
A Framework for In-Vivo Testing of Mobile
Applications

Mariano Ceccato∗, Davide Corradini †, Luca Gazzola‡, Fitsum Meshesha Kifetew†

Leonardo Mariani‡, Matteo Orrù‡ and Paolo Tonella§

∗University of Verona, Verona, Italy
†Fondazione Bruno Kessler (FBK), Trento, Italy
‡Università di Milano-Bicocca, Milan, Italy

§Università della Svizzera Italiana Lugano, Switzerland
mariano.ceccato@univr.it, corradini@fbk.eu, luca.gazzola@unimib.it, kifetew@fbk.eu,

leonardo.mariani@unimib.it, matteo.orru@unimib.it, paolo.tonella@usi.ch

Abstract—The ecosystem in which mobile applications run is
highly heterogeneous and configurable. All layers upon which
mobile apps are built offer wide possibilities of variations, from
the device and the hardware, to the operating system and
middleware, up to the user preferences and settings. Testing all
possible configurations exhaustively, before releasing the app, is
unaffordable. As a consequence, the app may exhibit different,
including faulty, behaviours when executed in the field, under
specific configurations.

In this paper, we describe a framework that can be instantiated
to support in-vivo testing of a mobile app. The framework
monitors the configuration in the field and triggers in-vivo testing
when an untested configuration is recognized. Experimental
results show that the overhead introduced by monitoring is
unnoticeable to negligible (i.e., 0-6%) depending on the device
being used (high- vs. low-end). In-vivo test execution required on
average 3s: if performed upon screen lock activation, it introduces
just a slight delay before locking the device.

Index Terms—Mobile applications, testing framework, in-vivo
testing

I. INTRODUCTION

Mobile applications are built to operate on a plethora of de-
vices, each running a different version of the operating system
and offering different hardware resources (screen resolution,
sensors, etc.). Moreover, user preferences can affect various
aspects of such applications, from their visual appearance
to the enabled/disabled functionalities. Software testing is
expected to check the behaviour of mobile apps in all possible
configurations. However, this is practically impossible because
both the number of combinations is exponential and some
configurations are difficult to reproduce during pre-release
testing.

Previous works [7], [15] show that different configurations
may lead to a different coverage of the code and that some
faults are “field-intrinsic”, that is, they are inherently difficult
to detect in-house. In particular, Lu et al. [15] developed
a technique to identify the test cases whose behaviour is
affected by the user preferences. They found that some faults
are exercised and exposed only under very specific prefer-
ence configurations. Gazzola et al. [7] report an empirical
investigation of field failures. They observed that the main

reason for the leakage of faults from pre-release testing to
field usage is combinatorial explosion. i.e., the huge number
of configurations in which the software should be tested to
expose faults that otherwise might give raise to field failures.

Mobile apps have often a very large user base that exercises
the software under various configurations. Moving part of the
testing activity to the field is therefore an appealing option
to deal with the combinatorial nature of configuration-specific
mobile app faults. However, the overhead introduced by such
form of testing, which we call “in-vivo” testing, should be
minimized, to make it acceptable for the end user.

In this paper we propose a model to represent the con-
figuration space of a mobile app and we describe VATE,
a framework that we developed for the Android operating
system, which supports in-vivo monitoring and testing of
new app configurations. Our framework resorts to managed
profiles [2] to isolate the in-vivo testing session from the
normal user session. We measured the impact of configuration
monitoring on low-end to high-end devices and found that the
runtime increase is between imperceptible to negligible (on
average between 0% and 6% CPU load overhead). Assuming
that the actual execution of in-vivo tests takes place when the
device is not under active usage (e.g., when it transitions to
the screen lock mode), each test case is expected to introduce
a delay of about 3 seconds on average.

VATE is the first attempt to bring some testing activities
to the field for mobile apps. The preliminary results obtained
on a benchmark of six Android apps show that VATE is a
promising approach and that its impact on the end-user can
be acceptable. The VATE tool and the experimental material
are publicly available online [19].

II. MOTIVATING EXAMPLE

Let us consider a hypothetical messaging app for Android
devices, which we call ChatApp (pronounced shut-up). Chat-
App supports the exchange of messages and multimedia con-
tent between its users. Moreover, ChatApp can take a picture
of the user when the user creates or updates her/his profile.
To take a picture, ChatApp sends an intent (see Listing 1) to



Fig. 1. Full configuration model for the ChatApp application

delegate the task to any app that can take a picture using the
camera of the mobile device.

1 Intent cameraIntent = new
Intent(MediaStore.ACTION_IMAGE_CAPTURE);

2 cameraIntent.putExtra(MediaStore.EXTRA_OUTPUT,
outputImgUri);

3 startActivityForResult(cameraIntent,
REQUEST_IMAGE_CAPTURE);

Listing 1. Intent sent by ChatApp to obtain a profile picture

Since ChatApp relies on external resources (installed camera
app; camera hardware) for the successful execution of the
add/update profile image functionality, the scenarios in which
a failure might occur depend on multiple factors: the hard-
ware installed in the device, since the interaction with some
camera models may fail; the configuration of the environment
and operating system, since not all camera apps might be
compatible with the ChatApp application; the settings of the
app itself, since some specific choices might be not well
supported by the app; and a combination of all these factors.
Hence, adequately testing ChatApp requires addressing the
combinatorial exploration resulting from all these factors.

Environment configuration. We use feature models [11] to
represent and manage the large configuration space that may
affect apps. The configuration model of ChatApp is shown
in Figure 1, where inner nodes represent features; leaf nodes
represent feature values; and the parent-child edges represent
the feature-subfeature decomposition. While the default in-
terpretation of feature decomposition is AND-decomposition,
modifiers are available to express OR/XOR-decompositions
and to identify a feature as mandatory/optional (see Legend
in Figure 1). The logical constraints at the bottom-right are
added to further constrain the admissible configurations.

The configuration of ChatApp is decomposed into two
main parts: 1) DeviceConfig, representing the configuration
of the device on which the app is running; and 2) AppPrefs,

representing the various settings of the app itself. DeviceConfig
includes the Android version (OS feature), the camera apps
that can be delegated to take pictures (CameraApp), and the
actual model of the device (DeviceModel), all of which are
mandatory features. In turn, CameraApp can be the default
app (Default, mandatory feature) or an additional app (Other,
optional feature). Default can be instantiated by a set of
mutually exclusive apps (empty arc), while Other can be
instantiated by a set of non exclusive apps (filled arc). When
the device model is Sony, the camera hardware (CameraHw
feature) can be either IMX300 or IMX400.

