
RESTTESTGEN: Automated Black-Box Testing of RESTful APIs

Emanuele Viglianisi
Fondazione Bruno Kessler

Trento, Italy

Michael Dallago
University of Trento

Trento, Italy

Mariano Ceccato
University of Verona

Verona, Italy
mariano.ceccato@univr.it

Abstract—RESTful APIs (or REST APIs for short) represent
a mainstream approach to design and develop Web APIs
using the REpresentational State Transfer architectural style.
When their source code is not (or just partially) available
or the analysis across many dynamically allocated distributed
components (typical of a micro-services architecture) poses
obstacles to white-box testing, black-box testing becomes a
viable option. Black-box testing, in fact, only assumes access
to the system under test with a specific interface.

This paper presents RESTTESTGEN, a novel approach to
automatically generate test cases for REST APIs, based on their
interface definition (in Swagger). Input values and requests are
generated for each operation of the API under test, with the
twofold objective of testing nominal execution scenarios and
of testing error scenarios. Two distinct oracles are deployed
to detect when test cases reveal implementation defects. Our
empirical investigation shows that this approach is effective in
revealing actual faults on 87 real-world REST APIs.

Keywords-Black-box testing, REST APIs, Automatic test case
generation, Oracle.

I. INTRODUCTION

REST APIs are the de-facto standard to implement and
grant remote access to Web APIs. They are so largely
accepted and adopted that the Berlin Group Initiative1

elaborated a standard based on REST APIs for unifying
the European Banking APIs. This initiative was meant to
address the PSD2 European Union directive2, that requested
banks to open their customer data to authorized third-party
service providers. Moreover, reference implementations of
PSD2 compliant banking APIs are mostly available in the
form of REST APIs3.

REST APIs are often components of micro-services ar-
chitecture [15], according to which each component should
be small and assigned just one (or very few) responsibilities,
resulting in a high number of simple components. Distinct
components are usually deployed in different containers
that can be dynamically allocated and deallocated, possibly
across different hosts (for load balancing reasons).

Such a dynamic implementation of REST APIs, spread
across many independent containers, poses peculiar chal-
lenges to automated analysis and testing with white-box

1https://www.berlin-group.org/
2https://ec.europa.eu/info/law/payment-services-psd-2-directive-eu-2015-

2366 en
3https://www.openbankproject.com/

approaches. A black-box approach, instead, gives up the
possibility to exploit program information available in the
source code. A black-box approach, in fact, only relies to a
well-defined interface to access the REST API and does not
need to cope with the very complex internal details of how
components are deployed and run.

Moreover, the implementation of REST APIs might in-
clude commercial third-party libraries or frameworks, that
come in the form of compiled code. When source code is
not (or only partially) available, a black-box perspective in
automated testing of REST APIs is a natural option.

In this paper we present RESTTESTGEN, a novel ap-
proach to automatically generate test cases for REST APIs.
This approach is based on the definition of the interface
to interact with a REST API, including the list of opera-
tions available, the format of the input/output data of their
requests and responses. We propose the Operation Depen-
dency Graph as a way to explicitly model data dependencies
among operations that can be inferred from the REST
API interface. This graph is updated when automatically
generating the test cases, to dynamically decide when a new
operation can be tested, because all its required input data
could be guessed.

RESTTESTGEN aims at testing REST APIs according to
two perspectives. Nominal execution scenarios are meant to
test the system using input data as they are documented in
the interface, while error execution scenarios exploit input
data that violate the interface to expose implementation
defects and unhandled exceptional flows.

An extensive empirical validation has been conducted,
involving 87 real REST APIs for which only black-box
access is available. RESTTESTGEN was able to test these
case studies to a large extent, revealing a considerable
number of implementation defects.

The rest of the paper is organized as follows. Section II
covers the background on REST APIs. Section III pro-
poses an overview of the RESTTESTGEN modules, that are
presented in detail in the subsequent sections. Section IV
defines the Operation Dependency Graph, while Section V
and Section VI present, respectively, the Nominal Tester
and the Error Tester modules. In Section VII, an empirical
assessment of RESTTESTGEN is conducted and presented.
Finally, after discussing related work in Section VIII, Sec-
tion IX closes the paper.

II. BACKGROUND

A. REST APIs

A RESTful API (or REST API for short) is an API
that respects the REST (REpresentational State Transfer)
architectural style [8]. Nowadays, most of the APIs use
a RESTful architecture over HTTP protocol to manage
resources, allowing clients to access and manipulate them
using a set of stateless operations.

