
RestTestGen: An Extensible Framework for
Automated Black-box Testing of RESTful APIs

Davide Corradini∗, Amedeo Zampieri†, Michele Pasqua‡ and Mariano Ceccato§

Department of Computer Science
University of Verona – Verona, Italy

Email: ∗davide.corradini@univr.it, †amedeo.zampieri@studenti.univr.it, ‡michele.pasqua@univr.it, §mariano.ceccato@univr.it

Abstract—Over the past few years, more and more novel black-
box testing approaches for RESTful APIs have been proposed. In
order to assess their effectiveness, such testing strategies had to
be implemented as a prototype tool and validated on empirical
data. However, developing a testing tool is a time-consuming
task, and reimplementing from scratch the same common basic
features represents a waste of resources that causes a remarkable
overhead in the “time to market” of research results.

In this paper, we present RestTestGen, an extensible frame-
work for implementing new automated black-box testing strate-
gies for RESTful APIs. The framework provides a collection of
commonly used components, such as a robust OpenAPI spec-
ification parser, dictionaries, input value generators, mutation
operators, oracles, and others. Many of the provided components
are customizable and extensible, enabling researchers and prac-
titioners to quickly prototype, deploy, and evaluate their novel
ideas. Additionally, the framework facilitates the development
of novel black-box testing strategies by guiding researchers, by
means of abstract components that explicitly identify those parts
of the framework requiring a concrete implementation.

As an adoption example, we show how we can implement
nominal and error black-box testing strategies for RESTful APIs,
by reusing primitives and features provided by the framework,
and by concretely extending very few abstract components.

RestTestGen is open-source, actively maintained, and available
on GitHub at https://github.com/SeUniVr/RestTestGen

Keywords-REST API, Test case generation, Black-box testing

I. INTRODUCTION

An API that respects the REpresentational State Transfer
(REST) architectural style [1] is termed a RESTful API (or
REST API for short). REST APIs are becoming a de-facto
industrial standard to interconnect different computer systems,
for instance, when exchanging data with the cloud [2], when
connecting smartphone apps to their corresponding server [3],
for identity provisioning [4], and for banks inter-operation [5].

Automated testing of RESTful APIs is an emerging topic
in the software engineering research community, and several
approaches have been proposed to this aim. Some of them
are white-box, and rely on the availability of source code to
perform static analysis, or to instrument it to collect execution
traces and metric values (e.g., EvoMaster [6], that generate
test cases for Java-based REST APIs by means of evolutionary
algorithms).

Since the source code of REST APIs is very often not
available, black-box approaches, that do not require any
source code, are usually preferable. Here we can find fuzzers
(e.g., APIFuzzer [7], FuzzLightyear [8], TnTFuzzer [9]), that

generate new tests starting from previously recorded API
traffic: they fuzz and replay new traffic in order to find bugs.
Other tools, in addition, exploit the OpenAPI specification of
the service under test (e.g., RESTler [10], QuickREST [11],
bBOXRT [12]), in order to generate more effective test cases.

Segura et al. [13] propose a black-box approach where the
oracle is based on metamorphic relations among requests and
responses. Martin-Lopez et al. [14] present a domain-specific
language (IDL) for the specification of dependencies among
input parameters in web services. Then, they translate an
IDL document into a constraint satisfaction problem (CSP),
enabling the automated analysis of IDL specifications using
standard CSP-based reasoning operations. Huayao et al. [15]
propose an approach that relies on combinatorial testing to
generate parameter input values, and that leverages natural
language processing to implement a pattern-based approach
for extracting inter-parameter constraints.

Developing all these testing tools or research prototypes
required to re-implement the same common basic features over
and over again, causing time and resources to be wasted in
engineering-intensive tasks, therefore reducing those available
for research-intensive tasks. To the best of our knowledge there
is no framework that facilitates researchers and practitioners in
defining new testing strategies for REST APIs by simplifying
tool development.