ChatApp has also a couple of application-specific settings.
The first one (Upload) represents a preference of the user to
upload photos over wifi, mobile data, or both. The other setting
(Backup) represents the preference of the user on whether
or not to backup chats. The feature model contains also a
few cross-tree constraints of type “implies”. For instance, the
cross-tree constraint (v4 x ⇒ N, equivalently shown as ¬4 x
∨ N in Figure 1) indicates that version 4 x of GoogleCamera
constrains the version of Android to be N (Nougat); the camera
app SonyCamera constrains the device model to be Sony.

In addition to representing the full configuration space, we
need to record also the set of configurations that have been
tested so far. Let us consider ChatApp at the time it is first
deployed to its users and let us assume that pre-release testing
has been carried out on an LG phone with default camera on
all three Android versions, with user settings specifying that
upload is possible only on the wifi and that backup is disabled.
The set of tested configurations will include the following
tuples of feature values:

〈N, LG, LGCam, OnWifi, No〉
〈O, LG, LGCam, OnWifi, No〉
〈P, LG, LGCam, OnWifi, No〉

In-vivo testing of ChatApp. VATE includes a run-time
in-vivo test component that can monitor the configuration
elements relevant to the app and checks whether the current



configuration is tested, untested or unknown. This information
can be extracted by a run-time probe that queries the device
and the app preferences and compares the retrieved informa-
tion to the tuples of tested configurations.

The following are examples of tested, untested and unknown
configurations of ChatApp

tested 〈N, LG, LGCam, OnWifi, No〉
untested 〈N, Sony, SonyCamera, v4 x, IMX400, OnWifi, Yes〉
unknown 〈P, Xiaomi, XiaomiCamera, Xiaomi/Dual camera, v6 x, OnWifi,

OnMobile, No〉

Different configurations trigger different reactions. A tested
configuration triggers no reaction. An untested configuration,
triggers in-vivo test execution. An unknown configuration trig-
gers a feedback to testers who are asked to extend the model
to incorporate the new cases that were not considered at the
beginning, when the full configuration model was produced.
In addition, an unknown configuration can be immediately
validated with the available test cases.

Let us now consider the following hypothetical field failure:

A new camera app, XiaomiCamera, is installed. The camera
hardware is deployed with a driver that, under Android version
N, does not initialize the camera if not requested explicitly.
When ChatApp takes a picture of the user, the request goes
through XiaomiCamera, which does not explicitly initialize
the camera when responding to an intent (it initialises the
camera only when activated by the user). Correspondingly,
XiaomiCamera crashes. In such a case, ChatApp times out the
request to XiaomiCamera, leaving a reference to the requested
picture set to null. When later the picture is used, a null pointer
exception is thrown and ChatApp stops working.

In such a scenario, the in-vivo testing component will:
1) recognize the configuration as unknown (in fact it does

not appear in the feature model depicted in Figure 1);
2) execute the available in-vivo tests, possibly retrieved

from a testing server, to check if ChatApp works prop-
erly with the camera app XiaomiCamera;

3) expose a failure of ChatApp (null pointer exception);
4) report the failure, and the configuration that triggered it,

to the developers.

III. THE VATE FRAMEWORK

The VATE framework provides the architecture and a
reference implementation that developers can exploit to add
in-vivo testing capabilities to their mobile applications. In
this context, we assume that the application under test (AUT)
has been designed to support in-vivo testing. Note that this
assumption does not necessarily imply that the AUT has been
conceived for in-vivo testing from scratch, but rather that the
AUT has been at some point extended with the minimal set
of features required to support the in-vivo testing process.

A. Functional and Non-Functional Requirements

The functional requirements reported below distinguish the
functionalities that must be implemented by the in-vivo frame-
work directly, and the functionalities that must be provided by
the AUT by implementing interfaces defined in the framework.

FR-TestSpace: The framework should be able to read a
configuration model and a set of tested configurations from
a persistent storage.

FR-ActualConf : The framework should expose an interface
(getConfiguration) to be implemented by the AUT, by
which it can determine the configuration of the execution envi-
ronment in which the AUT is deployed and is operated, as well
as an interface by which the AUT can inform the framework
of a new/updated configuration (sendConfiguration,
updateConfiguration).

FR-CheckConf : The framework should identify the config-
uration of the execution environment as tested, untested, or
unknown.

FR-TestExec: The framework should be able to retrieve and
execute in-vivo/ex-vivo tests for the untested configurations.

FR-TestGen: The framework should be able to generate in-
vivo/ex-vivo tests for unknown configurations, possibly with-
out, but if necessary with, manual intervention.

FR-SelfHeal: The framework should expose an interface to
be implemented by the AUT, by which it can activate failure
prevention/self-healing mechanisms in the presence of failing
in-vivo/ex-vivo test executions.

FR-Isolation: The framework must ensure isolation of the
in-vivo test executions, so that they do not interfere with
regular operation of the AUT and do not have side effects
(e.g., modify the persistent data of the user).

In addition to the functional requirements, we also identified
a small set of relevant non-functional requirements that an in-
vivo framework should satisfy.

NFR-PerfChecking: The framework should not impose un-
acceptable levels of performance overhead when monitoring
and checking the test configurations on the deployed AUT.

NFR-PerfTesting: The framework should not impose unac-
ceptable levels of performance overhead when running tests
on the deployed AUT.

NFR-Network: The network data usage (overhead) due to
the communication between client and server components of
the framework should be acceptable.

NFR-Energy: The energy consumption due to the execution
of the framework should be low.

NFR-Privacy: The framework must ensure privacy of the
client user when sharing information with the server.

NFR-Security: The framework must ensure security of the
client user in handling resources.

Note that, although in this work we focus on mobile
applications, our set of requirements are general and can be
applied to many different contexts, including desktop and
client-side Web applications.

