
Towards Reverse Engineering of Industrial
Physical Processes?

Mariano Ceccato1[0000−0001−7325−0316], Youssef Driouich1[0000−0003−0384−464X],
Ruggero Lanotte2[0000−0002−3335−234X], Marco Lucchese1[0000−0002−4770−5441]

and Massimo Merro1[0000−0002−1712−7492]

1 Università degli Studi di Verona, Verona, Italy
2 Università dell’Insubria, Como, Italy

Abstract. In the last years, Industrial Control Systems (ICSs) have
been the target of an increasing number of cyber-physical attacks, i.e., se-
curity breaches in cyberspace that adversely alter the physical processes.
The main challenge attackers face in the development of cyber-physical
attacks with a precise goal is obtaining an adequate level of process com-
prehension. Process comprehension is defined as “the understanding of
system characteristics and components responsible for the safe delivery of
service” (Green et al. 2017). While there exist a number of tools (Nmap,
PLCScan, Xprobe, etc) one can use to develop a level of process compre-
hension through the targeting of controllers alone, they are limited by
functionality, scope, and detectability. Thus, to support the execution of
realistic cyber-physical attack scenario with adequate level of physical
process comprehension, we propose a black-box dynamic analysis reverse
engineering tool to derive from scans of memory registers of exposed con-
trollers an approximated model of the controlled physical process. Such
an approximated model is developed by inferring statistical properties,
business processes and, in particular, system invariants whose knowledge
might be crucial to build up stealthy (i.e., undetectable) attacks. We test
the proposed methodology on a non-trivial case study, taken from the
context of industrial water treatment systems.

Keywords: Industrial process; reverse engineering; business process; invariants

1 Introduction

Industrial Control Systems (ICSs) are physical and engineered systems whose op-
erations are monitored, coordinated, controlled, and integrated by a computing
and communication core [21, 30]. They represent the backbone of Critical In-
frastructures for safety-critical applications such as electric power distribution,
nuclear power production, and water supply.

? Research partially supported by the project “Dipartimenti di Eccellenza 2018-2022”,
funded by the Italian Ministry of Universities and Research (MUR).

2 M. Ceccato et al.

As industrial organizations are increasingly connecting their operational (OT)
network with the corporate network to improve business and operational effi-
ciency, ICSs are more and more exposed to sophisticated cyber attacks. Indeed,
in the last years, several cyber-physical attacks [13,20,23] have targeted ICSs to
take control of national critical infrastructures. Some notorious examples are: (i)
the STUXnet worm, which reprogrammed Siemens PLCs of nuclear centrifuges
in the nuclear facility of Natanz in Iran [10]; (ii) the CRASHOVERRIDE attack
on the Ukrainian power grid, otherwise known as Industroyer [31]; (iii) the recent
attack to a water treatment plant of Oldsmar, Florida, where hackers boosted
the level of sodium hydroxide to 100 times higher than normal [3].

Due to the increasing number of reported cyber-physical attacks, much re-
search work has been done to develop intrusion detection mechanisms (IDS)
to improve the resilience of ICSs to such attacks. Standard intrusion detection
techniques for ICSs rely on state estimations for detecting process anomalies
(see, for instance, [14, 18, 32]). An anomaly is observed if the residual error ex-
ceeds a predefined threshold. However, since there exist various sources of noise
in industrial processes, a fixed threshold between normal and abnormal sensor
measurements is normally hard to find.

A more efficient approach is the invariant rule-based method [5,6]. Invariant
rule-based methods make use of physical conditions that are known a-priori and
that must hold for all ICS states. Any observed physical process values that break
these rules are classified as anomalies. Typically, these invariant rules are defined
by system engineers during the design of an ICS. However, this manual process is
not only costly but also error-prone [7]. Thus, new frameworks have been recently
designed to systematically generate invariant rules from information contained
within ICS operational data logs [11]. Here, it is important to notice a couple of
important points: i) the invariants are generated under strict control of system
engineers by relying on the full knowledge of the system (sensors, actuator,
communication network, etc); ii) the invariants implemented and checked by
the IDS are chosen by system engineers between a (possibly quite) large set of
invariants to focus the detection on significant anomalies which are considered
potential signals of malicious activities. Invariant-based IDSs can be found in
recent versions of Secure Water Treatment system (SWaT) [25] at the center
of a series of annual cyber-physical defense exercises, referred to as Critical
Infrastructure Security Showdowns (CISS) [12].

In this paper, we take a different perspective: the attacker’s perspective.
As argued in depth by Green et al. [16, 17], in order to support the execution
of realistic cyber-physical attack scenarios the attacker requires an adequate
level of physical process comprehension, including: operational field (e.g., water
distribution rather than power generation), controllers (e.g., PLC, RTU, etc)
and their network topology, relevant measurements in the plant (e.g., pressure,
temperature, etc), exposed physical devices, such as sensors and actuators which
may be targeted by attackers’ manipulations, etc. Last but not least, in order to
bypass invariant-based IDSs, it would be important for the attacker to have an
approximated knowledge of the physical invariants of the system.

Towards Reverse Engineering of Industrial Physical Processes 3

In this respect, we propose a prototype reverse engineering tool based on a
black-box dynamic analysis to derive an approximated model of the controlled
physical process from scans of memory registers of the associated controllers.
Such an approximated model is derived by adapting well-known reverse engi-
neering techniques to infer statistical properties, business processes, and state
invariants from data logs capturing the state of controller registers at discrete
time steps, during a period of normal operation of the target ICS. In order to
show strengths and limitations of our analysis we apply our methodology to a
non-trivial case study, inspired by Lanotte et al. [22], and consisting of a net-
work of three PLCs to control (a simplified version of) the iTrust Secure Water
Treatment system (SWaT) [25].

Outline. In Section 2, we provide an overview of PLCs and the Modbus commu-
nication protocol. In Section 3, we describe our black-box dynamic analysis for
water-tank systems. In Section 4, we define a non-trivial running example. In
Section 5, we apply our black-box analysis to the running example of Section 4.
Section 6 draws general guidelines to apply our methodology to reverse engineer
other industrial processes, and discuss related and future work.

