
Security Testing of Second Order Permission Re-delegation
Vulnerabilities in Android Apps

Biniam Fisseha Demissie
Fondazione Bruno Kessler

Trento, Italy
demissie@fbk.eu

Mariano Ceccato
University of Verona

Verona, Italy
mariano.ceccato@univr.it

ABSTRACT
In Android, inter-app communication is a cornerstone featurewhere
apps exchange special messages called Intents in order to integrate
with each other and deliver a rich end-user experience. In partic-
ular, in case an app is granted special permission, it can dispatch
privileged Intents to request sensitive tasks to system components.

However, a malicious app might hijack a defective privileged
app and exploit it as a proxy, to forward attacking Intents to sys-
tem components. We call this threat “Second Order Permission
Re-delegation” vulnerability.

In this paper, we present (i) a detailed description of this novel
vulnerability and (ii) our approach based on static analysis and
automated test cases generation to detect (and document) instances
of this vulnerability. We empirically evaluated our approach on a
large set of top Google Play apps. Results suggest that this novel
vulnerability is neglected by state of the art, but that it is common
even among popular apps. In fact, our approach found 27 real
vulnerabilities with fast analysis time, while a state-of-the-art static
analysis tool could find none of them.

CCS CONCEPTS
• Security and privacy→Mobile and wireless security; Soft-
ware security engineering; • Software and its engineering→
Software testing and debugging.

KEYWORDS
Security testing, static analysis, fuzzing, vulnerability detection
ACM Reference Format:
Biniam Fisseha Demissie and Mariano Ceccato. 2020. Security Testing of
Second Order Permission Re-delegation Vulnerabilities in Android Apps. In
IEEE/ACM 7th International Conference on Mobile Software Engineering and
Systems (MOBILESoft ’20), October 5–6, 2020, Seoul, Republic of Korea. ACM,
New York, NY, USA, 11 pages. https://doi.org/10.1145/3387905.3388592

1 INTRODUCTION
The proliferation of Android devices — from smartphones to smart
TVs — opened good business opportunities even for novice develop-
ers to create and easily distribute applications (herein apps) using

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
MOBILESoft ’20, October 5–6, 2020, Seoul, Republic of Korea
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-7959-5/20/05. . . $15.00
https://doi.org/10.1145/3387905.3388592

the centralized Android market, called Play Store, targeting millions
of end-users and devices.

Unfortunately, under the high time-to-market pressure of the
app ecosystem, apps are often released without proper testing and,
possibly, including implementation defects. Furthermore, when
apps are granted special permissions, defects could threaten the
security and confidentiality of end-users data.

Felt et al. [14] defined the Permission Re-delegation vulnerability
as shown in the example in Figure 1-a. The scenario to exploit this
vulnerability involves two apps; a malicious app requests a task to a
vulnerable communication app, by sending a crafted Intent message.
When requested, the communication app completes the tasks by
executing the method sendTextMessage (that is protected by the
SEND_SMS permission) to send an SMS message. Even if Malicious
appmisses the permission to do so, it was able to eventually send an
SMS, because Communication app is vulnerable and it re-delegated
its permission to the malicious app to perform this privileged opera-
tion. SMS is a typical target of malware, because it could be used to
change network operator configuration or to subscribe to premium
services [23, 26, 27].

Existing literature focuses on elaborating solutions to identify
permission re-delegation vulnerabilities [6, 7, 10, 20, 32]. Candidate
instances of this vulnerability are detected whenever an app-under-
analysis performs a privileged operation when receiving messages
from another (potentially malicious) app.

According to Felt et al. [14], a possible fix consists in patching
the communication app, and making it check for the permissions
of the requesting app before performing privileged operations (e.g.,
sending an SMS). In case the requesting app misses the needed
permission, the request might be discarded or the end-user might
be prompted to make a decision.

Communication appMalicious app

intents

(a)

Communication app System Phone appMalicious app

intents intents

(b)

Figure 1: Example of First Order Permission Re-delegation
(a) and Second Order Permission Re-delegation (b) vulnera-
bilities.

https://doi.org/10.1145/3387905.3388592
https://doi.org/10.1145/3387905.3388592

MOBILESoft ’20, October 5–6, 2020, Seoul, Republic of Korea Biniam Fisseha Demissie and Mariano Ceccato

We propose a variant of this threat model, that involves a dif-
ferent attack scenario, i.e., with three apps. This scenario is shown
in Figure 1-b. It includes an attacker app with no permission, a
vulnerable app with a special permission and a system app. In the
example, the attacker app (i.e., Malicious app) sends a specially
crafted Intent message to a vulnerable app (i.e., Communication
app). Instead of performing the privileged action and executing the
privileged method, the vulnerable app in turn requests the system
app (i.e., system Phone app) to complete the privileged action —
making a phone call in this case.

The attack consists in letting the attacking app initiate a phone
call, even if this app is not granted the CALL_PHONE permission,
that would have been required to do so. The attacking app exploits
the vulnerable Communication app as a proxy to reach the system
app, that eventually initiates the phone call. We should note that
even if the system app adopted the patch suggested by Felt et al.,
the second order attack is still a threat, because the system app
would anyway recognize that the last Intent is coming from the
Communication app, that holds the required permission. Therefore,
according to Felt et al., the task should not be blocked.

The difference between second order (Figure 1-b) and the first
order (Figure 1-a) vulnerabilities, i.e., the vulnerable app sends an
Intent message to the system instead of executing a privileged
method, makes the second variant difficult to detect statically:

• The vulnerability in the proxy app cannot be detected by
the existing automated approaches (e.g., [6, 7, 10, 20, 32]),
because the vulnerability does not involve executions of
permission-protected API methods, but a primitive to send
inter-component (or inter-app) Intent messages;
• Inter-component communication is a very common behavior
in Android apps and cannot be considered sensitive in gen-
eral. If all messages sent by the proxy app were considered
suspicious, an overwhelmingly high number of security no-
tices would have to be reported, thus, too many false alarms
for such an approach to be effective. Therefore, a more fine-
grained analysis is required;
• It is hard for the system app to block the attack, because the
request is coming from a benign (although vulnerable) proxy
app that is granted special permissions.

Cases of these vulnerabilities have been reported on real apps1
and confirmed by mainstream vendors2.

Although multi-app analysis techniques are available in litera-
ture in order to analyze colluding apps [6, 12, 24, 29], they would not
be effective in detecting Second Order Permission Re-delegation.
These techniques, in fact, are based on the assumption that the
colluding apps collaborate to perform malicious operations. For in-
stance, a first app collects user data and the second app leaks these
data. These approaches are mainly focused on exposing deliberate
collusion for privacy leaks rather than permission re-delegation
vulnerabilities due to programming mistakes.

The contributions of this paper are manifold:

1https://www.checkmarx.com/blog/how-attackers-could-hijack-your-android-
camera “How Attackers Could Hijack Your Android Camera to Spy on You”
2https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-2234

• We present the Second Order Permission Re-delegation vulner-
ability and we explain why existing multi-app vulnerability
analysis techniques are ineffective in detecting it;
• We propose a novel approach based on static analysis to de-
tect instances of this vulnerability and on automated test case
generation to synthesize execution scenarios that document
how this vulnerability can be potentially exploited;
• We empirically assess the overall approach on more than
10K real world top apps, showing that this vulnerability
affects real-world apps and that our approach is effective in
detecting and testing it;
• We empirically compare our approach with a prominent
existing static analysis tool, showing that this novel vulner-
ability is neglected by state-of-the-art automation.

The paper is organized as follows. After covering the background
on Android permissions and messaging (Section 2), the new threat
model is presented in Section 3. Then, Section 4 presents our novel
approach to statically detect instances of vulnerability and to au-
tomatically generate test cases for them. In Section 5, a detailed
empirical validation is presented. After discussing related work in
Section 6, Section 7 closes the paper.