REST APIs provide a uniform interface to create, read,
update and delete (CRUD) a resource. A resource is gener-
ally identified by an HTTP URI, and CRUD operations are
usually mapped to the HTTP methods POST, GET, PUT and
DELETE to the resource URI.

For example, suppose there exists a REST API managing
a collection of pets. A possible HTTP URI pointing to the
resource could be /pets. In this case, the HTTP method
GET /pets is used to retrieve the list of the pets and POST
/pets could be used to add a new pet to the collection.

The resource URI and the HTTP methods may accept
input parameters, to specify additional information for exe-
cuting the API operations, such as Id of the object to retrieve
(e.g., /pets/<petId>) or a structured object to be added
to the collection using the POST method.

B. OpenAPI and Swagger

OpenAPI4 defines a standard to document REST APIs.
According to OpenAPI, an API service is described using a
structured file (either in YAML or JSON) that specifies how
to reach the API using a URI, what authentication schema
is used and the details of all the operations available in the
API, the input parameters (and their schema) to be used in
requests and the schemas of responses. Previous versions
of this specification (older than version 3.0.0) were called
Swagger. Since older versions are still the most used, and
anyway there is no major difference, in this paper we will
use the term Swagger to mean an API specification either
in the old and in the new format version.

Listing 1 contains an example of Swagger for PetStore,
an API for managing Pet resources within a store. Af-
ter an initial header that specifies versions and licenses,
the field servers contains the base URL of the API,
http://petstore.swagger.io/v1 in the example.

The array paths contains the list of URL paths available
in the API. In our example, there are two paths, i.e. /pets
and /pets/{petId}.

Each path supports one or more HTTP method operations,
which are usually specified by an OperationID. The method
GET in /pets (getPets) is used to retrieve the list of all the
pets. The method GET of the path /pets/{petId} refers
to the operation getPetById, meant to retrieve the Pet object
that matches a specific petId. Path parameters are specified

4https://www.openapis.org/

1 openapi: "3.0.0"
2 info:
3 version: 1.0.0
4 title: Swagger Petstore
5 license:
6 name: MIT
7 servers:
8 - url: http://petstore.swagger.io/v1
9 paths:

10 /pets:
11 get:
12 summary: List all pets
13 operationId: getPets
14 tags:
15 - pets
16 responses:
17 ’200’:
18 description: PetIds
19 content:
20 application/json:
21 schema:
22 type: array
23 items:
24 type: object
25 properties:
26 petId:
27 type: integer
28 default:
29 description: unexpected error
30 content:
31 application/json:
32 schema:
33 $ref: "#/components/schemas/Error"
34 /pets/{petId}:
35 get:
36 summary: Info for a specific pet
37 operationId: getPetById
38 tags:
39 - pets
40 parameters:
41 - name: petId
42 in: path
43 required: true
44 description: The id of the pet to retrieve
45 schema:
46 type: string
47 responses:
48 ’200’:
49 description: Expected response to a valid

request
50 content:
51 application/json:
52 schema:
53 $ref: "#/components/schemas/Pet"
54 default:
55 description: unexpected error
56 content:
57 application/json:
58 schema:
59 $ref: "#/components/schemas/Error"
60 # ...
61 components:
62 schemas:
63 Pet:
64 type: object
65 required:
66 - id
67 - name
68 properties:
69 id:
70 type: integer
71 format: int64
72 name:
73 type: string
74 tag:
75 type: string

Listing 1. OpenAPI specification example

directly in the path URL using curly braces, such as the
petId input parameter in our example.

Modifiers can be used to attach constraints to data fields.
For instance, the modifier required specifies that a parameter
is mandatory and it can not be omitted. Moreover, each

request input and output is associated with a schema that
specifies its type and, optionally, a set of constraints on its
value (e.g., a min or max value for numeric parameters).
Types can be atomic (e.g., integers and strings) or structured
(i.e., compound objects). For instance, the parameter petId
(line 41) is of type string (line 46), while the response should
be in json (line 51) according to the schema Pet, which is
composed of the fields id, name and tag, as specified at lines
69-75.

The swagger not only specifies the format of response in
the nominal case (i.e., response code 200, line 17), but also
the response of the API when an error occurs (line 33).