2 Background

We give some background on Programmable Logic Controllers (PLCs), used to
control industrial processes, and Modbus, a widely diffused ICS network protocol.

Programmable Logic Controllers. They are defined by the IEC 61131 standard [4]
as “a digitally operating electronic system, designed for use in an industrial envi-
ronment”. The standard also states that a PLC has a programmable memory for
the internal storage of user-oriented programs and a temporary memory to store
the program’s data during execution. PLCs have a simple ad-hoc architecture
based on a central processing module (CPU) and further modules supporting
physical inputs and outputs. The CPU executes the operating system of the
PLC and runs a logic program defined by the user, called user program. Addi-
tionally the CPU is responsible for the communication with additional devices
and manages the process image, i.e., a set of memory registers where all inputs
(sensor measurements) and outputs (actuator commands) are copied. The user
program operates on the process image rather than on the physical inputs and
outputs, and runs in scan cycles. Each scan cycle consists of three phases: (i)
reading inputs from the process image; (ii) execution of the controller code to
compute how the physical process should evolve; (iii) writing outputs in the
process image to govern the physical process as desired. The process image is
refreshed by the CPU at the beginning and the end of each cycle, in particular,
current physical inputs are copied in the process image and outputs are copied
to the physical outputs, respectively.

4 M. Ceccato et al.

The Modbus protocol. Modbus [26] is the first and most used internal point-to-
point communication protocol between PLCs, and between PLCs and HMI in-
terfaces. Modbus TCP basically embeds a Modbus frame into a TCP frame [26].
TCP/IP masters and slaves listen and receive Modbus data via port 502. Modbus
communications are of two types: (a) query/response (communications between
a master and a slave), or (b) broadcast (a master sends a command to all the
slaves). A Modbus transaction comprises a single query or response frame, or
a single broadcast frame. A Modbus frame message contains the address of the
intended receiver, the command the receiver must execute and the data needed
to execute the command.

Modbus maps the temporary memory of a PLC program to four different
kinds of registers: (i) discrete output coils; (ii) discrete input contacts; (iii) analog
input registers; (iv) analog output holding registers; the latter registers are also
used as general memory registers of different sizes (16-32-64 bits). The commands
used to manipulate these registers are called function codes and they can be
found within a Modbus frame. The function codes allow for reading coils (FC01),
discrete inputs (FC02), multiple holding registers (FC03), input registers (FC04),
and for writing single coils (FC05), single holding registers (FC06), multiple
coils (FC15), multiple holding registers (FC16). Last but not least, the Modbus
protocol does not have security features, meaning that an attacker could forge,
drop or modify Modbus frames without being noticed.

3 A black-box dynamic analysis for water tank systems

The first objective of our black-box analysis is to associate memory registers
of the target PLCs to relevant ICS concepts, such as measurements, actuator
commands, (absolute) setpoints (i.e., the range of measurements of physical vari-
ables), ICS network communications, etc. In particular, in our scans we focus on:
(1) discrete input contacts and analog input registers, as they may possibly hold
current measurements of physical variables; (2) discrete output coils and ana-
log output holding registers, as they may possibly hold actuator commands; (3)
analog output holding registers, when containing constant data such absolute set-
points; (4) analog output holding registers, when containing mutable data such as
Modbus-based messages between two PLCs or one PLC and the associated HMI.
For this purpose, in Section 3.1 we develop an ad-hoc scanning tool whose output
is then used as input for a graph analysis, the first step of our black-box analysis.

The second objective of our analysis is to put in relation the runtime evolu-
tions of these ICS concepts. At this regards, we go through a business process
analysis enhanced with a system-invariant analysis (resp. Sections 3.2 and 3.3).

3.1 A scanning tool for graph analysis of PLC registers

Our scanning tool returns a dataset of the values associated to the registers of
the target PLC, in a given time interval. Our approach was to leverage on the
IP Protocol Scan offered by the Nmap python module [24], to identify the target

Towards Reverse Engineering of Industrial Physical Processes 5

PLC within a range of IP addresses. Notice that we do not limit ourselves to the
scanning of the standard Modbus TCP port 502, as in many ICSs the protocol
Modbus runs on different ports (security through obscurity). Once both the IP
address of the PLC and the Modbus port are discovered, the capture of registers
values will start. We rely on the Ray module [27] to parallelize and distribute
the readings of the values of the registers. Our tool reads and saves the values
of all PLC registers in a given time frame with a desired time granularity. The
data collected in our scans include the following (see, for instance, Listing 1.1):
(1) IP addresses of the scanned PLCs, (2) port used by the Modbus protocol,
(3) timestamps of the scan, (4) values saved in each PLC register.

Listing 1.1. Registers capture

"127.0.0.1/8502/2022-05-03 12_10_00.591": {

"DiscreteInputRegisters": {"%IX0.0": "0"},

"InputRegisters": {"%IW0": "53"},

"HoldingOutputRegisters": {"%QW0": "0"},

"MemoryRegisters": {"%MW0": "40","%MW1": "80"},

"Coils": {"%QX0.0": "0"}}

Our tool offers also the possibility to sniff Modbus network traffic via a
MITM attack on the supervisory control network. Raw data collected during
this phase are reported below (see, for instance, Listing 1.2): (1) timestamp of
the involved Modbus commands, (2) (IP) addresses of communication source and
destination PLCs, (3) Modbus function code, e.g., read coil or write single

coil, (4) reference numbers, denoting the registers affected by the command,
(5) argument of the function code, e.g., the value to write in a coil, (6) other
fields: source/destination port, message length, request frame, etc.

Listing 1.2. Network captures

1 Time,Source,Destination,Protocol,Length,Function Code,

↪→ Destination Port,Source Port,Data,Frame length on the

↪→ wire,Bit Value,Request Frame,Reference Number,Info

2 2022-05-03 11:43:58.158,IP_PLC1,IP_PLC2,Modbus/TCP,76,Read

↪→ Coils,46106,502,,76,TRUE,25,,"Response: Trans: 62; Unit

↪→ : 1, Func: 1: Read Coils"

Then, our tool will make a mild graph analysis, based on R [2], to interpret
data gathered from PLCs scans to possibly uncover patterns and trends. In par-
ticular, we first identify registers holding mutable values: this will give us an idea
on which registers may contain measurements and/or actuator commands. Then,
we use run charts to visualize the runtime evolution of PLC registers: this will
allow to identify (relative) setpoints (bounding measurements) and information
about the evolution of measurements and/or actuations (e.g., cyclic behaviors).