2 BACKGROUND
2.1 Application Permission
In the Android model, each app runs in a sandbox, ensuring that
apps can access only their own resources and not those that belong
to other apps. Furthermore, to limit the level of access, Android
implements a permission based system and apps, by default, have
limited permission. To access confidential informations (e.g., pic-
tures from the camera and contacts details) or to perform sensitive
tasks (e.g., recording audio and making phone calls) apps are sup-
posed to request the corresponding special permissions that the
end-user has to confirm. An app declares the permissions to re-
quest in the companion AndroidManifest XML file, a part of the app
source code.

Figure 2 shows an example of a manifest file content. In this
example, the app requests two permissions: CALL_PHONE to initiate
phone calls and SEND_SMS to send text messages.

<activity android:name=".SIP">

<intent-filter>

<action android:name="android.intent.action.SENDTO" />

<category android:name="android.intent.category.DEFAULT" />

<data android:scheme="sms" />

<data android:scheme="smsto" />

</intent-filter>

</activity>

<uses-permission android:name="android.permission.CALL_PHONE" />

<uses-permission android:name="android.permission.SEND_SMS" />

Figure 2: Example ofmanifest file, with permission requests
and intent-filter.

2.2 Inter-Component Communication
Inter-component communication (ICC) is the backbone of the An-
droid framework that allows distinct apps to cooperate. Using ICC,
apps can interact by sending a special message called Intent. For

Security Testing of Second Order Permission Re-delegation Vulnerabilities MOBILESoft ’20, October 5–6, 2020, Seoul, Republic of Korea

instance, when a messaging app does not support a particular docu-
ment format, it could request a viewer app to display the document
by sending an Intent that specifies this task along with the docu-
ment to render.

An Intent contains the details of the requested task: the Action
and the Category specify the operation to be performed, the Data
usually contains a reference to a resource needed to complete the
task (e.g., the document to display) and the Extra contains a list of
key-value pairs, useful to pass additional parameters or data.

2.3 Privileged Action Strings
Intents could, in principle, specify any arbitrary string as Action.
However, particular values of the Action string are reserved for
sensitive tasks, and they cannot be used by all the apps. For instance,
the Action string ACTION_CALL is a reserved Action string that
an app can use to request the (device dependent) built-in Phone
app to initiate a phone call. Intents with this Action strings can
be issued only by those apps that are granted the CALL_PHONE
permission, otherwise the Intent would be blocked by the system.
The motivation behind this is that the corresponding Intent would
trigger a sensitive task (a phone call might have a cost), so the sender
app should be qualified and authorized to request such tasks.

In this paper, we use the term privileged Action string for those
Action strings that require a special permission to be used. Thus,
Intent messages that contain privileged Action strings in this paper
are referred as the privileged Intents. Privileged Actions strings
and privileged Intents are crucial in the context of Second Order
Permission Re-delegation vulnerabilities.

3 THREAT MODEL AND MOTIVATION
In this section, we introduce the threat model with the help of two
motivating examples, they are two apps with different vulnerabili-
ties. These examples come from actual cases and are quite typical of
vulnerable apps. The first app in Figure 3(a) contains a Permission
Re-delegation vulnerability (as defined in literature [14]), that we
call First Order vulnerability to distinguish it form the second case.
The second app in Figure 3(b) contains a different security problem
that we call Second Order permission re-delegation vulnerability.

3.1 First Order Vulnerability
The first example (in Figure 3(a)) shows two components of an
app meant to send SMS. The onClick method in MainActivity is
activated when the end-user clicks the Send button. This activity
collects data filled by the end-user in the appropriate text fields.
The destination number and the message to be sent (line 4 and
line 5) are read from the graphical user interface and stored in an
Intent message as the (extra) fields num and msg, respectively.

This Intent is sent to the public Message activity at line 6. This
second activity is in charge of dispatching SMS. It reads destination
and message content from the Intent (line 13 and line 14, respec-
tively) and then sends the actual SMS message at line 15 using the
sendTextMessage API method. To execute this API method, the
app requires to be granted the special permission SEND_SMS.

However, this app is vulnerable to Permission Re-delegation
because of a programming mistake. In fact, the Message activity is
public, i.e., it accepts Intents not just from components within the

same app (as it should be) but also from any other app installed on
the same device.

Thus, an attacker app without the SEND_SMS permission could
exploit Message activity to send SMS on its behalf. The attacker
just needs to send an Intent with arbitrary destination number and
message content to Message activity that, without checking the
sender’s permission, would complete the privileged operations and
it would send the SMS.

This scenario is known as Permission Re-delegation vulnerabil-
ity [14], because a vulnerable app exposes its privileged capabilities
(to send SMS) to other apps, without checking their permissions.
When the vulnerable app executes a permission-protected API
methods (such as sendTextMessage) we call it First Order Permis-
sion Re-delegation Vulnerability. The list of permission-protected
API methods are available, for instance, in Pscout [5].

3.2 Second Order Vulnerability
Figure 3(b) shows a telephony app that lets an end-user make phone
calls. When the end-user clicks a button in MainActivity, the
(already typed) number to be called is retrieved from the graphical
user interface at line 4 and used to fill the Intent that is then sent
to the Call activity.

The Call activity reads the number from the incoming Intent
(line 11) and uses it to create a URI that is eventually used to make
the phone call. To make the phone call, instead of executing a
permission-protected API method (as the SMS app did), this app
instead prepares a new Intent that specifies the privileged Action
string "ACTION_CALL" together with the number to call (line 14).
This Intent is sent to the vendor-dependent Android system Phone
app, that eventually initiates the actual phone call after checking the
sender’s (i.e., in this case the telephony app) permissions. To use the
privileged Action string "ACTION_CALL" in an Intent, the telephony
app must be granted the CALL_PHONE permission. Otherwise, the
telephony app is denied permission to send this Intent.

The telephony app is also vulnerable, as the Call activity is
exposed to other apps installed on the same device. This activity
does not check the sender’s permission before dispatching the
privileged Intent to make the call. Therefore, this app is vulnerable
to Permission Re-delegation.

3.3 Considerations
The SMS app completed the privileged task within its code by
executing a permission-protected API method. Thus, we call it First
Order Permission Re-delegation.

The telephony app, instead, completed the privileged task by
deferring the request to a system app, by sending an Intent with
a privileged Action string. Thus, we call this second case Second
Order Permission Re-delegation, because a third app (i.e., the system
Phone app) is involved in the scenario.

First-order vulnerabilities can be statically detected, by identify-
ing executions of privileged API methods (as done in [6–8, 10, 14,
18, 31, 32]). Second-order vulnerabilities, however, need additional
analysis to be detected. In fact, sending Intents is quite common
in Android apps, and most of the time it does not require permis-
sions. Tagging all the places where Intents are sent as potentially
vulnerable would result in a huge number of false positives. Precise

MOBILESoft ’20, October 5–6, 2020, Seoul, Republic of Korea Biniam Fisseha Demissie and Mariano Ceccato

1 public c l a s s MainAc t i v i t y extends Ac t i v i t y {
2 public void onC l i ck (View v) {
3 I n t e n t i n t e n t = new I n t e n t (this , Message . c l a s s) ;
4 i n t e n t . pu tEx t r a ("num" , gu i . getNumber ()) ;
5 i n t e n t . pu tEx t r a ("msg " , gu i . ge tMessage ()) ;
6 s t a r t A c t i v i t y (i n t e n t) ;
7 }
8 }

9 / / p u b l i c component
10 public c l a s s Message extends Ac t i v i t y {
11 public void onCrea te (Bundle saved) {
12 I n t e n t i = g e t I n t e n t () ;
13 S t r i n g d e s t = i . g e t E x t r a ("num") ;
14 S t r i n g t e x t = i . g e t E x t r a ("msg ") ;
15 smsManager . sendTextMessage (des t , null , t e x t , null ,

null) ;
16 }
17 }

(a)

