
Do Security Reports Meet Usability?
Lessons Learned from Using Actionable Mitigations for Patching TLS Misconfigurations

Salvatore Manfredi
Security & Trust, FBK

Trento, Italy
DIBRIS, University of Genoa

Genoa, Italy
smanfredi@fbk.eu

Mariano Ceccato
Department of Computer Science, University of Verona

Verona, Italy
mariano.ceccato@univr.it

Giada Sciarretta
Security & Trust, FBK

Trento, Italy
giada.sciarretta@fbk.eu

Silvio Ranise
Security & Trust, FBK

Trento, Italy
Department of Mathematics, University of Trento

Trento, Italy
ranise@fbk.eu

ABSTRACT
Several automated tools have been proposed to detect vulnerabili-
ties. These tools are mainly evaluated in terms of their accuracy in
detecting vulnerabilities, but the evaluation of their usability is a
commonly neglected topic. Usability of automated security tools is
particularly crucial when dealing with problems of cryptographic
protocols for which even small—apparently insignificant—changes
in their configuration can result in vulnerabilities that, if exploited,
pave the way to attacks with dramatic consequences for the con-
fidentiality and integrity of exchanged messages. This becomes
even more acute when considering such ubiquitous protocols as the
one for Transport Layer Security (TLS for short). In this paper, we
present the design and the lessons learned of a user study, meant
to compare two different approaches when reporting misconfig-
urations. Results reveal that including contextualized actionable
mitigations in security reports significantly impact the accuracy
and the time needed to patch TLS vulnerabilities. Along with the
lessons learned, we share the experimental material that can be
used during cybersecurity labs to let students configure and patch
TLS first-hand.

CCS CONCEPTS
• Networks → Network security; • Security and privacy →
Social aspects of security and privacy.

KEYWORDS
vulnerability detection, usability study, actionable mitigations, se-
curity reports, TLS misconfiguration

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ARES 2021, August 17–20, 2021, Vienna, Austria
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-9051-4/21/08. . . $15.00
https://doi.org/10.1145/3465481.3469187

ACM Reference Format:
Salvatore Manfredi, Mariano Ceccato, Giada Sciarretta, and Silvio Ranise.
2021. Do Security Reports Meet Usability?: Lessons Learned from Using
Actionable Mitigations for Patching TLS Misconfigurations. In The 16th
International Conference on Availability, Reliability and Security (ARES 2021),
August 17–20, 2021, Vienna, Austria. ACM, New York, NY, USA, 13 pages.
https://doi.org/10.1145/3465481.3469187

1 INTRODUCTION
Transport Layer Security (TLS) consists of a set of cryptographic
protocols designed to provide secure communications over a net-
work. TLS is widely used in client-server applications to secure
all the communications by preventing eavesdropping and tamper-
ing. It is mainly used to secure the traffic between a website and
a web browser (HTTPS protocol). Another use of TLS is on top
of Transport Layer protocols such as File Transfer Protocol (FTP)
for the transfer of computer files or Simple Mail Transfer Proto-
col (SMTP) for electronic mail transmission.

The TLS deployment process requires a non-trivial amount of
knowledge [41, 46] as this results in having to correctly set a server
certificate, choose the available protocols, ciphers and enabling
other security mechanisms (e.g., HSTS). Its popularity has encour-
aged attackers to find vulnerabilities. The types of attacks vary
widely and include the renegotiation of cipher suites to exploit
weak encryption algorithms [39], the knowledge of initialization
vectors to retrieve symmetric keys [24], and the use of libraries
to exploit poor certificate validation in deployments where clients
are non-browsers [20]. The downside of allowing a high level of
customization transfers on the system administrators the burden
of securing the deployments.1 However, according to [47], security
does not get enough attention as more than 70,000 of the most
popular websites [55] still support officially deprecated versions of
the TLS protocol [31].

To help administrators in deploying secure TLS instances, during
the years, a variety of tools have been developed to assist system
administrators and ease their work. These tools are usually able to

1https://acloudguru.com/blog/engineering/cloud-governance-and-managing-risk

https://orcid.org/0000-0001-9645-6034
https://orcid.org/0000-0001-7325-0316
https://orcid.org/0000-0001-7567-4526
https://orcid.org/0000-0001-7269-9285
https://doi.org/10.1145/3465481.3469187
https://doi.org/10.1145/3465481.3469187
https://acloudguru.com/blog/engineering/cloud-governance-and-managing-risk

ARES 2021, August 17–20, 2021, Vienna, Austria Manfredi et al.

verify TLS implementations, analyzing the deployment and provid-
ing a list of the possible attacks but miss two important features:
(i) an explanation of the identified vulnerabilities and the attacks
that may exploit them, and (ii) actionable hints on how to mitigate
the attacks. The explanation would allow administrators to learn
about the attacks and put the potential security problems in the
right context (such as impact and likelihood), help them to dis-
tinguish relevant from irrelevant information when searching for
more details, and even ease the acceptance of actionable hints that
can even take the form of code snippet to be copy-pasted in a con-
figuration file. Without these two features, a system administrator
is left with the burden of finding enough information to define an
appropriate mitigation strategy. This task is far from trivial as this
kind of information is spread across several sources ranging from
scientific papers to blog posts; each one with its jargon and back-
ground assumptions. Even disregarding the effort to collect enough
material to mitigate a security problem, administrators should have
enough skills to understand the (often subtle) details and turn the
information in a concrete strategy to fix the problem.

We think that a tool should go beyond than just identifying vul-
nerabilities, and that contextualized actionable suggestions would
be very effective in practically explaining system administrators
how to fix a wrong configuration and remove a specific security
problem. In this paper, we present an experimental assessment of
this hypothesis by quantifying the benefit of providing mitigation
hints on the capability of system administrators to (correctly and
quickly) patch a TLS misconfiguration.

During the experiment, bachelor and master students were asked
to play the role of unexperienced system administrators who should
patch defective TLS configuration files.

The findings prove the effectiveness of security reports con-
taining high level descriptions of contextual information about
identified security problems (e.g., of the identified vulnerabilities)
together with actionable mitigations as even un-experienced users
were able to successfully mitigate complex attacks.

Our contributions can be summarized as follows:

• we formally validate the hypothesis that reports containing
actionable hints are more efficient as we learned that they
drastically decrease the time required to patch TLS vulner-
abilities and improve both problem identification and its
resolution;

• we share the vulnerable VMs, slides, questionnaires as they
can be used both to replicate our study and as valuable asset
for educational scenarios.

Plan of the paper. Section 2 provides the necessary background
notions on TLS and its vulnerabilities. Section 3 contains an overview
of the state-of-the-art. Section 4 describes the decision process that
led to the choice of the TLS analyzer used an experimental user
study involving Bachelor and Master degree students. Section 5
describes the experimental framework that we defined to collect
empirical evidence on the reports’ effectiveness and Section 6 re-
ports the results of this study. These results are then discussed
in Section 7 in terms of their impact and implications. Section 8
concludes the paper and highlights future work.

2 BACKGROUND
We provide some background notions to better understand the
experimentation. We briefly describe the general structure of the
TLS protocol in Section 2.1 and give a concise description of two
known vulnerabilities in Section 2.2.

2.1 Transport Layer Security
TLS has been designed to provide both confidentiality and integrity
between communicating entities [17] and is composed of two layers:
the Handshake and the Record protocol.

The Handshake protocol can provide either mutual or one-way
authentication and allows the parties to exchange all the informa-
tion required to establish a reliable session, this includes the choice
of a set of algorithms that will be used. This set, called cipher suite,
is proposed by the client within the first handshake message and
then chosen by the server. The set of cipher suites supported by
the server is chosen by the system administrator who deployed it.

The Record protocol is deployed on top of a transport protocol
(such as TCP) and encapsulates the messages coming from higher
levels, it ensures confidentiality by using symmetric encryption
algorithms and integrity by calculating the hash of the messages
being sent. The keys and the algorithms used are the ones agreed
during the handshake.

2.2 Vulnerabilities on TLS
On protocol versions prior to 1.3, TLS suffers from a wide set of
vulnerabilities [56]. While some of the attacks are due to flaws
in the logic of the protocol, others exploit the support of now-
deprecated cipher suites or (in)voluntary weakening of security
properties to bypass the authentication process (such as accepting
self-signed certificates [45]). In this paper, we focus on the two used
in our experiments (see Section 5.2): CRIME and BREACH. Both
are compression side-channel attacks that combine three elements:
the presence of a recurring part within the transmitted messages,
the fact that both TLS and HTTP do not hide the length of the sent
data and the availability of DEFLATE [27], a compression algorithm
that reduces the size of an input by replacing duplicate strings with
a reference to their last occurrence.

CRIME [44] is a security exploit that allows an attacker to decrypt
the transmission if the parties agreed to use TLS-level compres-
sion. Supposing the attacker’s intention is to steal a session cookie
(whose ownership authenticates the user), the attack is performed
by creating different client’s messages containing guesses. Due to
the DEFLATE usage, if the guess is wrong, the size of the server’s
response will be bigger than a valid one.

BREACH [22] exploits the same mechanism but using HTTP-
level compression. Once the attacker has correctly guessed the first
character of the shared secret, it starts a phase of trial-and-error in
which she/he increasingly guesses bigger parts of the secret until
its completion.