6 M. Ceccato et al.

3.2 Business Process Analysis

The business process analysis is supported by the diagrams computed by DISCO
[1], a commercial tool for process mining. Starting from a (set of) event log(s)
consisting of the sequences of activities taken by a system, process mining is
capable of reconstructing the business process that shows how the process was
actually performed. The recovered business process is represented as a directed
graph (similar to a UML Activity Diagram), whose nodes represent the activities
in the process and edges represent the successor relations between activities.

Data available from PLC memory scanning and Modbus commands captured
from the network represent the execution trace of an industrial control system.
Business process mining can be run on these data to extract structured knowl-
edge, and build a set of graphical representations that should support human
understanding of the underlying industrial process.

In fact, Modbus commands capture quite naturally the intuition of a new
activity that has just started. In particular, Modbus write commands are trig-
gered from some change in the control system (e.g., a command to turn on an
actuator that was off), whereas read commands are not particularly interesting
to us because they are not triggered from changes in the system.

As regards memory scans, notice that they provide an instantaneous rep-
resentations of the PLC memory. Thus, in order to capture new activities we
compare the values of registers in two consecutive time instants (depending on
the chosen time granularity). For instance, when a boolean variable changes value,
an auxiliary activity is started with the transition from the old to the new value,
whereas when a numeric variable changes, an internal flag keeps track of the
change direction, which can be either ascending or descending. Only when the
trend changes, e.g., from ascending to descending, another auxiliary activity is
started, with the observed trend change.

The business process computed in this way is a valuable support for the
analyst to obtain the overall picture of the OT network of the target ICS. In
particular, it allows us to conjecture whether changes in the state of some actu-
ators correspond to a specific trend of the evolution of measurements (such as
increasing or decreasing evolution), and vice versa, whether monotone behaviors
of the measurements correspond to specific changes in the state of the actuators.
Furthermore, the business process allows us to possibly set a causality between
Modbus communications and changes in the state of the physical process.

3.3 Invariant analysis

For the invariant analysis we rely on Daikon [9], a framework allowing the dy-
namic detection of linear invariants, based on a machine learning technique that
can be applied to arbitrary data. Daikon’s invariant detection runs a program (or
takes an execution run as input), observes the values that the program computes,
and then reports properties holding in the observed executions.

Thus, we feed Daikon with our timestamped dataset of PLC memory scans
enriched with a partial bounded history of registers, and information derived

Towards Reverse Engineering of Industrial Physical Processes 7

from the previous phases, such as stable states, relative setpoints (in the absence
of absolute ones), and slopes of the measured data.

In the following, we give a few examples of what kind of invariants we can
derive from our enriched datasets associated to memory registers of single PLCs.

– Check whether some measurement is actually bounded by some (absolute
and/or relative) setpoint (both the measurements and the setpoints have
been possibly identified in the previous phases);

– Check whether state changes of actuators occur when measurements ap-
proach identified setpoints, and vice versa check if when measurements ap-
proach setpoints some actuator regularly changes its state;

– Check whether state invariants of some actuators correspond to a specific
trend of the evolution of measurements (such as increasing or decreasing
evolution), and vice versa, check whether monotone behaviors of the mea-
surements correspond to specific state invariants of certain actuators.

Such invariants would allow the analyst to derive a more precise causality relation
between sensor measurements and actuator commands.

Our invariant analysis could be used to derive more complex invariants in-
volving more PLCs at the same time. In general, actuations occurring in one
PLC might be related to changes of the measurements of subsystems governed by
other PLCs. Furthermore, by looking at more PLCs at the same time, we could
find potential communication messages derived from invariants on the states of
specific memory registers of communicating PLCs. Of course, as expected, and
as pointed out in [7], when considering two or more physical devices at the same
time we may easily have a combinatorial explosion of the associated invariants.
For this reason, Daikon is able to detect invariants over at most three variables.

4 Running example

In this section, we describe a running example, implemented by Lanotte et
al. [22], consisting of a network of three PLCs to control (a simplified version
of) the iTrust Secure Water Treatment system (SWaT) [25]. SWaT represents a
scaled down version of a real-world industrial water treatment plant. The system
consists of six stages, each of which deals with a different treatment, including:
chemical dosing, filtration, dechlorination, and reverse osmosis. For simplicity,
in our use case, depicted in Figure 1, we consider only three stages.

In the first stage, raw water is pumped in a 80 gallons tank T-201, via a
pump P-101. A valve MV-301 connects tank T-201 with a filtration unit that
releases the treated water in a second tank T-202 (with a capacity of 20 gallons).
Here, we assume that the flow of the incoming water in T-201 is greater than
the outgoing flow passing through the (motor) valve MV-301. The water in T-
202 flows into a reverse osmosis unit to reduce inorganic impurities. In the last
stage, the water coming from the reverse osmosis unit is either distributed as
clean water, if required standards are met, or stored in a backwash tank T-203
and then pumped back, via a pump P-103, to the filtration unit. Here, we assume

8 M. Ceccato et al.

STAGE 1 STAGE 2 STAGE 3

CLEAN
WATERP-101

T-201

MV-301

T-202

T-203

P-102

Filtration
unit

Reverse
osmosis
unit

high1

low1

.

.

.

high2

.

.

.

low2

high3
.
.
.

low3

on,off
open,close

PLC-1 PLC-2 PLC-3

on,off

level

request

level level

Fig. 1. A simplified Industrial Water Treatment System.

that tank T-202 is large enough to receive the whole content of tank T-203 at
any moment (the capacity of T-203 is 1 gallon).

Each tank is controlled by a dedicated PLC. In the following, we give the
descriptions of the user programs of the PLCs associated to each tank.