1 public c l a s s MainAc t i v i t y extends Ac t i v i t y {
2 public void onC l i ck (View v) {
3 I n t e n t i n t e n t = new I n t e n t (this , C a l l . c l a s s) ;
4 i n t e n t . pu tEx t r a ("num" , gu i . getNumber ()) ;
5 s t a r t A c t i v i t y (i n t e n t) ;
6 }
7 }

8 / / p u b l i c component
9 public c l a s s Ca l l extends Ac t i v i t y {
10 public void onCrea te (Bundle saved) {
11 I n t e n t i = g e t I n t e n t () ;
12 S t r i n g d e s t = i . g e t E x t r a ("num") ;
13 Ur i u r i = Ur i . f r omPa r t s (" t e l " , de s t , null) ;
14 S t r i n g a c t i o n = I n t e n t . ACTION_CALL ;
15 I n t e n t i n t e n t = new I n t e n t (a c t i on , u r i) ;
16 s t a r t A c t i v i t y (i n t e n t) ;
17 }
18 }

(b)

Figure 3: Example of two apps with (a) First Order and (b) Second Order Permission Re-delegation vulnerabilities.

string analysis is required to identify what Action string is used in
the Intent, to distinguish regular Intents from privileged Intents.

Existing compositional analysis techniques for detecting collud-
ing apps (such as [6, 12, 24, 29]) are expected not to be effective in
detecting Second Order Permission Re-delegation for the following
reasons:

• API vs ICC as sinks: in first order vulnerabilities, the secu-
rity sensitive sinks are API methods that require a special
permission to be invoked. In second order vulnerabilities,
however, the sensitive sinks are the primitives that are used
to send ICC messages (e.g., startActivity()). While an
API method can be statically related to its permission, this
is not the case for ICC messages, because the permission
depends on the dynamic value of the Action string. ICC is
very common in Android apps and in most cases it is not
security sensitive, a precise analysis is thus required in order
to identify which ones are sensitive.
• Attacker app not available: compositional analysis tech-
niques require attacking and attacked apps to be both avail-
able at analysis time, in order to infer their possible inter-
action or collusion. However, a (second order) vulnerability
should be detected when scanning a vulnerable app, even
if the attacking app is not available at analysis time. In fact,
requiring the attacker to be available at analysis time is a
strong assumption that could be violated in realistic settings,
when an attacking app is developed and installed later.
• Attacked system app not present: in Second Order Per-
mission Re-delegation, the last step of an attack involves a
system apps (e.g., the system Phone app) or a system compo-
nent that completes the privileged action. In order to perform
an offline composite vulnerability analysis, the system apps
should be available at analysis time. However, system apps
are vendor dependent and can be heavily customized — anal-
ysis result might differ depending when system-apps from
different vendors are included in the bundle.

In the next sections, a brand new approach is presented that
addresses the distinctive features of Second Order Permission Re-
delegation, and overcomes the limitations of existing approaches
in detecting this novel kind of vulnerability.

4 STATIC ANALYSIS AND TEST CASE
GENERATION

4.1 Overview
The overview of our approach is shown in Figure 4. It is composed
of two main phases (i) static analysis, to determine the presence of a
potential vulnerability; and (ii) test case generation, to automatically
generate an attack scenario that documents the security defect.

The static analysis phase takes a (compiled) Android app as
an input and emits a list of candidate vulnerabilities. For each
vulnerability, a list the paths in the app call-graph is also reported.

The second phase instruments the app and fuzzes it, with the
objective of generating Intent messages that execute the vulnerable
paths detected in the first phase. These test cases will support us
during manual verification of vulnerabilities.

4.2 Static Analysis
Source-sink detection: In order to identify Second Order Permis-
sion Re-delegation vulnerabilities, we need to first identify sources
and sinks in the app code.

Sources are all the entry-points of public (exported) components.
We identify the public components by analyzing themanifest file of
the app under analysis. Exported components are those components
for which an intent-filter is defined and/or those that are explicitly
marked as “exported” (i.e., the exported attribute of the component
definition is set to true). For example, in Figure 2, component SIP
is public, because it defines an intent-filter with default (public)
visibility.

Subsequently, the bytecode of these exported components is
analyzed to detect their entry-points, such as onCreate() for an
Activity and onReceive() for a BroadcastReceiver. The lists of
entry-points for all the different Android components are taken

Security Testing of Second Order Permission Re-delegation Vulnerabilities MOBILESoft ’20, October 5–6, 2020, Seoul, Republic of Korea

Source-sink	Identification

String	Analysis

Path	Extraction

Instrumentation

Static	analysis

Fuzzing

Static	Facts	Extraction

Trace	Analyzer

Test	case	generation

APK
APK	&	paths intents

traces

Figure 4: Overview of the proposed approach.

from the documentation of the components lifecycle (for example
Activity3).

Sinks are invocations to ICC methods, i.e., statements that can
be used to dispatch privileged Intents, such as invocations to
startActivity(). The list of ICC methods that send Intents is
available in the Android documentation4. However, as discussed in
Section 3, not all of the invocations to ICC methods are sensitive,
but only those that use privileged Action Strings. To identify what
value of Action string is used in Intents, accurate string analysis is
needed.

String Analysis: Sensitive sinks should be filtered to keep only
those calls to ICC API methods that use privileged Action strings.
For example, in Figure 3(b), line 16 of Call class is a sensitive sink
because the Intent sent in startActivity uses the Action string
"ACTION_CALL" (line 15), that requires the CALL_PHONE permission
to succeed.

Figure 5 shows examples of how to instantiate and send priv-
ileged Intents. In Figure 5(a), the Action string is specified as an
actual parameter in the call to the Intent constructor. In Figure 5(b),
the Intent empty constructor is used and the Action string is added
later, using the setter method setAction. Both of these examples
use the privileged Action string ACTION_CALL, that requires the
CALL permission to complete the dispatch at line 4.

In Figure 6, instead, the ICC method call at line 4 is not a sink,
because the Intent created at line 2 contains the Action string
ACTION_VIEW, that is not privileged because it requires no special
permission. Thus, this ICC method invocation is not interesting
and should be filtered out.

We, therefore, apply the following algorithm to compute value
of Action strings:
• For each sink (i.e., a call to an ICC method), we traverse
data dependence backward, until we reach the call to the
constructor that instantiates the Intent object dispatched in
the sink;
• From the call to this constructor, we traverse data depen-
dence in forward direction to detect calls to setAction, that
set the Action string in the Intent object;
• We, then, apply constant propagation to compute the value of
theAction string, either in the actual parameter of setAction
(case in Figure 5(b)) or in the actual parameter of the Intent
constructor (case in Figure 5(a)).

3https://developer.android.com/reference/android/app/Activity
4https://developer.android.com/reference/android/content/Context

With the string values used as Action string, we are able to filter
out regular ICC Intents that are not interesting, and we keep only
a subset of sinks that are related to privileged Intents, i.e., those
with privileged Action strings. Filtering is totally automated, by
checking if the observed Action string matches a privileged Action
String in our whitelist.

1 / / ACTION_CALL r e q u i r e s CALL pe rm i s s i on to be g r an t ed
2 I n t e n t i n t e n t = new I n t e n t (I n t e n t . ACTION_CALL , [. . .]) ;
3 . . .
4 s t a r t A c t i v i t y (i n t e n t) ; / / s i nk b / c o f t a i n t e d i n t e n t

(a)
1 I n t e n t i n t e n t = new I n t e n t () ;
2 i n t e n t . s e tA c t i o n (I n t e n t . ACTION_CALL) ;
3 . . .
4 s t a r t A c t i v i t y (i n t e n t) ; / / s i nk b / c o f t a i n t e d i n t e n t

(b)

Figure 5: Variants of ICC to send Intents and make a phone
call.