III. APPROACH OVERVIEW

RESTTESTGEN is a black-box tool, intended to automat-
ically generate test cases for REST API. As a black-box
approach, RESTTESTGEN does not assume access to source
code nor to the compiled binary code of the API under
test. We only assume to have input/output access to the
API via the HTTP protocol. The API Swagger specification
should be also available, to know which operations can
be called and their input/output data format, to send well-
formed HTTP requests.

A black-box approach is the only option when the source
code is not available, or only partially available, e.g. when
third-party components or commercial libraries are inte-
grated, whose source code is not available. Additionally,
a black-box approach is a valuable option when testing
APIs with an architecture that is very complex for a white-
box approach, e.g. because consisting of many (micro-)
services, possibly developed with different languages and
technologies. In fact, a black-box approach is independent
from the programming language used to implement the API
to test.

Swagger
Specification

Operation
Dependency Graph

Generator

1

Nominal Tester

2

Error Test Cases

Error Tester

3

Input

ODG

Nominal Test Cases

Figure 1. Automated test case generation: structure overview

RESTTESTGEN includes different modules, as shown in
the overview of Figure 1. It takes as input the Swagger
specification of the API service to test, to have information
on the endpoints available in the REST API, the available
operations and the input data format.

The first module analyzes the Swagger and computes the
Operation Dependency Graph, a graph that models the data
dependencies among the operations available in the service.
This graph is meant to help our tool in sorting the operations
to test depending on their data dependencies, i.e. first the
operations are tested that output those data that are needed
as inputs to test subsequent operations.

The next module, namely the Nominal Tester, reads the
Operation Dependency Graph and the Swagger to auto-
matically create test cases of the REST API. We called
test cases generated by this module the nominal test cases,
because they are created according to the specifications,
trying as much as possible to follow the data constraints
in the Swagger.

The nominal tests represent the input for the subsequent
module, the Error Handling Tester. This last module applies
a catalog of mutation operators to the nominal tests, with the
aim of violating data constraints from the Swagger, to stress
the data validation features of the REST API. For this reason,
the tests generated by this module are called the error test
cases.

IV. OPERATION DEPENDENCY GRAPH

This section describes the Operation Dependency Graph
and how to build it, starting from the the information from
the Swagger specification.

A. Graph Construction

The Operation Dependency Graph, or ODG for short, is
a directed graph G = (N,V). Nodes N are the operations
in the REST API. The graph has an edge v ∈ V , with
v = n2 → n1, when there exists a data dependency between
n2 and n1. We define a data dependency between two nodes
n2 and n1, when there exists a common field in the output
(response) of n1 and in the input (request) of n2. The
intuitive meaning of this dependency is that n1 should be
tested before n2, because the output of n1 could be used to
guess input values to test n2.

We define two fields as common when:
• If they are of atomic type (i.e., string or numeric), they

have the same name;
• If they are of non-atomic type (i.e., structured), they

are associated to the same schema.
Edges are labeled with the name of the common field(s),
between the source and target nodes.

As an example, let’s consider the segment of Swagger
in Listing 1, it reports two operations. Operation getPets
lists all the petId identifiers of all the pets available in the
shop. Operation getPetById returns all the data related to a

particular pet object of type Pet, whose schema is defined
in lines 63-75 in Listing 1.

These two operations have a data dependency on the
common field petId. The field is present in the output of
getPets (lines 26 in Listing 1) and in the input of getPetById
(lines 41 to 46 in Listing 1). Thus, the corresponding OPD
shown in Figure 2 will have two nodes, one per each of these
two operations, and the edge labeled petId, from getPetById
to getPets.

getPetById getPetspetId

Figure 2. Sample of Operation Dependency Graph

The intuitive meaning of this graph is that to test the
operation getPetById we require a valid value of petId, that
would be difficult for a black-box testing framework to
guess. So, the operation getPets should be tested earlier, to
be able and fetch a valid value of petId.

The Operation Dependency Graph can grow quadratically
with the number of edges, because, in the worst case, each
pair of nodes is connected by a data dependency. In a
complex REST API, with many dependent operations, the
ODG will represent a valuable support to sort the operations
to test and to plan for the acquisition of the needed data to
be used during testing.

B. Dependency Inference

The example in Listing 1 represents the ideal case of
a correctly defined Swagger. However, there is no syntax
constraint that forces a developer to name data dependencies
with exactly the same name. For instance, the field petId
to be used in getPetById, could be simply called id and a
developer would still understand what data to use for that
field.