Let us start with the user program of PLC1 managing the tank T-201. In-
tuitively, when the pump P-101 is off, the level of water in T-201 drops until
it reaches its low setpoint (hard coded in the memory register) low1; when this
happens the pump is turned on and it remains so until the tank is refilled,
reaching its high setpoint (hard-coded in the memory register) high1. Thus, for
instance, if the pump is off then PLC1 checks the water level of the tank T-201,
distinguishing between three possible states. If T-201 reaches its low setpoint
low1 then the pump is turned on and the valve is closed. Otherwise, if the tank
T-201 is at some intermediate level between the low and the high setpoint then
PLC1 listens for requests arriving from PLC2 to open/close the valve. Precisely,
if PLC1 gets an open request then it opens the valve, letting the water flow
from T-201 to T-202, otherwise, if it gets a close request then it closes the valve;
in both cases the pump remains off. If the level of the tank T-201 reaches its
high setpoint high1 then the requests of water coming from PLC2 are served as
before, but the pump is eventually turned off.

PLC2 checks for the water level of tank T-202 and behaves accordingly. If
the level reaches the low setpoint (hard-coded in the memory register) low2
then PLC2 sends a request to PLC1, via a proper Modbus channel to open the
valve MV-301 that lets the water flow from T-201 to T-202, and then returns.
The channel transmission is implemented by copying a boolean value stored in
a memory register of PLC2 into a corresponding register of PLC1. Otherwise, if
the level of tank T-202 reaches the high setpoint high2 then PLC2 asks PLC1 to
close the valve, via the same channel, and then returns. Finally, if the tank T-202

Towards Reverse Engineering of Industrial Physical Processes 9

is at some intermediate level between low2 and high2 then the valve remains
open (respectively, closed) when the tank is refilling (respectively, emptying).

Finally, PLC3 checks for the water level of the backwash tank T-203 and
behaves accordingly. If the level reaches the low setpoint low3 then PLC3 turns
off a pump P-103, and then returns. Otherwise, if the level of T-203 reaches the
high setpoint high3 then the pump P-103 is turned on until the whole content
of T-203 is pumped back into the filtration unit of T-202.

5 A methodology to extrapolate process comprehension

The black-box analysis of Section 3 is now applied on the SWaT system presented
in Section 4, as a concrete case study.

Our methodology supports a top-down understanding process, in which the
attacker starts from the big picture of the industrial process, where all the col-
lected data and trends are available at once, and they are computed in an au-
tomated way. Based on the analysis results at the higher level of details, the at-
tention gradually moves to a lower and lower level of detail, by specifying where
to focus and what part of the system to isolate for further analysis and compre-
hension. Of course, automated inference can in principle report an overwhelming
number of system properties and invariants, and it could be hard to dig into them
to identify the most informative ones according to the system under scrutiny. In
this respect, a business process analysis will be helpful as it allows us to high-
light relevant trends and to conjecture interesting properties. Subsequently, an
invariant analysis will allow us to refine such partial knowledge to confirm or
disprove trends and conjectures derived in the business process analysis.

5.1 Data Collection and Graph analysis

The data collection process has been conducted for six hours, getting one data
point per second, as the entire cycle of the system takes around 30 minutes. Each
data point consists of 168 attributes (55 registers plus 1 auxiliary slope attribute
for each PLC, explained later).

As IP addresses of PLCs are hard to read, we automatically replace them by
abstract names which are arbitrarily computed by concatenating the prefix PLC

to a progressive unique integer (e.g., PLC1 and PLC2).
The analysis starts by detecting the type of data contained in registers and

whether they are (significant) constant or mutable data.

Property 1. The registers PLC1 MemoryRegisters MW0, PLC1 MemoryRegisters MW1,

PLC2 MemoryRegisters MW0, PLC2 MemoryRegisters MW1, PLC3 MemoryRegisters MW0

and PLC3 MemoryRegisters MW1 contain constant integer values (40, 80, 10, 20,
0 and 10, respectively).

Property 2. PLC1 Coils QX00, PLC1 Coils QX01, PLC1 Coils QX02, PLC2 Coils QX00,

PLC3 Coils QX00 and PLC3 Coils QX01 contain mutable Boolean values.

10 M. Ceccato et al.

Fig. 2. Sample of the execution traces of the InputRegisters IW0 of the three PLCs.

Property 3. The PLC registers PLC1 InputRegisters IW0, PLC2 InputRegisters IW0

and PLC3 InputRegisters IW0 contain mutable integer values.

Here, the input registers mentioned in Property 3 represent an interesting
aspect to investigate further, as they might contain measurements related to the
industrial process. Figure 2 shows a trace of their evolution collected during the
capture by means of our tool. We can speculate that the trends of these registers
are linked to a recurrent cyclic behavior, typical of tank systems.

Conjecture 1. Input registers PLC1 InputRegisters IW0, PLC2 InputRegisters IW0

and PLC3 InputRegisters IW0 contain measurement values.

Moreover, from Figure 2 we can identify the range of values for the input
registers of the three PLCs.

Conjecture 2 (Relative setpoints).

– The relative setpoints of PLC1 InputRegisters IW0 are 40 and 80.
– The relative setpoints of PLC2 InputRegisters IW0 are 10 and 20.
– The relative setpoints of PLC3 InputRegisters IW0 are 0 and 9.

5.2 Business Process Analysis

We move on to the business process analysis to highlight relevant system behav-
iors.

Figure 3(a) is automatically computed by business process mining, using data
about PLC2 states and Modbus commands. Here, all messages originate from
PLC2, and they are all directed to PLC1; the communicated messages are then
written in the coils PLC1 Coils QX02.

Property 4. PLC2 sends messages to PLC1 which are recorded in PLC1 Coils QX02.

Towards Reverse Engineering of Industrial Physical Processes 11

We also observe that PLC2 InputRegister IW0 contains descending values
for most of the time (33 seconds). Then, PLC2 Coils QX00 switches to true and
shortly after (either 1 or 0 seconds, depending on the path) the input register
inverts the trend and starts an ascending trend, that lasts for 13 seconds. After
this interval of time, the coils return to false and shortly afterwards (2 seconds),
the input register starts a descending trend.