In this work, we present RestTestGen, a modular and
extensible framework for implementing new automated black-
box testing strategies for RESTful APIs. The architecture of
this tool is shown in Figure 1. It provides some basic features
commonly used in REST API testing that works out-of-the-
box, namely the core components, that will be presented in
Section II. Moreover, in order to deliver novel and customized
testing strategies, the framework also provides some extensible
components that researchers or practitioners can implement
and extend. They will be described in Section III. Core and
extensible components represents the basic blocks to assemble
to conceive new testing approaches. Complete and working
research testing strategies [16] are already available in the
framework (Section IV), as examples of how to instantiate
and assemble all the needed components. We will show how
to run them to automatically generate tests on a REST API
case study in Section V.

https://github.com/SeUniVr/RestTestGen

Fig. 1. A high-level view of the architecture of RestTestGen.

Extensible component Core component User-defined component

Strategy

Nominal
Tester

OpenAPI
specification

Testing
results

HTTP
requests/responses

Operation Ordering Mutation OperatorOracle

Schema
Validation

Random
Ordering

Missing
Required

ODG
Ordering

Contraint
Violation

… … … …

Writer

Input Value Provider

Enum
Value

Random
Value

…

Error
Tester

REST-
assured

JSON

Status
Code

…

…

Test
Runner

OpenAPI
Parser

Dictionary

ODG

…

II. CORE COMPONENTS

Core components are a collection of ready-to-use classes,
that a researcher may directly integrate in its testing strategy.

The starting point for REST API black-box testing is their
OpenAPI specifications. Very often, specifications contain
inconsistencies or wrong content, such that the official swag-
ger.io parser [17] might be ineffective [18]. A robust OpenAPI
Specification Parser is available in RestTestGen, that is more
tolerant with unexpected or inconsistent content. Properties not
belonging to the OpenAPI grammar are silently ignored and
inconsistencies in the specification are fixed, when possible.
For instance, type conversion is attempted in case of type
mismatch, e.g., an integer parameter with a string value as
example or enum values (i.e., "0" instead of 0). Values that
can not be converted are simply discarded.

All the parsed data are used to fill an internal data structure,
consisting in a list of Operation components, that correspond
to the API operations. Each Operation component contains the
corresponding endpoint, the HTTP method, and the schemas
for input and output data, encapsulated in Data Templates.

Each schema is organized in a Data Template component,
namely a structure containing parameters names, their types,
their domain (e.g., the format for strings and the range for
numbers), and any optional constraint. Data Templates are
hierarchical, so they can model both atomic values (e.g., path
parameters), and compound data (e.g., JSON objects). The
(user-defined) testing strategy will be responsible to instantiate
a Data Template, which means to assign a value to each data
element of the template. Peculiar automated testing strategies
might also request changes in the Data Template, e.g., to
add or remove properties in compound objects, in case the
objective of testing is to try with requests that clearly violate
the specification.

A test case may execute more interactions (i.e., request
and response pairs), that are sequentially related. In this
respect, RestTestGen provides a Test Sequence component,
that is a list of interactions. The latter are modeled with a
Test Interaction component, containing all the information to
test an operation as a reference to the Operation component,

including an instance of Data Template with all the concrete
data to be used for the test.

Test Sequences are used by the Test Runner component,
that is responsible for executing the sequence of Test Inter-
actions contained in the Test Sequence on the API. The test
output (from HTTP responses) are saved in the corresponding
Test Interaction. The Test Runner supports authentication
(e.g., API key or bearer token).

Selecting a clever ordering of operations to test is crucial
to carry out effective Test Sequences. To help researchers
in the definition of the most effective operations ordering to
use, RestTestGen provides the Operation Dependency Graph
(ODG in short) component, that captures producer-consumers
dependencies among operations, according to the parsed spec-
ification. Nodes represent operations, and directed edges con-
nect two nodes when the output of the source operation can be
used as input for the target operation. For instance, consider
an operation A with an input parameter named p, and an
operation B with the same p parameter as output. In this case,
the ODG will contain a directed edge A

p−→ B.
The last core component is the Dictionary. Dictionaries are

available for storing and retrieving values that are observed
when testing an API, along with their metadata (e.g., in which
operation they have been observed). A global Dictionary
captures all the values observed during a testing session.
Instead, local Dictionaries can be deployed for storing values
observed in a smaller set of Test Interactions.