B. VATE Architecture

In order to satisfy the identified requirements, we designed
the client-server architecture shown in Figure 2. The client
runs in the devices of the users and manages the in-vivo
testing process local to the application under test (AUT). In
fact, the client-side includes both the mobile app under test
(AUT) and the VATE in-vivo framework, which is further



organized in two layers, a layer of interfaces implemented by
the AUT and a layer of managers responsible for both the in-
vivo testing process and the interactions with the server. The
server runs remotely and controls the in-vivo testing process
by interacting with all the devices augmented with the in-
vivo framework. When necessary, for instance when test cases
cannot be conveniently executed in-vivo, the server-side can
also run ex-vivo test cases.

ClientDevice
«MobileApp»

AUT

<<Interface>>
Configuration

Interface

<<Interface>>
SelfHealing
Interface

Configuration
Manager

ClientService

SelfHealing
Manager

Use

Use

<<Interface>>
ConfigurationUpdate

Interface

<<Interface>>
Testing
Interface

TestManager

Storage
Manager

persistent AUT data
Configuration Model
Tested Configurations
Test Cases

Server (developer)

TestManager

Configuration
Manager

persistent data
Configuration Model
Tested Configurations
Test Cases

<<HTTP>>
REST

ServerService

Storage
Manager

Impl Impl

App

Use

Impl

Use

VA
TE

 In
-V

iv
o 

Fr
am

ew
or

k

Fig. 2. VATE Architecture

C. Client-Side Components

There are four client-side components orchestrated by the
ClientService, which offers the same entry point for all com-
ponents.

The Configuration Manager is responsible for monitoring
configurations, which consist of the hardware and software set-
tings that may influence the behavior of the AUTs. This is done
partially autonomously and partially in collaboration with the
AUTs. In fact, the Configuration Manager can autonomously
extract information about the hardware and the configuration
of the operating system available in the client device. However,
the Configuration Manager cannot access application-specific
data without the collaboration and authorization of the AUT.
For instance, the Configuration Manager may neither know
where the app preference files are located nor have the right
to access these files. To overcome this issue, the AUT must
implement the Configuration Interface, which is a read-only
interface used by the Configuration Manager to extract a
representation of the current configuration of the app.

The Configuration Manager may simply query the interface
when needed. However, a more efficient process may also
allow the AUT to notify the Configuration Manager that the
current configuration of the app has been modified. This is
supported by the ConfigurationUpdate Interface, which is
defined in the framework and implemented in the AUT so
as to generate notifications.

The Configuration Manager has also the responsibility to
trigger test case execution and notify the existence of un-
expected configurations to the server. In fact, every time a
configuration is extracted, it is compared to both the Con-
figuration Model, which is a representation of the possibly
huge space of all the possible configurations, and the Tested
Configurations, which is a representation of the configurations
globally validated so far. The comparison of the current
configuration to the configuration model and to the tested
configurations can produce three possible results, as follows.

Definition 1 (Tested Configuration): A tested configuration
is a configuration that is valid according to the Configuration
Model and is included in the Tested Configurations, which
means it has been exercised either in pre-release testing or
in-vivo testing.

Definition 2 (Untested Configuration): An untested configu-
ration is a configuration that is valid according to the Configu-
ration Model and is not included in the Tested Configurations,
which means it has never been exercised, either in pre-release
testing or in-vivo testing.

Definition 3 (Unknown Configuration): An unknown con-
figuration is a configuration that is not valid according to the
Configuration Model.

When a tested configuration is discovered, it means that the
current configuration has been already validated and nothing
is done by the Configuration Manager. When an untested
configuration is discovered, the Configuration Manager asks
the Test Manager to validate it by running the in-vivo test
cases. When an unknown configuration is discovered, the Con-
figuration Manager notifies the server of the incompleteness
identified in the Configuration Model, expecting to receive in
the future a new version of the Configuration Model where
the incompleteness has been fixed.

The Test Manager is the component responsible for running
the in-vivo testing process, reporting the results to the server,
and updating the test suite available locally.

When the Test Manager is triggered to validate an untested
configuration, it first checks with the server if the configuration
is also untested globally. If the current configuration was
already tested by another client, the server responds with
an updated representation of the tested configurations and
the process stops. Otherwise, if the configuration is globally
untested, the Test Manager activates the available isolation
mechanisms and runs the in-vivo test cases. The results of
the testing process and the tested configuration are reported to
the server, which can update the set of tested configurations.

The Storage Manager is a simple component responsible
for storing and updating the persistent data that characterize



the in-vivo testing process: the configuration model, the tested
configurations, and the in-vivo test cases. The Configuration
Manager and Test Manager interact with the Storage Manager
when these entities have to be retrieved or updated.

The Self-Healing Manager is responsible for activating
countermeasures when failures are detected. Some of these
countermeasures might be activated treating the AUT as a
black-box. However, the most sophisticated strategies may
require collaboration from the AUT. To support the latter
case, the architecture exposes a SelfHealing Interface, to be
implemented by the AUT to facilitate self-healing.

IV. THE ANDROID VATE FRAMEWORK

The architecture described in Section III is general and can
be instantiated in multiple contexts using different technolo-
gies. One of the most relevant use cases for the VATE frame-
work is for sure the Android ecosystem, where apps must work
correctly in very heterogenous environments characterized by
different hardware resources, different operating systems, and
different user preferences whose combinations are impossible
to test exhaustively [20]. We thus implemented a version of
the VATE framework specifically for the Android ecosystem.

In our first definition of the Android framework, we focus
on the core functional and non-functional capabilities, leaving
the implementation of the self-healing capabilities and the
implementation of advanced mechanisms for security and
privacy for the future. Our implementation of the framework is
publicly available [19]. We describe the capabilities concern-
ing configuration management, testing and isolation below.

