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Abstract—The degree of code coverage reached by a test
suite is an important indicator of the thoroughness of testing.
Most coverage tools for Android apps work at the bytecode
level and provide no information to developers about which
source code lines have not yet been exercised by any test case.
In this paper, we present COSMO, the first fully automated
Android app instrumenter that operates at the source code level
in a completely transparent way, making it fully compatible
with existing system level testing technologies and Android test
generators. The experiments that we have conducted on a large
benchmark of Android apps show that COSMO can successfully
instrument most apps without altering their execution traces,
introducing a small, acceptable runtime overhead.

Index Terms—code coverage, instrumentation, android testing

I. INTRODUCTION

The complexity of mobile applications (hereafter, apps)
keeps growing, as apps provide always more advanced services
(e.g., in the banking or health care domains) to the users. In
order to ensure adequate testing of the software, monitoring
the level of code coverage is regarded as a best, highly
recommended practice. It is used by developers and testers
to understand the degree of exploration of the software [1], to
create test cases [2] and to compare or assess the adequacy
of test suites [3]. Code coverage has become an essential
adequacy criterion also in the mobile world [4] [5] [6], but
measuring code coverage for mobile apps is far from trivial.

In the absence of the source code, code coverage can be
measured by instrumenting the smali bytecode of the app, as
done for instance by ACVTool [7]. However, the assessment
of the proportion of covered smali code is less significant for a
developer than the evaluation of the covered source code lines.
In fact, high coverage of smali code does not always mean a
correspondingly high coverage of the source code. Moreover,
understanding how to cover the smali code portions not yet
covered by the current test suite is way more difficult for
developers than reasoning directly on the uncovered source
code. On the other hand, existing solutions to instrument
directly the Java source code of an Android app are severely
limited. Generic tools for Java, such as JaCoCo [8], cannot
be applied to Android easily, while Android-specific solutions
[9], [10] work only for unit level test cases written in Junit
and cease to work at the system level, when performing GUI
oriented end-to-end testing of an Android app – a scenario that

is prevalent in industrial Android testing and that is supported
by existing Android test generators [6], [11], [12].

To overcome these limitations, we propose COSMO (COde
coverage via jacoco inStruMentatiOn), a tool that enables
automatic instrumentation of Android apps. COSMO can
automatically modify the source code of the Android app.
In addition, COSMO can operate as a black-box tool, in-
strumenting an app starting from the compiled app. COSMO
is the only Android coverage tool that can instrument the
source code of recent (i.e., Gradle > 2.13) apps (based on
Java or Kotlin), transparently from the user and supporting
fine grained analysis of the uncovered code portions directly
on the source code.

The paper provides the following contributions:
• An approach to instrument apps at the level of classes,

methods and lines of code, starting from source code or
from the APK.

• An implementation of the instrumentation approach in
COSMO, which can be easily integrated into any testing
or dynamic analysis framework. In fact, COSMO is based
on JaCoCo’s code coverage measurement functionalities.

• An empirical assessment that shows the reliability and
flexibility of our approach:

– We successfully instrumented 703 apps. We checked
that after instrumentation apps can be successfully
executed and that their behavior remains unchanged.

– We measured the time overhead introduced by
COSMO, in the context of automated or manual
testing. Our assessment of original and instrumented
app executions using Espresso test cases shows that
there is no noticeable run-time overhead for real apps
(the mean execution time increase is 5.9%).

– COSMO is based on JaCoCo, a popular code cov-
erage library for Java. Thus, code coverage statistics
reported by COSMO are available for visualization,
reporting and analysis in the widely used JaCoCo
format.

• We released COSMO as an open source tool to support
the Android testing and analysis community. The source
code is available at https://github.com/H2SO4T/COSMO.

II. STATE OF THE ART

Coverage of Android apps can be achieved by means of
two different types of instrumentation: black-box vs white-box



instrumentation. The former operates on the app bytecode; the
latter on its source code.

Black-box approach. There are several black-box tools for
measuring code coverage. However, they are not capable of
measuring fine-grained source code level coverage. At the
time of writing, ACVTool [7] represents the state of the art
for black-box Android coverage tools and outperforms pre-
existing tools, such as ELLA [13], InsDal [14], and Cov-
Droid [15]. ACVTool instruments Dalvik bytecode in its smali
representation by inserting probes to measure code coverage
at the levels of classes, methods, and instructions. However,
ACVTool calculates code coverage for the bytecode, but it
cannot map such coverage back to source code lines, making
it less interpretable for developers. Also, ACVTool is not
compatible with multi-dex, which is the standard app model
since Android version 51.