III. EXTENSIBLE COMPONENTS

Extensible components are a collection of abstract and
concrete classes, for which researchers might provide a new
concrete implementation to realize a novel testing algorithm,
possibly mixing them with RestTestGen core components.

A crucial contribution of a testing approach is the order in
which operations are tested [16], [19]. To this aim, RestTest-
Gen provide the Operation Ordering, a component with the
responsibility to decide the order of the operations in a Test
Sequence. There are two variants of Operation Ordering. In a
static ordering, the Test Interactions are sorted before staring
the execution of the Test Sequence. In a dynamic ordering,
the order in Test Sequence is filled and revised while being
tested, because the next operation to test (i.e., the next Test
Interaction) depends on the outcome of the previous ones.

An out-of-the-box implementation of Operation Ordering
is available, the Random Ordering. Researchers can provide
further concrete implementations for this component with
novel algorithms to deliver their custom ordering.

When instantiating the Data Template, the Input Value
Provider component is in charge of computing a value for
each schema parameter.

The framework already contains concrete single-strategy
implementations of Input Value Provider. They are:

• Enum Value Provider, returns a random value among
those defined as valid enum values in the specification;

• Example Value Provider, returns a random value among
those in the examples;

• Default Value Provider, returns the default value for a
parameter;

• Dictionary Value Provider, picks a value form the dictio-
nary, if a value for a parameter with the same name was
already observed in the testing session and, thus, available
in the dictionary;

• Random Value Provider, generates a random value ac-
cording to the parameter schema from the specification.

Furthermore, the framework contains concrete multi-
strategies Input Value Providers, that combine multiple ex-
isting single-strategies. They are:

• Random Selector of Input Value Provider, randomly
chooses a single-strategy Input Value Provider among
those available and compatible for an input parameter;

• Enum and Example Priority Input Value Provider, enum
and example values might be more likely to be effec-
tive than alternatives. So, this multi-strategies provider
chooses providers for enum and example values with a
very high probability, and the remaining single-strategies
providers with lower probability.

Researchers can deliver their own input generation algo-
rithms by contributing additional concrete implementations of
Input Value Provider.

Another fundamental feature that a testing framework
should provide is the possibility to dynamically change (i.e.,
mutate) a value for an input parameter. Indeed, RestTestGen
has the Mutation Operator component, that researchers can
implement for defining custom mutation operators.

The Oracle component is in charge of making decisions
on the correct execution of a Test Sequence (a test case). The
outcome of an Oracle evaluation is a Test Result, which can
be PENDING, in case the test case has not been run yet; PASS,
if the test case has passed; FAIL, if the test case has failed;
ERROR, if the test encountered an error during the execution;
and UNKNOWN, if the oracle is not able to make a decision.

RestTestGen already includes two implementation of Ora-
cles of general validity. The Status Code Oracle classifies a
test case as PASS if the HTTP response contains a successful
status code (2XX). Conversely, the test case is a FAIL when a
server error status code (5XX) is observed. In case of a client
error status codes (4XX), the oracle classifies the execution as
UNKNOWN because the status code is not informative enough
to make a proper decision (the error could be due to a wrong
input). The Schema Validation Oracle matches the content
of an HTTP response with its schema as it is defined in
the OpenAPI specification. The test is classified as PASS
if the response is valid according to the schema, and FAIL
otherwise.

A further component provided by RestTestGen is the
Writer, used to write Test Sequences to file. The framework
provides the following two implementations of Writer:

• JSON Report Writer, emits the report for an executed Test
Sequence to file in JSON format, including the HTTP
request and response of each interaction, and the outcome
of oracles. This file format is meant to be easily parsed

and facilitate chaining and integration of this testing
framework with other tools;

• REST-assured Writer, emits the automatically generated
test case as a test case in Java using the REST-assured
testing library [20].

Finally, the Strategy component is the entry point for
the framework, and it represents where the testing strategy
business logic should be implemented. A Strategy consists of
the integration of the framework components, possibly after
having been extended and/or customized.

IV. CONCRETE IMPLEMENTATION: NOMINAL AND ERROR
TESTING STRATEGIES

In this section, we show how two automated test case gener-
ation strategies, the Nominal Tester and the Error Tester [16],
have been implemented using the framework components.