A. Configuration Management

We specify the set of the possible configurations using
a feature model [11]. The feature model is obtained semi-
automatically. Part of the configuration space is the same
for every app, such as the part of the model that represents
the hardware and operating system where an app can be
executed. This part can be conveniently specified manually
almost once for all. However there are also a number of
app-specific settings that may affect the behavior of the
apps. The volume of these settings is often significant. For
instance, the feature model representing the configuration
of Amaze File Manager, one of the apps used in our
experiment, contains 185 features (131 primitive and 54
compound) resulting in a large configuration space whose
size is in the order of 1012. Another app, RedReader, has 567
features (461 primitive and 106 compound) and 4 constraints,
resulting in a configuration space of size in the order of
1058. Manually producing a feature model that represents
so many elements might be prohibitive and error prone.
To address this challenge, we designed a technique that
can automatically extract the feature model corresponding
to the preferences that appear in target preference files.
Our approach essentially maps the Android Preference
hierarchy into a feature model. To this end, we devised an
appropriate feature model relation for each type of preference
available in Android. In particular, PreferenceCategory

and PreferenceScreen become abstract features, and
the individual Preference items under them become their
children in the feature model. For example, the Android
preference ListPreference (a setting in which the user
can select one of the available values) becomes a compound
feature where each of the values is a primitive feature,
all joined as Alternative features. Similarly, we have
identified the appropriate mapping for the most common
preference types in Android: CheckBoxPreference,
ListPreference, MultiSelectListPreference,
PreferenceCategory, SwitchPreference. We
also introduce suitable heuristics for preference types where a
direct mapping to feature model relations is not appropriate.
In particular, for EditTextPreference we consider only
two options: ’default value’ and ’custom value’. Similarly,
for numeric preference types, we introduce three options:
’negative’, ’zero’, ’positive’. Clearly such heuristics could
be easily improved or replaced by customized categories
depending on the nature of the app under investigation. For
generic app preferences where we could not determine their
types from their declaration, VATE may not be able to map
them automatically into the feature model. Such preferences
require manual investigation to determine their type.

The two feature models, the one representing the app-
independent configurations and the one representing the app-
dependent configurations, are merged into a single feature
model that is used to guide the in-vivo testing process. To
manipulate the feature models, we make use of the FAMILIAR
framework [1]. In particular, we use FAMILIAR’s simple syn-
tax when generating feature models corresponding to Android
preferences. Once generated, we transform the feature models
in the FAMILIAR format into the SPLOT1 format for easy
manipulation and visual inspection/editing via the FeatureIDE2

plugin for Eclipse. Hence, while generating the entire feature
model manually is quite difficult, the models automatically
generated by our mapping could be easily inspected and edited
by the engineer as appropriate.

While it would be possible to handle the representation
of the tested configurations similarly, using FAMILIAR, we
noticed that repeated application of the merging functionality
of FAMILIAR produces complex models, involving a large
number of constraints, eventually slowing down the check for
tested configurations. Hence we developed an alternative, more
compact, representation of the tested configurations using a
tree-based representation.

In order to retrieve the current configuration of a client-
device, our Android implementation exploits two different
mechanisms: the app-independent configuration is retrieved
by the framework autonomously, without requiring any inter-
action with the AUT, while the framework interacts with the
Configuration Interface to retrieve the content of the preference
files that were used to generate the app-dependent part of the
feature model.

1http://www.splot-research.org/
2http://www.featureide.com/



B. In-Vivo Testing

The In-Vivo testing process is performed entirely on the
client-side and consists of a set of test cases that are executed
to test the untested configurations discovered in the field. Test
cases can be unit, integration and system test cases.

We implemented the unit and integration test cases with
JUnit. Since the existing system testing technologies are not
designed to run from the device, we modified Espresso [9]
so that Espresso test cases can be launched and the results
collected entirely from the device.

Since test cases must be able to stimulate the AUT, the
testing interface implemented by the AUT must include a
method to launch the test cases, otherwise the in-vivo testing
process may violate the security policies of the device. The
implementation of this method is almost always the same and
does not need to be designed ad-hoc for every target app.

C. Isolation

Test case execution should be performed with minimal
intrusiveness with respect to user activity. To achieve memory
isolation, we exploit Managed Profiles [2], which are designed
to support corporate environments (with corporate apps) on
private employee devices. A managed profile represents an
ideal technical solution for in-vivo testing, because it supports
isolation and sand-boxing.

Isolation: When an app is installed in a managed profile,
it shares no data with the same app installed in the regular
user profile (they are assigned distinct linux user-ids). Thus,
the act of testing an app on the testing profile does not affect
the end-user data in the regular user profile.

Sand-boxing: The profile manager can dynamically install
and remove an app from/to a managed profile (e.g., be-
fore/after running the test suite) and it can also dynamically
grant and revoke permissions to apps in the managed profile,
thus limiting the side effect of testing, such as information
leakage.

The VATE framework defines an in-vivo testing profile
where the AUT is copied the first time the in-vivo testing
process is triggered. In-vivo testing happens within the in-
vivo testing profile, thus it produces no side effects on the
actual app used by the users and the user data. If, in addition
to testing the app under the same hardware and operating
system configuration, the app must be tested with the same
software configuration and user preferences, the two copies of
the app can be designed to communicate through an intent and
exchange configuration data. Operations to achieve isolation
with respect to external services, if any, must be implemented
in the Testing Interface.

Unit and integration testing can be performed transparently
for the user. However, system testing requires taking control
of the screen and would thus be intrusive with respect to user
activities. One way to mitigate such issue is to activate in-vivo
testing when the screen is about to be locked: the Test Manager
runs a single in-vivo test before allowing the screen to freeze.
If more tests are to be executed for a given configuration,
they will be run one at a time whenever new screen lock

requests occur. Moreover, if the same configuration is observed
in multiple devices, in-vivo tests are distributed (by the Server-
Side Component of VATE) among different devices, hence
reducing the impact on each single user.

V. EMPIRICAL EVALUATION

A. Research questions

The main goal of our experiments is to evaluate the per-
formance impact of VATE. We also evaluated the level of
automation achieved by our tool in the reverse engineering of
feature models. Hence, we formulate the following research
questions:

• RQ1: What parts of the feature models were reverse engi-
neered automatically by VATE and what parts required
manual intervention?

• RQ2: What is the overhead introduced by VATE when
monitoring normal executions?

• RQ3: For how long does VATE preempt the usage of the
end-user device during in-vivo test execution?

B. Subjects

We picked case study apps from those already used by
PreFest [16] to test configuration-related programming defects.
So, these are apps whose behaviour is known to change upon
preference modification. Moreover, these apps are open source,
so their source code is available for us to integrate VATE, and
we can reuse test cases (generated by PreFest) that are meant
to reveal programming defects related to user preferences.