White-box approach. For generic Java projects, coverage
of the source code can be determined using well-established
techniques and tools, such as JaCoCo (or its predecessor
Emma [16]). However, instrumentation via JaCoCo is not
trivial and the available online documentation and resources
are often outdated, incomplete, and not applicable (e.g., mod-
ifications that depends on Gradle or Android versions) to
modern Android apps. Tools for white-box code coverage
measurement are included and maintained by Google in the
Android SDK [17]. Such tools can be used via Android Studio
[18], the standard IDE for developing apps on the Android
ecosystem. Android Studio tools include support for coverage
libraries such as JaCoCo. However, Android Studio tools can
compute coverage only for test cases written within the IDE. In
addition, there exist several plugins compatible with Android
Studio that help developers collect code coverage starting from
test cases written for JUnit [9], [10]. The main limitation of
these plugins is the impossibility to collect code coverage
when testing tools different from JUnit are used, such as
automated testing via Monkey2, Sapienz [6], Stoat [11] or
TimeMachine [12]. COSMO instead generates instrumented
apks that are agnostic with respect to the testing approach
being used.

III. ARCHITECTURE

COSMO enables developers to measure the degree to which
an Android app code is executed during testing and uses
JaCoCo to generate coverage reports. COSMO is divided into
two main submodules: 1) COSMO from source, 2) COSMO
from apk.

COSMO from source automatically inserts all the depen-
dencies needed to instrument the source code for coverage
monitoring. It modifies Java, Gradle and Manifest source files.
The code injected by COSMO is then inserted into the apk if
the app is compiled with debugging enabled. In this way the
developer does not need to waste time to remove portions of
unneeded code when preparing the production release.

1https://developer.android.com/studio/build/multidex
2https://developer.android.com/studio/test/monkey

COSMO from apk takes a compiled app as input. The app is
converted to Java bytecode and instrumented using JaCoCo,
and it is eventually aligned and signed. Figure 1 illustrates
the workflow of COSMO that consists in 3 phases: an offline
phase, a run-time phase and the report generation phase. In
the next section, we provide further details about each phase.

Fig. 1. COSMO workflow.

IV. SOURCE CODE INSTRUMENTATION

COSMO from source allows developers to automatically
instrument Gradle-based [19] apps and to generate code cov-
erage reports available for visualization, reporting and analysis
in the widely used JaCoCo format. In Android, Gradle is the
standard build toolkit [20]. It automates the building process
of app resources and source code, packaging them into apk
files that the developer can test, deploy, sign, and distribute.

A. Offline Phase

In order to instrument the source code of an app, COSMO
executes the following steps:

• Manifest Modification: COSMO searches for
the AndroidManifest.xml of the app. Once
found, COSMO declares a broadcast receiver named
EndCoverageBroadcast as an app component.
EndCoverageBroadcast enables the app to receive
intents named intent.END_COVERAGE.

• Generation of Instrumentation Class: COSMO cre-
ates a file called EndCoverageBroadcast.java
in the project directory. This file implements the
EndCoverageBroadcast broadcast receiver, previ-
ously added to the AndroidManifest.xml. When
triggered by a developer, the intent marked as
intent.END_COVERAGE collects the code coverage of
the app under test. The code coverage file has extension
.ec.

• Gradle Tasks Modification: COSMO adds the
missing dependencies to the build.gradle
task. Moreover, COSMO inserts a new task,
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jacoco-instrumenter-coverage.gradle.
This task generates the final coverage report starting
from the *.ec files generated during the testing phase
of the app.

• JaCoCo Properties: as final step COSMO generates
a file named jacoco-agent.properties in the
resources folder. It specifies the properties used by
JaCoCo.

B. Run-Time Phase

Once the offline phase is completed, the developer
can build and install the app with debugging enabled.
The app can now be explored manually, or by using
automated testing tools. Once the exploration is completed,
the developer can collect the code coverage by sending
the intent intent.END_COVERAGE to the app. The
intent can be sent manually through the command line
at the end of the test phase or automatically. Automating
the sending of the intent during the test phase could be
the best way to prevent the loss of code coverage data
in the event of an app crash. The intent will trigger the
generation of a coverage.ec file. This file is located in the
/sdcard/Android/data/<APP_PACKAGE>/files/
directory.

