SysML. Such models are
translated in a set of smart Contracts using a custom-built automatic
tool. Each contract, integrated in a reference service-oriented manu-
facturing system, contributes to define and certify production quality.

has been proposed to automatically generate code for smart
contracts [4], to ease the development and testing of hetero-
geneous Cyber-Physical Production Systems (CPPSs) [5] and
to support the scheduling of orders [6].

In this context, this paper proposes an automated approach
to generate smart contracts for assessing production quality. As
depicted in Fig. 1, the proposed methodology exploits System
Modeling Language (SysML), which is expressive enough to
represent both the production recipe (i.e., the sequence of
production tasks) and the properties being verified (e.g., KPIs).
Nonetheless, to support the modeling phase and to consistently
generate smart contracts code, this work proposes a specific
SysML meta-model (i.e., profile): it focuses on defining the
production recipe with a behavioral diagram and the associated
KPIs to be verified. Once the recipe and the KPIs are modeled,
an automatic tool generates the set of smart contracts to be
deployed on the blockchain.

We demonstrate the applicability of such a methodology by
modeling, generating and integrating the smart contracts as-
sessing the production quality of a real manufacturing system.
We evaluate a set of KPIs on different recipes, estimating the
complexity of the resulting smart contracts and, thus, assessing
the scalability of the proposed approach.

II. BACKGROUND

We hereby report a set of background concepts useful to
understand the proposed approach. In particular, we introduce
SysML and smart contracts. We also detail the reference man-
ufacturing system on which we implement the methodology.



A. SysML
SysML is a software and systems model engineering lan-

guage. It has been developed as a “dialect” of Unified
Modeling Language (UML), which is traditionally limited
to representing software components. Therefore, SysML sup-
ports the engineering of systems and systems-of-systems,
by proposing language constructs (i.e., diagrams) capable
of representing mechanical components, physical properties,
software functionalities and information models. SysML in-
troduces additional diagrams over UML, which aim at being
more flexible and expressive in order to specify physical
systems. In particular, SysML allows to: (1) define system
requirements through Requirements diagrams; (2) represent
the architecture of the system and sub-systems through Block
diagrams; (3) model the behavior of components and their
interaction with Behavioral diagrams (e.g., Sequence, State
Machine and Activity diagrams); (4) design the dynamic of
the system and carry out physical analysis using Parametric
diagrams and Constraint Blocks.

B. Smart Contracts
Ethereum is an open-source platform for decentralized

applications, based on the blockchain technology. On the
Ethereum network, it is possible to write programs, called
smart contracts [7], that (semi-)automatically manage the
underlying network cryptocurrency, called Ether (ETH). The
actions that can be performed in Ethereum are basically
transactions, i.e. transfer of funds or data between different
ETH accounts. Every new transaction is irreversible and it per-
manently added in a new block that updates the blockchain [7].

In the Ethereum network each principle has an account
identified by an address. An account address can emit and
receive transactions (similarly to Bitcoin wallets) or it can be
an identifier of a smart contract deployed in the network, which
is run whenever a transaction is sent to the address [7]. Every
operation in the network has a cost (called Gas) expressed in
Wei, a fraction of Ether.

Smart contracts for Ethereum can be written with different
high-level programming languages, but Solidity [8] is indu-
bitably the most wide-spread. It is a Turing-complete object-
oriented language, and smart contracts are basically objects
with methods and fields. In order to actually run a smart
contract on the Ethereum blockchain, the Solidity source code
needs to be compiled into EVM bytecode, in order to be
executed by the Ethereum Virtual Machine.

C. Reference Manufacturing System Architecture
The manufacturing system used as reference is a full-fledged

production line available at our research facility [9]. Such
a system implements additive and subtractive manufacturing,
robotic manipulation and Quality Control (QC) processes.
It also includes an automatic vertical warehouse, to store
materials and products. The machines composing the plant are
physically connected through a set of pallet-based conveyors.