1 / / ACTION_VIEW does not r e q u i r e any pe rm i s s i on
2 I n t e n t i n t e n t = new I n t e n t (I n t e n t . ACTION_VIEW) ;
3 . . .
4 s t a r t A c t i v i t y (i n t e n t) ; / / not s e n s i t i v e s i nk

Figure 6: ICCmethod call that does not require a special per-
mission.

Path Extraction: The call graph of the app is then analyzed to
identify the paths from public entry-points to the (filtered) sinks.
The call graph is computed using Soot [25] with FlowDroid [4]
plugin for Android. Starting from the sink nodes, the call graph
is traversed backward in depth-first search manner, until a public
entry-point node is reached. During this visits, visited nodes are
marked, so loops in the graph are iterated at most once.

The output of this step is a list of paths in the call graph, where
each path connects a public entry-point to a sink. These paths
represent the vulnerabilities detected by static analysis.

4.3 Test Case Generation
Once the list of paths is available after the static analysis phase, the
next step is to fuzz input values and generate test cases that make

MOBILESoft ’20, October 5–6, 2020, Seoul, Republic of Korea Biniam Fisseha Demissie and Mariano Ceccato

the execution traverse these paths. To this end, we first instrument
the app to trace method execution and install the app on an Android
emulator.

Instrumentation: The code of the app is instrumented to trace
method execution and assess whether a test case was able to exe-
cute a target path. A log instruction is added before each opcode
related to method call. Our log contains the information to fully
reference called method, i.e. class name, method name, types of
formal parameters. Execution traces will be appended to the stan-
dard Android log (with a recognizable prefix) that can be read at
execution time via ADB (Android Debug Bridge).

We additionally instrument ICC method calls to log the values
of Action string that are actually used at runtime when Intents are
dispatched in sink statements.

Static Facts Extraction:We perform static analysis on the app
bytecode to collect various information, that will be relevant to the
subsequent fuzzing step:
• Manifest: We analyze the app manifest file to extract intent-
filters. These filters contain detailed information about the
fields expected in an Intent, i.e., Action, Category and Data.
For Data, additional information can be retrieved, e.g., host
or scheme. For example, from the Android Manifest shown
in Figure 2, we can identify that Activity SIP is expecting
an Intent message with the Action field set to "SENDTO",
Category field set to "DEFAULT" and data field with scheme
set to "sms" or "smsto". These values will be helpful to
correctly generate Intent messages in the fuzzing step.
• Code: We analyze the app bytecode to extract all the constant
strings that could possibly be used in Intent messages using
the following strategies:

(1) We detect methods used to read values form incoming
Intents. Method names reveal the types of Intent fields.
For instance, getStringExtra reveals that the type of the
Extra is string. Similar methods are used to read other
types (e.g., getIntExtra).

(2) The actual parameters used in these methods revel ex-
pected values. For instance, when calling get*Extra, the
first parameter is the key of the Extra, while the (op-
tional) second parameter is the default value. Calls to
hasCategory reveal the expected Category string of an
Intent.

(3) String comparison operators on Intent fields reveal the
expected values, such as in getIntent().getAction()
.equals(val).

Fuzzing: Based on the collected facts, the different parts of the
Intent message are constructed as follows:
• Action: The Action String is randomly selected with uniform
probability among those values that have been collected
from the manifest file and the app code.
• Category: Similar to the Action string, the value of the Cat-
egory string is randomly picked from those collected from
the manifest file and from the app code.
• Data: The Data filed is composed of sub-fields and each
of them is randomly generated based on what is specified
in the manifest file. For example, in Figure 2, the manifest
specifies data schemes sms and smsto. Therefore, one of

these two values is randomly chosen, and a random (but
valid) telephone number is appended to complete a valid
Data, e.g., sms:+1.123.555.1234. Other random generation
strategies are available for different schemes (e.g., http, ftp,
content, mms).
• Extra: Values for this field come only from the code, because
the manifest file has no entry for it. The extra is a list of key-
value pairs. The key comes from the first actual parameter
of get*Extra. Its value is generated in three ways: (i) the
default value, when available in the call to the getter; (ii)
a string value randomly picked among the constant string
values available from the app code; (iii) a random value of
the correct type (e.g., a string or an int). When a default
value is available for numeric types, we generate a random
number that is near the default value.

It should be noted that fuzzing is limited to Intents, i.e., test cases
do not include GUI inputs, such as button clicks. In fact, in case any
graphical user interaction is needed to reach the sink, it means that
the end-user has the chance to approve or block the action. Instead,
we are interested in testing vulnerabilities that can be exploited
without the user’s interaction.

Trace Analysis: After executing the test case, execution traces
are collected from the Android log (logcat) via ADB and are ana-
lyzed to check if (i) the target path is executed and (ii), what Action
string is used in sinks. If sinks are executed with privileged Action
strings, the app is then considered vulnerable and the test case is
emitted as a proof-of-concept attack.

5 EMPIRICAL VALIDATION
In this section, we evaluate the relevance and the effectiveness of
our approach with some experiments. The empirical investigation
is guided by the following research questions:
• RQ1: What are the most commonly used privileged Action
strings in privileged Intents?
• RQ2: Is the proposed approach effective in detecting actual
Second Order Permission Re-delegation vulnerabilities?
• RQ3: How long does the proposed approach take to analyze
an app?
• RQ4: Is state of the art capable of detecting Second Order
Permission Re-delegation vulnerabilities?

The first research question RQ1 investigates how often privileged
Intents are used by apps to verify if it is a prominent scenario among
app developers. In fact, only when privileged Action strings are
used, Second Order Permission Re-delegation vulnerabilities are
possible. The second research question RQ2 investigates whether
the proposed approach could be useful to a developer or a security
analyst to detect real security problems. Question RQ3 quantifies
the cost of using our approach in terms of the time taken to analyze
a given app. A short analysis time is beneficial for tool adoption in
a real production environment. Finally, RQ4 investigates to what
extent state of the art automation is effective in detecting Second
Order Permission Re-delegation vulnerabilities.

5.1 Subject Apps and Experimental settings
In order to evaluate our approach, we considered apps coming from
distinct sources:

Security Testing of Second Order Permission Re-delegation Vulnerabilities MOBILESoft ’20, October 5–6, 2020, Seoul, Republic of Korea

• DataSet1: Top apps. We collected in total 10K+ from the offi-
cial Android app store, i.e., Google Play. They are collected
by downloading those apps that, for each category, were
listed as the top apps in 2015.
• DataSet2: Non-top apps. We took 600 open source apps from
F-Droid5 that are also available on Google Play (i.e., real
world open source apps). Moreover, we randomly sampled
600 closed source Google Play apps from the Androzoo [1]
repository.

A time budget of 10 minutes was assigned to fuzz each candi-
date vulnerability detected by the static analysis. However, fuzzing
would stop as soon as a test can be created that exercises the ex-
pected attack scenario.

The experiment has been conducted on a machine equipped with
an Intel Core i7 2.4 GHz processor, 16 GB RAM running Apple Mac
OS X 10.11. For input generation, we used an Android emulator
running on the same machine.

5.2 RQ1: Popularity of Privileged Actions
Strings

Unfortunately, the official documentation of Android does not pro-
vide a single consolidated page that maps Intent Action strings with
the permissions they need. This information is partial to some Ac-
tion strings, and spread in several distinct places. Thus, we decided
to collect the privileged Action strings from their actual uses in
apps.

We applied our analysis, presented in Section 4, to get the list of
all the Action strings used by popular apps (DataSet1) and theAction
strings documented by Pscout [5]. However, the data from Pscout
is also partial. For example, the Action string INSTALL_PACKAGE
is missing because it was introduced later in Android version 14.
Moreover, the Action strings in Pscout are not labeled neither as
privileged (that can only be sent by the system) nor as regular (that
can also be sent by user-installed apps).

