
Restats: A Test Coverage Tool for RESTful APIs
Davide Corradini∗, Amedeo Zampieri†, Michele Pasqua‡ and Mariano Ceccato§

Department of Computer Science
University of Verona – Verona, Italy

Email: ∗davide.corradini@univr.it, †amedeo.zampieri@studenti.univr.it, ‡michele.pasqua@univr.it, §mariano.ceccato@univr.it

Abstract—Test coverage is a standard measure used to evaluate
the completeness of a test suite. Coverage is typically computed
on source code, by assessing the extent of source code entities
(e.g., statements, data dependencies, control dependencies) that
are exercised when running test cases. When considering REST
APIs, an alternative perspective to assess test suite completeness
is with respect to the service definition.

This paper presents Restats, a test coverage tool for REST
APIs that supports eight state-of-the-art test coverage metrics
with a black-box perspective, i.e., only relying on the OpenAPI
interface specification of the REST API under test. In fact,
metrics are computed by only observing the HTTP requests
and responses occurring at testing time, and no access to
source/compiled code of the REST API is required.

These coverage metrics come in handy for: (i) developers and
test engineers working at development and maintenance tasks; (ii)
stakeholders and customers who want to evaluate the complete-
ness of acceptance tests; (iii) researches interested in comparing
different automated test case generation strategies.

Restats GitHub repository: https://github.com/SeUniVr/restats
Restats demo video: https://smarturl.it/restats-demo

Keywords-REST API, Test coverage, Software testing

I. INTRODUCTION

A RESTful API (or REST API for short) is an API that
respects the REST (REpresentational State Transfer) archi-
tectural style [1]. REST APIs provide a uniform interface to
create, read, update and delete (CRUD) a resource. A resource
is generally identified by an HTTP URI, and CRUD operations
are usually mapped to the HTTP methods POST, GET, PUT
and DELETE to the resource URI.

REST APIs are becoming a de-facto industrial standard
to interconnect different computer systems. They are used
in a quite wide set of contexts, e.g., when exchanging data
with the cloud [2], when connecting smartphone apps to their
corresponding server [3], for identity provisioning [4] and
when inter-operating different banks [5].

The correct integration among computer systems, poten-
tially carried out by different parties, is a critical point. To
monitor correct integrations and promptly reveal implemen-
tation defects, several tools are available for testing computer
systems through their REST APIs. These tools include not just
extensions to general purpose testing frameworks (e.g., REST-
Assured [6], that extends the popular JUnit testing framework
with REST API specific features), but also brand-new tools,
explicitly developed to test REST APIs (e.g., Postman [7] and
SoapUI [8]). However, they still require developers to spend
valuable time in manually coding test cases. Additionally, to
mitigate the cost of manually writing all the test cases, the

research community proposed several approaches to automati-
cally generate test cases for REST APIs (e.g., QuickREST [9],
RESTler [10] and RestTestGen [11]).

Despite several approaches being available, either to gen-
erate and run test cases on REST APIs, to the best of our
knowledge no tool is available to measure test coverage, i.e.,
to quantify the extent of a REST API that has been subject to
testing and what part of it still requires more tests. To fill this
gap, we propose Restats, a tool meant to monitor the whole
REST API testing process and compute the corresponding
comprehensive coverage report.

Restats is meant to be helpful in many contexts.
• Supporting software developers when developing and/or

evolving software systems that expose a REST API. In
fact, before publishing an update, a REST API should be
carefully assessed and its tests should meet an adequate
level of coverage.

• Supporting stakeholders and customers in evaluating
REST APIs delivered by contractors or by third parties,
before fully committing and adopting them. In fact,
stakeholders might be interested in assessing the coverage
of their acceptance tests before accepting a product.

• Supporting researchers in conducting experimental sur-
veys, when comparing different tools and alternative
strategies to automatically generate test cases for REST
APIs. In fact, an approach that delivers test cases with
higher coverage might have potentially higher chances of
exposing defects in the implementation of a REST API.

Despite theoretical metrics have been proposed to measure
REST APIs test coverage [12], no implementation is available
to actually compute them. So, although theoretically sound, in
practice REST APIs test coverage metrics convey limited value
to developers and practitioners. To the best of our knowledge,
Restats is the first tool that computes coverage metrics for
REST API test suites.

This paper is organized as follows. In Section II we present
the architecture of Restats and the implemented coverage
metrics. In Section III we show how to use Restats on a
case study, reporting the output of the tool (i.e., the computed
coverage metrics) for the REST API under test. Section IV
presents related work and, finally, Section V closes the paper.