The software stack controlling the production line is
built around the concept of Service Oriented Manufacturing
(SOM) [10]: each machine functionality is defined by set
of production services, implemented at Programmable Logic

Controller (PLC) level and exposed to higher software lev-
els (e.g., to the Manufacturing Execution System (MES)).
The Machine to Machine (M2M) communication between
automation components is implemented through the OPC
Unified Architecture (OPC UA) protocol [11]: it consists
in a client/server structure, where the information model is
embedded and exposed by the server. On top of the OPC UA,
the system includes Apache Kafka and RabbitMQ message
brokers, to handle low latency real-time data and to send
commands to machines (i.e., service calls). The top layers of
the architecture are occupied by a commercial MES and a set
of software modules: the Automation Manager [12]. On one
hand, the MES is dedicated to defining production concepts
(e.g., recipes, resources, etc.) and production lifecycles. The
Automation Manager, on the other hand, has been developed
to exploit such concepts and facilitate the reconfiguration of
the system. Such a software architecture serves as a platform
for the deployment and the execution of the smart contracts.

III. PROPOSED APPROACH

A. Modeling Framework
To guide the designer in representing production recipes and

attached KPIs, this work proposes both a modeling strategy
and a meta-model (i.e. profile): the former is focused on
providing a guideline on how to represent a production recipe,
while the latter constrains the designer in defining KPIs, with
parameters and the logical/mathematical property to evaluate.

Regarding the production recipe, the proposed modeling
strategy involves creating a SysML Activity Diagram, to
structure the tasks and their dependencies. Such a diagram is
also capable of describing the sequential and parallel execution
of tasks using the fork-join principle. Therefore, syntactic
elements are available to define forks from a node (i.e., a task)
and joins, where tasks execution are split into parallel flows or
joined into a finite sequence. Regarding the KPIs, the meta-
model serves to give a precise structure to Block Definition
Diagrams (BDDs). A KPI can be associated to a specific task
or to the recipe itself. The modeling strategy differentiates the
two types by establishing that a recipe KPI must be inserted
within the recipe package, while a task KPI is encapsulated in
the task package. Three constitutive elements must be present
in the model, to be consistent with the presented profile: (1)
the inputs and the parameters used for the evaluation of the
KPI, (2) a sub-diagram (e.g., an Activity Diagram), to specify
the mathematical formula, (3) the relations between input,
parameters, formulas and the KPI itself. For the first point,
the profile provides a set of block stereotypes:

• the ConfigurationParameters, outlining the val-
ues coming from the production line, which are input(s)
to the specific KPI;

• the UserDefinedParameters, to characterize nu-
merical bounds or, in general, values constraints over the
input parameters;

• the KPI, which is the central block, connected to the
parameters blocks and to the sub-diagram determining
the KPI formula.

The KPI block, in particular, also specifies the Repeatable
property, to specify whether the KPI has to be evaluated on a



Figure 2: A UML Class Diagram that represents a Solidity smart
contracts recipe.

set of data or on a single input value. For the sub-diagram
specifying the mathematical formula, we chose to rely on
a behavioral diagram; to define the evaluation steps, each
block (i.e., action) contains a textual mathematical expression
composed by values, parameters identifiers and operators
(e.g., LT for less-than, GE, for greater-or-equal, etc.). Finally,
the meta-model defines a set of labeled relations between
stereotyped blocks. Such relations are constrained between
the types of blocks. As an example, a KPI GetsValuesFrom
a UserDefinedParameter block. Depending on the tool,
the meta-model guides the designer constraining the SysML
block-relation-block possibilities to the set defined in it. There-
fore, the proposed profile is a fundamental methodological
contribution to modeling and, consequently, to the automatic
generation of smart contracts.

B. Smart Contract Infrastructure

Given a SysML recipe, we automatically generate a set of
smart contracts that record on the blockchain the data col-
lected from the production line. Furthermore, smart contracts
automatically compute product KPIs and certify production
quality. To mitigate the high transaction fees actually affecting
the Ethereum main network (Mainnet), we deploy our smart
contracts on a side chain, i.e. a separate blockchain connected
to the Mainnet by a two-way bridge. Side chains offers almost
the same security guarantees as the Mainent, but they have
very low gas consumption (and, hence, low transaction fees).
Side chains are fully compatible with Ethereum, hence we
generate smart contracts written in Solidity, the most used
programming language for the Ethereum network.