A. Nominal Tester

Strategy. The goal of the nominal testing strategy is to
successfully test all the operations in a REST API according to
their definition. To this aim, a custom operation ordering based
on the ODG is defined. For all the other responsibilities (input
value generation, oracles, and writers) this strategy relies on
commodity components available in the framework.

Operation Ordering. To generate nominal test cases, the
concrete implementation of the Operation Ordering is a dy-
namic strategy based on the ODG. The next operation to test
is selected consulting the ODG, by picking the operation that is
still untested, and which minimizes the number of unsatisfied
producer-consumer edges. Additionally, the order is adjusted
according to CRUD semantics (e.g., delete operations are the
last to be tested), to avoid CRUD conflicts (e.g., trying to read
a deleted resource).

Input Value Provider. The Enum and Example Priority
Input Value Provider is used to generate input values, to benefit
from all the available single-strategy providers, with higher
priority to Enum and Example values.

Oracles. Test case outcomes are evaluated by the two
available oracles. The status code is verified by the Status Code
Oracle, and the response format is verified by the Schema
Validation Oracle.

Writers. Java test cases are written by the REST-assured
Writer. Test Sequences and their outcomes are also written in
JSON for logging purposes by the JSON Report Writer.

B. Error Tester

The error tester aims at testing a REST API with scenarios
that violate its specifications, to try and reveal defects in
handling anomalous or wrong requests.

Strategy. The error testing strategy starts from the Test
Interactions that the Nominal Tester successfully created (i.e.,
with 2XX status code). They are subject to custom mutation
operations defined by this strategy. Additionally, a custom
ordering and a custom oracle come with this strategy. The
remaining components (the writers and one oracle) are those
available in the framework.

Operation Ordering. For each nominal Test Sequence of
length n, all the sub-sequences are computed starting from the
first interaction of the original sequence, having incremental
length from 1 to n. Mutation Operators are applied to the last
interaction of each of these sequences, when compatible.

Mutation Operators. Three concrete implementations of
Mutation Operators are provided:

• Missing Required, removes a mandatory input parameter
from an Operation to produce a malformed input. Only
applicable to parameters marked as required in the
specification.

• Wrong Input Type, changes the type of an input parameter.
e.g., an integer parameter is assigned a string
value. The Random Input Value Provider generates a
random value of new type.

• Constraint Violation, mutates the value of a parameter to
make it violate the constraints in the specification. For
instance, a string longer than the maximum length, by
appending random characters at the end of the original
string.

Oracles. The commodity Schema Validation Oracle is inte-
grated to check the validity of the response format. The custom
Error Status Code Oracle is implemented to verify the test
outcome of error scenarios, based on the assumption that a
wrong request should to be rejected by a correct REST API.
If a request is rejected (status code 4XX), the test is classified
as a PASS. Otherwise, if the request is accepted (status code
2XX) the test is a FAIL. In case a server error is observed
(status code 5XX), the test is also a FAIL.

Writers. Both the available JSON Report Writer and the
REST-assured writer are integrated.

V. TOOL ADOPTION

In this section, we present execution results for the nominal
and error testing strategies. Comparisons with other tools are
available in literature [18], [19].

A. Case Study

The Bing Maps REST API is used to perform tasks with
the map service from Microsoft, such as creating a static map
with pushpins, geocoding an address, or creating a route [21].
In particular, we are going to test five Bing Maps services:
elevations (4 operations), imagery (10 operations), locations (5
operations), route (15 operations), and timezone (4 operations).
This same case study was adopted by Wu et al. [22], who
manually written the OpenAPI specifications (following the
official documentation) because it was not publicly available.

B. Experimental Procedure

First, we configured the authentication for RestTestGen to
use the API key that we manually got from the Bing Maps
developer platform. Then, we launched the nominal and error
strategies on each Bing Maps service.

To control the impact of non-deterministic choices of testing
strategies (e.g., the random generation of parameter values),
each service have been tested 10 times independently.

TABLE I
RESULTS FOR NOMINAL AND ERROR TESTING STRATEGIES.