C. Report Generation Phase

To generate the coverage report, developers can run the
task jacocoInstrumenterReport (i.e., ./gradlew
jacocoInstrumenterReport). Coverage reports can
be in HTML, CSV or XML format and are located in
build/reports/jacoco/jacocoInstrumenterRe-
port/ under the project directory.

D. Usage

COSMO from source is implemented in Python. Launching
cli.py <APP_PATH> the developer can select the
app folder to instrument, and the tool will complete
the procedure. Then, the developer can build, install,
launch and test the app (manually or automatically). In
order to collect coverage data, the developer must send
the following intent: adb shell am broadcast
-p <APP_PACKAGE> -a intent.END_COVERAGE.
Then, the developer can collect the generated .ec
files from the Android device via adb -P 5037 -s
<udid> pull <PATH_TO_FILE>/coverage.ec
<DESTINATION_PATH>. At last, by running the command
./gradlew jacocoInstrumenterReport the
developer will generate the final code coverage report.

V. BYTECODE INSTRUMENTATION

COSMO from apk is meant to automatically instrument
apps, starting from their compiled form. To the best of our
knowledge, there is only one mature, freely available apk
instrumentation tool: ACVTool [7]. Differently from ACV-
Tool, which requires developers to grant the instrumented app
additional permissions (e.g., file-system write permission, to

write the trace file there), no invasive additional permission
is required by COSMO, thus minimizing the intrusiveness of
our monitoring facility.

Enabling coverage monitoring consists of three phases:
offline phase run-time phase and report generation.

A. Offline Instrumentation

Offline instrumentation is automatically applied as follows:
• First of all, the Dalvik bytecode is extracted from the apk

and converted to Java bytecode using dex2jar3;
• Java bytecode is instrumented using JaCoCo offline in-

strumentation. This component adds an array of probes
and opcodes in the Java bytecode, to flip probes when
code is executed and branches are taken at runtime;

• A patched version of the JaCoCo agent is added. The
original version of the agent reads its configuration from
a configuration (property) file or from system properties.
The patch consists of making the agent able to read
the configuration also from Android properties, using the
class android.os.SystemProperties;

• Java bytecode is converted back to Dalvik and then added
to the original apk, that is eventually aligned and signed.
This is achived using tools and utilities distributed with
the Android SDK.

B. Run-Time Phase & Report Generation

Once the apk is instrumented, it can be installed on a
device or emulator and run to trace code coverage. However,
before running the app, an Android property should be set,
to specify where to save the trace file. This can be achieved
with the command line utility setprop, by running the com-
mand setprop jacoco.destfile <FILE>. The trace
file should be located in a portion of the file system where
the app is granted write permission. For instance the SD,
in case the app is granted the corresponding permission.
Alternatively, the app private file system can be used, i.e.
/data/data/<APP_PACKAGE>/coverage.ec.

When manual exploration is performed or test cases are
executed, the trace file can be downloaded from the Android
file system, for instance using the command adb pull.

The trace file is in standard JaCoCo format, and can be
converted to a detailed HTML report using the JaCoCo offline
tool jacococli.

It is important to notice that, in case the app is compiled
with source code information, source files and line numbers
are preserved in the apk. These references are exploited and
included in the coverage report. Differently, ACVTool does
not offer this feature, because it works at the Smali code level,
missing completely the references to the source code.

VI. EVALUATION

To assess the practical applicability of our tool and the
associated costs, we have performed an extensive empirical
evaluation of COSMO with respect to the following research
questions:

3https://github.com/pxb1988/dex2jar/wiki

3



• RQ1, Instrumentation success rate: Does the code
instrumented by COSMO compile?

• RQ2, App health: Does the code instrumented by
COSMO execute and produce the same output as the
original code?

• RQ3, Runtime overhead: What is the impact in terms of
time and memory overhead of the instrumentation made
by COSMO?