Being optional, the presence of DEFLATE can be seen as the
single point-of-failure and thus its deactivation – that in Apache
consists in changing two different files – is the suggested mitigation
for both attacks.

Do Security Reports Meet Usability? ARES 2021, August 17–20, 2021, Vienna, Austria

Table 1: TLS Analyzers - Features Comparison

Features ssl-enum-ciphers sslscan SSL Server Test sslyze testssl.sh TLSSLed

Open source & downloadable ✓ ✓ X ✓ ✓ ✓
Actively maintained

TLS vulnerability checks
Standalone

Highly customizable scan

3 RELATEDWORK
Usability Studies in Cyber Security. Several usability studies have

been conducted in order to assess tools and methodologies in differ-
ent cyber-security domains, such as password storage, penetration
testing and code obfuscation.

Naiakshina et al. conducted qualitative usability studies either
with students [43] and with freelance developers working remotely
[42], asking them to build a password storage mechanism. These
studies showed that participant security knowledge does not guar-
antee the delivery of secure software.

In the domain of risk assessment, Allodi et al. measured the accu-
racy [4] and the difficulty [3] for students (with different technical
education) in using the Common Vulnerability Scoring System
to assess the severity of software vulnerabilities. Labunets et al.
conducted a series of empirical evaluations to compare the effec-
tiveness of two classes of threats-analysis methods [37] and the
comprehensibility of two risk model representations [36].

Scandariato et al. conducted a series of controlled experiments
to compare static analysis and penetration testing tools, in terms
of how well they support developers in accurately detecting vul-
nerabilities [52], and then in fixing the code [12].

Ceccato et al. measured how code obfuscation influences the cor-
rectness and effectiveness of understanding and change tasks [10].
In a successive work, the same authors presented an extension
with a larger set of experiments conducted on more obfuscation
techniques [8]. Then, their replication package has been used by
Hänsch et al. [26] to conduct a similar experiment and assess a
slightly different set of obfuscations. Viticchié et al. empirically
evaluated the attack delay introduced by a data obfuscation [64]
and by code splitting [63]. They confirmed that attacks are still
possible on protected programs, but they are delayed by a factor of
six for that technique.

Compared to the described studies, our focus is different: we tried
to understand how a sysadmin could be guided toward a correct
configuration of vulnerable webservers using actionable hints.

Impact of providing hint suggestions. The following articles focus
instead on how awareness and documentation affect the usage
and related maintenance of specific technologies; they start from
hypothesis similar to ours but focus on the difficulty rather than
proposing a solution.

Acar et al. [2] performed a systematic investigation on how
the documentation available to developers directly affects both
security and privacy properties, finding that most developers do
use search engines and StackOverflow to address issues, leading to
poor implementation results. Gorski et al. [23] evaluated the impact

of providing security advise in case of API misuse, proving that the
offered advices impacted positively on code security and did not
affect the overall usability of the interface.

Krombholz et al. investigated the mental models of both users
and sysadmins, their results show a large amount of misconceptions
about threat models, protocol components and also the very same
benefits of using HTTPS [33]. In [34], they also performed a series
of controlled experiments to highlight the difficulties of deploying
HTTPS, proving that it is far too complex even for people with
adequate expertise. The findings of the latter have been partially
verified by Bernhard et al. as they performed two usability studies
narrowing the procedure to the certificate acquisition [5].

Finally, the study performed by Tiefenau et al. reveals that even
experienced administrators struggle with keeping their systems
up-to-date as the decision process that precedes the application of
patches requires attention and is time-consuming [62]. To overcome
this limitation, Li et al. suggests that helping system administrators
during the information gathering would simplify the updating ef-
forts and the likelihood of prioritizing the updates for the managed
systems [38].

4 TOOL DESCRIPTION
With the goal of evaluating the benefits of providing mitigation
hints in a TLS security report we need to identify an offline TLS
analyzer to use for our user study. The market offers several tools
to support sysadmins with security TLS configurations, all of them
adopt a similar approach, i.e., they repeatedly connect to the target
server and send specifically crafted ClientHello messages. By check-
ing the server’s responses (i.e. Server-Hello messages), these tools
infer the server configuration and assess if it is affected by known
vulnerabilities. However, their reports usually contain only the list
of detected vulnerabilities and they offer little or no explanation
on how to actually mitigate the detected weaknesses. Among the
publicly available scanners we can mention ssl-enum-ciphers [32],
sslscan [49], TLSSLed [58], testssl.sh [65], SSL Server Test [48] and
sslyze [18]. We chose testssl.sh as it is the most complete and covers
the largest amount of required features (see Table 1).

4.1 testssl.sh’s Report
testssl.sh is a powerful open-source Bash script [65] that supports
a wide range of state-of-the-art TLS-related checks. Checks include
availability of ciphers and protocols, server preferences and an
extensive set of information from the server certificate and its
chain of trust. The report looks complete and quite verbose as it
does not focus on the detected issues only, but it gives an overall

ARES 2021, August 17–20, 2021, Vienna, Austria Manfredi et al.

view of the server status including also the passed checks (see a
fragment in Figure 1).

4.2 Actionable Reports
To understand if system administrators would benefit from a concise
yet informative report (see Section 5) we took a subset of testssl.sh re-
ports, removed all the passed and informative checks and added a
number of descriptive elements collected by fetching information
from both scientific literature and each vendor’s technical docu-
mentation. The resulting report provides a clear explanation of how
the detected vulnerabilities can be exploited and a set of actionable
mitigation measures that aim to thwart their impact, and opera-
tively guide a system administrator in removing the found security
defects. The provided mitigations are described at various levels of
abstraction (see a fragment in Figure 2):

Textual description: natural language description of the TLS
vulnerability and related mitigations (brief explanation of
the actions to perform).

Code snippet: a fragment of code that can be copy-pasted into
the webserver’s configuration to seamlessly fix the weakness.
Together with the snippet, the report will provide a set of
steps on how to find the correct file/line to edit.

5 DEFINITION OF THE EXPERIMENTAL
FRAMEWORK

The goal of this study is to analyze the effect of providing a set of
mitigations to system administrators with the purpose of evaluating
the support offered by the actionable reports in patching a defective
TLS configuration. The quality focus regards how mitigation hints
increase the developer capability to correctly and quickly patch a
defective TLS configuration. We thus formulate the following two
research questions:

RQ1. Do a textual description of themitigation and the correspond-
ing code snippet increase the likelihood of a correct patch to
a defective TLS configuration by a system administrator?

RQ2. Do a textual description of the mitigation and the corre-
sponding code snippet decrease the time required by a system
administrator to patch a defective TLS configuration?

The main perspective from which our experiment should be evalu-
ated is how actionable information can enhance the identification
and patching of insecure TLS configurations in terms of speed
and precision. There are also other interesting point of views to
consider such as those of (i) a researcher interested to empirically
assess the benefit of hints in patching defective TLS configurations;
or (ii) a project manager, who has to make a decision of which
development/maintenance tools and procedures to adopt, in or-
der to guarantee effective deployment of a correctly configured
infrastructure.

The experimental settings have been designed following the tem-
plate and guidelines by Wohlin et al. [7] to select participants and
present their demographics (Section 5.1), to define the experimental
design and select appropriate metrics and dependent/independent
variables (Section 5.2), to identify the most appropriate statistical
tests (Section 5.3) and, eventually, to identify the threats to the
validity of our findings (Section 5.4).

5.1 Demographic Statistical Sample
We involved 62 participants in this study. They are Bachelor and
Master students from the departments of Computer Science and
Mathemathics of the University of Trento playing the role of unex-
perienced system administrators who should patch defective TLS
configuration files.

The study has been conducted as part of laboratory lectures in
two courses of cybersecurity offered in our University.

Participants were aware that they could drop at any time with
no consequences, as they would not have been evaluated for their
performance in the experiment. There was no compensation (nei-
ther money nor bonus in the exam mark) for their participation in
the study.

A profiling survey have been used to collect demographic data
from the participants.

Seniority. The first question splits participants according to their
seniority: 22 participants are Bachelor and 40 are Master students.

Year. 11 participants attend the 2nd and 11 the 3rd year of the
Bachelor program, while 26 participants attend the 1st year and 14
the 2nd year of the Master program.

Academic background. We filled a list of the related University
courses, whose content might have been relevant to influence the
result of a corrective task on TLS configuration. The answers are
shown in Table 2. Participants background was collected in terms of
which related courses they already attended or not (column marked
with ✓ and X , respectively, in the table). Most of the participants
(i.e., 50 over 62) already attended the course Introduction to Com-
puter and Network Security, while almost half of the participants (i.e.,
34 out of 62) attended the course about Security Testing. Less partic-
ipants attended Cryptography (21 students) and Network Security
(10 students). A smaller group attended Complexity, Crypto and Fi-
nancial Technology (3 participants), Cyber-Security Risk Assessment
(5 participants) and Offensive Security (4 participants).

Table 2: Demographics: Participants’ Academic background.