Nominal testing Error testing
Service Ops PASS FAIL PASS FAIL 2XX FAIL 5XX

Elevation 4 4.0 0.2 4.0 0.2 4.0
Imagery 10 5.3 4.7 5.3 4.4 0.4
Locations 5 4.4 0.0 4.0 4.4 0.0
Route 15 9.0 1.8 9.0 6.2 0.5
TimeZone 4 4.0 0.0 4.0 3.9 0.4

During the experiment, we collected the results reported
by the two status-code-based oracles. For nominal testing, we
collected the number of operations for which the strategy could
generate at least one valid request (oracle result: PASS), and
the number of operations for which the strategy could trigger
at least one server error (result: FAIL). For error testing, we
collected the number of operations for which the strategy could
generate at least one erroneous request accepted as valid by the
server (result: FAIL with status code 2XX), and the number
of operations for which the strategy could trigger at least one
server error (result: FAIL with status code 5XX).

C. Results and Considerations

Table I reports empirical results for nominal and error
testing strategies. Results are in decimal format because they
are the average over ten executions.

Despite the OpenAPI specification of this REST API fo-
cuses mostly on input data and it specifies the format of output
data only partially, the dictionary is dynamically updated even
with unexpected output data, to steer the automated testing of
subsequent operations. Consequently, more than 26 operations
are successfully tested over the 38 available operations by
the nominal testing strategy. Additionally, this strategy could
elaborate faulty executions for 7 operations.

The error testing strategy revealed more than 18 operations
that accepted malformed requests as valid. Furthermore, it
could trigger server-side errors in 4 (out of 5) services.
The error testing strategy shown to be more effective than
the nominal strategy in triggering server-side errors. In fact,
it could obtain 5XX status codes for 4 operations in the
elevation service (the nominal testing strategy could for only
one operation and in only 2 executions), and in the timezone
service, for which the nominal testing strategy could not.

VI. CONCLUSION

Despite literature contains presentations of several tools to
automatically generate test cases for REST APIs, to the best of
our knowledge, none of them delivers an extensible framework
to guide the implementation of novel, user-defined, testing
strategies as extension of abstract components and on top of
existing commodity features.

We presented RestTestGen, a framework to support and fa-
cilitate researches, practitioners, and developers in implement-
ing novel REST API testing strategies. RestTestGen provides
a collection of core (ready-to-use) components and extensible
(customizable) components to speed up the development of
research prototypes and testing tools. RestTestGen is open-
source and available on GitHub [23].

REFERENCES

[1] R. T. Fielding, Architectural styles and the design of network-based
software architectures. University of California, Irvine Doctoral
dissertation, 2000, vol. 7.

[2] F. Petrillo, P. Merle, N. Moha, and Y.-G. Guéhéneuc, “Are rest apis
for cloud computing well-designed? an exploratory study,” in Service-
Oriented Computing, Q. Z. Sheng, E. Stroulia, S. Tata, and S. Bhiri,
Eds. Cham: Springer International Publishing, 2016, pp. 157–170.

[3] A. Belkhir, M. Abdellatif, R. Tighilt, N. Moha, Y.-G. Guéhéneuc, and
E. Beaudry, “An observational study on the state of rest api uses in
android mobile applications,” in 2019 IEEE/ACM 6th International Con-
ference on Mobile Software Engineering and Systems (MOBILESoft),
2019, pp. 66–75.

[4] simplecloud.info. SCIM. [Online]. Available: http://www.simplecloud.
info/

[5] Open Bank Project. OBP Middleware. [Online]. Available: https:
//www.openbankproject.com/openbankingmiddleware/

[6] A. Arcuri, “RESTful API automated test case generation with Evo-
master,” ACM Transactions on Software Engineering and Methodology
(TOSEM), vol. 28, no. 1, p. 3, 2019.

[7] API Fuzzer, “API Fuzzer,” https://github.com/KissPeter/APIFuzzer.
[8] Fuzz-Lightyear, “Fuzz-Lightyear,” https://github.com/Yelp/

fuzz-lightyear.
[9] TnT-Fuzzer, “TnT-Fuzzer,” https://github.com/Teebytes/TnT-Fuzzer.