In particular, given a SysML recipe, our tool will automati-
cally generate a set of Solidity source code files, following
the Class Diagram depicted in Fig. 2, where each class
translates to a Solidity (.sol) file. Then, the source code
will be compiled with the Solidity compiler and the resulting
EVM bytecode is deployed on the side chain by means of
an Automation Manager plugin. The latter is attached to the
production line, as we will explain in the next subsection III-C.

A SysML recipe yields a recipe smart contract (class
MyRecipe in Fig. 2). The latter, deploys on-demand a new
instance of the recipe (i.e. a smart contract) that corresponds
to a product (by means of the method createProduct(...)).
Each product is assigned a unique identifier by the recipe
contract and it is parameterized by an account address,

demanded to provide production data. The product smart
contract (class MyProduct in Fig. 2) exposes some methods
in order to record the data coming from the production line
(provideTaskData(...)). Depending on the data provided, the
product KPIs may or may not be satisfied, and the behavior
of the particular recipe instance is consequently affected (i.e.
tasks may or may not be activated).

SysML recipe tasks translate to standalone smart contracts
(class like TaskA in Fig. 2), that are automatically instan-
tiated by the product contract. The causality between tasks
is retrieved from the SysML recipe Activity Diagram and
encoded into smart contracts as follows. Each task contract has
a counter (field predecessors in the abstract class AbstratTask
of Fig. 2), that holds the number of predecessor tasks that
must be completed in order to activate the current task.
Furthermore, each task has a pointer (field next in the abstract
class AbstratTask) to its successor task, which is unique.
When a task terminates, it sends a completion notification (by
means of the onCompletion() method) to its successor task.
The latter decrements its predecessors counter (by means of
the satisfyPrecondition() method) and if no predecessors are
still executing, the task can be activated (the method start()
is called). In Solidity there are no threads, so we have no race
condition problem on the predecessors counter.

A task is active when it can receive data from the production
line, by means of public methods, that can be called only when
the task is in the active state. The data provided to a task are
recorded on the blockchain and they are immutable. Once all
data are sent to a task, a completion method (completeTask(...)
of MyProduct class) is called, checking the task KPIs before
notifying its successor task. The life-cycle of a product ends
when all its tasks are inactive (i.e. they are completed).

Recipe and task KPIs are standalone smart contracts (class
like KPITaskA in Fig. 2) that are attached to a product or
a task contract, respectively. The only difference is that the
first are not repeatable by default, while the latter may be
set repeatable. This means, in particular, that recipe KPIs are
provided with data from the production line only when a task
is completed, while task KPIs can continuously receive data.

Finally, access control is performed by means of methods
modifiers and the product contract private fields owner and
dataProvider. Indeed, each public method exposed by the
smart contracts has either the modifier owner, checking that
only the address of the account that instantiated the product
can exercise such method, or the modifier dataProvider,
checking that only the address of the account that the owner
has delegate to provide production data can exercise such
method. In particular, only owner has permission to complete
tasks and only dataProvider has permission to feed task/KPI
contracts with data coming from the production line.

C. Automated Code Generation and Data Stream Integration

The Solidity source code is automatically generated by our
tool, starting from a SysML recipe. First, we inspect the recipe
Activity Diagram to identify the tasks composing the recipe:
for each block of the diagram we generate a corresponding task
smart contract. The control flow of the activities is encoded as



explained in the previous subsection, setting the predecessors
counter and the next pointer for each task contract.

Then, for each KPI linked to a given task we generate
a KPI smart contract, translating its BDD. In particular,
UserDefinedParameters translates to constant variables
of the contract and for each ConfigurationParameters
we define a setter method provideData(...), that it is called
from the product contract to provide data for the KPI. This
method is equipped with a modifier checking whether the KPI
is repeatable or not. Finally, the KPI formula is translated to a
Solidity boolean expression, that is checked when calling the
KPI contract method checkSatisfaction(). For each task we
instantiate a list of KPI contracts.

Now, the product smart contract can be generated, instanti-
ating all tasks, activating the one that starts at the beginning of
the recipe and generating all public methods needed to provide
data to KPIs and completing tasks. In case of recipe KPIs, we
instantiate a list of KPIs also for the product contract (the KPIs
translation is the same as the one for task KPIs).