Course X ✓
Introduction to Computer and Network Security 12 50
Security Testing 28 34
Cryptography 41 21
Network Security 52 10
Cyber Security Risk Assessment 57 5
Offensive Security 58 4
Complexity, Crypto and Financial Technology 59 3

Technical background. Additionally, we collected the tech-
nical background of participants, in terms of which tasks they
conducted in the past (data shown in Table 3). Only 15 are expert
in manually configuring a TLS server because they already did it
(column marked with ✓), while half of them already configured
Apache HTTP servers (33 participants) and created or edited other
Unix configuration files (36 participants). The large majority of the
participants are fluent in basic Unix administration tasks, such as
navigating in the file system (61 participants), working with folders
(60 participants), editing files (59 participants) and installing system
packages (57 participants).

Do Security Reports Meet Usability? ARES 2021, August 17–20, 2021, Vienna, Austria

Figure 1: testssl.sh report fragment

Figure 2: Enhanced report fragment on CRIME

Table 3: Demographics: Participants’ Technical background.

Technical skill X ✓
Configure TLS servers 47 15
Configure Apache HTTP instances 29 33
Create/edit UNIX configuration files 26 36
Change working folder 1 61
Create/remove folder 2 60
Edit file 3 59
Install package 5 57

Number of participants. Establishing the right number of par-
ticipants to a user study is a difficult task that can be completed only
ex-post, after the experimental data are collected (by estimating
the power of the test, as done in [11]). However, a replication with a
large number of participants is mandatory for inconclusive studies,
where the observed difference in independent variables was not
statistically relevant (power was low). As a matter of fact, between
15 and 20 participants is considered reasonable to draw conclusions

from statistical analyses of the results [59]; in our case we have 4
times this number of participants.

Concerning the profiles of participants, we are aware that the
expertise of students may be different from that of professionals.
However, finding professionals available to conduct a demanding
experiment as the one we designed is not easy. We mitigated this
limitation by considering students with different levels of education
(Bachelor and Master) and by making sure that participants had
enough knowledge on TLS and its related vulnerabilities. All in all,
the use of undergraduate students as a proxy of junior developers
to draw conclusions is a common practice in empirical software
engineering that is largely accepted and validated [28, 51, 61].

Ethical considerations. Participation was voluntary and stu-
dents could have chosen not to attend the experiment without
negative results on the final evaluation of the exam. Those students
who opted to participate were aware that they would not be evalu-
ated based on their performance and that they were receiving no
compensation (neither money nor bonus in the exam mark) for
the participation in the study; they were aware that they could

ARES 2021, August 17–20, 2021, Vienna, Austria Manfredi et al.

drop off at any time with no consequence. During all the exper-
imentation, we strive to adhere to the general ethical principles
stated in the ACM code of conduct [19] with particular attention
to trustworthiness, fairness, privacy, and confidentiality.

5.2 Experimental Setup and Execution
Systems. The systems used to conduct the experiment are two web
servers with defective TLS configurations, running Apache HTTP
Server v2.4.37 and OpenSSL v1.0.2. Each incorrect configuration
exposes the corresponding system to one specific attack. The two
systems are:

• S1: a defective webserver vulnerable to BREACH; and
• S2: a defective webserver vulnerable to CRIME.

They are packaged as two distinct Virtual-box machines. Instead
of using a random pair of detectable misconfigurations (e.g., POO-
DLE [40], Sweet32 [6] or others) we selected two vulnerabilities
that are comparable in terms of complexity of the operations re-
quired to patch. Moreover, we ensured that they can realistically
be fixed in two hours, taking into account the student’s technical
background. In particular, both are prone to the same type of in-
formation leakage caused by DEFLATE, but exploited using two
different attacks (as discussed in Section 2.2). It is important to note
that these systems are representative of realistic TLS configurations
as both Apache and OpenSSL are respectively the most popular
webserver [15] and TLS library [14]. To make the corrective tasks
independent, only one vulnerability is present in each system.

Metrics. Tomeasure the support of mitigation actions to conduct
a corrective maintenance on TLS configurations (i.e., vulnerability
detection and fix), we identified the following variables. The main
factor of the experiment—that acts as an independent variable—is
the presence of the mitigation hints during the execution of the
task. In our experiment, the base treatment case TR𝑙𝑖𝑠𝑡 consists of
the bare list of vulnerabilities, as it is provided by the analysis tool
testssl.sh; and TRℎ𝑖𝑛𝑡 consists of the actionable reports, that include
not only the list of vulnerabilities, but also a textual description of
the mitigations and a code snippet to apply the mitigation.

Moreover, by adopting an approach similar to the one described
in the ISO 9241 (Part 11) standard [29], we instrumented the exper-
imental settings to measure the following dependent metrics:

• Correctness of each corrective task performed by partici-
pants, which corresponds to the System Effectiveness in [29]
and thus examines the participants’ ability to complete a
task. Participants could repeat the scans as many times as
they like during the experimental session. However, to con-
sider a task correct, the participants were supposed to run
a final scan and to show the experimenter that the freshly
generated report contains no vulnerability.

• Time taken to perform a corrective task on a defective TLS
configuration, which corresponds to the System Efficiency
in [29]. We collected such information by asking participants
to fill in—while performing the experimental tasks—start and
end time of each task.

Finally, the System Satisfaction in [29] to evaluate the overall usabil-
ity of the TLS analyzer report is measured by a survey questionnaire
(shown in Appendix A and analyzed in Section 6.3).

Experimental Design. We adopt a counter-balanced experi-
mental design intended to fit two lab sessions of 40 minutes each.
Participants are randomly assigned to four groups (despite they
work alone) balanced based on their seniority, each one working
in two labs on different systems with different treatments. The
design allows for considering different combinations of Systems
and Treatments in different order across Labs (see Table 4).

Table 4: Experimental design.

Group A Group B Group C Group D
Lab 1 S1 + TRℎ𝑖𝑛𝑡 S2 + TR𝑙𝑖𝑠𝑡 S2 + TRℎ𝑖𝑛𝑡 S1 + TR𝑙𝑖𝑠𝑡
Lab 2 S2 + TR𝑙𝑖𝑠𝑡 S1 + TRℎ𝑖𝑛𝑡 S1 + TR𝑙𝑖𝑠𝑡 S2 + TRℎ𝑖𝑛𝑡

Experimental Procedure. Before the experiment, participants
were properly trained with lectures and exercises on TLS, to recall
the required background [1]. The purpose of training is to make
participants confident about the kind of tasks they are going to
perform and the environment they will have available.

The experimental context has been set as similar as possible
to a realistic scenario. As such, participants could run scanning
tools as often as wanted, they could inspect the scan reports and
browse the Internet to look for additional information. Moreover, by
performing a dry-run test we ensured that the overall experiment
can realistically be finished in two hours. The dry-run test helped
us also to refine the survey questionnaires. Participants have been
delivered the following material:

• two virtual machines: S1 and S2;
• two digital documents containing the instructions for each
treatment (i.e., TR𝑙𝑖𝑠𝑡 and TRℎ𝑖𝑛𝑡);

• a printed page containing a recap of the lessons learned
during the training phase (e.g., the commands used).

The experiment was carried out according to the following pro-
cedure. Participants had to:

(1) Complete a pre-experiment profiling survey questionnaire;
(2) For Lab 1: (i) mark the start time; (ii) perform the corrective

task; (iii) mark the stop time;
(3) Complete a survey questionnaire on the first lab;
(4) For Lab 2: (i) mark the start time; (ii) perform the corrective

task; and (iii) mark the stop time;
(5) Complete a survey questionnaire divided in three parts: a 1st

part on the second lab, a 2nd part on a comparison between
the two labs, and a 3rd part to collect feedback on TRℎ𝑖𝑛𝑡
(the treatment with mitigation hints).

The pre-experiment profiling survey collects demographic data
about the participants, such as their previous experience with
Apache HTTP Server and their knowledge of the Bash command
language; the complete survey is included in the replication pack-
age available online [1] and we have described the collected data
in Section 5.1.

Each lab can be considered over, and, thus, a participant can
mark the stop time, only after proving that the task was successfully
completed or because the available time has expired.

We report the list of questions for the survey questionnaire in
Appendix A and discuss the answers in Section 6.3. The survey
questionnaires deal with cognitive effects of the treatments on

Do Security Reports Meet Usability? ARES 2021, August 17–20, 2021, Vienna, Austria

the behavior of the participants and perceived usefulness of the
provided report.

5.3 Statistical Tests
We are interested to assess if the presence of mitigation hints has
an impact on the Correctness and in the Time taken to fix defective
TLS configurations. However, observed differences in the correct-
ness of corrective tasks and time spent on them could be due to
random variations or measurement errors. To test if the observed
difference is statistically significant, we use sound statistical tests.
As a common practice, we accept a 5% probability of committing
type-I error, i.e., assessing that the difference is significant when
it is actually due to random error. Practically, this setting defines
the threshold 𝛼 = 0.05, for considering the result of a statistical test
significant.

The lack of significance might mean also that there was an effect,
but the effect was not observable (possibly because of a too small set
of observations), rather than that the effect does not exist, i.e., we
risk to commit a type-II error (nullification fallacy [35]). To quantify
the probability of this problem, when the significance threshold
is not reached, we can estimate the probability 𝜋 of committing a
type-II error as 1 - Power, where Power is the statistical power of the
adopted statistical test. As common practice, assume a threshold
𝛽 = 0.20 and we consider the power adequate when 𝜋 < 𝛽 .