Conjecture 3. PLC2 Coils QX00 determines the trend in tank T-202.

In Figure 3(a), we can also notice that shortly after a command from PLC2
is sent to PLC1 (to set PLC1 Coils QX02 to false, but PLC1 is not show in
this diagram), PLC2 InputRegister IW0 inverts the trend that starts descend-
ing. Conversely, shortly after PLC1 Coils QX02 moves to true, the input register
starts an ascending trend.

We can now analyze the states of PLC1 in Figure 4. In the bottom-left part
of the diagram, we observe that when PLC1 Coils QX00 switches to true, an
ascending trend in PLC1 InputRegister IW0 is started. On the other hand, when
PLC1 Coils QX00 switches to false, after a while the trend becomes descending.

Conjecture 4. When PLC1 Coils QX00 changes its state from false to true, it
activates an ascending trend in tank T-201.

In Figure 3(b), a cyclic behavior is observed on PLC3, and involves two coils.
When PLC3 InputRegister IW0 starts an ascending trend, PLC3 Coils QX02 is
immediately set to false. Then, after quite a long time (27 minutes), PLC3 Coils QX00

is set to true, and shortly after (4 seconds) the trend in the input register
switches to descending for 32 seconds. Then, almost at the same time PLC3 Coils QX00

switches to false and coils PLC3 Coils QX02 switches to true. Then, the trends
in the input register are reverted again to restart the cycle.

Conjecture 5. Coils PLC3 Coils QX00 activates a decreasing trend in tank T-203,
whereas coils PLC3 Coils QX02 activates an increasing trend.

5.3 Process Invariants analysis

In this section, we confirm and refine the results obtained in the previous steps
of the analysis looking for system invariants using the Daikon framework.

Setpoints. First of all, we confirm Conjecture 2 on relative setpoints of the water
levels: six specific memory registers contain constant values coinciding with the
lower and the upper relative setpoints of the three tanks. Actually, these memory
registers contain the absolute setpoints:

PLC1_InputRegisters_IW0 >= PLC1_MemoryRegisters_MW0 == 40.0
PLC1_InputRegisters_IW0 <= PLC1_MemoryRegisters_MW1 == 80.0
PLC2_InputRegisters_IW0 >= PLC2_MemoryRegisters_MW0 == 10.0
PLC2_InputRegisters_IW0 <= PLC2_MemoryRegisters_MW1 == 20.0
PLC3_InputRegisters_IW0 >= PLC3_MemoryRegisters_MW0 == 10.0
PLC3_InputRegisters_IW0 <= PLC3_MemoryRegisters_MW1 == 0.0

Property 5. The MemoryRegisters MW0 and MemoryRegisters MW1, associated
to each PLC, contain, respectively, the lower and the upper absolute setpoints.

12 M. Ceccato et al.

PLC2_Coils_QX00 [False->True]

PLC2 -> PLC1 [2=True]

59
0 secs

PLC2_InputRegisters_IW0 [ASCENDING->DESCENDING]

12
1 secs

12
0 secs

59
2 secs

PLC2_Coils_QX00 [True->False]

49
33 secs

PLC2 -> PLC1 [2=False]

22
33 secs

49
0 secs

PLC2_InputRegisters_IW0 [DESCENDING->ASCENDING]

21
1 secs

21
0 secs

49
0 secs

58
13 secs

12
13 secs

PLC3_Coils_QX02 [False->True]

PLC3_Coils_QX00 [True->False]

2
27 mins

PLC3_InputRegisters_IW0 [ASCENDING->DESCENDING]

2
4 secs

PLC3_Coils_QX00 [False->True]

2
32 secs

PLC3_Coils_QX02 [True->False]

2
0 secs

PLC3_InputRegisters_IW0 [DESCENDING->ASCENDING]

2
12 secs

2
0 secs

(a) (b)

Fig. 3. (a) states in PLC2 and Modbus commands, (b) states in PLC3.

Communication channels. We are in position to validate and refine Property 4,
stating the presence of a communication channel from PLC2 to PLC1. More pre-
cisely, from PLC1 Coils QX01 == PLC1 Coils QX02 == PLC2 Coils QX00 we derive:

Property 6. There is a communication channel from PLC2 to PLC1: what it is
written in PLC2 Coils QX00 is then copied in both registers PLC1 Coils QX02

and PLC1 Coils QX01.

Actuator changes and levels’ evolution. We use Daikon to investigate the rela-
tions between the coils and the measurements.

Let us check what happens when the state of PLC1 Coils QX01 changes. In
this case, nothing relevant arises from the analysis of PLC3. However, we get
significant information from PLC1 and PLC2. As regards PLC2, when the coils
PLC1 Coils QX01 changes from true to false, the measurements of tank T-202
reach the upper absolute setpoint as the level of water was increasing:

PLC2_InputRegisters_IW0 == PLC2_MemoryRegisters_MW2 == 20.0 && PLC2_slope > 0 .

Moreover, when PLC1 Coils QX01 moves from false to true, the measurements
of T-202 reach the lower absolute setpoint as the water level was decreasing:

PLC2_InputRegisters_IW0 == PLC2_MemoryRegisters_MW1 == 10.0 && PLC2_slope < 0 .