All these Action strings need to be manually filtered to keep
only the privileged ones. Manual filtering consists in checking each
Action string in the Android documentation to verify if any partic-
ular permission is mentioned. When the documentation was not
exhaustive to label an Action string, we checked the correspond-
ing implementation in source code of the Android project. After
completing the Action string labeling process, we went back to
apps in DataSet1 and we counted how often Action strings are used
in Intents. Figure 7 shows how often privileged Action strings
occur in our dataset, i.e., how often they are used by developers to
dispatch Intents.

As we can see, the most common Action strings are those related
to capturing pictures (in 759 apps) and videos (in 207 apps). Then,
requesting the user to enable Bluetooth is the third common task
(152 apps). Adding app shortcuts on the home screen and remov-
ing apps are also a quite common privileged task (79 and 52 apps,
respectively). Other relevant tasks are turning the device discover-
able by other devices (25 apps), removing shortcut from the screen
(22 apps) and setting the alarm (22 apps) followed by performing
automatic phone call.

5https://f-droid.org/en/packages/

Considering these results, we can formulate the subsequent an-
swer to RQ1:

Usage of privileged Action strings to request tasks to system
apps/components is common in Android apps, and the most
frequently occurring dangerous privileged Action strings
are related to taking pictures, recording video, activating
the Bluetooth, creating app shortcuts on home screen, and
unistalling apps.

5.3 RQ2: Detection of Vulnerable Apps
The proposed approachwas applied on all the data sets (i.e.,DataSet1
and DataSet2). Apps are subject to static analysis to detect candi-
date vulnerabilities. Then, candidate vulnerabilities are subject to
fuzzing to see the feasibility of exploitation. 59 apps have been
detected by static analysis and, therefore, were subject to fuzzing.
However, we could only fuzz 47 of them, because the other 12 apps
crashed or could not be installed on the testing device because of
incompatibility with our experimental environment (e.g., version or
architecture mismatch). For 30 apps, we could successfully generate
test cases that expose the vulnerability.

On the remaining 17 apps, our approach failed in generating a
test case for a variety of reasons. In some cases, apps required valid
end-user credentials to run, so fuzzing stopped at the login activity.
Though we filter out paths that involve GUI interaction, there were
some cases that involved app-specific event-handlers for gestures
that our filter did not recognize and, hence, these paths could not
be filtered by our static analysis.

Even if we could fuzz 30 apps, manual inspection revealed that
only 27 are actual vulnerabilities, and the remaining 3 cases are
false positives.

Our experiment, therefore, resulted in 27 total vulnerabilities: 19
vulnerable apps from DataSet1 and 8 from DataSet2 (see Table 1).
For each app (first column) the table reports the privileged Action
strings used to send privileged Intents. The test cases generated
by fuzzing have then been manually validated. The most common
Action strings occurring in vulnerable apps is INSTALL_SHORTCUT
with 11 vulnerable apps, then IMAGE_CAPTURE is used in 8 vulnera-
ble apps, CALL occurs in 4 apps and REQUEST_ENABLE occurs in 2
vulnerabilities.

Manual investigation revealed that the 27 cases are actual vul-
nerabilities that our approach correctly detected. We are not able
to quantify the false negatives, because this would have required
to know what exactly are the vulnerable apps in our data set that
our approach could have missed.

In the following, we discuss some cases, commenting the attack
preconditions and the potential impact of an exploit.

CALL: This is probably the most intuitive vulnerability, the
corresponding attack scenario is shown in Figure 1-b. An attacker
app (that is granted no privilege) cannot send Intents with the
privileged Action string CALL (Intent.ACTION_CALL). Thus, the
attacker hijacks a vulnerable appwith this permission to accomplish
this task.

The attacker sends a regular intent to the vulnerable app. When
receiving this intent, the vulnerable app sends a second intents
with the CALL Action string, that is received by the system dialer
to initiate a phone call that does not require the user confirmation.

MOBILESoft ’20, October 5–6, 2020, Seoul, Republic of Korea Biniam Fisseha Demissie and Mariano Ceccato

Action string Frequency
IMAGE_CAPTURE 759
VIDEO_CAPTURE 207
REQUEST_ENABLE 152
INSTALL_SHORTCUT 79
UNINSTALL_PACKAGE 52
REQUEST_DISCOVERABLE 25
SET_ALARM 22
UNINSTALL_SHORTCUT 22
ACTION_CALL 20
REQUEST_IGNORE_BATTERY_OPTIMIZATIONS 7
INSTALL_PACKAGE 2
SET_TIMER 1

0

200

400

600

IM
A
G

E
_C

A
P
TU

R
E

V
ID

E
O

_C
A
P
TU

R
E

R
E
Q

U
E
S
T_

E
N
A
B
LE

IN
S
TA

LL
_S

H
O

R
TC

U
T

U
N
IN

S
TA

LL
_P

A
C
K
A
G

E

R
E
Q

U
E
S
T_

D
IS

C
O

V
E
R
A
B
LE

S
E
T_

A
LA

R
M

U
N
IN

S
TA

LL
_S

H
O

R
TC

U
T

A
C
TI

O
N
_C

A
LL

R
E
Q

_I
G

N
O

R
E
_B

AT
T_

O
P
T

IN
S
TA

LL
_P

A
C
K
A
G

E
S
E
T_

TI
M

E
R

F
re

q
u

e
n

c
y

Figure 7: Privileged actions and their frequencies

App name Action string
Dataset1 (Top apps)

cn.mstars.activity CALL
com.mv.notas IMAGE_CAPTURE
com.myntra.android IMAGE_CAPTURE
com.app.app909fe1a3ad62 IMAGE_CAPTURE
com.app.app017f4c0fe778 IMAGE_CAPTURE
com.app.appd4403633f62b IMAGE_CAPTURE
com.fm.weaponmod IMAGE_CAPTURE
app.fastfacebook.com IMAGE_CAPTURE
com.clearhub.wl INSTALL_SHORTCUT
com.gtp.nextlauncher

.theme.bloodysweetlove INSTALL_SHORTCUT
com.mosoyo.wildanimals INSTALL_SHORTCUT
com.mosoyo.watergalaxy INSTALL_SHORTCUT
com.mosoyo.news7 INSTALL_SHORTCUT
com.mosoyo.bubbles6 INSTALL_SHORTCUT
com.moniappteam

.iosnonofree.toptips4uuu INSTALL_SHORTCUT
com.fotoable.makeup INSTALL_SHORTCUT
com.app.all.video.downloader INSTALL_SHORTCUT
com.ImaginationUnlimited.Poto INSTALL_SHORTCUT
collage.instagram.b612.camera360

.picsart.fotoable.instamag INSTALL_SHORTCUT
Dataset2 (Non-top apps)

com.mvl.CasinoArizona CALL
com.app.app0e87ec29c687 IMAGE_CAPTURE
com.yinzcam.nfl.eagles IMAGE_CAPTURE
org.sipdroid.sipua CALL
org.lumicall.android CALL
org.thecongers.mtpms REQUEST_ENABLE
a2dp.Vol REQUEST_ENABLE
net.bluetoothviewer REQUEST_ENABLE

Table 1: Apps vulnerable to Second Order Permission Re-
delegation and their privileged Action strings.

Moreover, if the attacker is able to control the data used by the
vulnerable app as a phone number to send the privileged Intent,

then the attacker app can make phone calls to arbitrary phone
numbers, including to premium numbers that cost actual money to
the end-user.

To avoid this security problem, best programming practices rec-
ommends using the Action string DIAL6, that lets the end-user
decide whether to complete the phone call or not.

INSTALL_SHORTCUT: If the permission related to the Action
string INSTALL_SHORTCUT is re-delegated, an attacker can exploit
this in two ways, depending on the following preconditions. (i) If
the Boolean Intent extra “duplicate” is not set to false, an attacker
can mount a denial-of-service attack, by filling the user’s home
screen with multiple icons of the same app, thus making the end-
user unable to launch other apps. (ii) If the attacker can control
what Data, Action and Category strings are used by the vulnerable
apps to broadcast the privileged Intent to create the shortcut, the
attacker could create a fake shortcut that resembles, for example, a
banking app. The fake app could, then, redirect the end-user to a
fake login screen, effectively mounting a phishing attack.