The decision of which statistical tests to use was based on test
applicability conditions and best practices recommended or com-
monly accepted in authoritative literature.

For each participant there are two distinct data points, one for
the first lab and another one for the second lab, so we never perform
multiple pairwise comparisons with overlapping data. Thus, there
is not risk to inflate the family-wise error rate, and no correction
factor (e.g., Bonferroni or Holm) is needed.

Correctness. To analyze the differences in terms of Correctness,
we looked at the frequencies of correct/wrong tasks and we used
a test on categorical data, because the tasks can be either correct
(completed successfully) or incorrect (completed unsuccessfully).
In particular, we used Fisher’s exact test [16] that is applicable on
categorical data (correct/wrong answers). Fisher’s exact test is more
accurate than the 𝜒2 test for small sample sizes, which is another
possible alternative to test the presence of differences in categorical
data. The same analysis was conducted by [9].

Time. To test the differences in Time, we perform the two-tailed
Mann-Whitney U test on all samples [57]. This test is applicable
to compare (time duration) samples of two populations. As a non-
parametric test, Mann-Whitney U test does not require data to be
normally distributed.

Effect size.To quantify the magnitude of differences among the
two treatments, we used two kinds of effect size measures, the
odds ratio for the categorical variable Correctness and the Cliff’s
delta effect size [25] for Time. An odds ratio of 1 indicates that the
condition or event under study is equally likely in both groups
(participants using TR𝑙𝑖𝑠𝑡 and those using TRℎ𝑖𝑛𝑡). An odds ratio
greater than 1 indicates that the condition or event is more likely in
the first group. An odds ratio less than 1 indicates that the condition
or event is less likely in the first group. For independent samples,
Cliff’s delta provides an indication of the extent to which two

(ordered) data sets overlap, i.e., it is based on the same principles of
the Mann-Whitney test. Cliff’s Delta ranges in the interval [−1, 1].
It is equal to +1 when all values of one group are higher than
the values of the other group and −1 when reverse is true. Two
overlapping distributions would have a Cliff’s Delta equal to zero.
The effect size is considered small for 0.148 ≤ 𝑑 < 0.33, medium
for 0.33 ≤ 𝑑 < 0.474 and large for 𝑑 ≥ 0.474 [13].

Co-factors. The analysis of other factors (participants’ back-
ground, the system, the lab) that could have influenced the Cor-
rectness and Time is performed using the Generalized Linear Mixed
Model [30] (GLMM for short). They extend the Generalized Lin-
ear Model (GLM) by adding random effects to the linear predictor
(GLM only supports fixed effects). Random effects are particularly
appropriate with repeated measures design, i.e., when different data
points are collected for the same participant (in our design, each
participant worked at two tasks). GLMM incorporates a number
of different statistical models: ANOVA, ANCOVA, MANOVA, MAN-
COVA, ordinary linear regression, t-test and F-test. It consists in
fitting a linear model of the dependent output variables (Correctness
or Time) as a function of the independent input variables (all fac-
tors, including the treatment, i.e., the vulnerability detection tool).
GLMM is capable of testing a dependent output variable (exper-
iment outcome) on many input variables (factors) and it allows
to test the statistical significance of the influence of each factor
separately.

GLMM requires to specify the exponential-family distribution
based on the domain of the outcome. We have chosen:

• the binomial family with logit link function to fit the Cor-
rectness, as it corresponds to a logistic regression that is
appropriate for a binary outcome (correct/wrong task);

• a Gamma family for fitting the Time, as it is appropriate for
fitting a time duration that can be a positive decimal value.

However, as other models could have been used to fit the Time,
we use theAkaike Information Criterion (AIC for short) to check that
the chosen model (i.e., the Gamma exponential-family distribution)
was the most appropriate to fit our data [50]. AIC is founded on
information theory and it entails balancing the trade-off between
the goodness of fit of the model and the size of the model.

Surveys.Two statistical tests have been used on survey ques-
tionnaire. The Fisher’s exact test is used on categorical data, to
compare the frequencies of yes/no answers for participants who
worked with different tools. The Mann-Whitney U test is used to
analyze answers to overall questions (not specific to any lab) when
the answers were formulated using a Likert scale, checking for the
null-hypothesis that the average answer was negative or neutral.

5.4 Threats to Validity
The main threats to the validity of this experiment belong to the in-
ternal, construct, conclusion and external validity threat categories.
We discuss each one of them in the following.

Internal validity threats concern external factors that may affect
the independent variable. The chosen design allowed us to control
a number of factors, namely participants background, system and
learning across experimental sessions. Participants were not aware
of the experimental hypotheses, participants were not rewarded for

ARES 2021, August 17–20, 2021, Vienna, Austria Manfredi et al.

the participation in the experiment and they were not evaluated
on their performance in doing the experiment.

Construct validity threats concern the relationship between the-
ory and observation. They are mainly due to how we measure the
correctness and duration of tasks. As described in Section 5.2, we
considered real vulnerabilities and we used a sound procedure to
objectively evaluate whether the fixes were correct.

The background of participants was estimated according to their
academic background and their technical knowledge.

Conclusion validity threats concern the relationship between
treatment and outcome. We used statistical tests to draw our con-
clusions on the correctness and the time required to fix TLS mis-
configurations. The adopted statistical tests are particularly robust
(i.e., they do not give false rejections of the null hypothesis) under
deviations from normality.

External validity concerns the generalization of the findings. In
our experiments we considered two major vulnerabilities related
to TLS configuration, namely BREACH and CRIME. Although dif-
ferent vulnerabilities might occur, the results obtained with these
vulnerabilities already support well our interpretations.

Our experiment exploited one real-world web application run-
ning in a web server (i.e., Apache HTTP). Despite we consider that
this web server is representative of other web servers (e.g., nginx),
in principle different results could be obtained for different web
servers.

The study was performed in an academic environment, which
may differ substantially from an industrial setup. However, we
mitigate this threat by using subjects with different background
and different seniority, including Bachelor and Master students,
some of which with experience with TLS, Apache HTTP and Unix.
Moreover, we considered the seniority as a factor to detect any
influence on the results.

6 EXPERIMENTAL RESULTS
This section presents the data collected during the experimental
validation. After analyzing data with sound statistical tests, we
formulate answers to the two research questions stated at the be-
ginning of Section 5.

6.1 Analysis of Correctness
Table 5 shows the distributions of correct/wrong answers when us-
ing testssl.sh’s reports (TR𝑙𝑖𝑠𝑡) and the actionable reports (TRℎ𝑖𝑛𝑡).

Almost all the participants were able to correctly patch the vul-
nerability when they were provided mitigations and code snippets,
only one participant was not. Conversely, when participants were
provided only with the list of vulnerabilities,2 just 40 were able to
complete a correct vulnerability patch.

We apply Fisher’s test to check if the observed trend is statisti-
cally significant. The difference is statistically relevant (p-value<
0.001, and we recall that we assume significance when p-value< 𝛼 ,
with 𝛼 = 0.05) with a large effect size (odds ratio = 30).

Table 6 reports the analysis of correctness with GLMM. The
model takes into account not only the effect of the main treatment
(i.e., availability of mitigation hints) but all the other factors that

2The number of participants who worked with TR𝑙𝑖𝑠𝑡 does not sum to 62, because
two participants attended only the first lab.

Table 5: Correctness in fixing an incorrect TLS conf.

TR𝑙𝑖𝑠𝑡 TRℎ𝑖𝑛𝑡
Correct 40 (67%) 61 (98%)
Wrong 20 (33%) 1 (2%)

we considered in our experimental design, i.e., the System, the Lab,
the profile of the participants (the Year attended and their Seniority).
The random-effects term is the participant who took parts in the
two labs.

Statistically significant cases are in boldface. Consistently with
the Fisher’s test, we can observe that the availability of mitigation
hints significantly influences the correctness of a task related to
fixing a TLS configuration file, as Pr(> |z|)= 0.0010. However, it is
the only significant factor.

The probability of committing type-II error obtained fromGLMM
power analysis is 0.05, which is smaller than 0.20 So, we can claim
that the missing significance is not due to insufficient experimental
data points, but to missing causal correlation between independent
and dependent variable.

System does not significantly influence theCorrectness of tasks, so
we can conclude that the two applications and the two corrective
tasks were well-balanced and none was harder or easier to fix.
Moreover, the Lab is not a significant factor, thus there is no evident
learning effect between the two experimental sessions. This means
that having performed a first lab does not improve the accuracy in
the second lab and we only measure the difference actually due to
the independent variable (i.e., the presence of mitigation hints).

Based on these results, we can answer the research question RQ1
(see beginning of Section 5) as follows:

Providing a text description together with a code snippet of the miti-
gation increases the capability of a system administrator to patch the
defect in the TLS configuration. In fact, we observed that participants
deliver correct fixes in 98% of the cases when this additional informa-
tion has been included in the security reports, while the rate of correct
fixes is 67% when no mitigation is provided.