Since the integration with VATE requires some manual
effort, we could not consider the full list of apps. Apps
have been filtered, first of all, to discard those running on
a very old version of Android (i.e., minSDK<14), which
are incompatible with our framework. The remaining apps
have been sampled, by selecting only one app per domain,
to maximize diversity in our data set.

The final set of apps is listed in Table I. For each app
(name in first column), the table reports its size in Mb (second
column) and the number of classes (third column). Moreover,
for each app, the table reports the size of the configuration
space (fourth column) and the number of test cases generated
by PreFest (fifth column).

TABLE I
SET OF APPS.

App Size (Mb) Classes Config. space PreFest tests
Amaze 11.9 219 1012 210
Forecastie 3 24 1010 300
Materialistic 4.05 136 108 210
Redreader 5.61 255 1058 240
Timber 9.97 164 106 240
Uhabits 4.52 209 106 300

C. Procedure and metrics

To answer RQ1 we investigate the proportion of app prefer-
ences automatically mapped to the configuration feature model
by VATE. For all the subject apps, we applied VATE to build



the feature model from the app preferences. For each app,
we counted the number of preferences that VATE was able
to directly map to the feature model (Direct), the number of
features mapped by applying manually defined, yet general
heuristics available in VATE (Heuristics), and those VATE
was not able to map automatically (Unsupported).

To answer RQ2, we conducted an experiment on Firebase
test-lab3, a paid service provided by Google to test apps in the
cloud. This service provides detailed analytics and resource
consumption for the app under test.

To quantify the overhead introduced by VATE, we run two
versions of each app, (i) the original app as it comes just after
compilation; and (ii) the app manually integrated with VATE,
which monitors the configuration of the app and sends it to the
server. We scheduled the monitoring service to make sure that
a check is performed during the execution scenario subject to
measurement.

We used Firebase test-lab to measure the following perfor-
mance metrics:

• CPU Load: Firebase test-lab monitors the CPU consump-
tion and measures it constantly during execution. We
compute the CPU load as the average CPU consumption
during the entire execution of the test;

• Memory: The maximum amount of memory used by the
device, measured in MB;

• Network: The total amount of data exchanged via the
network interface, measured in KB.

Execution scenarios. We want to measure the overhead due
to our framework as it is perceived by an end-user in typical
execution scenarios. Thus, we started from the app description,
available in the official app store, and we identified the app
main functional requirements described there (usually listed
as bullet points at the beginning of the textual description).
We defined an execution scenario for the first four functional
requirements. We manually executed each scenario on the
app, and we recorded it as an Espresso test case, using the
corresponding feature in Android Studio.

Eventually, we obtained four Espresso test cases for each
app, that represent four execution scenarios related to four
main functional requirements. They allow us to collect metrics
on typical user interactions.

The measurement experiment has been conducted on dis-
tinct devices available in Firebase test-lab. Devices are shown
in Table II: device name in the first column and API version
in the second column. The table also reports their number of
cores (third column), the CPU frequency (fourth column) and
the available memory (fifth column). They range from low-end
(Moto E5 Play) to high-end (OnePlus 6T) devices.

The measurement procedure consists of deploying each
version of each app in Firebase test-lab, together with the
execution scenarios in the form of Espresso test cases. Then,
test cases are executed and metrics are collected. To minimize
random error, each test case has been executed 10 times.

3https://firebase.google.com/products/test-lab/

TABLE II
DEVICES USED TO MEASURE VATE PERFORMANCE OVERHEAD.

Device API Cores CPU Freq RAM
Moto E5 Play 26 4 1.4 GHz 2 GB
Google Pixel 2 28 8 4x2.35 GHz + 4x1.9GHz 4 GB
OnePlus 6T 28 8 4x2.8 GHz + 4x1.7GHz 6 GB

The number of repetitions of each test case is based on the
contrasting goals of (i) minimizing the experiment cost, in fact,
Firebase test-lab charges a cost proportional to the execution
time in each device; and (ii) maximizing the accuracy of the
measurement, by repeating it many times. The number of
repetitions was calibrated on a first app and then used in all
the apps, as follows.

Test cases of the first app (i.e., Amaze) have been initially
executed a large number of times in the two configurations.
Then, for each test, we compared the collected metric values
between the two configurations. We used these data to compute
the power4 that the Anova test would achieve when used to
reveal statistical significance in the performance difference
with and without VATE. We, eventually, estimated how many
repetitions would have been required for our statistical test to
have a significant power (i.e. probability of committing type-
II error < 20% or power > 0.8). The value of 10 repetitions
resulted to be the best choice.

In order to answer RQ3, we run the test cases of the
case study apps on a physical device and we measure their
execution time. Test case execution time corresponds to the
time needed by VATE to perform in-vivo testing, when the
device is about to be locked.

We relied on the test suites provided by Lu et al. [16],
which consist of the benchmark used to evaluate the PreFest
tool, available from the PreFest repository5.

It is worth noting that PreFest tests are written in Python
and run with Appium6, whereas VATE supports Espresso test
cases written in Java. So, we developed a small program
transformation module that translates PreFest tests to Java, to
run them as Espresso tests.

To collect realistic time data, this experiment was conducted
on an actual device connected to our computer, a Huawei
Nexus 6P smartphone, running Android 8.1.0.

D. Experimental Results

Mapping of preferences to feature model. Given the
high level of automation of the analysis, for this research
question we considered a wider set of case studies than
the one described in Section V-B: 30 apps instead of just
6. Figure 3 shows the proportions of preferences reverse
engineered by VATE directly, via heuristics, or unsupported.
The total number of preferences in each app is shown in
parentheses next to the app name of the x-axis. The percentage
of preferences automatically mapped by VATE to features of

4We used the function pwr.anova.test from the pwr package available in R.
5https://github.com/Prefest2018/Prefest
6http://appium.io/



Fig. 3. Proportion of preferences mapped by VATE to feature model (Direct, Heuristics) and those requiring manual intervention (Unsupported), shown in
each bar as percentages. The total number of preferences in each app is shown in parentheses on the x-axis. The apps annotated with an asterisk (*) are used
for the experiment of RQ2.

the target feature model ranges from 42% (Fillup) to 100%,
≈70% on average. We can also notice that the large majority
of preferences translated by VATE are of Direct type.