Alternatively, field names could contain typos (petId could
become pettID or pedID), or characters in the wrong case
(petID or petid). Thus, a perfect match among field names
might fail. For this reason, the matching algorithm adopts a
more solid algorithm that tolerates few typing mistakes.

In particular, these are the comparison operators used to
match field names:

• Case insensitive: The comparison is case insensitive,
to work around developer mistakes in using a consistent
casing across operations;

• Id completion: When a field is just named id, we add a
prefix to its name. In case this is a field of a structured
object, the prefix is the name of the object. E.g., the
field id of the object pet is renamed petId.
In case this field is not part of a structured object, it
is prefixed with the name of the operation in which
it is involved, after removing get/set verbs from the

operation name. For instance, the operation getPet
becomes Pet after removing the verb “get”, and it is
used to change the field id into petId;

• Stemming: Instead of requiring two field names to be
exactly the same, we tolerate some difference. We apply
the Porter Stemming algorithm [19] to each parameter
name to compare their stem instead of their exact
names. For instance, two parameters named pet and pets
are converted to the same word root pet and considered
as the same parameter.

V. TESTING OF NOMINAL CASES

The aim of the Nominal Tester module is to automatically
generate test cases meant to run nominal interactions, as they
are documented in the Swagger. To achieve this objective,
three sub-problems need to be solved, they are (i) deciding
the order in which operations should be tested, (ii) generat-
ing input values, and (iii) deciding if input generation was
successful or not.

A. Operation Testing Order

To elaborate the testing order among operations, we resort
to two distinct dependencies, they are the CRUD semantic
and the data dependencies from the OPD (see Section IV).

CRUD semantic. To successfully test an operation, a
particular resource might be required to be in a certain state.

Considering the CRUD semantic, a successful DELETE
operation requires that the target resource is present, so
the resource should be first added using a PUT operation.
A similar argument holds for a POST operation, meant
to update an already existing resource. Conversely, a PUT
operation that creates a resource requires the resource not to
exist yet.

The dependencies related to the CRUD semantic are
modeled based on the following priorities:

1) HEAD operation is the first in the priorities list, be-
cause its often used to check the validity of an API
operation and to retrieve the header of a resource;

2) POST operation is commonly used to add a new
resource, it has an higher priority since other operations
may reference this novel operation and its parameter
values;

3) GET operation retrieves information of an existing
resource. Retrieved information can be used as input
parameters for other operations;

4) PUT and PATCH are used to modify an existing
resource with new parameter values;

5) DELETE is the operation with lowest priority because
it deletes an existing resource that can not be referenced
anymore by other operations.

Zhang et al. [21] also proposed a testing approach based
on the CRUD semantic, using templates of pairs of related
operations (e.g., POST+DELETE and POST+PUT), and this
showed a positive impact on the test coverage.

ODP data dependencies. Data dependencies among oper-
ations are read from the OPG and used to sort the operations
to test, in order to maximize the chances of reusing data
already collected on previously tested operations, to test new
operations.

The pseudo-code in Listing 2 shows the algorithm that
we use to combine CRUD dependencies and ODG data
dependencies, to decide the order to test operations.

1 while (length(graph.vertexes) > 0) {
2 # get graph leaves
3 to_test = graph.leaves
4
5 # random vertex if there is no leaf (only cycles)
6 if length(to_test == 0):
7 to_test = [random(graph.vertexes)]
8
9 # sort leaves according to CRUD

10 to_test_sorted = sort_for_crud(to_test)
11
12 # test each leaf
13 for (operation: to_test_sorted) {
14 is_tested = run_test_on(operation, n_fuzz)
15
16 # remove successfully tested leaves
17 if is_tested:
18 graph.remove(successful)
19 }
20
21 if (time > max_time)
22 break
23 }

Listing 2. Pseudo-code for ordering the operations to test.

The algorithm starts testing the graph’s leaves, extracted
with the query at line 3. Leaves are those operations with
no outgoing edges, i.e. operations with no dependencies. No
dependency means either no input fields (e.g., getPets in
Listing 1) or input fields found in the output of no operations.

In case there is no leaf, it means that all the graph nodes
have outgoing edges, and they are all involved in cycles.
Cycles should be broken to start testing. In this case, at line
7, we randomly pick a node to start testing, i.e. we open the
cycle at a random position.