Then, the smart contracts are compiled with the Solid-
ity compiler and imported inside the application developed
on top of Automation Manager. Automation Manager is a
software architecture that allows extending the functionalities
of commercial MES, also automating the scheduling and
execution of tasks on the production line. Furthermore, it
allows to develop new independent applications in a more
abstract way, offering different functionalities such as events
carrying information about what the system and the production
plant are doing. Therefore, it allows to uniquely associate IoT
data coming from the machines to the correct task and KPIs.
The developed application extends also the representation of
production recipes, associating for each task the definition of
the KPIs inside the corresponding smart contracts. Then, each
time a work order is released inside the Automation Manager
the application create and deploys the corresponding smart
contracts on the blockchain. After that, the application listens
to the events generated from the lower infrastructure and acts
accordingly. When a task starts its execution on a machine
the application call the method start() to activate the smart
contract inside the blockchain. Furthermore, until the task
completes its execution each IoT data coming that is recived
from the machine are also notified to the KPIs associated
with the method provideData(...). Lastly, when the task is
completed the method complete() is called to compute and
lock the last KPIs on the blockchain.

IV. EXPERIMENTAL VALIDATION

A. Case Study
We present a case study production applied to the ICE

Laboratory, to assess the approach proposed by this paper.
The production line is used to construct a small LEGO®-
like toy: the system must 3D print, assemble and qQC the
object through a specific sequence of actions (i.e., recipe). In
particular, the toy is composed by three pieces of different
colors and shapes. Two of the three pieces, the green one
and the white one, are collected from the warehouse and
transported to the robotic assembly cell. Meanwhile, the third
piece (the red one) must be 3D printed. Then, the plant must

Figure 3: SysML Activity Diagram representing the case-study pro-
duction recipe. It is composed of a set of tasks and their dependencies.

quality check both the assemble of the first two pieces and
the correct shape of the printed brick. Finally, all the pieces
must be assembled together and checked for defects. If the
quality of the product is consistent, the final toy is then stored
in the warehouse. To simplify the presentation, the logistic
aspects (i.e., transportation) of the case-study production are
left out. We concentrate on tasks implementing an actual
material transformation, with the only exception of material
retrieval from the warehouse.

The execution of the tasks composing the recipe gener-
ates production data, consisting of processing times, power
consumption, failures and quality check results. To assess
the overall quality of the production, we identified a set of
constraints over such data. The constraints are represented as
a set of KPIs. The case-study must be compliant to:

• processing time KPIs, defining whether a task starts and
completes within a certain time-span;

• power consumption KPIs, to assess the energy costs of
producing the product following the established recipe;

• accuracy and failures KPIs, to check the accuracy of
intermediate manipulation steps and errors; this data may
indicate materials deterioration or semi-finished products.

In particular, processing time and power consumption KPIs
can be associated to all tasks composing the production recipe
(e.g. material retrieval, QC, additive processes, etc.) and to the
recipe itself. On the other hand, accuracy KPIs are correlated
to assembly and 3D printing. Moreover, the printed plastic
piece may result in melted parts or scorches, that must be
detected and handled correctly.

B. Modeling
The first step to validate and evaluate the methodology

proposed is to model the case-study production. Such a
process has been carried out using SysML and the meta-model
described in Section III-A. The model has to encompass funda-
mental information about the production recipe and the quality
properties that a stakeholder is interested in verifying and
certifying. In particular, the model structures the knowledge
on three fundamental pillars:

• the production recipe, in terms of task, dependencies
between tasks and their sequential/parallel execution;

• the KPIs associated to a task or to the recipe itself;
• the relations between KPIs, tasks and recipe, and how

their evaluation is carried out.
Fig. 3 depicts the case-study production recipe modeled

through an Activity Diagram in SysML: it is composed of the



Figure 4: The BDD defining a KPI regarding the “PrintLego” task. It
verifies that the plastic filament consumption of the 3D printer stays
within a specific range (in millimeters).