To answer these research questions we have selected and
built the 1350 most starred F-Droid apps available on GitHub.
We successfully compiled 830 apps, and 792/830 worked
properly. To answer RQ1, we evaluated COSMO from source
on this set of 792 apps. COSMO from apk was evaluated on a
subset of 475 of the 792 previously selected apps. The subset
contains only apps written in Java since the JaCoCo offline
instrumenter is not compatible with the Kotlin programming
language, used in the excluded apps. Moreover, we removed
the multi-dex apps as dex2jar currently does not support
it [21]. To answer RQ2, we calculate the percentage of the
instrumented apps that can run on an emulator. We wrote
a script to install, launch, and interact automatically with
the instrumented apps on an Android emulator. The script
produces a sequence of actions (hereafter, execution trace)
on the original apps and replicates the same actions on the
instrumented apps a second time. During the script execution,
we collect the current activity, the md5 of the activity layout,
and the widgets (i.e., their hierarchy on the activity layout and
their identifiers) with which we interact. At last, the script
compares the execution traces to check whether there are
discrepancies. If the instrumented app can run for 10 seconds
without crashing and generates the same execution trace of
the original app, we define it as healthy. To answer RQ3,
we used test cases written by hand; Android Studio Profiler
[22] to measure the memory usage and the execution time,
averaging the values over five runs per app in order to account
for random fluctuations of these measurements. For test case
execution, we chose the Espresso testing framework because it
introduces the smallest footprint during android app execution
[23].

The analysis was carried out on a single machine with a
quad-core 3.40 GHz processor and 16GB of RAM.

A. Experimental Results

Table I summarizes the main statistics related to instrumen-
tation and app healthiness. Of the 830 apps compiled from the
source code, 792 executed without crashing (column “Work-
ing”). Hence, these apps are included in the instrumentation
test. Considering COSMO from source, results show that after
the instrumentation, the compiled apps are 703/792 and that
all of them work (i.e., execute with no crash after the in-
strumentation). We investigated the build failures, discovering
that they are mainly related to three causes. 63 apps do not
support multi-dex, and due to instrumentation, the unique
dex file generated goes beyond the 64K methods allowed, and
the build fails. A solution would be to enable multi-dex in
the Gradle script for these apps. Another build error is related

to 15 apps based on old Java versions (e.g., Java 1.6) that are
not compatible with our Java files. At last, 11 apps download
corrupted resources during the build phase.

Considering COSMO from apk, results show that after
the instrumentation, the compiled apps are 413/475. 50
apps fail the instrumentation due to the Android tool dx
[24] that can not convert the jar file into dex byte-
code (SimException). Moreover, 12 apps already have
some sort of instrumentation (e.g., instrumentation via An-
droid Studio tools), and due to this COSMO raises the
exception IllegalStateException. During the test
phase 296/413 apps worked. All non working apps raise
RuntimeException and crash due to certain app resources
or classes that can not be found. Upon investigation of
the issues, we suspect that they could be due to faults in
dex2jar. We are working to properly identify and fix the
bugs.

Then, we compared the execution traces of the working
apps. To do so, we used the same script applied during the
validation of COSMO from source. The script produces an
execution trace on the original apps, collecting the current
activity and the activity layout’s md5. Moreover, it collects
the identifiers of the widgets the apps interact with and
their hierarchy on the activity layout, and it replicates the
execution trace on the instrumented apps a second time. The
execution trace comparison made by the script on all apps
found no discrepancies. COSMO does not introduce disturbing
components in the workflow of the apps.

Table I shows also the instrumentation time. On aver-
age COSMO from source takes less than one second, while
COSMO from apk needs around 12 seconds.

RQ1 & RQ2: COSMO from source (resp. from apk)
successfully instrumented 88.7% (resp. 86.9%) of the
apps, and 100% (resp. 71.6%) of them execute without
errors. Both versions of COSMO generate apks that
produce the same execution trace as the original apks
if executed on the same test scenario.

At last, we evaluate the impact of the COSMO instrumenta-
tion on the app performance. To measure the runtime overhead,
we randomly chose ten apps, and we profiled their activity
when running test cases using Espresso. To accommodate
fluctuations we repeated each test case five times. As shown
in Table II, the runtime overhead causes, on average, a 5.9%
execution time increase when running the Espresso test cases.
Moreover, memory usage is, on average, 3.7% higher than
with the original apps.

RQ3: The instrumentation performed by COSMO in-
troduces a small execution time and memory usage
increase (on average, resp. 5.9% and 3.7%).

B. Qualitative analysis
Let us consider an example of an Android app and the use of

COSMO in support to coverage testing. An interesting exam-
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Meth. Compilable Working Same Trace Instr. Time
Original 830/1350 792/830 - -

Cosmo from source 703/792 703/703 703/703 1 sec.
Cosmo from apk 413/475 296/413 296/296 12 sec.