Now, let us check what happens when PLC1 Coils QX01 remains unchanged
for a significant amount of time (say 6 seconds). In this case, when the coils
remains true, the level of water in T-202 increases, as PLC2 slope > 0.3 Whereas

3 The slope is an auxiliary attribute indicating the trend of the measurement.

Towards Reverse Engineering of Industrial Physical Processes 13

PLC1_Coils_QX01 [False->True]

PLC1_Coils_QX02 [False->True]

71
0 secs

PLC1_Coils_QX01 [True->False]

31
36 secs

PLC1_Coils_QX02 [True->False]

4
35 secs

PLC1_Coils_QX00 [False->True]

35
12 secs

64
0 secs

PLC1_Coils_QX00 [True->False]

4
7 secs

15
12 secs

30
7 secs

PLC1_InputRegisters_IW0 [ASCENDING->DESCENDING]

20
0 secs

PLC1_InputRegisters_IW0 [DESCENDING->ASCENDING]

34
1 secs

34
8 secs

18
23 secs

15
22 secs

18
12 secs

17
0 secs

Fig. 4. Business process with states in PLC1 and Modbus commands.

when PLC1 Coils QX01 remains false the level of the tank is not increasing, as
PLC2 slope <= 0. As PLC2 Coils QX00 is the only used coils in PLC2, from
the equalities PLC1 Coils QX01 == PLC1 Coils QX02 == PLC2 Coils QX00 we can reformulate
Conjecture 3 as follows:

Property 7. The level in T-202 increases iff PLC1 Coils QX01 == true. The level
in T-202 is non-increasing iff PLC1 Coils QX01 == false.

However, PLC1 Coils QX01 is controlled by PLC1, and by Conjecture 4 we
believe that PLC1 Coils QX00 determines increasing trends in tank T-201. Thus,
let us check what happens when PLC1 Coils QX00 and PLC1 Coils QX01 are
both false, i.e., no incoming water in both tanks T-201 and T-202. In this case,
the invariant analysis says that the level in tank T-201 is stable: PLC1 slope

== 0. On the other hand, when PLC1 Coils QX00 is false and PLC1 Coils QX01

is true the level in T-201 is decreasing while the level in T-202 is increasing:
PLC1 slope < 0 and PLC2 slope > 0. Recall the following invariant: PLC1 Coils QX01

== PLC1 Coils QX02. Now, we have full knowledge about all coils of PLC1 to re-
fine Conjecture 4 on the trend of the level of water in T-201:

Property 8. The level of water in T-201 increases if and only if PLC1 Coils QX00

== true. The level of water in T-201 decreases if and only if PLC1 Coils QX00

== false and PLC1 Coils QX01 == true.

Let us check what happens when PLC3 Coils QX00 remains unchanged for
a significant amount of time (say 5 seconds). In this case, when the coils re-
mains true, the level of water in T-203 decreases, as PLC3 slope < 0. Whereas,

14 M. Ceccato et al.

when PLC3 Coils QX00 remains false the level of the tank is not decreasing, as
PLC3 slope >= 0. Thus, we are able to confirm the first part of Conjecture 5.

Property 9. The level of water in T-203 decreases iff PLC3 Coils QX00 == true.
The level of water in T-203 is non-decreasing iff PLC3 Coils QX00 == false.

Actuator changes and setpoints. Now, we try to investigate the relation be-
tween the coils PLC1 Coils QX00 and the setpoints in T-201. In particular, when
the coils changes from true to false, the measurements have reached the up-
per absolute setpoint: PLC1 InputRegisters IW0 == PLC1 MemoryRegisters MW1 == 80.0. Con-
versely, when PLC1 Coils QX00 changes from false to true, the measurements
have reached the lower setpoint: PLC1 InputRegisters IW0 == PLC1 MemoryRegisters MW0 ==

40.0. Formally,

Property 10. When PLC1 Coils QX00 changes its state from true to false, the
tank T-201 reaches the upper absolute set point; when it changes from false to
true, the tank reaches the lower absolute set point.

Now, we try to investigate the relation between the coils PLC3 Coils QX00

and the setpoints in T-203. In particular, when the coils changes from false to
true, the measurements have reached the upper absolute setpoint: PLC3 InputRegisters IW0

== PLC3 MemoryRegisters MW1 == 10.0. Conversely, when PLC3 Coils QX00 changes from
true to false, the measurements have reached the lower setpoint: PLC3 InputRegisters IW0

== PLC3 MemoryRegisters MW0 == 0.0. Formally,

Property 11. When PLC3 Coils QX00 changes its state from false to true, the
tank T-203 reaches the upper absolute set point; when it changes from true to
false, the tank reaches the lower absolute set point.

5.4 Discussion

At the end of our black-box analysis, we derived a quite significant comprehen-
sion on the industrial process of our case study in Section 4. Summarizing, we
were able to get the following information:
– which registers contain measurements of the physical process (e.g., the water

level) and their operative working ranges (setpoints);
– which registers contain actuator commands (e.g., pumps and valves)
– which conditions trigger changes in actuators (e.g., specific water levels trig-

ger pumps and valves) and vice versa the causal relation between the state
of actuators and the governed physical process;

– how PLCs communicate, and how such communications affect the underlying
physical process.

On the other hand, there a number of information on the physics that we are not
able to derive, such as: (i) sources and sinks of water in the system; (ii) the ex-
istence of pipelines between tanks; (iii) which actuators handle incoming or out-
coming flows, for instance in Property 8 we cannot derive that PLC1 Coils QX00

is actually associated to a pump governing the incoming flow in tank T-201.

Towards Reverse Engineering of Industrial Physical Processes 15

6 Conclusions, related and future work

From our black-box analysis in the previous section, we can draw general guide-
lines to apply our methodology to reverse engineer other industrial processes.

– Two phases methodology: Reverse engineering of an industrial process purely
based on register scans and network captures requires first to acquire a gen-
eral idea of the system. This consists in elaborating conjectures on how the
industrial process works and how it is controlled. The subsequent, more for-
mal, analysis is meant to provide support for these conjectures and build
factual knowledge on the control system.

– Correct estimation of sampling frequency: The attacker should have enough
information to understand if she is tackling a slow physical process, such as a
water-tank system, or a faster process, involving, for instance, rotor engines.
In fact, the most appropriate frequency to read PLCs register depends on
the intrinsic speed of the process, as a too slow sampling rate might miss im-
portant events (e.g., the maximum level of water before it starts decreasing)
while a too high sampling rate might confuse measurement error and actual
trends (e.g., spurious trend inversions). If this information is not available,
initial scans should be visualized (such as Figure 2) to tune sampling rate.

– Working conditions: The attacker should start by identifying the nominal
working conditions, consisting of the operative ranges of the observed mea-
surements. In fact, the typical responsibility of a control system is to keep
the physical system within safe and secure working conditions.