This permission should probably not be re-delegated to other
apps. However, specific use cases might require this, for instance,
when the developer wants to create a home screen shortcut the first
time an app is launched. In these cases, shared preferences could
be used to record the first creation, and checked on subsequent
attempts to avoid duplication.

IMAGE_CAPTURE: This Action string can be used by a privi-
leged app to request the camera app to capture an image and return
it. Additionally, the Intent Extra field EXTRA_OUTPUT specifies the
name of the file where to save the new picture. If an app that uses
this Action string is hijacked by an attacker who also controls In-
tent extra EXTRA_OUTPUT, then the attacker might specify a path
she/he can access, where the captured image will be written to.
In this way, the attacking app can eventually take a picture (i.e.,
spying the end-user) without the need to be granted the CAMERA
and the WRITE_EXTERNAL_STORAGE permissions. An attack consists
in sending an Intent to the vulnerable app to request the picture
and in monitoring the output directory for file changes, to steal the
captured images. This is the case of a recently reported vulnerability

6https://developer.android.com/reference/android/content/Intent

Security Testing of Second Order Permission Re-delegation Vulnerabilities MOBILESoft ’20, October 5–6, 2020, Seoul, Republic of Korea

fuzzing

static analysis

0 50 100 150

Time [seconds]

mean median sd
Static analysis 53.85 48.0 39.7
Fuzzing 16.75 16.5 9.6

Figure 8: Time (in seconds) spent during static analysis and
fuzzing.

that allowed a malicious app to take photos without the required
permission 7.

We can answer RQ2 by stating that:

The proposed approach is effective in finding Second Order
Permission Re-delegation vulnerabilities, and test cases that
execute the attacks were generated for 27 vulnerable apps.

5.4 RQ3: Analysis Time
To investigate RQ3, we measured the amount of time spent to
analyze the case study apps. To this aim, we instrumented the
analysis script with the Linux date utility.

Figure 8 shows the box-plot of the time (in seconds) needed to
perform, respectively, static analysis and fuzzing, together with
descriptive statistics (mean, median and standard deviation). On
average, static analysis took 54 seconds to complete on one app
(including source-sink identification, string analysis and path ex-
traction). In the worst case, the analysis took up to 140 seconds (i.e.,
2 minutes and 20 seconds).

Once an app is statically detected to contain potential Second
Order Permission Re-delegation vulnerabilities, we also run the
fuzzer to generate inputs that execute the vulnerability.

Fuzzing was quite fast, because none of the vulnerabilities found
with static analysis were tested in more than one minute. On aver-
age, fuzzing took just 16 seconds. However, the budget for fuzzing
was 10 minutes and if a goal is reached within this budget, further
input generation is stopped.

Based on these analysis time data, we can answer RQ3 in the
following way:

The cost of our approach is affordable, because static analysis
of an app takes less than 1 minute in the average case, and
less then 2.5 minutes in the worst case, while fuzzing took 16
seconds on average and less than one minute in the slowest
case.

7https://www.checkmarx.com/blog/how-attackers-could-hijack-your-android-
camera “How Attackers Could Hijack Your Android Camera to Spy on You”

5.5 RQ4: Capabilities of the State of the Art
To tackle RQ4, we consider Covert [6], a state-of-the-art static anal-
ysis tool that applies compositional analysis, whose objective is
detecting if app interaction could result in a composite ICC vul-
nerability. An example problematic scenario detected by Covert
includes two apps, the data provider app and the data consumer
app. The data provider app reads sensitive end-user data and shares
them via ICC to the data consumer app. The data consumer app,
then, uses these data from ICC to perform some sensitive actions.

Covert supports two distinct execution modes. In the first ex-
ecution mode, a set of apps is analyzed together, considering all
the possible collusive pairs. In the second execution mode, Covert
analyzes a single app alone, detecting if it can play the role either of
data provider (sharing sensitive data via ICC) or of data consumer
(using data from ICC in sensitive actions) in a potential collusion
with a generic paired app. We decided to experiment with the sec-
ond execution mode, because it is the most relevant to our threat
model. In fact, system apps, e.g., manufacturer dependent telephony
apps, might be not present in our datasets.

Covert has been run on our datasets with its default configura-
tion. In total, Covert took 84 days to process all the apps.

Affected Sinks Number of report
LOG 27,862

DATABASE_INFORMATION 9,128
NETWORK 1,442
SMS_MMS 65
AUDIO 61
NFC 20

LOCATION_INFORMATION 18
NETWORK_INFORMATION 10
CALENDAR_INFORMATION 2

ACCOUNT_SETTINGS 1
VIDEO 1

Table 2: Vulnerabilities reported by Covert, grouped by the
corresponding sink privileges.

The result of the analysis is reported in Table 2. The reports
contain in total 39,660 vulnerabilities. To help readability, the re-
sults are grouped by a label (first column), i.e. the affected sinks
or permission needed by the sink statement. For example, if a vul-
nerability is potential privilege escalation to send MMS message,
then the sink is SEND_MMS. On the other hand if the vulnerability is
data leak, a possible sink is NETWORK. Most vulnerabilities (27,862
cases) are related to the LOG. The second most common class of vul-
nerabilities reported are related to DATABASE_INFORMATION (9,128
instances), either being written or leaked, followed by NETWORK
used to communicate with remote hosts.

This list contains not only instances of permission re-delegation
(privilege escalation), but also many other vulnerabilities that are
out of the scope of the threat model assumed in this paper (see
Section 3) and, therefore, they should be discarded. The 4,273 vul-
nerabilities labeled Intent Spoofing in the Covert report are relevant
to our threat model, because they may cause privilege escalation.

MOBILESoft ’20, October 5–6, 2020, Seoul, Republic of Korea Biniam Fisseha Demissie and Mariano Ceccato

Conversely, we discard those cases that are labeled intent hijack-
ing (1,050 cases), because they are related to the scenario where
a malicious app intercepts potentially sensitive intents, sent by a
vulnerable app and meant to be received by a different app.

We also exclude the cases of information leak (34,337 cases)
labeled by Covert as Intra-app Data Leakage. In fact, inter-app data
leakage involves potentially malicious apps collaborating in order
to acquire and leak sensitive data (e.g., one app reads sensitive data
and another app leaks via Internet).

The 4,273 relevant reports have been subject to manual inspec-
tion to understand whether they were instances of Second Order
Permission Re-delegation vulnerabilities. This task consisted in
analyzing if the sink statements may send Intent messages with a
privileged Action string. Manual inspection revealed that all these
cases were instances of First Order Permission Re-delegation, be-
cause all the sinks were calls to Android APIs that, even if they
require permissions, they were never related to inter-component
communication. Thus, we can conclude that Covert detected no
Second Order Permission Re-delegation vulnerability.

Considering the results obtained by Covert, we can answer RQ4
by stating that:

The state-of-the-art for compositional analysis of Android
apps is not capable of detecting Second Order Permission
Re-delegation vulnerabilities. In fact, Covert detected none
of the 27 vulnerabilities detected by our approach.

5.6 Limitations
The first step of our approach is based on static analysis of compiled
code. Hence, the proposed approach suffers from the inherent prob-
lems of static analysis techniques, such as not precisely analyzing
obfuscated code. However, while obfuscated apps are found when
getting them from the official app store, when this tool is used by
software developers to assess their products, the non-obfuscated
version would be also available, to get more precise results.

Fuzzing is also limited, because not all the relevant attack scenar-
ios might be generated. Though we base fuzzing on the manifest
and on the code to detect expected Intents, more advanced input
generation strategies could be more effective. For instance, search-
based input generation approaches are expected to outperform
fuzzing. However, fuzzing was effective in generating many proof-
of-concept attacks.