For those preferences whose type VATE is not able to
determine automatically, manual inspection is required. For
generic preferences (Preference) and custom preferences
defined by the developer, VATE is not able to determine
automatically what options such preferences represent, and
hence it is unable to map them to the feature model. Further-
more, some preferences are used to simply display information
and do not actually represent any setting of the app (e.g.,
to display ’About’ information). With manual inspection, the
types of those preferences could be identified by looking
at the declaration of the preferences in the xml files of
each app and/or by running the app (e.g., in an emulator)
and observing what the preference actually represents. We
did such an inspection for one of the apps (Amaze) and it
took us a couple of minutes to determine whether a generic
preference declared in the xml file actually represents an app
setting or not, and if it did, what type of setting it was.
For the developer of the app this process should be even
faster – almost immediate. Furthermore, the construction of
the configuration feature model is a task performed only once
per app, with minor updates upon software evolution, if new
settings are introduced or old ones are deleted.

In response to RQ1: VATE was able to automatically reverse
engineer, on average, about 70% of the preferences. For those
preferences whose type was not determined automatically by
VATE, manual inspection required a short time (on average a
couple of minutes).

Analysis of VATE overhead. The results of the experiment
with Firebase test-lab are shown in Table III. For each app

(first column) in each device7 (second column), the table
reports the results for the metrics CPU, Memory, and Network.
The clean columns report the average values collected on
the original app, while the VATE columns report the values
for the version with configuration monitoring. These columns
report the average metric value for 10 executions of 4 test
cases (thus 40 executions per column). The ∆% columns
report the metric increase (in percentage) due to VATE. The
#sig columns report the number of test cases for which the
difference between the two versions (with and without VATE)
are statistically significant according to the Wicoxon test.

As can be seen from Table III, the CPU load due to VATE
is quite limited, always below 6% and in the majority of the
cases no significant difference can be observed between the
load with and without our framework. The largest number of
significant cases is observed for the app Amaze, because this
app is a file manager and its test cases involve deterministic
scenarios, such as file creation and compression. Conversely,
Materialistic and Redreader (a news and a Reddit reader
app, respectively) involve nondeterministic scenarios, because
different executions of the same test case could load different
news/articles. The presence of noise dominates any effect due
to the overhead of VATE, which becomes no more observable.
Correspondingly, there is no statistical significance and some
deltas are negative due to random fluctuations caused by noise.

The memory overhead is also quite limited, always below
1.5%, and in many cases the difference due to VATE is not
significant (i.e., #sig< 4). Negative overheads of Materialistic
and Timber are due to random errors in measuring memory
consumption, again because of nondeterministic execution
scenarios, and they are not statistically significant. Test cases
for Materialistic run on pixel2 exhibit a negative average
memory overhead that is significant in one test. This delta

7The app Uhabits is missing because was not compatible with the moto-
e5-play device, so the corresponding line is missing.



TABLE III
RESULTS OF THE MEASUREMENT IN FIREBASE TEST-LAB. CLEAN AND VATE COLUMNS CONTAINS THE AMOUNT OF RESOURCES (CPU, MEMORY AND
NETWORK) USAGE, THE ∆% COLUMN CONTAINS THE PERCENTAGE OF OVERHEAD INTRODUCED BY VATE AND THE #SIG COLUMN IS THE NUMBER OF

SCENARIOS WHOSE P-VALUE IS LESS THAN 0.05 (OUT OF 4 SCENARIOS)

CPU (%) Memory (MB) Network (KB)
App Device Clean VATE ∆% #sig Clean VATE ∆% #sig Clean VATE ∆ ∆% #sig
Amaze moto-e5 6.35 6.70 5.4 4 49.15 49.84 1.4 4 3.17 9.15 6.0 188.4 3

pixel2 1.80 1.87 3.9 4 105.81 106.13 0.3 1 3.61 8.87 5.3 146.0 3
oneplus-6t 1.46 1.50 3.2 3 113.53 114.18 0.6 0 2.05 4.85 2.8 136.5 4

Forecastie moto-e5 4.86 4.95 1.8 2 29.66 29.77 0.4 3 92.11 96.77 4.7 5.1 2
pixel2 1.22 1.26 2.8 2 63.50 63.71 0.3 0 95.52 99.21 3.7 3.9 1
oneplus-6t 1.07 1.09 1.4 0 72.57 72.78 0.3 1 92.93 93.25 0.3 0.3 1

Materialistic moto-e5 11.49 10.79 -6.1 0 50.65 48.93 -3.4 0 2499.49 2065.53 -434.0 -17.4 0
pixel2 3.12 3.10 -0.7 0 107.63 102.39 -4.9 1 2992.51 2873.78 -118.7 -4.0 0
oneplus-6t 2.85 2.77 -2.7 0 122.12 113.30 -7.2 0 3213.63 2919.72 -293.9 -9.1 0

RedReader moto-e5 14.75 15.00 1.7 0 37.54 37.93 1.0 2 24154.90 23130.27 -1024.6 -4.2 0
pixel2 4.06 4.14 1.8 0 75.33 76.40 1.4 2 32940.51 32645.19 -295.3 -0.9 0
oneplus-6t 3.75 3.79 1.0 0 83.68 84.78 1.3 3 33384.89 30707.90 -2677.0 -8.0 0

Timber moto-e5 4.90 4.99 2.0 2 44.49 43.55 -2.1 0 23.61 26.93 3.3 14.1 2
pixel2 1.47 1.48 0.8 0 87.52 88.54 1.2 3 30.12 31.45 1.3 4.4 1
oneplus-6t 1.24 1.27 2.6 1 104.43 104.96 0.5 1 18.56 20.35 1.8 9.7 3

Uhabits pixel2 1.07 1.08 1.3 1 70.27 71.17 1.3 4 0.31 4.35 4.0 1295.0 4
oneplus-6t 0.89 0.89 -0.0 0 76.51 76.60 0.1 1 0.00 2.66 2.7 – 4

is negative because it is the average over four test cases.
However, we manually checked that the overhead for the single
significant test case was actually positive.