– Trigger conditions: These are conditions on the state of physical variables
triggering a reaction of the controller via actuator commands to drive the
physical system to a desired operational state. Identifying these trigger con-
ditions is the subsequent goal of the attacker.

– Causal relation between actuator commands and physical evolution: Once ac-
tuator commands are sent by the controller, some changes should be observed
in the physical process. Understanding this causal relation would allow the
attacker to explain the reaction time of the physical process.

– Physical meaning for pieces of evidence: When the analysis is able to deliver a
large number of process invariants, the attacker should be able to understand
which invariants are relevant in invariant-based IDSs of the target system.

Related work. Attackers often aim at attacking programs to alter their execution
flow, for instance to subvert the outcome of a license check. Studies with pro-
fessional hackers and practitioners [8] revealed that the actual attack commonly
requires a preliminary investigation on the target program. Either static analysis
(e.g., decompiling) and dynamic analysis (e.g., debugging) typically support a
malicious reverse engineering activity, aiming at understanding the behavior of
the target program, to locate interesting assets and to plan an attack strategy.

In the context of industrial control systems, Keliris and Maniatakos [19]
proposed a methodology to automate the reverse engineering process of PLC
binaries. They develop a framework whose modules are instantiated for reversing
binaries compiled with CODESYS, a widely used compiler for PLCs.

16 M. Ceccato et al.

Identification of hybrid dynamical systems, i.e., the automatization of the
mechanistic modeling of hybrid dynamical systems from observed data, has seen
a number of results spanning over two decades [29]. More recently, Yuan et al. [34]
proposed a general framework for discovering cyber-physical systems directly
from data. The framework involves the identification of physical systems together
with their dynamics, as well as the inference of transition logics. More precisely,
the proposed framework tries to understand the underlying mechanism of cyber-
physical systems as well as make predictions concerning their state trajectories
based on the discovered models.

Feng et al. [11] have recently designed a framework to systematically generate
invariant rules from information contained within ICS operational data logs [11].
Such invariants are then selected by system engineers to generate invariant-based
IDSs. Experimental results by the same authors [7,11] show that under the same
false positive rate, invariant-based IDS ability to detect anomalies outperforms
the residual error-based detection model by a clear margin.

Few works have addressed the need for process comprehension from an at-
tacker’s perspective; a critical precondition when seeking to achieve operational
impact beyond simple denial-of-service [15,17,33].

Winnicki et al. [33] proposed an alternative approach to discover the dynamic
behaviour of a cyber-physical system with probing. They slightly perturb the
system and observe how the controls react to take the system back to the nominal
status. The challenge for the attacker is to alter the system enough to make
observable changes, but changes should be small enough to not be revealed as
anomalies by potential intrusion detection systems.

Green et al. [17] provided two practical examples based on a Man-In-The-
Middle scenario, demonstrating the types of information an attacker would need
obtain, collate, and comprehend, in order to begin targeted ICS process manip-
ulation and detection avoidance. The paper provides a step-by-step example of
ICS reconnaissance, required for the successful establishment of process compre-
hension, and execution of network-based and host-based MITM attacks.

More recently, Green et al. [16] proposed the concept of Process Compre-
hension at a Distance, a novel methodological and automatable approach to the
system-agnostic identification of PLC library functions, leading to the targeted
exfiltration of operational data, manipulation of control-logic behavior, and es-
tablishment of covert command and control channels through unused memory.

Future work. Our preliminary results pave the way towards novel opportunity of
research, meant to deepen the knowledge on how automated reverse engineering
might support and facilitate attackers in conducting campaigns against ICSs.

First of all, we are interested in quantifying the gap between the invariants
that dynamic analysis can infer (attacker perspective) and the full list of those
invariants that can be written by an analyst with the complete knowledge of
the industrial system [5,6,11] (defender perspective). This gap might effectively
estimate the distance between an invariant-based intrusion detection system and
an attacker, to measure the competitive advantage of the defender (if any) and,
consequently, the detection potential of an IDS.

Towards Reverse Engineering of Industrial Physical Processes 17

Our automatically inferred invariants can be used to understand an ICS and
support manual attack to it. However, a second line of research might consist in
using these invariants also to (maybe partially) automate an attack that is ca-
pable of compromising an industrial process (e.g., to delay the water cleaning
process) in a way that does not violate invariants (e.g., with a nominal level
decreasing rate), with the final objective to be hard to detect by a defender.

Last but not least, as Daikon [9] detects only linear relations over at most
three variables, we plan to investigate other tools, such as DIG [28], to detect
nonlinear equalities and inequalities of arbitrary degrees, defined over program
variables.

Acknowledgements. We thank the anonymous reviewers for valuable comments.

References

1. Fluxicon disco, https://fluxicon.com/disco/
2. R project for statistical computing (1993), https://www.r-project.org/
3. A Hacker Tried to Poison a Florida City’s Water Supply (2021), https://www.

wired.com/story/oldsmar-florida-water-utility-hack/, accessed: 2022-05-14
4. 61131-3, I.S.I.: Programmable Controllers - Part 3: Programming Languages. sec-

ond ed., Int’l Electrotechnical Commission (2003)
5. Adepu, S., Mathur, A.: Using Process Invariants to Detect Cyber Attacks on a

Water Treatment System. In: SEC. IFIP Advances in Information and Communi-
cation Technology, vol. 471, pp. 91–104. Springer (2016)

6. Adepu, S., Mathur, A.: From Design to Invariants: Detecting Attacks on Cyber
Physical Systems. In: QRS-C. pp. 533–540. IEEE (2017)

7. Adepu, S., Mathur, A.: Distributed Attack Detection in a Water Treatment Plant:
Method and Case Study. IEEE Trans. Dependable Secur. Comput. 18(1), 86–99
(2021)

8. Ceccato, M., Tonella, P., Basile, C., Falcarin, P., Torchiano, M., Coppens, B.,
De Sutter, B.: Understanding the behaviour of hackers while performing attack
tasks in a professional setting and in a public challenge. Empirical Software Engi-
neering 24(1), 240–286 (Feb 2019)