If we only consider data dependencies, all these leaf nodes
would have equivalent precedence, because they have no
outgoing edges in the ODG. However, their order might still
be optimized according to their CRUD semantic. Thus, at
line 10, leaf nodes are then sorted according to their CRUD
dependencies, if any, to increase the likelihood of testing an
operation in the correct context, e.g. deleting or changing a
resource after it has been created.

Then, at line 14, the algorithm attempts to test each leaf
operation, in the sorted order. Each operation is fuzzed a
fixed number of times nfuzz , with different heuristics, to
generate its input values (input generation heuristics are
described in more detail in Section V-B). The value nfuzz

is a global constant set during the initialization of the tool.
Multiple input generation attempts may be needed to guess
valid input values. Our oracles (see Section V-C) are used

to decide when a test can be considered successful.
We keep track whether the operation was successfully

tested (in the local variable is tested), because it might
have provided useful data to test next operations. In case an
operation is successfully tested, it is removed from the graph
(at line 18). In this way, we remove from the graph those
dependencies that are now satisfied, and new operations that
only depended on the just tested operation will become leaf
nodes in the edited graph. They will be tested in the next
iterations of the algorithm.

The main loop (line 1) finishes when either the graph
remains with no nodes, because all the operations are tested
and testing is complete or when the time budget expires (line
21).

It is important to note that the operation order can not
be precomputed off-line, but it should be updated at testing-
time. In fact, we can mark a node as tested and remove it
from the graph only after we could test it, and this is known
only at testing time.

B. Input Value Generation

In order to test an operation, we need to guess appropriate
input values. Input values are generated for each request
using a probabilistic algorithm. With high probability (i.e.,
80%) the algorithm applies a response dictionary based
strategy, because reusing observed data is very likely to be
effective in testing new operations. In the remaining cases,
i.e. with 20% probability or when the former strategy fails,
a new parameter value is generated starting from its schema.

Response dictionary. This heuristic is meant to reuse
the knowledge of already tested operations to test new
operations. Suppose for example that we need to test the
operation getPetsById in the PetStore API. Our approach
would need to have prior knowledge of which are the valid
pet ids first.

For this reason, inspired by Ed-douibi et al. [7], we use the
concept of Response Dictionary. The Response Dictionary
is a map between field names and their observed values. For
each operation that is successfully tested, the values of all
the output fields that can be found in the response content
are saved in the Response Dictionary, so that the values can
be reused later when an input field with the same name is
needed.

One of our extensions with respect by Ed-douibi et al. is
represented by the matching algorithm that we use to look up
into the Response Dictionary. While Ed-douibi et al. require
an exact match between the name of the input value and
the key in the dictionary, we tolerate some differences. In
fact, our matching algorithm takes in input the field name
for which a value is needed, and returns the key with the
closest name among the keys in the dictionary. A non-
perfect match is needed because of naming inconsistencies
among input/output fields, due to implicit assumptions of

developers, or because of typing errors (as discussed in
Section IV-B).

The name matching algorithm implements the following
look-up strategy:

1) Look for a key with an exact match with the field name
(e.g., petId);

2) Look for a key with an exact match with the concatena-
tion of object name and field name (e.g., petId matches
pet+id);

3) Look for a key with edit distance < thr to the field
name;

4) Look for a key with edit distance < thr to the con-
catenation of object name and field name (e.g., petsId
matches pet+id);

5) Look for a key that is a substring of the field name to
find.

With lower probability and when the look-up strategy
fails, the schema based field generation is applied.

Schema based field generation. A new parameter value
is generated respecting the parameter schema type and its
constraints.

Default and example values. Swagger supports an option
to specify default values for input parameters and examples
of values to be used. In case these values are specified, they
can be attempted to test an operation.

Enum. When the type is enum, a value is randomly picked
with uniform probability among the closed set of available
values.

Random input generation. A random value is generated
that matches the type of the input field. E.g., a random
integer/decimal number or a random string. In particular, we
give high probability (i.e., p = 0.5) of generating zero (on
numeric input) or empty string (on string input). Otherwise,
a numeric value if randomly picked with uniform probability
from the allowed range. A random string is generated by
concatenating a random number of alphanumeric characters
respecting the parameter schema constraints minLength and
maxLength.