II. ARCHITECTURE

Restats computes REST API test coverage metrics based on
the theoretical measurement framework proposed by Martin-
Lopez et al. [12]. An overview of the architecture of Restats

https://github.com/SeUniVr/restats
https://smarturl.it/restats-demo


Fig. 1. Restats architecture overview.

is shown in Figure 1. The tool requires as input the REST
API definition file (called OpenAPI specification or Swagger)
and a network log containing the HTTP messages exchanged
between the API and the testing tool. An external Network
logger is in charge of collecting these messages. In particular,
we used the HTTP proxy offered by the Burp Suite [13].

The network log is consumed by the Data Collection
module, in which raw inputs are rearranged, processed and
written to a database. Eventually, the Metrics Computation
module computes the coverage metrics using data from the
database and fills in a final coverage report.

A. Network Logger

To collect testing input and output, we use the Burp
Suite [13]. It works as a proxy and collects all the HTTP
messages exchanged between the testing tool and the REST
API under test. Then, using the burp-dump [14] extension, we
dump all HTTP requests and HTTP responses as plain text.
Note that Restats is not dependent on the Burp Suite; any al-
ternative tool that can emit a plain-text log of HTTP messages
is fine. The user can choose an alternative component that best
fits his/her needs to gather request/response samples, as long
as they can be dumped as text file(s).

HTTP messages dumps are expected to follow a naming
convention to pair requests and responses in the form
(n-request.txt, n-response.txt), with a progressive identifier n.

B. Data Collection Module

This module is used to parse network dumps. Given the
textual HTTP dumps as input, it extracts all the information
needed for the coverage computation (e.g., request paths,
HTTP methods, response status codes). Then, it populates a
SQLite database.

To this aim, HTTP requests and responses are parsed with
the following strategies.
Message payload. HTTP requests and responses might con-

tain arbitrary content types in their body, either text
(e.g., JSON, XML) or binary (e.g., JPEG, MP4), leading
to possible message body parsing failures. Therefore,
message body is safely parsed as a binary content. A
second parser is called for the message body, depending
on the content type declared in the message header. At
the moment, only JSON payloads are supported. Hence,

if a different format is found in the header, the payload
is ignored.

Unpaired requests. Not all HTTP requests match a corre-
sponding HTTP response. In fact, some requests could
have been ignored due to a too high server load or a
server crash. Even if unpaired, these orphan requests are
still recorded in the database. Indeed, they are used for
the computation of input coverage metrics, which do not
require a matching response.

Path parameter matching. The OpenAPI standard allows path
templating, i.e., they allow to specify input data as part of
the called URL. Therefore, Restats has to be able to group
and recognize HTTP requests belonging to the same path
template. This task is challenging to carry out in the
case of OpenAPI specifications with colliding paths. For
instance, /users/{id} (where {id} is a placeholder
for any string) and /users/auth seems referring to
the same path, and auth could be interpreted as both a
specific path and a user id.

All the fields of HTTP requests and responses are then
saved in the database to be quickly accessed by the subsequent
module. We decided to use a SQLite database because of its
performance, portability and configuration-less features.

C. Metrics Computation Module

This module takes the database populated by the Data
Collection module and the OpenAPI specification as input.
The database is used to recognize which elements of the REST
API have been tested, while the OpenAPI is used to list all
the potentially testable elements. The metrics are computed as
the ratio of the number of tested elements to the total number
of elements documented in the OpenAPI specification.

Following the approach of Martin-Lopez et al. [12], metrics
are divided into input and output metrics. Input metrics are
computed based on the observed HTTP requests sent to the
REST API under test, and comprise the following.

• Path coverage: ratio of the number of tested paths to
the total number of paths documented in the OpenAPI
specification.

• Operation coverage: ratio of the number of tested oper-
ations to the total number of operations.

• Parameter coverage: ratio of the number of input param-
eters used by test cases to the total number of parameters.

• Parameter value coverage: ratio of the number of the
exercised parameter values to the total number of possible
values that parameters can assume. This metric applies,
at the moment, only to domain-limited parameters such
as boolean and enum types.

• Request content-type coverage: ratio of the num-
ber of tested content-types to the total number
of accepted content-types. This metric is computed
only when operations content-types have no wildcard
(e.g., application/*), because otherwise the number
of accepted content-types would be unbounded.

Similarly, the following output metrics are computed based



on the observed HTTP responses, emitted by the REST API
under test.

• Status code class coverage: a test suite reaches 100%
status code class coverage when it is able to trigger both
correct status code (i.e., the 2XX class) and erroneous
status codes (i.e., 4XX and 5XX classes).

