
Summary of: A Federated Society of Bots for
Smart Contract Testing

Emanuele Viglianisi
Fondazione Bruno Kessler

Trento, Italy
eviglianisi@fbk.eu

Mariano Ceccato
University of Verona

Verona, Italy
mariano.ceccato@univr.it

Paolo Tonella
Università della Svizzera italiana

Lugano, Switzerland
paolo.tonella@usi.ch

Abstract—The peculiar novelty of smart contracts is a com-
putational model where irreversible transactions are stored in
a distributed persistent data storage, namely the blockchain.
The technical nature of this new type of software opens to
new kinds of faults, which require specific test capabilities to
be revealed. In this paper we present SOCRATES, an extensible
and modular framework to automatically test smart contracts.
The distinctive features of SOCRATES are: (1) a collection
of composable behaviours that exercise smart contracts in the
blockchain; (2) it deploys a society of bots, with the purpose of
detecting defects arising from multi-user interactions, which are
impossible to reveal when deploying a single bot. Our empirical
investigation demonstrates that SOCRATES is able expose both
known and previously unknown faults in smart contracts that
are actively run in the official Ethereum blockchain. Moreover,
we show that a society of multiple bots is more efficient in fault
exposure than a single bot alone.

Index Terms—Smart contracts; Software testing; Ethereum.

I. CONTEXT

A major extension to crypto currencies, such as Ethereum,
consists of smart contracts. These are executable pieces of
code that are saved in the blockchain and whose legitimate
execution is certified by the nodes of a crypto currency
network. The execution model of smart contracts is quite
unique and novel. In fact, after a smart contract is persisted
in the blockchain, its code and all of its transactions are im-
mutable, even when programming mistakes are later detected.
This means that incorrect execution results remain immutable,
forever. For this reason, comprehensive and accurate testing
of smart contracts is essential to reveal programming defects
before incorrect transactions are immutably stored in the
blockchain.

In a typical smart contract, multiple users interact by playing
different roles. For instance, Figure 1 depicts an interaction
scenario for a token contract: the spender delegates an initiator
to move a given amount of tokens t from the account owned
by the initiator. Then, the initiator moves the tokens from
the account owned by the spender to the account own by the
receiver.

A single user is not sufficient to test this scenario. In
fact, this scenario requires three distinct actors who interact
coherently, according to the specific contract roles, i.e., a
spender, who authorizes the initiator to move some value to
the receiver.

initiator receiverspender

authorizes	to
spend	t	tokens
from	his	balance

transfers	t	tokens
from	spender

Fig. 1. Example of interaction among three distinct users

II. TESTING FRAMEWORK

Smart contracts, by definition, mediate transactions occur-
ring among multiple end users, who play different roles.
Therefore, smart contracts are, intrinsically, multi-role pro-
grams. To properly automate smart contract testing, we pro-
pose SOCRATES (Smart ContRActs TESting), a novel, exten-
sible and modular testing framework, that relies on a federated
society of interacting bots. Each of these bots performs a
distinct contract role (i.e., a distinct end user role).

Each contract might explicitly define different roles, or roles
might implicitly emerge from distinct contract permissions
granted to distinct user profiles (e.g., token-owner, contract-
owner). Our simulator module concurrently runs many bots, by
iteratively assigning execution slots to them, with the objective
of detecting implementation defects that might be sheltered
in a possibly intricated and complicated interaction pattern
admitted by a contract that supports diverse roles with specific
responsibilities and privileges. The bots of SOCRATES are
guided by different behaviours and the correct execution of the
smart contract under test is verified through a set of invariants.

This extended abstract summarizes the content of a journal
paper [1], where the interested reader can find more details
about SOCRATES and about its empirical validation.

A. Behaviours

Each bot realizes a specific behaviour or a combination
of predefined behaviours, which allow the bot to generate
inputs for contract transactions, according to a collection
of configurable strategies. SOCRATES comes with 4 built-
in behaviours: Random, Boundary, Overflow and Combined.



Moreover, the framework can be extended with domain spe-
cific behaviours that can realise contract specific execution
strategies.

B. Invariants

The testing oracles supported by SOCRATES take the form
of contract invariants. Six built-in invariants are available
for testing a given smart contract. This collection includes
one generic invariant (related to integer overflow) and five
invariants that are specific to the protocol required by the
EIP20 interface, i.e., one of the most prominent interfaces that
smart contracts implement when they need to use tokens.

Moreover, SOCRATES is extensible and supports the def-
inition of new (contract-specific) invariants. As a matter of
fact, in our empirical validation, we defined and assessed
six contract-specific invariants to test real Ethereum smart
contracts.

III. EMPIRICAL VALIDATION

Our experimental assessment shows that SOCRATES is
effective at revealing faults found in real-world smart contracts
that are deployed in production in the official Ethereum
blockchain. The considered smart contracts are actively used,
with actual transactions associated taking place and involving
real monetary value. SOCRATES was used to test 1,905 real
smart contracts coming from the official Ethereum blockchain.
It could detect 148 true invariant violations, with only 32 false
alarms. Moreover, when compared with the state of the art
smart contract fuzzer Echidna1, SOCRATES could identify
substantially more true invariant violations.

IV. RELATED WORK

Most existing tools for smart contract testing [2], [3], [4]
are focused on security issues (e.g., reentrancy vulnerabil-
ity) rather than functional invariants (e.g., each successful
token transfer should log a Transfer event) that contracts
are supposed to ensure. Correspondingly, they can detect
only violations to security properties associated with known
vulnerabilities. No general, extensible framework exists for
functional testing of smart contracts and the most related
tool, Echidna, is purely random and does not support the
composition of a set of (extensible) bot behaviors. Moreover,
Echidna does not include pre-defined invariants to classify the
outcome of contract execution and to detect whether a defect
has been exposed.

V. CONCLUSION

Once persistent in the blockchain, smart contracts cannot
be updated and programming defects cannot be patched.
So, accurate and thorough testing of smart contracts is very
important to detect programming mistakes before deployment,
when they can still be fixed.

SOCRATES is an automated testing framework for smart
contracts. It is based on a federated society of bots, that are
meant to test the potentially intricated interactions among the

1Echidna https://github.com/trailofbits/echidna

diverse roles defined for a contract. Our empirical assessment
shows that our solution is effective in spotting programming
defects that break one or more contract invariants, even in
smart contracts that are deployed and run in the official
blockchain, and deal with actual monetary value. Moreover,
the collected experimental evidence shows that relying on a
society of bots, rather than on a single bot behaviour, is a
crucial feature to accurately test smart contracts.

For a more complete presentation of SOCRATES, the
reader is invited to refer to the original journal publication [1].

REFERENCES

[1] E. Viglianisi, M. Ceccato, and P. Tonella, “A federated society of bots
for smart contract testing,” Journal of Systems and Software, p. 110647,
2020.

[2] N. Grech, “MadMax: Surviving out-of-gas conditions in Ethereum smart
contracts,” in Proceedings of the International Symposium on Software
Testing and Analysis (ISSTA), 2018.

[3] B. Jiang, Y. Liu, and W. Chan, “ContractFuzzer: Fuzzing smart contracts
for vulnerability detection,” in Proceedings of the International Confer-
ence on Automated Software Engineering (ASE), 2018.

[4] L. Luu, D.-H. Chu, H. Olickel, P. Saxena, and A. Hobor, “Making smart
contracts smarter,” in Proceedings of the 2016 ACM SIGSAC Conference
on Computer and Communications Security. ACM, 2016, pp. 254–269.