C. Oracle

Our approach includes two oracles to assess if the auto-
mated test case generation is successful, based on the status
code and on the match with the declared schema.

Status Code Oracle. The status code is a three digit
integer value in the HTTP response, meant to describe the
outcome of a request. A status code in the form 2xx stands
for a correct execution, for instance 200 means OK, while
201 means that a resource has been successfully created.

A status code 4xx stands for an error that was correctly
handled, e.g. 400 stands for Bad Request and 404 stands for
Not Found. Conversely, a status code 5xx means that the
server encountered an error that was not handled correctly,
e.g. 500 means server crash.

We use the operation response status code as an oracle to
assess if a test case was successfully created.

• 2xx. When obtaining a status code 2xx in a response, we
assume that our approach correctly guessed the input
values to test an operation according to a nominal sce-
nario. We conclude that this operation was successfully
tested, so we mark this operation as tested and we can
use the data in the response to populate the Response
Dictionary;

• 4xx. This status code means that testing was not
successful. It could be due to two distinct reasons,
either incorrect input values have been rejected by the
server, or input values were correct and they exposed
an implementation defect. However, from a black-box
viewpoint, we can not tell which of the two cases
applies. Conservatively, we assume that the correct
input values have not been guessed. Thus, we discard
this scenario and we continue test case generation;

• 5xx. This status code means an internal server error,
e.g. status code 500 means that server crash was not
handled gracefully. A 5xx status code is probably due
to a programming defect that should be fixed. So, this
is an interesting scenario to document with a test case.

Our approach emits JUnit test cases for those interactions
that cause status codes 2xx and 5xx, to let a developer
replicate these scenarios.

Response Validation Oracle. The Swagger documents
the operation responses and their schema, i.e. the intended
status code and the fields in the responses, as in lines 47 to
59 of the example in Listing 1. Consistency between actual
responses and their schema is important for remote programs
that connect to a REST API. In fact, remote connection
might fail in parsing inconsistent or malformed responses,
and cause service discontinuity. Our second oracle reveals
a mismatch between the intended response syntax (docu-
mented in the Swagger) and the actual response (observed
at execution time), by using a schema validation library,
namely swagger-schema-validator5, on each response (either
successful responses and error responses). In case of mis-
match, a JUnit test case is emitted to document the defect.

For instance, considering a nominal execution of the
operation getPetById, the operation response must contain
an object of type Pet, as shown in the response example in
Listing 3. This Pet object matches the Pet schema specified
in lines 63 to 75 in Listing 1, i.e. three properties id, name
and tag of the correct types.

1 {
2 "id": 1,
3 "name": "doggy",
4 "tag": "dog"
5 }

Listing 3. Example of getPets response compliant with the schema.

5https://github.com/bjansen/swagger-schema-validator

Listing 4 shows, instead, a case where the response
content does not match the schema. Indeed, the object Pet
in this example misses the parameter name. This particular
execution output is classified as an implementation error by
the oracle.

1 {
2 "id": 1
3 "tag": "dog"
4 }

Listing 4. Example of getPets response NOT compliant with the schema.

VI. TESTING OF ERROR CASES

The objective of the Error Tester module is to test the
exceptional scenarios of the REST API, to assess if the
REST API handles wrong requests in the appropriate way,
i.e. they are discarded and errors end gracefully. To this aim,
this module starts from nominal executions and mutate them
to turn them malformed and inconsistent. In case a mutated
request is not discarded or if it causes a fatal error, a defect
is detected.

A. Mutation Operators

Nominal test cases are changed according to a catalog
of mutation operators. Currently the subsequent mutation
operators are available:

• Missing required. In Swagger, input parameters support
the modifier required, which means that a field is
mandatory. A request that misses a required field should
be discarded by the REST API. This mutation consists
in altering a request by removing a required input field;

• Wrong input type. Input parameters are strongly typed.
This mutation alters an existing test case by changing
the value of an input parameter such that its type
becomes wrong. In case the declared type is string,
the new value is a random number (integer or float).
In case the declared type is a numeric, the new value is
a random string. In case of type enum, a random value
is picked that is different than the set of values in the
enumeration.

• Constraint violation. The swagger can also specify
additional constraints for strings (e.g., minLength and
maxLength) and for numeric values (e.g., min and max
values). This mutation operator edits the value in a
request such that it violates a constraint. For instance,
a string is trimmed or extended with a random suffix,
or a numeric value is decreased/increased by a random
delta until it exceeds the limits.