• Status code coverage: the ratio of the number of ob-
tained status codes to the total number of status codes
documented in the OpenAPI specification.

• Response content-type coverage: the ratio of the number
of obtained content-types to the total number of response
content-types documented in the OpenAPI specification.
As for the input case, this metric is computed only when
specific content-types are defined with no wildcard.

Restats also automatically computes Test Coverage Levels
(TCLs), as defined in Martin-Lopez et al. [12]. The TCL
is a summary coverage indicator, ranking test suites based
on the score they obtain for the defined metrics. TCLs are
incremental: to achieve a TCL, the test suite also has to satisfy
the requirements for the lower levels. In particular:
TCL0 is the base level, with no coverage requirements;
TCL1 requires the path coverage to be 100%;
TCL2 requires the operation coverage to be 100%;
TCL3 requires both request and response content-type cover-

ages to be 100%;
TCL4 requires parameters and status code classes coverages

to be 100%;
TCL5 requires the status code coverage to be 100%;
TCL6 requires the body properties coverage to be 100%;
TCL7 requires the operation flow coverage to be 100%.

III. RUNNING EXAMPLE

To better understand the use of Restats, we now present
a running example involving a REST API and its (manually
written) test suite, for which Restats will compute coverage
metrics.

A. The Pet Store and Its Test Suite

The case study REST API is Pet Store, a service to manage
a collection of pets. The specification of the API describes the
following 7 operations, arranged in 4 endpoints:
POST /pet to enter data of a new pet;
GET /pet to retrieve a list of all stored pets;
PUT /pet to update data of a pet;
GET /pet/findByStatus to search pets by status;
GET /pet/findByTags to search pets by tag;
GET /pet/{id} to retrieve a specific pet;
DELETE /pet/{id} to delete all the data for a specific pet.

We have manually prepared an example test suite for the Pet
Store API consisting of five test cases based on the business
logic of the API, one of which is reported in Listing 1. They
are five HTTP requests that can be executed, for instance, by
means of Postman [7].

The OpenAPI specification of the Pet Store and the dump
of the HTTP requests/responses generated by the test suite are
available in the example folder of the Restats repository.

POST /v2/pet HTTP/1.1
Host: localhost:8080
Accept: application/json
Content-Type: application/json
Content-Length: 76

{
"name": "doggie",
"photoUrls": ["myphoto.com/doggie"]

}

Listing 1. A test case of our test suite.

The first two tests exercise the GET /pet operation. They
obtain a successful response (200 status code). The third and
fourth tests exercise the POST/pet operation, and they obtain
a 200 and 500 status code, respectively. The 500 internal
server error is caused by a request (in Listing 1) that misses
the category mandatory parameter. This erroneous request
is not properly handled by the Pet Store API, that throws
an exception. Finally, a fifth request to the PATCH /pet
operation obtains a 405 status code because such endpoint
does not actually support the PATCH method: the test engineer
would have wanted to use the PUT method instead, that
operates similarly.

B. Configuring and Launching Restats

The five requests of our test suite, and the five related
responses, have been recorded by the Burp proxy. Using the
burp-dump plugin we exported the plain-text dumps to the
dumps folder. Afterwards, we configured Restats with the
following JSON configuration file (config.json):
{
"modules": "all",
"specification": "/path/to/petstore.json",
"dumpsDir": "/path/to/dumps",
"reportsDir": "/path/to/reports",
"dbPath": "/path/to/database.sqlite"

}

We configured the tool with the modules to run (modules);
where it can find the OpenAPI specification of the REST API
under test (specification); where we have stored the
dumps exported from Burp (dumpsDir1); where we want
the output reports to be stored (reportsDir); and where to
place the SQLite database (dbPath).

With the modules parameter set to all, we chose to run
all the Restats modules. It is possible to run individually either
the data collection module (with dataCollection), or the
metrics computation module (with statistics).

Eventually, we have launched the tool from the folder
restats, with the command: python3 app.py.

C. Restats Reports

Once the execution of Restats is complete, its output is
available in the chosen report folder as a collection of nine
report JSON files. The file stats.json summarizes the
computed statistics for all the coverage metrics and the TCL

1Absolute paths should be preferred for higher compatibility.



{
...
"operationCoverage": {
"raw": {

"documented": 7,
"documentedAndTested": 2,
"totalTested": 3

},
"rate": 0.2857142857142857

},
...
"TCL": 0

}

Listing 2. Part of stats.json regarding the operation coverage metric.

of the test suite. The other eight files, named after the eight
coverage metrics, describe in detail the output for each metric.