Table 6: Analysis of Correctness (GLMM)

Estimate Std. Error z value Pr(> |z|)
(Intercept) 15.26 14.49 1.05 0.2923
Treatment -14.12 4.28 -3.30 0.0010

System -0.72 2.34 -0.31 0.7596
Lab 0.43 2.34 0.18 0.8534

Seniority -6.07 13.78 -0.44 0.6598
Year 3.66 7.07 0.52 0.6048

6.2 Analysis of Time
We now analyze the time taken to fix a TLS configuration. Thus, we
only consider time information for those participants who correctly
fixed TLS configurations, and we discard data for incomplete and
wrong tasks.

Figure 3 shows to box-plot of the time (in minutes) taken to fix
a TLS configuration. Descriptive statistics (number of data points,
mean, median and standard deviation) are summarized in Table 7.

Do Security Reports Meet Usability? ARES 2021, August 17–20, 2021, Vienna, Austria

On average, when testssl.sh is used (TR𝑙𝑖𝑠𝑡) fixing a wrong configu-
ration takes 23 minutes. When using the actionable reports (TRℎ𝑖𝑛𝑡)
the amount of time, on average, is reduced to less than 8 minutes.

According to the result of Mann-Whitney test, this difference
is statistically significant (p-value< 0.001) with a large effect size
(Cliff’s Delta = 0.8819).

●

●

●

10

20

30

40

50

TR−list TR−hint
Treatment

T
im

e
[m

] Treatment

TR−list

TR−hint

TR𝑙𝑖𝑠𝑡 TRℎ𝑖𝑛𝑡
n 40 61
Mean 23.2 7.9
Median 24 6
SD 9.51 3.66

Figure 3 & Table 7: Time (in minutes) to fix a security issue.

Table 8 reports the analysis of TimewithGLMM,with statistically
significant cases in boldface. Consistently with the results of Mann-
Whitney test, GLMM confirms that the availability of mitigation
hints significantly influences the time needed to fixing a wrong
TLS configuration file. Similarly to what previously observed for
the Correctness, other factors have no significant influence on the
Time to fix.

Table 8: Analysis of Time (GLMM)

Estimate Std. Error t value Pr(> |z|)
(Intercept) 0.04 0.03 1.39 0.1637
Treatment 0.09 0.01 12.55 <0.0001

System -0.01 0.01 -1.57 0.1176
Lab 0.01 0.01 1.02 0.3077

Seniority -0.02 0.02 -0.79 0.4274
Year 0.00 0.01 0.39 0.6954

In this case, however, the probability of a type-II error obtained
from GLMM power analysis is larger than 0.20. So, differently than
the analysis of Correctness, the missing significance of cofactors
influence (e.g., System and Lab) on Time cannot be interpreted as
considerations on the experimental design.

Eventually, considering that this GLMM model could have been
computed with different exponential-family distributions, we need
to check that our choice was the most appropriate to fit our data.
To this aim, we used the Akaike Information Criterion (AIC). This
consists in fitting our data with other models and compare their
AIC value. AIC values for other models are the following: 681.33 for
Gaussian, 614.64 for Gamma and 631.43 for Poisson. As we can see,
our choice is confirmed, because the AIC value for Gamma family
is much lower than for the other models.

Considering these results, we can answer the research question
RQ2 (see beginning of Section 5) as follows:

Providing a text description together with a code snippet of the mitiga-
tion decreases the time needed by a system administrator to patch the
defect in the TLS configuration. In fact, we observed that in average it
took 8 minutes to fix a misconfiguration when this additional infor-
mation has been included in the security reports, while on average it
took 23 minutes when no mitigation is provided.

Table 9: Analysis of survey questionnaire (Fisher’s test)

Question TR𝑙𝑖𝑠𝑡 TRℎ𝑖𝑛𝑡 P-value
Yes No Yes No

Enough time 40 20 61 1 <0.0001
No difficulty 18 42 57 5 <0.0001
Online search 53 7 3 59 <0.0001

<60% ≥60% <60% ≥60%
Configuration 53 7 41 21 0.0048
Documentation 24 36 61 1 <0.0001

6.3 Analysis of Survey Questionnaire
The survey questionnaire (question formulation are reported in
Appendix A) is composed of three parts and is meant to collect the
participants opinion on the experiment.

First Part. The objective of the first part is to collect the partici-
pants opinion on the security reports, to indirectly compare them.
Answers to the this first part are reported in Table 9. For the first
three questions, the table reports the number of yes/no answers
for participants who worked just with the list of vulnerabilities
(2nd and 3rd columns, respectively) and with the mitigation actions
within the actionable reports (4th and 5th columns).

The fourth and fifth questions asked participant to report the
percentage of their lab time that they spent on specific tasks. An-
swers are in Likert scale (“< 20%”, “≥ 20% and < 40%”, “≥ 40% and
< 60%”, “≥ 60% and < 80%” and “≥ 80%”). The table reports the
number of participant who answered when a task took less than
60% or more than 60% of the lab time. The last column of Table 9 re-
ports the significance (i.e., p-value) computed by applying with the
Fisher’s test for each question, to reveal statistical significance for
the various answers. Significant cases are highlighted in boldface.

According to the first question, participants working with the
actionable reports (i.e., TRℎ𝑖𝑛𝑡) considered that the time allocated
to the task was enough, while time was short for participants as-
signed TR𝑙𝑖𝑠𝑡 . This result is consistent with the analysis of Time,
of Section 6.2, were participants who worked with no mitigation
hints took longer to complete their tasks.

Consistently, looking at responses to the second question, we
notice that only participants working with the actionable reports ex-
perienced no difficulty in completing the tasks. Tasks were harder
to complete when participants were only supported by the list of
security defects.

Considering the answers to the third question, we see that on-
line searches were used by the majority of the participants who
worked just with the list of vulnerabilities (53 positive answers
versus 7 negative answers). When the actionable reports were used,
instead, the majority of participants did not resort to online search
(3 positive answers versus 59).

ARES 2021, August 17–20, 2021, Vienna, Austria Manfredi et al.

Table 10: Analysis of survey questionnaire (Mann-Whitney test)

Question Strongly disagree Disagree Neutral Agree Strongly agree P-value
Mitigations hints useful 0 3 15 21 20 <0.0001
Code snippets useful 1 1 10 15 32 <0.0001

Moving at the next two questions about time, we see a different
approach on solving the assigned task. 53 participants assigned
TR𝑙𝑖𝑠𝑡 spent less than 60% of the lab time looking at TLS configura-
tion code, meaning that they did not try to understand how TLS was
configured but focused on searching online or in the TLS report for
the solution. Conversely, when using the actionable reports almost
none of the participants searched online for TLS documentation.

Second Part. The second part of the survey is a more direct com-
parison between the two alternative approaches. In fact, we asked
participants to make an explicit decision about the two reports.
For each question, Table 11 reports the number 3 of decisions that
participants formulated about tasks supported by TRℎ𝑖𝑛𝑡 and TR𝑙𝑖𝑠𝑡 .

Table 11: Analysis of survey questionnaire.

Question TR𝑙𝑖𝑠𝑡 TRℎ𝑖𝑛𝑡
Most useful 18 41
Most easy to read 7 52
Most complex to understand 53 6

The first question asked which was the most useful report when
fixing the misconfiguration. The majority of the participants (41)
considered the actionable reports the most useful.

The second question investigated if security reports were easy to
read. The reports with mitigations were considered easier to read
than the bare list of vulnerabilities.

The third question dealt with complexity of understanding. Con-
sistently with the previous answers, the report that missed miti-
gations (i.e., TR𝑙𝑖𝑠𝑡) was considered more complex to understand
than when mitigations were present (in TRℎ𝑖𝑛𝑡).

Table 10 reports the answers to two other direct questions about
mitigation hints and code snippets. Many participants strongly
agree (20) or agree (21) that the textual mitigation hints were useful
to complete the corrective task. A similar trend can be observed for
the next question, participants strongly agree (32) or agree (15) that
code snippet were useful to complete the corrective task. The result
of Mann-Whitney test (null-hypothesis mean answer ≤ “Neutral”)
confirms that this trend is statistical significant.

Third Part. This last part, with only open questions, let partic-
ipants write free text as feedback to the experiment. Its analysis
would require a fundamentally different approach, mostly bases on
grounded theory [21, 60] and is thus left for future work.

3We consider only 59 participants as one did not answer the 2nd part of the survey
questionnaire.

7 LESSONS LEARNED
Often, new approaches may show trade-offs between contrasting
goals and an optimal cost-benefit equilibrium has to be found. Ac-
cording to our experimental results, this is not the case when inte-
grating actionable security hints into security reports. Indeed, we
were able to observe a positive effect on both Correctness and Time
of completion of the tasks.

In fact, we observed that mitigation hints help to patch defects
in TLS configurations, by reducing the probability of error by 30
times and the time to complete the fix by 3 times.

In the following, we report the implications and general observa-
tions that we can formulate, based on the objective and quantitative
results presented in the previous section.

Limited information Automated security tools convey insuffi-
cient information. A TLS configuration is quite complex as it con-
tains a lot of properties that might not be of immediate understand-
ing, thus the bare list of security problems is not informative enough
to let a system administrator fix it. Indeed, additional information
is needed to fill the gap of a security report and guide the system
administrator towards figuring what changes are needed. In our
experiment, the participants who received the list of vulnerabilities
had to search online to understand how to fix security defects, while
this was not required to those who worked with actionable hints
(see Section 6.3 and Table 9).