TABLE I
AN OVERVIEW OF THE RESULTS OBTAINED BY COSMO

App Time
(sec) Time’ TDelta

(perc.)
Mem
(Mb) Mem’ MDelta

(perc.)
Antennapod 44.6 45 1 % 166 176 6%

WifiAnalyzer 34 37 9% 139 139 0%
AmazeFileManager 20 21.3 7% 150 157 5%

Image-To-PDF 6.5 6.9 6% 80 84 5%
busybox 7.9 8.7 9% 34 34 0%
gpstest 9.6 10.6 10% 73 78 6%
vanilla 8.7 9.3 6% 58 59 1%

YalpStore 8.4 8.7 3% 55 58 5%
KISS 8.2 8.6 5% 76 78 3%

AppOpsX 7.3 7.5 3% 51 54 6%

TABLE II
COSMO RUNTIME OVERHEAD: INCREASED EXECUTION TIME AND

MEMORY USAGE

ple is Antennapod [25], a modern Android app characterized
by many activities and services. We may want to write an
Espresso test that interacts with the preference activity and
then collects code coverage. Figure 2 shows the portion of the
coverage report generated for the PreferenceActivity
class when executing a basic interaction scenario. The test
consists of a naive exploration of the settings, in which
we click only on a few of the voices accessible, without
exploring related sub-preferences. The report contains the
methods available in the activity and their coverage. Fig-
ure 3 shows detailed coverage information for some of the
methods of class PreferenceActivity. We can see that
our first test did not exercise some portions of the app’s
settings (lines 62 to 75). This code block is linked to package
fragment.preferences. Figure 4 shows that the code
coverage of this package is poor. Hence, we can infer that
a second test should exercise preferences related to network,
storage, or import/export in order to increase coverage.

Hence, we wrote a second test that interacts with the
previously missed preferences and almost all accessible voices
in fragment.preferences. Figure 5 shows the up-
dated report. Even without studying the report in detail, we
can immediately appreciate the increase in code coverage
(method getPreferencesScreen() increased its cov-
erage from 17% to 65%). The overall code coverage of
PreferenceActivity increased from 56% to 79% and
fragment.preferences jumped from 3% to 33%. Figure
6 and Figure 7 show that the new test case was able to test a
large portion of the previously uncovered code.

VII. ADOPTION SCENARIO

COSMO is potentially useful in several adoption scenarios,
which involve both developers and researchers:

• COSMO can be a useful tool to assist developers during
the testing phase of their apps. COSMO automatically
instruments Android apps. By examining the code cover-
age report, developers can write more thorough and more

Fig. 2. PreferenceActivity: summary code coverage achieved by the
first test case

Fig. 3. PreferenceActivity: detailed code coverage achieved by the
first test case

Fig. 4. fragment.preferences: summary code coverage achieved by
the first test case

effective tests. In this way, developers can test their apps
in more depth.

• Developers can also use COSMO to compare alternative
automated test generation tools on their own app (for
instance Sapienz [6], Stoat [11] or Timemachine [12]),
to find the one that suits it better by achieving higher
coverage. Actuakky, we integrated very easily and seam-
lessly our tool with the Monkey and Sapienz Android test
generators.

• Researchers can use COSMO when developing novel test
case generation approaches, to guide automated test gen-
eration and app exploration toward execution scenarios
that increase coverage, or just to measure the achieved
coverage, on case study apps that are available either as
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Fig. 5. PreferenceActivity: summary code coverage achieved by the
second test case

Fig. 6. PreferenceActivity: detailed code coverage achieved by the
second test case

Fig. 7. fragment.preferences: summary code coverage achieved by
the second test case

source code or as apk.

VIII. CONCLUSION

In this paper, we presented COSMO – a tool for measur-
ing Android code coverage at the source code level. When
instrumenting from source code (resp. apk), COSMO was
able to instrument 88.7% (resp. 86.9%) and execute 100%
(resp. 71.6%) of the considered benchmark apps, showing that
COSMO is practical and reliable.

COSMO can help both researchers who are building testing,
program analysis, and security assessment tools for Android,
as well as developers, who need a reliable instrumenter capable
of producing easy-to-understand coverage information. Among
the possible future developments, we plan to use COSMO to

build a testing tool that exploits code coverage information to
explore the app thoroughly.
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