Considering the fact that there is no documented list of Actions
strings that require a special permission, in this work we considered
the Action strings extracted from popular apps from the official
app store. Though the top apps could be representative of apps in
the Google Play Store, it is possible that our list misses relevant
Action strings. Detailed analysis of the Android code is needed
to elaborate a more complete list of the privileged Action strings,
similar to what is done in Pscout [5] to identify privileged method
calls.

6 RELATEDWORK
Potential threats to the security ofmobile apps due to inter-component
(inter-app) communication have been studied with respect to infor-
mation flow [9, 11, 13, 14, 17, 19, 20, 22, 28].

Felt et al. [14] defined the Permission Re-delegation vulnerability
in the context of apps, together with a static analysis approach
to detect it. Then, similarly to Felt et al., other approaches still
limited to static analysis have been proposed [6, 7, 20, 32]. In the
present paper, we extend their threat model towards the Second
Order variant. Moreover, our extension includes automatic proof-
of-concept attack generation.

The most related work is by Zhong et al. [32], where authors not
only propose static detection of Permission Re-delegation vulnera-
bilities, but also test case generation. However, their investigation
is limited to first order vulnerabilities, with threat scenarios that in-
volves just two apps. Instead, we consider Second Order Permission
Re-delegation, with a novel and more complex threat scenarios.

Maji et al. [21] focus inter-app messaging to generate executable
scenarios that cause crashes, rather than security defects. Fuzzing
was already used for security testing Android apps [15, 30]. Hay et
al. [15] apply a guided fuzzing to detect several inter-app commu-
nication vulnerabilities, while Yang et al. [30] apply fuzzing based
on information form intent-filters to specifically detect Permission
Re-delegation vulnerabilities. Different from them, our approach
includes static analysis and, only when vulnerabilities are statically
detected, we apply a more complex fuzzing that is based on the
results of static analysis. Additionally, we focus on a more advanced
threat scenario.

Automatic testing of apps has been addressed also from the point
of view of the graphical user interface [2, 3, 16], by fuzzing events
in the available GUI widgets to cause exceptions, crashes, commu-
nication mistakes and violations of access permissions. However,
with the focus on dependability, rather than security.

Zhang et al. [31] proposed Appsealer, to tackle permission re-
delegation problems at run-time. Static data-flow analysis deter-
mines sensitive data-flows that are patched, such that the end-user
is notified of a potential permission re-delegation attack and her/his
authorization is needed to proceed. Lee et al. [18] presented Sealant,
which extends the Android framework to deliver an approach simi-
lar to Appsealer, i.e., to monitor vulnerable inter-app communica-
tion and block them at execution time.

Both Appsealer and Sealant are based on dynamic analysis to
block first order permission re-delegation, but they rely on the
end-user for execution scenarios. Conversely, our approach au-
tomatically generates the execution scenarios (i.e., the test cases)
and it is meant to detect second order permission re-delegation
vulnerabilities.

7 CONCLUSION
Apps often access confidential end-user information and perform
sensitive operations. Thus, defects that impact the end-user security
should be detected and removed before apps are distributed.

In this paper, we described a peculiar vulnerability that threaten
the security of Android apps, namely, Second Order Permission
Re-delegation. We also proposed a novel approach based on static
analysis to detect this novel kind of vulnerability and a test case
generation tool that automatically creates proof-of-concept attack
scenarios. Empirical results suggest that the proposed new vulner-
ability is common in popular apps and that our solution helps in
identifying it.

Security Testing of Second Order Permission Re-delegation Vulnerabilities MOBILESoft ’20, October 5–6, 2020, Seoul, Republic of Korea

REFERENCES
[1] Kevin Allix, Tegawendé F. Bissyandé, Jacques Klein, and Yves Le Traon. 2016.

AndroZoo: Collecting Millions of Android Apps for the Research Community. In
Proceedings of the 13th International Conference on Mining Software Repositories
(Austin, Texas) (MSR ’16). ACM, New York, NY, USA, 468–471. https://doi.org/
10.1145/2901739.2903508

[2] D. Amalfitano, A.R. Fasolino, and P. Tramontana. 2011. A GUI Crawling-Based
Technique for Android Mobile Application Testing. In Software Testing, Verifica-
tion and Validation Workshops (ICSTW), 2011 IEEE Fourth International Conference
on. 252 –261. https://doi.org/10.1109/ICSTW.2011.77

[3] Domenico Amalfitano, Anna Rita Fasolino, Porfirio Tramontana, Salvatore
De Carmine, and Atif M. Memon. 2012. Using GUI ripping for automated testing
of Android applications. In Proceedings of the 27th IEEE/ACM International Con-
ference on Automated Software Engineering (Essen, Germany) (ASE 2012). ACM,
New York, NY, USA, 258–261. https://doi.org/10.1145/2351676.2351717

[4] Steven Arzt, Siegfried Rasthofer, Christian Fritz, Eric Bodden, Alexandre Bar-
tel, Jacques Klein, Yves Le Traon, Damien Octeau, and Patrick McDaniel. 2014.
FlowDroid: Precise Context, Flow, Field, Object-sensitive and Lifecycle-aware
Taint Analysis for Android Apps. In Proceedings of the 35th ACM SIGPLAN
Conference on Programming Language Design and Implementation (Edinburgh,
United Kingdom) (PLDI ’14). ACM, New York, NY, USA, 259–269. https:
//doi.org/10.1145/2594291.2594299

[5] Kathy Wain Yee Au, Yi Fan Zhou, Zhen Huang, and David Lie. 2012. Pscout:
analyzing the Android permission specification. In Proceedings of the 2012 ACM
conference on Computer and communications security. ACM, 217–228.

[6] Hamid Bagheri, Alireza Sadeghi, Joshua Garcia, and Sam Malek. 2015. Covert:
Compositional analysis of android inter-app permission leakage. IEEE Transac-
tions on Software Engineering 9 (2015), 866–886.

[7] Erika Chin, Adrienne Porter Felt, Kate Greenwood, and David Wagner. 2011.
Analyzing inter-application communication in Android. In Proceedings of the 9th
international conference on Mobile systems, applications, and services (Bethesda,
Maryland, USA) (MobiSys ’11). ACM, New York, NY, USA, 239–252. https:
//doi.org/10.1145/1999995.2000018

[8] Ting Dai, Xiaolei Li, Behnaz Hassanshahi, Roland HC Yap, and Zhenkai Liang.
2017. Roppdroid: Robust permission re-delegation prevention in android inter-
component communication. Computers & Security 68 (2017), 98–111.

[9] Biniam Fisseha Demissie, Mariano Ceccato, and Lwin Khin Shar. 2018. AnFlo:
Detecting Anomalous Sensitive Information Flows in Android Apps. In Proceed-
ings of the 5th IEEE/ACM International Conference on Mobile Software Engineering
and Systems. ACM.

[10] Biniam Fisseha Demissie, Davide Ghio, Mariano Ceccato, and Andrea Avancini.
2016. Identifying Android inter app communication vulnerabilities using static
and dynamic analysis. In Proceedings of the International Conference on Mobile
Software Engineering and Systems. ACM, 255–266.

[11] Biniam Fisseha Demissie, Davide Ghio, Mariano Ceccato, and Andrea Avancini.
2016. Identifying Android inter app communication vulnerabilities using static
and dynamic analysis. In Proceedings of the IEEE/ACM International Conference
on Mobile Software Engineering and Systems. ACM, 255–266.

[12] Karim O Elish, Danfeng Yao, and Barbara G Ryder. 2015. On the need of precise
inter-app ICC classification for detecting Android malware collusions. In IEEE
mobile security technologies (MoST), in conjunction with the IEEE symposium on
security and privacy.

[13] William Enck, Peter Gilbert, Byung gon Chun, Landon P. Cox, Jaeyeon Jung,
Patrick McDaniel, and Anmol N. Sheth. 2010. TaintDroid: An Information-Flow
Tracking System for Realtime Privacy Monitoring on Smartphones. In 9th Usenix
Symposium on Operating Systems Design and Implementation.