Correctness and Time Actionable maintenance hints improve
correctness and time to fix. Despite different tools find the same
vulnerabilities, it is crucial how these are reported to system admin-
istrators. When actionable hints are available, a security report is
more usable, user-friendly and able to guide system administrators
towards a mitigation (see Table 6) in a timely manner (see Table 8
and Figure 3). Researchers and practitioners should keep this result
in mind when developing new automated security tools. Scan re-
sults should be complemented with explanations and operational
suggestions on how to solve the security problem or, at least, where
to find additional information to guide towards the solution.

Perceived effect Mitigations hints are easier to read and more
useful than the list of vulnerabilities. When conducting corrective
maintenance, a flat list of the detected vulnerabilities is not per-
ceived as very useful, probably because they are not very infor-
mative nor easy to read. This leaves system administrators with
no clue where to look for getting the necessary information or to
distinguish relevant from irrelevant data gathered from, e.g., online
searches. Thus, additional information has to be collected either
spending time in the code or reading additional documentation.
Conversely, sysadmins are aware of the benefits of actionable miti-
gation hints because they are considered easier to read, more useful
to support a fixing task and do not require additional time to fill
knowledge gaps (see Survey Questionnaire and Table 11).

Do Security Reports Meet Usability? ARES 2021, August 17–20, 2021, Vienna, Austria

8 CONCLUSIONS
The usability of automated tools for vulnerability detection is quite
a neglected topic. We have designed and conducted a user study
aiming at filling this gap and answering the question in our title
Do Security Reports Meet Usability? Our experiments reveal that
the usability of reports is largely impacted by the availability of
contextualized actionable hints, as they have a positive effect on
both the correctness and the time needed to fix a TLS vulnerabil-
ity. In addition, empirical evidence allows us to formulate a set of
lessons learned that pave the way towards improving in general
the usability of automated security tools. We can summarize the
lesson learnt as follows. The main drawback is that the information
provided (such as a flat list of detected problems) is often insuffi-
cient to enable users with little experience in security to mitigate
a vulnerability. This can be alleviated by adding succinct textual
explanations describing both the identified vulnerabilities and how
they can be exploited in attacks. Besides reducing the time to fix a
vulnerability and increasing the correctness of the applied patches,
this approach has the potential to improve both knowledge and
capabilities of administrators with less experience and to simplify
the maintenance of complex systems. Thus, both the productivity
and the security posture of an organization are improved. We used
these considerations to build an open-source tool named TLSAs-
sistant [54]. Together with the actionable reports we also added a
learning dimension based on the concept of attack trees [53].

As future work, we plan to further improve TLSAssistant by in-
creasing the amount of supported webserver, building new analysis
modules and automatizing the changes suggested by the code snip-
pets. We also plan to perform more experiments and understand
how the application of suggested mitigations can jeopardize the
availability of legacy systems and how participants may behave
when presented with patches that require more complex tasks.

REPRODUCIBILITY
All experimental material, including the vulnerable webservers,
slides and questionnaires, together with the experimental data and
the assets used for the training are available in the replication
package [1].

ACKNOWLEDGMENTS
This work has been partially supported by IPZS (Poligrafico e Zecca
dello Stato Italiano, the Italian Government Printing Office and
Mint) within the joint laboratory DigiMat Lab, the newly founded
Futuro & Conoscenza S.r.l. and by the MIUR “Dipartimenti di Ec-
cellenza” 2018-2022 grant.

REFERENCES
[1] 2021. Replication Package: Do Security Reports Meet Usability? Lessons Learned

from Using Actionable Mitigations for Patching TLS Misconfigurations. https:
//st.fbk.eu/complementary/ETACS2021.

[2] Yasemin Acar, Michael Backes, Sascha Fahl, Doowon Kim, Michelle L. Mazurek,
and Christian Stransky. 2016. You Get Where You’re Looking for: The Impact of
Information Sources on Code Security. In 2016 IEEE Symposium on Security and
Privacy (SP). IEEE, San Jose, 289–305.

[3] Luca Allodi, Silvio Biagioni, Bruno Crispo, Katsiaryna Labunets, Fabio Massacci,
and Wagner Santos. 2017. Estimating the Assessment Difficulty of CVSS En-
vironmental Metrics: An Experiment. In Future Data and Security Engineering,
Tran Khanh Dang, Roland Wagner, Josef Küng, Nam Thoai, Makoto Takizawa,
and Erich J. Neuhold (Eds.). Springer International Publishing, Cham, 23–39.

[4] Luca Allodi, Marco Cremonini, Fabio Massacci, and Woohyun Shim. 2020.
Measuring the accuracy of software vulnerability assessments: experiments
with students and professionals. Empirical Software Engineering 25 (01 2020).
https://doi.org/10.1007/s10664-019-09797-4

[5] Matthew Bernhard, Jonathan Sharman, Claudia Ziegler Acemyan, Philip Kortum,
Dan S. Wallach, and J. Alex Halderman. 2019. On the Usability of HTTPS
Deployment https://doi.org/10.1145/3290605.3300540. In Proceedings of the 2019
CHI Conference on Human Factors in Computing Systems (Glasgow, Scotland
Uk) (CHI ’19). Association for Computing Machinery, New York, NY, USA, 1–10.
https://doi.org/10.1145/3290605.3300540

[6] Karthikeyan Bhargavan and Gaëtan Leurent. 2016. On the Practical (In-)Security
of 64-bit Block Ciphers: Collision Attacks on HTTP over TLS and OpenVPN. In
Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications
Security, Vienna, Austria, October 24-28, 2016. https://doi.org/10.1145/2976749.
2978423

[7] Michelle Cartwright. 2001. Book Review: Experimentation in Software Engineer-
ing: An Introduction. By Claes Wohlin, Per Runeson, Martin Höst, Magnus C.
Ohlsson, Björn Regnell and Anders Wesslén. Kluwer Academic Publishers, 1999,
ISBN 0-7923-8682-5. Software Testing, Verification and Reliability 11, 3 (2001),
198–199. https://doi.org/10.1002/stvr.230

[8] Mariano Ceccato, Massimiliano Di Penta, Paolo Falcarin, Filippo Ricca, Marco
Torchiano, and Paolo Tonella. 2014. A family of experiments to assess the
effectiveness and efficiency of source code obfuscation techniques. Empirical
Software Engineering 19, 4 (2014), 1040–1074.

[9] Mariano Ceccato, Massimiliano Di Penta, Paolo Falcarin, Filippo Ricca, Marco
Torchiano, and Paolo Tonella. 2014. A family of experiments to assess the
effectiveness and efficiency of source code obfuscation techniques. Empirical
Software Engineering 19, 4 (2014), 1040–1074.

[10] Mariano Ceccato, Massimiliano Di Penta, Jasvir Nagra, Paolo Falcarin, Filippo
Ricca, Marco Torchiano, and Paolo Tonella. 2009. The effectiveness of source
code obfuscation: An experimental assessment. In 2009 IEEE 17th International
Conference on Program Comprehension. IEEE. https://doi.org/10.1109/icpc.2009.
5090041

[11] Mariano Ceccato, Alessandro Marchetto, Leonardo Mariani, Cu D Nguyen, and
Paolo Tonella. 2015. Do automatically generated test cases make debugging
easier? an experimental assessment of debugging effectiveness and efficiency.
ACM Transactions on Software Engineering and Methodology (TOSEM) 25, 1 (2015),
1–38.

[12] Mariano Ceccato and Riccardo Scandariato. 2016. Static analysis and penetra-
tion testing from the perspective of maintenance teams. In Proceedings of the
10th ACM/IEEE International Symposium on Empirical Software Engineering and
Measurement. Association for Computing Machinery, New York, NY, USA, 1–6.

[13] J. Cohen. 1988. Statistical power analysis for the behavioral sciences (2nd ed.).
Lawrence Earlbaum Associates, Hillsdale, NJ.

[14] Datanyze. 2021. OpenSSL Market Share and Competitor Report https://www.
datanyze.com/market-share/other-it-infrastructure-software.

[15] Datanyze. 2021. Web and Application Servers Market Share Report https://www.
datanyze.com/market-share/web-and-application-servers.

[16] Jay L. Devore. 2007. Probability and Statistics for Engineering and the Sciences.
Duxbury Press; 7 edition.

[17] Thomas Dierks and Eric Rescorla. 2008. The Transport Layer Security (TLS)
Protocol Version 1.2 http://www.rfc-editor.org/rfc/rfc5246.txt. Internet Requests
for Comments.

[18] Alban Diquet. 2021. Github: sslyze https://github.com/nabla-c0d3/sslyze.
[19] Association for Computing Machinery. 2018. ACM Code of Ethics and Profes-

sional Conduct https://www.acm.org/binaries/content/assets/about/acm-code-
of-ethics-booklet.pdf.

[20] Martin Georgiev, Subodh Iyengar, Suman Jana, Rishita Anubhai, Dan Boneh, and
Vitaly Shmatikov. 2012. The most dangerous code in the world. In Proceedings
of the 2012 ACM conference on Computer and communications security - CCS ’12.
ACM Press. https://doi.org/10.1145/2382196.2382204

[21] B. G. Glaser and A. L. Strauss. 1967. The Discovery of Grounded Theory. Aldine,
Chicago.