9. Ernst, M.D., Perkins, J.H., Guo, P.J., McCamant, S., Pacheco, C., Tschantz, M.S.,
Xiao, C.: The Daikon system for dynamic detection of likely invariants. Sci. Com-
put. Program. 69(1-3), 35–45 (2007)

10. Falliere, N., Murchu, L., Chien, E.: W32.Stuxnet Dossier (2011)
11. Feng, C., Palleti, V.R., Mathur, A., Chana, D.: A Systematic Framework to Gen-

erate Invariants for Anomaly Detection in Industrial Control Systems. In: NDSS.
The Internet Society (2019)

12. Furtado, F., Shrivastava, S., Mathur, A., Goh, N.: The Design of Cyber-Physical
Exercises (CPXs). In: CyCon. IEEE (2022)

13. Giraldo, J., Urbina, D., Cardenas, A., Valente, J., Faisal, M., Ruths, J., Tippen-
hauer, N.O., Sandberg, H., Candell, R.: A Survey of Physics-Based Attack De-
tection in Cyber-Physical Systems. ACM Computing Surveys 51(4), 76:1–76:36
(2018)

14. Goh, J., Adepu, S., Tan, M., Lee, Z.S.: Anomaly Detection in Cyber Physical Sys-
tems Using Recurrent Neural networks. In: HASE. pp. 140–145. IEEE Computer
Society (2017)

https://fluxicon.com/disco/
https://www.r-project.org/
https://www.wired.com/story/oldsmar-florida-water-utility-hack/
https://www.wired.com/story/oldsmar-florida-water-utility-hack/

18 M. Ceccato et al.

15. Gollmann, D., Gurikov, P., Isakov, A., Krotofil, M., Larsen, J., Winnicki, A.:
Cyber-Physical Systems Security: Experimental Analysis of a Vinyl Acetate
Monomer Plant. In: CCPS@ASIACCS. pp. 1–12. ACM (2015)

16. Green, B., Derbyshire, R., Krotofil, M., Knowles, W., Prince, D., Suri, N.: PCaaD:
Towards automated determination and exploitation of industrial systems. Comput.
Secur. 110, 102424 (2021)

17. Green, B., Krotofil, M., Abbasi, A.: On the Significance of Process Comprehension
for Conducting Targeted ICS attacks. In: CPS-SPC@CCS. pp. 57–67. ACM (2017)

18. Hadziosmanovic, D., Sommer, R., Zambon, E., Hartel, P.H.: Through the eye of
the PLC: semantic security monitoring for industrial processes. In: ACSAC. pp.
126–135. ACM (2014)

19. Keliris, A., Maniatakos, M.: ICSREF: A Framework for Automated Reverse En-
gineering of Industrial Control Systems Binaries. In: NDSS. The Internet Society
(2019)

20. Krotofil, M., Gollmann, D.: Industrial control systems security: What is happen-
ing? In: INDIN. pp. 670–675. IEEE (2013)

21. Lanotte, R., Merro, M.: A Calculus of Cyber-Physical Systems. In: LATA. LNCS,
vol. 10168, pp. 115–127. Springer (2017)

22. Lanotte, R., Merro, M., Munteanu, A.: Industrial Control Systems Security via
Runtime Enforcement. ACM TOPS (To appear). https://doi.org/10.1145/

3546579

23. Lanotte, R., Merro, M., Munteanu, A., Viganò, L.: A Formal Approach to Physics-
based Attacks in Cyber-physical Systems. ACM TOPS 23(1), 3:1–3:41 (2020)

24. Lyon, G.: Nmap (1997), https://nmap.org/
25. Mathur, A.P., Tippenhauer, N.O.: SWaT: a water treatment testbed for research

and training on ICS security. In: CySWater@CPSWeek. pp. 31–36. IEEE Computer
Society (2016)

26. Modbus, I.: Modbus application protocol specification v1. 1a. North Grafton, Mas-
sachusetts (www. modbus. org/specs. php) (2004)

27. Moritz, P., Nishihara, R., Wang, S., Tumanov, A., Liaw, R., Liang, E., Elibol,
M., Yang, Z., Paul, W., Jordan, M.I., I., S.: Ray: A Distributed Framework for
Emerging AI Applications. In: USENIX. pp. 561–577. USENIX Association (2018)

28. Nguyen, T., Kapur, D., Weimer, W., Forrest, S.: DIG: A Dynamic Invariant Gen-
erator for Polynomial and Array Invariants. ACM Trans. Softw. Eng. Methodol.
23(4), 30:1–30:30 (2014)

29. Paoletti, S., Juloski, A.L., Ferrari-Trecate, G., Vidal, R.: Identification of Hybrid
Systems: A tutorial. Eur. J. Control 13(2-3), 242–260 (2007)

30. Rajkumar, R., Lee, I., Sha, L., Stankovic, J.A.: Cyber-physical systems: the next
computing revolution. In: DAC. pp. 731–736. ACM (2010)

31. Slowik, J.: Anatomy of an attack: Detecting and defeating CRASHOVERRIDE.
VB2018, October pp. 1–23 (2018)

32. Urbina, D.I., Giraldo, J.A., Cárdenas, A.A., Tippenhauer, N.O., Valente, J., Faisal,
M.A., Ruths, J., Candell, R., Sandberg, H.: Limiting the Impact of Stealthy Attacks
on Industrial Control Systems. In: CCS. pp. 1092–1105. ACM (2016)

33. Winnicki, A., Krotofil, M., Gollmann, D.: Cyber-Physical System Discovery: Re-
verse Engineering Physical Processes. In: CPSS@ASIACCS. pp. 3–14. ACM (2017)

34. Yuan, Y., Tang, X., Zhou, W., Pan, W., Li, X., Zhang, H.T., Ding, H., Goncalves,
J.: Data driven discovery of cyber physical systems. Nature Communications 10(1),
4894 (2019)

https://doi.org/10.1145/3546579
https://doi.org/10.1145/3546579
https://doi.org/10.1145/3546579
https://doi.org/10.1145/3546579
https://nmap.org/

	 Towards Reverse Engineering of Industrial Physical Processes