[14] Adrienne Porter Felt, Helen J. Wang, Alexander Moshchuk, Steve Hanna, and
Erika Chin. 2011. Permission Re-Delegation: Attacks and Defenses. In 20th Usenix
Security Symposium.

[15] Roee Hay, Omer Tripp, and Marco Pistoia. 2015. Dynamic Detection of Inter-
application Communication Vulnerabilities in Android. In Proceedings of the
2015 International Symposium on Software Testing and Analysis (Baltimore, MD,
USA) (ISSTA 2015). ACM, New York, NY, USA, 118–128. https://doi.org/10.1145/
2771783.2771800

[16] Cuixiong Hu and Iulian Neamtiu. 2011. Automating GUI testing for Android
applications. In Proceedings of the 6th International Workshop on Automation of
Software Test (Waikiki, Honolulu, HI, USA) (AST ’11). ACM, New York, NY, USA,
77–83. https://doi.org/10.1145/1982595.1982612

[17] William Klieber, Lori Flynn, Amar Bhosale, Limin Jia, and Lujo Bauer. 2014.
Android Taint Flow Analysis for App Sets. In Proceedings of the 3rd ACM SIGPLAN
InternationalWorkshop on the State of the Art in Java ProgramAnalysis (Edinburgh,
United Kingdom) (SOAP ’14). ACM, New York, NY, USA, 1–6. https://doi.org/10.
1145/2614628.2614633

[18] Youn Kyu Lee, Jae young Bang, Gholamreza Safi, Arman Shahbazian, Yixue Zhao,
and Nenad Medvidovic. 2017. A SEALANT for Inter-app Security Holes in An-
droid. In Proceedings of the 39th International Conference on Software Engineering
(Buenos Aires, Argentina) (ICSE ’17). IEEE Press, Piscataway, NJ, USA, 312–323.

https://doi.org/10.1109/ICSE.2017.36
[19] Li Li, Alexandre Bartel, Tegawendé F Bissyandé, Jacques Klein, Yves Le Traon,

Steven Arzt, Siegfried Rasthofer, Eric Bodden, Damien Octeau, and Patrick Mc-
daniel. 2015. IccTA: Detecting Inter-Component Privacy Leaks in Android Apps.
In Proceedings of the 37th International Conference on Software Engineering (ICSE
2015). 280–291.

[20] Long Lu, Zhichun Li, Zhenyu Wu, Wenke Lee, and Guofei Jiang. 2012. CHEX:
Statically Vetting Android Apps for Component Hijacking Vulnerabilities. In
Proceedings of the 2012 ACMConference on Computer and Communications Security
(Raleigh, North Carolina, USA) (CCS ’12). ACM, New York, NY, USA, 229–240.
https://doi.org/10.1145/2382196.2382223

[21] A.K. Maji, F.A. Arshad, S. Bagchi, and J.S. Rellermeyer. 2012. An empirical study
of the robustness of Inter-component Communication in Android. In Dependable
Systems and Networks (DSN), 2012 42nd Annual IEEE/IFIP International Conference
on. 1 –12. https://doi.org/10.1109/DSN.2012.6263963

[22] ChristopherMann andArtem Starostin. 2012. A Framework for Static Detection of
Privacy Leaks in Android Applications. In 27th Symposium on Applied Computing
(SAC): Computer Security Track. 1457–1462.

[23] Trend Micro. last accessed January 2020. First Kotlin-Developed Malicious App
Signs Users Up for Premium SMS Services, https://blog.trendmicro.com/trendlabs-
security-intelligence/first-kotlin-developed-malicious-app-signs-users-
premium-sms-services/. https://blog.trendmicro.com/trendlabs-security-
intelligence/first-kotlin-developed-malicious-app-signs-users-premium-sms-
services/

[24] Tristan Ravitch, E Rogan Creswick, Aaron Tomb, Adam Foltzer, Trevor Elliott, and
Ledah Casburn. 2014. Multi-app security analysis with fuse: Statically detecting
android app collusion. In Proceedings of the 4th Program Protection and Reverse
Engineering Workshop. ACM, 4.

[25] Soot. 2018. Soot - A Java optimization framework, https://github.com/Sable/soot.
(2018). https://sable.github.io/soot/

[26] Techspot. last accessed January 2020. New Android malware can
steal data, record audio, and send SMS messages to premium ser-
vices, https://www.techspot.com/news/73481-new-android-malware-can-steal-
data-record-audio.html. https://www.techspot.com/news/73481-new-android-
malware-can-steal-data-record-audio.html

[27] Threatpost. last accessed January 2020. Joker Android Malware Snow-
balls on Google Play, https://threatpost.com/joker-androids-malware-ramps-
volume/151785/. https://threatpost.com/joker-androids-malware-ramps-
volume/151785/

[28] Fengguo Wei, Sankardas Roy, Xinming Ou, and Robby. 2014. AmAndroid: A
Precise and General Inter-component Data FlowAnalysis Framework for Security
Vetting of Android Apps. In Proceedings of the 2014 ACM SIGSAC Conference on
Computer and Communications Security (Scottsdale, Arizona, USA) (CCS ’14).
ACM, New York, NY, USA, 1329–1341. https://doi.org/10.1145/2660267.2660357

[29] Mengwei Xu, Yun Ma, Xuanzhe Liu, Felix Xiaozhu Lin, and Yunxin Liu. 2017. Ap-
pholmes: Detecting and characterizing app collusion among third-party android
markets. In Proceedings of the 26th International Conference on World Wide Web.
143–152.

[30] Kun Yang, Jianwei Zhuge, Yongke Wang, Lujue Zhou, and Haixin Duan. 2014.
IntentFuzzer: detecting capability leaks of android applications. In Proceedings of
the 9th ACM symposium on Information, computer and communications security.
ACM, 531–536.

[31] Mu Zhang and Heng Yin. 2014. Appsealer: Automatic generation of vulnerability-
specific patches for preventing component hijacking attacks in Android applica-
tions.

[32] J. Zhong, J. Huang, and B. Liang. 2012. Android Permission Re-delegation De-
tection and Test Case Generation. In 2012 International Conference on Computer
Science and Service System. 871–874.

https://doi.org/10.1145/2901739.2903508
https://doi.org/10.1145/2901739.2903508
https://doi.org/10.1109/ICSTW.2011.77
https://doi.org/10.1145/2351676.2351717
https://doi.org/10.1145/2594291.2594299
https://doi.org/10.1145/2594291.2594299
https://doi.org/10.1145/1999995.2000018
https://doi.org/10.1145/1999995.2000018
https://doi.org/10.1145/2771783.2771800
https://doi.org/10.1145/2771783.2771800
https://doi.org/10.1145/1982595.1982612
https://doi.org/10.1145/2614628.2614633
https://doi.org/10.1145/2614628.2614633
https://doi.org/10.1109/ICSE.2017.36
https://doi.org/10.1145/2382196.2382223
https://doi.org/10.1109/DSN.2012.6263963
https://blog.trendmicro.com/trendlabs-security-intelligence/first-kotlin-developed-malicious-app-signs-users-premium-sms-services/
https://blog.trendmicro.com/trendlabs-security-intelligence/first-kotlin-developed-malicious-app-signs-users-premium-sms-services/
https://blog.trendmicro.com/trendlabs-security-intelligence/first-kotlin-developed-malicious-app-signs-users-premium-sms-services/
https://sable.github.io/soot/
https://www.techspot.com/news/73481-new-android-malware-can-steal-data-record-audio.html
https://www.techspot.com/news/73481-new-android-malware-can-steal-data-record-audio.html
https://threatpost.com/joker-androids-malware-ramps-volume/151785/
https://threatpost.com/joker-androids-malware-ramps-volume/151785/
https://doi.org/10.1145/2660267.2660357