[22] Y. Gluck, N. Harris, and A. Prado. 2012. BREACH: reviving the CRIME attack
http://breachattack.com/.

[23] Peter Leo Gorski, Luigi Lo Iacono, Dominik Wermke, Christian Stransky, Sebas-
tian Möller, Yasemin Acar, and Sascha Fahl. 2018. Developers Deserve Security
Warnings, Too: On the Effect of Integrated Security Advice on Cryptographic
API Misuse https://www.usenix.org/conference/soups2018/presentation/gorski.
In Fourteenth Symposium on Usable Privacy and Security (SOUPS 2018). USENIX
Association, Baltimore, MD, 265–281.

[24] Matthew Green. 2011. A diversion: BEAST Attack on TLS/SSL En-
cryption https://blog.cryptographyengineering.com/2011/09/21/brief-diversion-
beast-attack-on-tlsssl/.

[25] Robert J. Grissom and John J. Kim. 2005. Effect sizes for research: A broad practical
approach (2nd edition ed.). Lawrence Earlbaum Associates.

https://st.fbk.eu/complementary/ETACS2021
https://st.fbk.eu/complementary/ETACS2021
https://doi.org/10.1007/s10664-019-09797-4
https://doi.org/10.1145/3290605.3300540
https://doi.org/10.1145/3290605.3300540
https://doi.org/10.1145/2976749.2978423
https://doi.org/10.1145/2976749.2978423
https://doi.org/10.1002/stvr.230
https://doi.org/10.1109/icpc.2009.5090041
https://doi.org/10.1109/icpc.2009.5090041
https://www.datanyze.com/market-share/other-it-infrastructure-software
https://www.datanyze.com/market-share/other-it-infrastructure-software
https://www.datanyze.com/market-share/web-and-application-servers
https://www.datanyze.com/market-share/web-and-application-servers
http://www.rfc-editor.org/rfc/rfc5246.txt
https://github.com/nabla-c0d3/sslyze
https://www.acm.org/binaries/content/assets/about/acm-code-of-ethics-booklet.pdf
https://www.acm.org/binaries/content/assets/about/acm-code-of-ethics-booklet.pdf
https://doi.org/10.1145/2382196.2382204
http://breachattack.com/
https://www.usenix.org/conference/soups2018/presentation/gorski
https://blog.cryptographyengineering.com/2011/09/21/brief-diversion-beast-attack-on-tlsssl/
https://blog.cryptographyengineering.com/2011/09/21/brief-diversion-beast-attack-on-tlsssl/

ARES 2021, August 17–20, 2021, Vienna, Austria Manfredi et al.

[26] NormanHänsch, Andrea Schankin,Mykolai Protsenko, Felix Freiling, and Zinaida
Benenson. 2018. Programming ExperienceMight Not Help in Comprehending Ob-
fuscated Source Code Efficiently https://www.usenix.org/conference/soups2018/
presentation/hansch. In Fourteenth Symposium on Usable Privacy and Security
(SOUPS 2018). USENIX Association, Baltimore, MD, 341–356.

[27] Scott Hollenbeck. 2004. Transport Layer Security Protocol Compression Methods
http://www.rfc-editor.org/rfc/rfc3749.txt. Internet Requests for Comments.

[28] Martin Höst, Björn Regnell, and ClaesWohlin. 2000. Using students as subjects—a
comparative study of students and professionals in lead-time impact assessment.
Empirical Software Engineering 5, 3 (2000), 201–214.

[29] ISO 9241-11 2018. ISO 9241. Ergonomics of human-system interaction — Part 11:
Usability: Definitions and concepts.

[30] Jiming Jiang. 2007. Linear and generalized linear mixed models and their applica-
tions. Springer Science & Business Media.

[31] Stephen Farrell Kathleen Moriarty, CIS. 2021. Deprecating TLSv1.0 and TLSv1.1
https://tools.ietf.org/html/rfc8996.

[32] Mak Kolybabi and Gabriel Lawrence. 2020. ssl-enum-ciphers https://nmap.org/
nsedoc/scripts/ssl-enum-ciphers.html.

[33] Katharina Krombholz, Karoline Busse, Katharina Pfeffer, Matthew Smith, and
Emanuel von Zezschwitz. 2019. "If HTTPS Were Secure, I Wouldn’t Need 2FA" -
End User and Administrator Mental Models of HTTPS. In 2019 IEEE Symposium
on Security and Privacy (SP). 246–263.

[34] Katharina Krombholz, Wilfried Mayer, Martin Schmiedecker, and Edgar Weippl.
2017. "I Have No Idea What I’m Doing" - On the Usability of Deploying
HTTPS https://www.usenix.org/conference/usenixsecurity17/technical-sessions/
presentation/krombholz. In 26th USENIX Security Symposium (USENIX Security
17). USENIX Association, Vancouver, BC, 1339–1356.

[35] Anton Kühberger, Astrid Fritz, Eva Lermer, and Thomas Scherndl. 2015. The
significance fallacy in inferential statistics. BMC research notes 8, 1 (2015), 84.

[36] Katsiaryna Labunets, Fabio Massacci, Federica Paci, Sabrina Marczak, and
Flávio Moreira de Oliveira. 2017. Model comprehension for security risk assess-
ment: an empirical comparison of tabular vs. graphical representations. Empirical
Software Engineering 22, 6 (Feb 2017), 3017–3056. https://doi.org/10.1007/s10664-
017-9502-8

[37] Katsiaryna Labunets, Fabio Massacci, Federica Paci, and Le Minh Sang Tran.
2013. An Experimental Comparison of Two Risk-Based Security Methods. In
2013 ACM / IEEE International Symposium on Empirical Software Engineering and
Measurement. IEEE, 163–172. https://doi.org/10.1109/esem.2013.29

[38] Frank Li, Lisa Rogers, Arunesh Mathur, Nathan Malkin, and Marshini Chetty.
2019. Keepers of the Machines: Examining How System Administrators Manage
Software Updates For Multiple Machines. In Fifteenth Symposium on Usable
Privacy and Security (SOUPS 2019). USENIX Association, Santa Clara, CA. https:
//www.usenix.org/conference/soups2019/presentation/li

[39] Microsoft-Inria. 2014. Triple Handshakes Considered Harmful: Breaking and
Fixing Authentication over TLS https://www.mitls.org/pages/attacks/3SHAKE.

[40] Bodo Möller, Thai Duong, and Krzysztof Kotowicz. 2014. This POODLE Bites:
Exploiting The SSL 3.0 Fallback https://www.openssl.org/~bodo/ssl-poodle.pdf.

[41] Mozilla Security. 2018. Web Security Cheat Sheet https://infosec.mozilla.org/
guidelines/web_security.

[42] Alena Naiakshina, Anastasia Danilova, Eva Gerlitz, Emanuel von Zezschwitz,
and Matthew Smith. 2019. "If You Want, I Can Store the Encrypted Password": A
Password-Storage Field Study with Freelance Developers https://doi.org/10.1145/
3290605.3300370. In Proceedings of the 2019 CHI Conference on Human Factors in
Computing Systems (Glasgow, Scotland Uk) (CHI ’19). Association for Computing
Machinery, New York, NY, USA, 1–12. https://doi.org/10.1145/3290605.3300370

[43] Alena Naiakshina, Anastasia Danilova, Christian Tiefenau, Marco Herzog, Sergej
Dechand, and Matthew Smith. 2017. Why Do Developers Get Password Storage
Wrong? A Qualitative Usability Study https://doi.org/10.1145/3133956.3134082. In
Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications
Security (Dallas, Texas, USA) (CCS ’17). Association for Computing Machinery,
New York, NY, USA, 311–328. https://doi.org/10.1145/3133956.3134082

[44] NIST. 2012. CVE-2012-4929 https://nvd.nist.gov/vuln/detail/CVE-2012-4929.
[45] NowSecure. 2017. Fully Validate SSL/TLS https://books.nowsecure.com/secure-

mobile-development/en/sensitive-data/fully-validate-ssl-tls.html.
[46] Juan C. Perez. 2016. SSL: Deceptively Simple, Yet Hard to Imple-

ment https://blog.qualys.com/product-tech/2016/12/12/ssl-deceptively-simple-
yet-hard-to-implement.

[47] Qualys. 2021. SSL Pulse https://www.ssllabs.com/ssl-pulse/.
[48] Qualys. 2021. SSL Server Test https://www.ssllabs.com/ssltest/.
[49] rbsec. 2017. sslscan https://github.com/rbsec/sslscan/releases/tag/1.11.11-rbsec.
[50] Benjamin Saefken, Thomas Kneib, Clara-Sophie van Waveren, Sonja Greven,

et al. 2014. A unifying approach to the estimation of the conditional Akaike
information in generalized linear mixed models. Electronic Journal of Statistics 8,
1 (2014), 201–225.

[51] Iflaah Salman, Ayse Tosun Misirli, and Natalia Juristo. 2015. Are Students Rep-
resentatives of Professionals in Software Engineering Experiments? (ICSE ’15).
IEEE Press, Florence, Italy, 666–676.