Listing 2 shows a fragment of stats.json with the oper-
ation coverage metric and the computed TCL. The remaining
metrics are not shown for space reasons, however, they have
the same structure.Observing Listing 2, we can note that two
operations, out of the seven documented in the specification,
have been tested. Indeed, the computed rate is 0.2857, that
corresponds to 2

7 . In particular, the documented field reports
the number of operations documented in the specification.
The documentedAndTested field reports the number of
operations that have been tested among those documented in
the specification. Finally, the totalTested field reports the
total number of tested operations, including those that are not
documented in the specification. This last field was included
to reveal test cases that operate (knowingly or unknowingly)
beyond what is documented.

Listing 3 shows the content of one of the eight de-
tailed reports (specifically, the operation coverage metric
report) that Restats emits for each coverage metric. The
documentedAndTested section reports what operations
have been tested, among those documented in the specifi-
cation. The documentedAndNotTested section reports
what operations, among those documented in the specifi-
cation, have not been tested. Finally, undocumented op-
erations that were tested, if any, will be reported in the
notDocumentedAndTested section.

D. How Are These Reports Useful?

The reports computed by Restats come in handy in a number
of ways. By looking at Listing 2, we could easily identify that
not all the available operations in the REST API have been
properly tested. Only two operations out of seven have been
tested, which prevents the test suite to be considered complete.
This should motivate a developer to write more test cases to
test, at least once, all the documented operations.

Moreover, the notDocumentedAndTested section in
Listing 3 indicates that the developer inappropriately used the
PATCH method with the /pet endpoint in a test case.

IV. RELATED WORK

In literature, several tools have been presented to measure
test coverage for specific domains, like Java programs (the

{
"documentedAndTested": {
"/pet": ["get", "post"]

},
"documentedAndNotTested": {
"/pet": ["put"],
"/pet/findByStatus": ["get"],
"/pet/findByTags": ["get"],
"/pet/{petId}": ["get", "delete"]

},
"notDocumentedAndTested": {
"/pet": ["patch"]

}
}

Listing 3. The detailed output for the operation coverage metric.

JaCoCo library [15]) or Android apps (ACVTool [16] and
COSMO [17]). However, to the best of our knowledge, no tool
has been presented for assessing the coverage of REST APIs
test cases. This might be due to the fact that, often, coverage
tools rely on code coverage, which is not always applicable in
the context of REST APIs. Indeed, API source code analysis
might be complex, e.g., when a micro-service architecture
includes many dynamically allocated components possibly
from different vendors; or not feasible, e.g., in the case of
closed-source APIs. The only work dealing with test coverage
of REST APIs is the theoretical framework of Martin-Lopez
et al. [12], (presented as background in Section II), but it does
not come with a usable implementation.

Concerning REST API testing, we can find semi-automatic
tools (like REST-Assured [6], SoapUI [8], Postman [7]), but
they do not provide a measure for assessing test case coverage.
Similarly, automatic test case generation tools for REST APIs
(like QuickREST [9], RESTler [10] RestTestGen [11]), report
what operations could be tested and what status code have
been observed in the responses, but in a tool-specific way that
does not follow a common formal definition of test coverage.

V. CONCLUSION

In conclusion, the present paper introduce Restats, a tool
that implements the test coverage metrics originally proposed
by Martin-Lopez et al. [12]. Restats computes the coverage
metrics of the REST API under test adopting a black-box
perspective, namely relying only on the OpenAPI specification
of the REST API under test. In particular, Restats computes
the coverage metrics based on the network log that contains
the plain-text HTTP requests and responses exchanged when
running test cases. This makes our tool easily adaptable to
multiple contexts, supporting services written in any program-
ming language, and any testing technology and tool.

Restats can be used to measure test case coverage in multi-
ple adoption scenarios, either by programmers at development
time or by stakeholders before deployment in production.
Finally, Restats can help researchers in assessing automated
test case generation techniques, highlighting strengths and
weaknesses of the adopted generative approach. Indeed, Re-
stats has been used in [18] to compare four state-of-the-art
black-box REST APIs testing tools.



REFERENCES

[1] R. T. Fielding, Architectural styles and the design of network-based
software architectures. University of California, Irvine Doctoral
dissertation, 2000, vol. 7.

[2] F. Petrillo, P. Merle, N. Moha, and Y.-G. Guéhéneuc, “Are rest apis
for cloud computing well-designed? an exploratory study,” in Service-
Oriented Computing, Q. Z. Sheng, E. Stroulia, S. Tata, and S. Bhiri,
Eds. Cham: Springer International Publishing, 2016, pp. 157–170.