The network cost of VATE accounts for the app configu-
ration sent to the sever, so its absolute value is constant and
predictable. However, the relative overhead reported in column
∆% is a percentage of increase. Thus, when the original
app (i.e., clean column) has a limited network usage, the
relative increase appears to be large. This is the case of apps
such as Amaze and Uhabit which involve almost exclusively
offline scenarios. On the other hand, on scenarios that involve
network usage, the VATE relative overhead is negligible. This
is the case, for example, of app Forecastie, which fetches
remote weather forecast data. Thus, only for the network
metric, we also report the absolute increase in an additional ∆
column. The negative overhead observed in Materialistic and
Redreader is not significant and is caused by random noise. In
fact, network traffic depends on the size of news and articles
randomly fetched by these apps. When significant, the network
increase is always limited to few kilobytes, in the worst case
6KB for Amaze running on moto-e5.

In response to RQ2: The overhead introduced by VATE while
monitoring app configurations is quite low: the CPU load increase
is negligible in most of the cases and always < 6%, the memory
overhead is < 1.5%, and the network overhead is below 6KB per
client-server interaction.

Analysis of the in-vivo test execution time. With this study,
we measure the time necessary to run a system test case with
VATE. These results are important to understand the impact of
VATE on the users in various scenarios. For instance, if VATE
is configured to opportunistically run a system test case before
a device is locked, these measures provide an estimate of the
locking delay that might be experienced by users who allow
the execution of system tests in their device.

As reported in Table IV, the mean execution time for
the Espresso tests is lower than 5 seconds, with a standard
deviation (s.d.) which is between 2 and 3 seconds. The
statistical error of the estimated mean is lower than 5% in
all cases except Materialistic, which has the highest relative
s.d. (i.e., s.d./mean ratio).

The capability to run a system test in few seconds confirms
the possibility to apply VATE in real Android devices. For
instance tests could be feasibly executed in a 5 seconds session
whenever the screen lock is triggered. The next test can be
launched at a future time, when another screen lock occurs,
but just in case it has not already been executed meanwhile
on another device.

TABLE IV
EXECUTION TIME FOR THE ESPRESSO TESTS RUNNING ON A NEXUS 6P

DEVICE

App Mean (s) SD Error

Amaze File Manager 4.04 2.29 0.01
Forecastie 3.24 2.39 0.04
Materialistic 2.52 2.72 0.24
Redreader 4.28 2.59 0.04
Timber 3.11 2.18 0.05

In response to RQ3: The time spent to run a single test is
consistently under 5 seconds. We consider this an acceptable
time, e.g., in a scenario where each test runs independently in
a 5 seconds session whenever the screen lock is triggered.

Reproducibility: We make VATE openly available [19],
together with a replication package including features models,
test cases, and pointers to the subject apps.

E. Threats to validity
External validity: Our results are based on 6 apps and on

the test cases defined for them by the authors of PreFest [15].



Such test cases have not been designed explicitly for in-vivo
execution, although they are designed to exercise preference-
dependent portions of the application code. While our results
may not generalise to different apps and to test cases explicitly
designed for in-vivo execution, we have chosen the bench-
mark available from the closest related work, dealing with
preference-based testing.

Internal validity: The measures of overhead were obtained
while running test scenarios that are supposed to mimic the
typical usage scenarios of the apps. While we did our best
to produce such scenarios based on the main functionalities
advertised for each app under test, we cannot exclude that the
overhead may change under different usage conditions.

VI. RELATED WORK

While to the best of our knowledge VATE is the first
framework that supports in-vivo testing for mobile (specif-
ically, Android) applications, there are previous works that
deal with related problems. In particular, the problems of in-
vivo monitoring and isolation have been already considered,
though not in the mobile domain. Preference-based testing for
mobile applications is also related to our work, in particular
to coverage of the feature combinations described in our
configuration models.

Techniques to isolate in-vivo test execution Several
techniques [6], [8], [13], [17] have been proposed to sup-
port isolation during in-vivo testing. Duplication (also called
Cloning) [6], [8], [17] consists of cloning the execution state
(e.g., by forking a parallel process [17]) and executing in-vivo
tests on the cloned execution state, hence ensuring that there is
no interference with the end user execution of the application
(in-memory side effects are prevented, but of course other
side effects on persistent storage are not dealt with). Another
proposed isolation mechanism is Test mode execution [3], [10],
[12], [14], [21]. It requires a way to differentiate between
the execution of a component in normal operation mode vs.
the testing mode. In the latter case, counter measures are
taken to ensure that test mode execution does not affect
the normal execution state (e.g., by tagging invocations and
data with a test tag [12], [13]). Another clean and elegant
solution consists of using a transactional memory [4]. Field
tests can perform their operations within a transaction and at
the end of their execution, such a transaction is rolled back and
normal execution restarts exactly from the memory state where
it was interrupted for in-vivo test execution. Other authors
propose that developers write built-in tests [18], specifically
designed for in-vivo test execution. It is then the developers’
responsibility to ensure that such tests are side effect free.
Differently from existing works, our solution to the isolation
problem takes advantage of the managed profiles available in
the Android platform (see Section III).

Preference based testing Lu et al. [15] showed that differ-
ent preference configurations lead to different code coverage
by the same test cases and that proper selection of which
preference configurations to test can increase statement (resp.
branch) coverage on average by 6.8% (resp. 12.3%). They

also provide evidence that some (five, in their experiment)
bugs require specific preference settings to be discovered. Such
empirical results represent a major motivation for our work:
when the configuration space grows and depends on environ-
ment/device/user specific settings, offline, pre-release testing
is not enough to exercise the code and expose the faults that
depend on such configurations. PreFest [15] performs static
code analysis to determine the code that is potentially data-
dependent on user preferences and selects the test cases that
can exercise such a code, along with the associated preference
values. VATE resorts to in-vivo test execution to cope with
the exponential growth of the possible configurations, as well
as their unavailability during in-house testing.

Combinatorial testing Testing all valid configurations ex-
haustively before deploying an app is not feasible because the
number of combinations grows exponentially with the number
of features and because some combinations might require very
specific hardware/software components. Combinatorial testing
(e.g., pairwise testing) [5] offers a way to systematically ex-
plore such a large configuration space. However, by sampling
a small representative fraction of all possible cases, it leaves
several combinations untested. Some of them might be handled
incorrectly at runtime, resulting in field failures.