necessary sequence of tasks to produce LEGO®-like toy. More
specifically, tasks “PrintLego”, “GetLego” and “GetLego2” are
started in parallel at the beginning of the recipe. Therefore, the
production line starts printing the red piece, while the other
two bricks are collected from the warehouse and placed on
two pallets. The dependencies between tasks simply define
the sequence of the necessary operations and do not represent
timing constraints. Thus, the “Assemble1” task execution can
be fired once both the green and the white pieces are loaded
on the main conveyor. Such a task transports the two pallets to
the robotic cell and assembles those pieces using manipulators
arms. To represent parallel execution, SysML uses a specific
syntactic constructs to model fork-join: the black vertical bars
in Fig. 3, which branches off the execution of the recipe
in parallel (e.g., “PrintLego”, “GetLego” and “GetLego2”
tasks) and merges tasks to resume sequential execution (e.g.,
“GetLego” and “GetLego2” to “Assemble1”).

Each task of the recipe is paired with a set of KPIs. Fig. 4
depicts an example of a BDD representing a KPI for the
“PrintLego” task. Such a construct is in charge of checking that
the length plastic filament consumed (i.e., wire in the diagram)
is within specific lower and upper boundaries. The definition
of the diagram concerning the KPI is carried out referencing
to the meta-model described in Section III-A. In particular,
the BDD includes a uint32 input value for the consumed
filament length. It is contained in a block stereotyped by
ConfigurationParameter (orange in the figure). In
addition, the diagram defines the upper and lower filament
consumption bounds in a UserDefinedParameter block
(red in the figure). Furthermore, the evaluation of the KPI
block (yellow in the figure) is on data-set instead of a single
value. This is specified by setting the Repeatable block
property to True. As per the meta-model, the KPI is connected
with other the stereotyped blocks via the GetsValuesFrom
relation. Finally, the mathematical formula is defined in an
Activity Diagram, connected to the KPI block. In such a
diagram, the local variable wire is defined. This is done
by textually defining the assignment expression within an
Action block. Then, the KPI mathematical formula is charac-
terized in a Structured Activity node within the diagram. Such
a construct allows defining multiple text-based expressions
within multiple Action blocks. Each block is in a sequential
order, to specify their order of evaluation. The mathematical
formula is simple: it verifies that the wire value is between
wireGoalMin and wireGoalMax parameters. Therefore,
the Structured Activity consists of two sequential expressions:

1 contract LegoRecipe {
2 LegoProduct[] private products;
3 uint32 private productId; address private owner;
4 ...
5 function createProduct(address dataProvider) public {
6 require(msg.sender == owner);
7 LegoProduct product = new LegoProduct(productId, dataProvider);
8 products.push(product);
9 productId ++;

10 }
11 }

Listing 1: Solidity code snippet for the LEGO® recipe contract.

1 contract KPIWire is AbstractKPI {
2 uint32 private constant wireGoalMax = 4356, wireGoalMin = 4344;
3 uint32 private wire;
4 ...
5 function provideDataTask(uint32 actualWire) public validDataProvider

isRepeatible incrementAfter {
6 wire = actualWire;
7 }
8 function checkSatisfaction() override public view validOwner returns (bool) {
9 return wireGoalMin < wire && wireGoalMax > wire;

10 }
11 }

Listing 2: Solidity code snippet for the wire KPI contract.

the first verifying that wireGoalMin is less than wire; the
second checking that wireGoalMax is greater than wire.

C. Smart Contract

The SysML recipe for the LEGO®-like toy is translated into
the LegoRecipe.sol Solidity source code file; an excerpt
of this file is reported in Listing 1. In particular, this contract
maintains a list of “child” smart contracts, one for each
production object. Indeed, when the production line starts the
fabrication of a product, the method createProduct(...)
is called and a new instance of the LegoProduct contract is
created (parameterized with an unique identifier productId
automatically generated). At line 10 of Listing 1 we check
that only the recipe owner (i.e., the party that deployed the
recipe contract) can create a product. During creation, the
LegoProduct constructor parameter dataProvider sets
the address of the party that is authorized to provide data to
the KPIs of a particular product.