[10] V. Atlidakis, P. Godefroid, and M. Polishchuk, “RESTler: Stateful
REST API fuzzing,” in Proceedings of the 41st International
Conference on Software Engineering, ser. ICSE ’19. Piscataway,
NJ, USA: IEEE Press, 2019, pp. 748–758. [Online]. Available:
https://doi.org/10.1109/ICSE.2019.00083

[11] S. Karlsson, A. Čaušević, and D. Sundmark, “QuickREST: Property-
based test generation of OpenAPI-described RESTful APIs,” in 2020
IEEE 13th International Conference on Software Testing, Validation and
Verification (ICST), 2020, pp. 131–141.

[12] N. Laranjeiro, J. Agnelo, and J. Bernardino, “A black box tool
for robustness testing of REST services,” IEEE Access, vol. 9,
pp. 24 738–24 754, 2021. [Online]. Available: https://doi.org/10.1109/
ACCESS.2021.3056505

[13] S. Segura, J. Parejo, J. Troya, and A. Ruiz-Cortés, “Metamorphic testing
of RESTful web APIs,” IEEE Transactions on Software Engineering,
vol. 44, no. 11, pp. 1083–1099, 2018.

[14] A. Martin-Lopez, S. Segura, C. Muller, and A. Ruiz-Cortes, “Specifi-
cation and automated analysis of inter-parameter dependencies in web
APIs,” IEEE Transactions on Services Computing, pp. 1–1, 2021.

[15] W. Huayao, X. Lixin, N. Xintao, and N. Changhai, “Test coverage
criteria for restful web apis,” in Proceedings of the 44th International
Conference on Software Engineering (ICSE ’22), 2022, pp. 1–12, (to
appear).

[16] D. Corradini, A. Zampieri, M. Pasqua, E. Viglianisi, M. Dallago,
and M. Ceccato, “Automated black-box testing of nominal and error
scenarios in restful apis,” Software Testing, Verification and Reliability,
Jan. 2022. [Online]. Available: https://doi.org/10.1002/stvr.1808

[17] swagger.io, “swagger-parser,” https://github.com/swagger-api/
swagger-parser.

[18] D. Corradini, A. Zampieri, M. Pasqua, and M. Ceccato, “Empirical
comparison of black-box test case generation tools for RESTful APIs,”
in 21st IEEE International Working Conference on Source Code Analysis
and Manipulation, SCAM 2021, Luxembourg City, Luxembourg, Septem-
ber 27 - September 28, 2021.

[19] M. Kim, Q. Xin, S. Sinha, and A. Orso, “Automated test generation for
rest apis: No time to rest yet,” 2022.

[20] J. Haleby. REST-assured. [Online]. Available: http://rest-assured.io/
[21] Microsoft, “Bing Maps REST API,” https://docs.microsoft.com/en-us/

bingmaps/rest-services/.
[22] H. Wu, L. Xu, X. Niu, and C. Nie, “Combinatorial testing of restful

apis,” in ACM/IEEE International Conference on Software Engineering
(ICSE), 2022.

[23] “RestTestGen,” https://github.com/SeUniVr/RestTestGen.

http://www.simplecloud.info/
http://www.simplecloud.info/
https://www.openbankproject.com/openbankingmiddleware/
https://www.openbankproject.com/openbankingmiddleware/
https://github.com/KissPeter/APIFuzzer
https://github.com/Yelp/fuzz-lightyear
https://github.com/Yelp/fuzz-lightyear
https://github.com/Teebytes/TnT-Fuzzer
https://doi.org/10.1109/ICSE.2019.00083
https://doi.org/10.1109/ACCESS.2021.3056505
https://doi.org/10.1109/ACCESS.2021.3056505
https://doi.org/10.1002/stvr.1808
https://github.com/swagger-api/swagger-parser
https://github.com/swagger-api/swagger-parser
http://rest-assured.io/
https://docs.microsoft.com/en-us/bingmaps/rest-services/
https://docs.microsoft.com/en-us/bingmaps/rest-services/
https://github.com/SeUniVr/RestTestGen

	Introduction
	Core Components
	Extensible Components
	Concrete Implementation: Nominal and Error Testing Strategies
	Nominal Tester
	Error Tester

	Tool Adoption
	Case Study
	Experimental Procedure
	Results and Considerations

	Conclusion
	References