[3] A. Belkhir, M. Abdellatif, R. Tighilt, N. Moha, Y.-G. Guéhéneuc, and
E. Beaudry, “An observational study on the state of rest api uses in
android mobile applications,” in 2019 IEEE/ACM 6th International Con-
ference on Mobile Software Engineering and Systems (MOBILESoft),
2019, pp. 66–75.

[4] simplecloud.info. SCIM. [Online]. Available: http://www.simplecloud.
info/

[5] Open Bank Project. OBP Middleware. [Online]. Available: https:
//www.openbankproject.com/openbankingmiddleware/

[6] J. Haleby. REST Assured. [Online]. Available: http://rest-assured.io/
[7] Postman Inc. Postman. [Online]. Available: https://www.getpostman.

com/
[8] SmartBear Software. SoapUI. [Online]. Available: https://www.soapui.

org/
[9] S. Karlsson, A. auevi, and D. Sundmark, “QuickREST: Property-based

test generation of OpenAPI-described RESTful APIs,” in 2020 IEEE
13th International Conference on Software Testing, Validation and
Verification (ICST), 2020, pp. 131–141.

[10] V. Atlidakis, P. Godefroid, and M. Polishchuk, “Restler: Stateful rest api
fuzzing,” 2019 IEEE/ACM 41st International Conference on Software
Engineering (ICSE), pp. 748–758, 2019.

[11] E. Viglianisi, M. Dallago, and M. Ceccato, “Resttestgen: Automated
black-box testing of restful apis,” 2020 IEEE 13th International Con-
ference on Software Testing, Validation and Verification (ICST), pp. 142–
152, 2020.

[12] A. Martin-Lopez, S. Segura, and A. Ruiz-Cortés, “Test coverage criteria
for restful web apis,” in Proceedings of the 10th ACM SIGSOFT
International Workshop on Automating TEST Case Design, Selection,
and Evaluation, 2019, pp. 15–21.

[13] PortSWigger. Burp suite. [Online]. Available: https://portswigger.net/
burp

[14] crashgrindrips. Burp-Dump. [Online]. Available: https://github.com/
crashgrindrips/burp-dump

[15] EclEmma. JaCoCo code coverage library. [Online]. Available: https:
//www.eclemma.org/jacoco/

[16] A. Pilgun, O. Gadyatskaya, S. Dashevskyi, Y. Zhauniarovich, and
A. Kushniarou, “An effective android code coverage tool,” in
Proceedings of the 2018 ACM SIGSAC Conference on Computer
and Communications Security, ser. CCS ’18. New York, NY, USA:
Association for Computing Machinery, 2018, pp. 2189–2191. [Online].
Available: https://doi.org/10.1145/3243734.3278484

[17] A. Romdhana, M. Ceccato, G. C. Georgiu, A. Merlo, and P. Tonella,
“COSMO: code coverage made easier for android,” in 14th IEEE
Conference on Software Testing, Verification and Validation, ICST 2021,
Porto de Galinhas, Brazil, April 12-16, 2021. IEEE, 2021, pp. 417–423.
[Online]. Available: https://doi.org/10.1109/ICST49551.2021.00053

[18] D. Corradini, A. Zampieri, M. Pasqua, and M. Ceccato, “Empirical
comparison of black-box test case generation tools for RESTful APIs,”
in 21st IEEE International Working Conference on Source Code Analysis
and Manipulation, SCAM 2021, Luxembourg City, Luxembourg, Septem-
ber 27 - September 28, 2021.

http://www.simplecloud.info/
http://www.simplecloud.info/
https://www.openbankproject.com/openbankingmiddleware/
https://www.openbankproject.com/openbankingmiddleware/
http://rest-assured.io/
https://www.getpostman.com/
https://www.getpostman.com/
https://www.soapui.org/
https://www.soapui.org/
https://portswigger.net/burp
https://portswigger.net/burp
https://github.com/crashgrindrips/burp-dump
https://github.com/crashgrindrips/burp-dump
https://www.eclemma.org/jacoco/
https://www.eclemma.org/jacoco/
https://doi.org/10.1145/3243734.3278484
https://doi.org/10.1109/ICST49551.2021.00053

	Introduction
	Architecture
	Network Logger
	Data Collection Module
	Metrics Computation Module

	Running Example
	The Pet Store and Its Test Suite
	Configuring and Launching Restats
	Restats Reports
	How Are These Reports Useful?

	Related Work
	Conclusion
	References