The LegoProduct.sol Solidity source file contains a
list of all tasks specified in the activity diagram of Fig. 3 (and
a list of recipe KPIs). When the contract is instantiated, the
tasks list is created, instantiating a smart contract for each task.
Tasks are initialized as explained in Section III: a predecessors
count and a successor task are set. For instance, consider the
code snippet of the LegoProduct.sol file in Listing 3. We
can see that CheckPrint and Assemble1 contracts have
both Assemble2 as successor (the fourth parameter of the
constructor); and Assemble2 has indeed 2 as predecessors
count (the third parameter of the constructor). This is the trans-
lation of the parallel flow between “CheckPrint”, “Assemble1”
and “Assemble2” as depicted in the activity diagram of Fig. 3.
Sequential flows are simpler: Assemble2 has CheckFP as
successor and CheckFP has 1 as predecessors count.

Finally, in Listing 2 we have an excerpt of wire KPI
smart contract, translation of the BDD in Fig. 4. As we
can see, KPI constraints are translated to constant variables
(lines 5-6 of Listing 2) while the KPI input is translated to
the public method provideTaskData(...) that assigns the
(private) variable wire the value provided by the method
parameter actualWire. The KPI condition is translated
to a boolean expression (line 15), encapsulated in the pub-



1 AbstractTask[tasksNumber] private tasks;
2 ...
3 tasks[Tasks.CheckFP] =
4 new CheckFP(productId, dataProvider, 1, addrStoreFP);
5 tasks[Tasks.Assemble2] =
6 new Assemble2(productId, dataProvider, 2, addrCheckFP);
7 tasks[Tasks.CheckPrint] =
8 new CheckPrint(productId, dataProvider, 1, addrAssemble2);
9 tasks[Tasks.Assemble1] =

10 new Assemble1(productId, dataProvider, 2, addrAssemble2);

Listing 3: Solidity code snippet for the LEGO® product contract.
Table I: Generated bytecode size at different recipe complexity levels.

Recipe Recipe KPIs Tasks KPIs Tasks EVM bytecode
r8 2 6 8 85 822 byte
r16 4 12 16 160 415 byte
r32 8 24 32 309 601 byte

lic method checkSatisfaction(...). The latter will be
called by the corresponding task, to check the KPI satisfaction.
Note that, the modifier validDataProvider ensures that
only the authorized party can provide KPI data. The check
assessing the non repeatability of a KPI is demanded to the
isRepeatible modifier.

D. Automatic generation complexity
An important aspect to consider when dealing with smart

contracts is the bytecode size, namely the space needed to store
the compiled source code on the blockchain. Each blockchain
transaction has a cost, proportional to the dimension of the
transaction. Hence, the bigger is the smart contract and the
higher is the cost for its deployment. As mentioned in Sub-
section III-B, we mitigate this problem by using side chains
instead of the Ethereum Mainnet. Nevertheless, even in side
chains transactions have a cost, hence minimizing the size of
the compiled smart contracts is still important.

The structure of the smart contracts we adopt to model
recipes allows us to generate “lightweight” contracts: the gen-
erated bytecode size is proportional to number of tasks/KPIs
of a recipe. Indeed, most of the code is encapsulated in the
abstract tasks/KPIs contracts, libraries and the recipe contract,
which are not strictly dependent on the recipe business logic.
To test our automatic approach, we modeled three recipes at
different levels of complexity: r8, equipped with 2 recipe KPIs
and 6 KPIs shared by 8 tasks (8 KPIs and 8 tasks, in total);
r16, equipped with 4 recipe KPIs and 12 KPIs shared by 16
tasks (16 KPIs and 16 tasks, in total); and r32, equipped with
8 recipe KPIs and 24 KPIs shared by 31 tasks (32 KPIs and
32 tasks, in total). For each recipe we have generated the
Solidity smart contracts and compiled them with one of the
latest version of the Solidity compiler1, without optimizations.
The results are shown in Table I. As we can see, doubling the
complexity of the recipe (in the number of tasks/KPIs) results
in a (little less) double size of the generated bytecode.