Empirical studies on field failures Gazzola et al. [7]
investigated the nature of field failures by analyzing the bug
reports for five applications. They introduce the notion of
“field-intrinsic fault”, that is, a field fault that is inherently hard
to detect in-house, before releasing the software. They also
identify the reasons why faults are not detected at testing time.
They conclude that there is evidence of a relevant amount of
faults that cannot be effectively addressed in-house and should
be addressed directly in the field. Such findings represent an
important motivation for the work presented in this paper.

VII. CONCLUSION AND FUTURE WORK

We have presented VATE, a framework for in-vivo testing
of Android apps, and we have measured its overhead on the
end-user executions, showing that such overhead is compatible
with in-field adoption of our approach. In our future work
we plan to optimize configuration monitoring, making it
adaptive and distributed. We also intend to investigate test case
generation in response to newly discovered configurations. We
are also considering other application domains for VATE, such
as that of web applications.

VATE together with a replication package including fea-
tures models, test cases, and pointers to the subject apps are
available online [19].

ACKNOWLEDGEMENTS

This work has been partially supported by the Italian Ministry of Education,
University, and Research (MIUR) with the PRIN project GAUSS (grant
n. 2015KWREMX); by the H2020 Learn project, funded under the ERC
Consolidator Grant 2014 program (ERC Grant Agreement n. 646867); by
the H2020 Precrime project, funded under the ERC Advanced Grant 2017
program (ERC Grant Agreement n. 787703).

We would like to thank Filip Ivanov Karchev for contributing to the
implementation of the initial in-vivo prototype, in particular for engineering
a solution for on-device execution of Espresso test cases and for contributing
to the initial sketch of the in-vivo server.



REFERENCES

[1] M. Acher, P. Collet, P. Lahire, and R. B. France. FAMILIAR: A domain-
specific language for large scale management of feature models. Sci.
Comput. Program., 78(6):657–681, 2013.

[2] Employing managed profiles. https://source.android.com/devices/tech/
admin/managed-profiles, 2019.

[3] C. Bartolini, A. Bertolino, S. Elbaum, and E. Marchetti. Bringing white-
box testing to service oriented architectures through a service oriented
approach. Journal of Systems and Software, 84(4):655 – 668, 2011.

[4] J. Bobba, W. Xiong, L. Yen, M. D. Hill, and D. A. Wood. Stealthtest:
Low overhead online software testing using transactional memory. In
18th International Conference on Parallel Architectures and Compila-
tion Techniques, pages 146–155, Sep. 2009.

[5] M. B. Cohen, P. B. Gibbons, W. B. Mugridge, and C. J. Colbourn.
Constructing test suites for interaction testing. In Proceedings of the
25th International Conference on Software Engineering ICSE, pages
38–48, 2003.

[6] H. Dai, C. Murphy, and G. E. Kaiser. CONFU: configuration fuzzing
testing framework for software vulnerability detection. International
Journal of System of Systems Engineering, 1(3):41–55, 2010.

[7] L. Gazzola, L. Mariani, F. Pastore, and M. Pezzè. An exploratory study
of field failures. In 28th IEEE International Symposium on Software
Reliability Engineering, ISSRE, pages 67–77, 2017.

[8] A. González-Sanchez, É. Piel, and H. Groß. Ritmo: A method for
runtime testability measurement and optimisation. In Proceedings of
the Ninth International Conference on Quality Software, QSIC, pages
377–382, 2009.

[9] Google. Espresso testing.
[10] M. Greiler, H.-G. Gross, and A. van Deursen. Evaluation of online

testing for services: a case study. In Proceedings of the 2nd International
Workshop on Principles of Engineering Service-Oriented Systems, pages
36–42. ACM, 2010.

[11] K. C. Kang, S. G. Cohen, J. A. Hess, W. E. Novak, and A. S. Peterson.
Feature-oriented domain analysis (FODA) feasibility study. Technical
Report CMU/SEI-90-TR-21, Carnegie-Mellon University – Software
Engineering Institute, November 1990.

[12] K. Kawano, M. Orimo, and K. Mori. Autonomous decentralized
system test technique. In Proceedings of the 13th Annual International
Computer Software and Applications Conference, COMPSAC, pages 52–
57, 1989.

[13] M. Lahami, M. Krichen, and M. Jmaı̈el. Runtime testing approach of
structural adaptations for dynamic and distributed systems. Journal of
Computer Applications in Technology, 51(4):259–272, 2015.

[14] M. Lahami, M. Krichen, and M. Jmaiel. Safe and efficient runtime
testing framework applied in dynamic and distributed systems. Science
of Computer Programming, 122:1–28, 2016.

[15] Y. Lu, M. Pan, J. Zhai, T. Zhang, and X. Li. Preference-wise testing
for android applications. In Proceedings of the ACM Joint Meeting
on European Software Engineering Conference and Symposium on the
Foundations of Software Engineering, ESEC/SIGSOFT FSE, pages 268–
278, 2019.

[16] Y. Lu, M. Pan, J. Zhai, T. Zhang, and X. Li. Preference-wise testing
for android applications. In Proceedings of the 2019 27th ACM Joint
Meeting on European Software Engineering Conference and Symposium
on the Foundations of Software Engineering, ESEC/FSE 2019, pages
268–278, New York, NY, USA, 2019. ACM.

[17] C. Murphy, G. E. Kaiser, I. Vo, and M. Chu. Quality assurance of
software applications using the in vivo testing approach. In Second In-
ternational Conference on Software Testing Verification and Validation,
ICST, pages 111–120, 2009.

[18] O. Sammodi, A. Metzger, X. Franch, M. Oriol, J. Marco, and K. Pohl.
Usage-Based Online Testing for Proactive Adaptation of Service-Based
Applications. In 2011 IEEE 35th Annual Computer Software and
Applications Conference, pages 582–587, 2011.

[19] VATE: A framework for in-vivo testing of mobile applications. https:
//github.com/invivo-testing/icst2020, 2019.

[20] L. Wei, Y. Liu, S.-C. Cheung, H. Huang, X. Lu, and X. Liu. Under-
standing and detecting fragmentation-induced compatibility issues for
android apps. IEEE Transactions on Software Engineering, to appear.

[21] H. Zhu and Y. Zhang. Collaborative testing of web services. IEEE
Transactions on Services Computing, 5:116–130, 2012.