[52] Riccardo Scandariato, James Walden, and Wouter Joosen. 2013. Static analysis
versus penetration testing: A controlled experiment. In 2013 IEEE 24th Inter-
national Symposium on Software Reliability Engineering (ISSRE). IEEE. https:
//doi.org/10.1109/issre.2013.6698898

[53] Bruce Schneier. 1999. Attack Trees https://www.schneier.com/academic/archives/
1999/12/attack_trees.html.

[54] Security & Trust Research Unit. [n.d.]. TLSAssistant https://github.com/stfbk/
tlsassistant.

[55] Amazon Web Services. 2021. Alexa Top Sites https://aws.amazon.com/alexa-top-
sites/.

[56] Yaron Sheffer, Ralph Holz, and Peter Saint-Andre. 2015. Summarizing Known
Attacks on Transport Layer Security (TLS) and Datagram TLS (DTLS) http:
//www.rfc-editor.org/rfc/rfc7457.txt. Internet Requests for Comments.

[57] David J. Sheskin. 2007. Handbook of Parametric and Nonparametric Statistical
Procedures (4th Ed.). Chapman & All.

[58] Raul Siles. 2013. TLSSLed v1.3 http://blog.taddong.com/2013/02/tlssled-v13.html.
[59] Janet M. Six and Ritch Macefield. 2016. How to determine the right number

of participants for usability studies https://www.uxmatters.com/mt/archives/
2016/01/how-to-determine-the-right-number-of-participants-for-usability-
studies.php.

[60] A. Strauss and J. Corbin. 1990. Basics of Qualitative Research: Grounded Theory
Procedures and Techniques. Sage, London.

[61] Mikael Svahnberg, Aybüke Aurum, and Claes Wohlin. 2008. Using Students
as Subjects - an Empirical Evaluation https://doi.org/10.1145/1414004.1414055.
In Proceedings of the Second ACM-IEEE International Symposium on Empirical
Software Engineering and Measurement (Kaiserslautern, Germany) (ESEM ’08).
Association for Computing Machinery, New York, NY, USA, 288–290. https:
//doi.org/10.1145/1414004.1414055

[62] Christian Tiefenau, Maximilian Häring, Katharina Krombholz, and Emanuel
von Zezschwitz. 2020. Security, Availability, and Multiple Information Sources:
Exploring Update Behavior of System Administrators. In Sixteenth Symposium
on Usable Privacy and Security (SOUPS 2020). USENIX Association, 239–258.
https://www.usenix.org/conference/soups2020/presentation/tiefenau

[63] Alessio Viticchié, Leonardo Regano, Cataldo Basile, Marco Torchiano, Mariano
Ceccato, and Paolo Tonella. 2020. Empirical assessment of the effort needed to
attack programs protected with client/server code splitting. Empirical Software
Engineering 25, 1 (2020), 1–48.

[64] Alessio Viticchie, Leonardo Regano, Marco Torchiano, Cataldo Basile, Mariano
Ceccato, Paolo Tonella, and Roberto Tiella. 2016. Assessment of Source Code
Obfuscation Techniques. In 2016 IEEE 16th International Working Conference on
Source Code Analysis and Manipulation (SCAM). IEEE, Los Alamitos, CA, USA,
11–20. https://doi.org/10.1109/scam.2016.17

[65] Dirk Wetter. 2021. /bin/bash based SSL/TLS tester: testssl.sh https://testssl.sh.

A QUESTIONNAIRES’ CONTENT
Table 12 shows the three parts of the survey questionnaire.

https://www.usenix.org/conference/soups2018/presentation/hansch
https://www.usenix.org/conference/soups2018/presentation/hansch
http://www.rfc-editor.org/rfc/rfc3749.txt
https://tools.ietf.org/html/rfc8996
https://nmap.org/nsedoc/scripts/ssl-enum-ciphers.html
https://nmap.org/nsedoc/scripts/ssl-enum-ciphers.html
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/krombholz
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/krombholz
https://doi.org/10.1007/s10664-017-9502-8
https://doi.org/10.1007/s10664-017-9502-8
https://doi.org/10.1109/esem.2013.29
https://www.usenix.org/conference/soups2019/presentation/li
https://www.usenix.org/conference/soups2019/presentation/li
https://www.mitls.org/pages/attacks/3SHAKE
https://www.openssl.org/~bodo/ssl-poodle.pdf
https://infosec.mozilla.org/guidelines/web_security
https://infosec.mozilla.org/guidelines/web_security
https://doi.org/10.1145/3290605.3300370
https://doi.org/10.1145/3290605.3300370
https://doi.org/10.1145/3290605.3300370
https://doi.org/10.1145/3133956.3134082
https://doi.org/10.1145/3133956.3134082
https://nvd.nist.gov/vuln/detail/CVE-2012-4929
https://books.nowsecure.com/secure-mobile-development/en/sensitive-data/fully-validate-ssl-tls.html
https://books.nowsecure.com/secure-mobile-development/en/sensitive-data/fully-validate-ssl-tls.html
https://blog.qualys.com/product-tech/2016/12/12/ssl-deceptively-simple-yet-hard-to-implement
https://blog.qualys.com/product-tech/2016/12/12/ssl-deceptively-simple-yet-hard-to-implement
https://www.ssllabs.com/ssl-pulse/
https://www.ssllabs.com/ssltest/
https://github.com/rbsec/sslscan/releases/tag/1.11.11-rbsec
https://doi.org/10.1109/issre.2013.6698898
https://doi.org/10.1109/issre.2013.6698898
https://www.schneier.com/academic/archives/1999/12/attack_trees.html
https://www.schneier.com/academic/archives/1999/12/attack_trees.html
https://github.com/stfbk/tlsassistant
https://github.com/stfbk/tlsassistant
https://aws.amazon.com/alexa-top-sites/
https://aws.amazon.com/alexa-top-sites/
http://www.rfc-editor.org/rfc/rfc7457.txt
http://www.rfc-editor.org/rfc/rfc7457.txt
http://blog.taddong.com/2013/02/tlssled-v13.html
https://www.uxmatters.com/mt/archives/2016/01/how-to-determine-the-right-number-of-participants-for-usability-studies.php
https://www.uxmatters.com/mt/archives/2016/01/how-to-determine-the-right-number-of-participants-for-usability-studies.php
https://www.uxmatters.com/mt/archives/2016/01/how-to-determine-the-right-number-of-participants-for-usability-studies.php
https://doi.org/10.1145/1414004.1414055
https://doi.org/10.1145/1414004.1414055
https://doi.org/10.1145/1414004.1414055
https://www.usenix.org/conference/soups2020/presentation/tiefenau
https://doi.org/10.1109/scam.2016.17
https://testssl.sh

Do Security Reports Meet Usability? ARES 2021, August 17–20, 2021, Vienna, Austria

Table 12: Questions in the survey questionnaire.

Question Answer
First part
Lab 1

1 I had enough time to perform the task [1-5] Likert scale
2 I experienced no difficulty in patching the vulnerability given the report [1-5] Likert scale
3 How much time (in terms of percentage) did you spend looking at the TLS

configuration code
[≤≥a] Likert scale

4 How much time (in terms of percentage) did you spend looking at online
documentation on TLS vulnerabilities

[≤≥a] Likert scale

5 Provide some examples of online queries you used to search the vulnerabilities
online (e.g. keywords used)

[None]/free text

6 Which steps did you take to perform the tasks? (e.g. run command Y, opened
file X, ..)

[None]/free text

Lab 2
1 I had enough time to perform the task [1-5] Likert scale
2 I experienced no difficulty in patching the vulnerability given the report [1-5] Likert scale
3 How much time (in terms of percentage) did you spend looking at the TLS

configuration code
[≤≥a] Likert scale

4 How much time (in terms of percentage) did you spend looking at online
documentation on TLS vulnerabilities

[≤≥a] Likert scale

5 Provide some examples of online queries you used to search the vulnerabilities
online (e.g. keywords used)

[None]/free text

6 Which steps did you take to perform the tasks? (e.g. run command Y, opened
file X, ..)

[None]/free text

Second part
1 Which report did you find more useful? Lab1/Lab2
2 Which report did you find more easy to read? Lab1/Lab2
3 Which report did you find more complex to understand? Lab1/Lab2
4 The textual description of the mitigation is useful to complete the tasks [1-5] Likert scale
5 The code snippet is useful to complete the tasks [1-5] Likert scale
6 How did you use the code snippet? [None]/free text
Third part

1 Would you use it for your work? [None]/free text
2 Motivate your answer (to the previous question) [None]/free text
3 Do you know any tool that performs similar tasks? [None]/free text
4 Do you have any suggestion related to the tool usage? [None]/free text
5 Do you have any suggestion related to the amount of information provided by

the tool’s report (Report.md)?
[None]/free text

	Abstract
	1 Introduction
	2 Background
	2.1 Transport Layer Security
	2.2 Vulnerabilities on TLS

	3 Related work
	4 Tool Description
	4.1 testssl.sh's Report
	4.2 Actionable Reports

	5 Definition of the Experimental Framework
	5.1 Demographic Statistical Sample
	5.2 Experimental Setup and Execution
	5.3 Statistical Tests
	5.4 Threats to Validity

	6 Experimental Results
	6.1 Analysis of Correctness
	6.2 Analysis of Time
	6.3 Analysis of Survey Questionnaire

	7 Lessons Learned
	8 Conclusions
	Acknowledgments
	References
	A Questionnaires' Content