V. CONCLUSION AND CONSIDERATIONS

In this paper we have introduced an innovative methodology
for monitoring and assessing the quality of a production line.
Starting from a SysML diagram, serving as an abstract repre-
sentation of a production recipe, we automatically generate a
set of smart contracts, serving as a concrete representation of
the production recipe, and we deploy them on the Ethereum

1solc version 0.8.0+commit.c7dfd78e.Linux.g++.

blockchain. A module extending Automation Manager, in
charge of collecting production data and forwarding them to
the smart contracts, is automatically generated as well. Due
to the immutability of the blockchain, the provided data are
inherently certified and they are used by the smart contracts
to compute recipe KPIs, assessing production quality.

Having a blockchain-based quality certification attached to
the produced objects increases the market value of the prod-
ucts. Indeed, end users and/or stakeholder can interact with the
smart contracts to check whether a given product adheres with
the original recipe and whether the product fulfills particular
quality requirements. Unfortunately, writing smart contracts
is a complex and error-prone task. To mitigate the problem,
our approach dispenses developers from blockchain-related
implementation details, since the smart contracts are generated
from the SysML recipe without any manual intervention.
Furthermore, the generated smart contracts dimension (in
bytecode) scales linearly with the recipe complexity; this is
crucial to deploy efficient blockchain-based solutions.

Smart contracts are not free of programming defects, and
bugs in smart contracts very often result in a leak of funds.
For this reasons, an automated generation approach may
help in lowering the number of vulnerabilities present in the
deployed smart contracts. In this respect, we may integrate
the generation process with secure compilation techniques, in
order to synthesize secure-by-construction smart contracts.

Finally, we can imagine to exploit the underling smart
contracts crypto-currency to automatically fire payments, when
quality requirements are met by the produced objects.

REFERENCES

[1] L. Ouyang, Y. Yuan, and F.-Y. Wang, “A blockchain-based framework
for collaborative production in distributed and social manufacturing,”
in 2019 IEEE International Conference on Service Operations and
Logistics, and Informatics (SOLI), 2019, pp. 76–81.

[2] S. Geiger, D. Schall, s. meixner, and a. egger, “Process traceability in
distributed manufacturing using blockchains,” 04 2019.

[3] W. Alkhader, N. Alkaabi, K. Salah, R. Jayaraman, J. Arshad, and
M. Omar, “Blockchain-based traceability and management for additive
manufacturing,” IEEE Access, vol. 8, pp. 188 363–188 377, 2020.

[4] M. Jurgelaitis, L. čeponienė, and R. Butkienė, “Solidity code generation
from uml state machines in model-driven smart contract development,”
IEEE Access, vol. 10, pp. 33 465–33 481, 2022.

[5] A. Barišić, E. Zhu, and F. Mallet, “Model-driven approach for the design
of multi-chain smart contracts,” in 2021 3rd Conference on Blockchain
Research Applications for Innovative Networks and Services (BRAINS),
2021, pp. 37–38.

[6] S. Gaiardelli, S. Spellini, M. Lora, and F. Fummi, “A hierarchical
modeling approach to improve scheduling of manufacturing processes,”
in 2022 IEEE 31th International Symposium on Industrial Electronics
(ISIE), 2022, pp. 1–8.

[7] A. Antonopoulos, G. Wood, and G. Wood, Mastering Ethereum: Build-
ing Smart Contracts and DApps. O’Reilly Media, Incorporated, 2018.
[Online]. Available: https://books.google.it/books?id=SedSMQAACAAJ

[8] Ethereum. Sidechains. [accessed: 2022-04-21]. [Online]. Available:
https://docs.ethhub.io/ethereum-roadmap/layer-2-scaling/sidechains/

[9] “Industrial Computer Engineering (ICE) Lab,”
https://www.icelab.di.univr.it/.

[10] T. Lojka, M. Bundzel, and I. Zolotová, “Service-oriented architecture
and cloud manufacturing,” Acta polytechnica hungarica, vol. 13, no. 6,
pp. 25–44, 2016.

[11] “OPC Unified Architecture specification – Part 1: Overview and con-
cepts release 1.04 OPC Foundation,” 2017.

[12] S. Gaiardelli, S. Spellini, M. Panato, M. Lora, and F. Fummi, “A software
architecture to control service-oriented manufacturing systems,” 2022,
pp. 1–4.