A nominal test is mutated many times, by applying each
mutation operation once per each input field in the request.
Mutated requests are then sent to the REST API and the
response is analyzed by the oracles.

B. Oracle

Similarly to the Nominal Tester, also the Error Tester is
supported by two oracles.

Status Code Oracle. The status code in the response
is inspected to classify whether this test case reveals a
programming defect:

• 2xx. This status code stands for a correct execution.
This means that incorrect inputs, that should have been
rejected, are instead processed as valid. This scenario
exposes a mismatch between the features declared in
the Swagger and those actually implemented;

• 4xx. This status code, instead, means that wrong inputs
have been correctly detected and the request caused
a graceful error. This is the expected execution on
malformed requests;

• 5xx. An internal server error exposed thanks to mal-
formed input data. This is clearly a defect.

A JUnit test case is emitted for those error scenarios that
cause status codes 2xx and 5xx.

VII. EXPERIMENTAL VALIDATION

In this section, we provide an experimental validation of
RESTTESTGEN, with respect to its effectiveness of reveal-
ing programming defects in real world REST APIs. The
complete package to replicate our experiment is available
online6.

A. Research Questions

To define our empirical investigation, we formulate the
following research questions:

• RQN : Is the Nominal Tester module effective in gen-
erating test cases?

• RQE : Is the Error Tester module effective in generating
test cases?

The first research question RQN is intended to investigate
if the Nominal Tester module is capable of testing the
nominal scenarios of REST APIs, as they are documented
in the Swagger file.

The second research question RQE instead focuses on the
Error Tester module, and it is meant to investigate if is able
expose failure in handling incorrect inputs, resulting from
mutations of nominal test cases.

B. Case Studies

We applied RESTTESTGEN to an extensive group of
REST APIs. We considered the REST APIs listed in the
website API.guru7 on 18 June 2019. For each REST API,
this website also provides the corresponding Swagger spec-
ification. However, we had to apply some sanity checks

6RESTTESTGEN: Automated Black-Box Testing of RESTful APIs
https://github.com/resttestgenicst2020/submission%5ficst2020

7https://apis.guru/browse-apis/

and filtering, to select case studies that are appropriate for
assessing fully automated test case generation.

First of all we probed REST APIs to filter out those that
were not responding, which were probably discontinued or
just temporarily down.

Then, we also excluded all those that declared to require
authentication, because they would have required a substan-
tial manual effort to create a distinct account for each distinct
REST API8.

Eventually, we manually sent some probe requests to the
remaining services to dynamically verify them, before final-
izing the case studies of our experiment. We had to further
exclude some REST APIs because, despite their Swagger
did not mention authentication, their actual implementation
did require it.

After filtering, the final case studies used in our empirical
evaluation consists of 87 REST APIs, for a total of 2,612
operations, which means 30 operations per REST API on
average.

C. Experimental Procedure

Based on the research questions formulated above, we
defined these settings of our experiment.

RESTTESTGEN is run on all the Swagger files for the 87
case studies. For each Swagger the ODG is computed and
then the Nominal Tester module is run, with a maximum
time budget of 30 minutes per case study. In the result
section, we will see that this time budget will prove to be
appropriate, in fact our algorithm completes in less than 10
minutes in the majority of the case studies. During this time
budget, the maximum number of sent requests is 13,944,
with a mean of 162 requests per case study. However, the
amount of time taken to test a service is strongly dependent
on how long the tested service takes to respond.

The nominal test cases that obtained a response status
code 2xx were then mutated by the Error Tester module, to
try and automatically generate error test cases. This second
module was also assigned a maximum time budget of 30
minutes per case study.

The number of attempts nfuzz to fuzz each operation (see
Section V-A) is set to 5. The edit distance threshold thr used
in the Response Dictionary (see Section V-B) is set to 1.

All these experiments have been run on a 8 cores desktop
PC, equipped with Intel(R) Core(TM) i7 870 running at
2.93GHz CPU, and with 8GB of RAM.

D. RQN : Nominal Tester

The results of Nominal Tester module on the set of case
studies are shown in Table I. As we can see, all the 87 case

8Some REST APIs support authentication with third party identity
providers via O-Auth (e.g., login with Facebook or with Google accounts).
This feature is supposed to simplify end-user authentication, but not the
authentication of a program that is willing to access via API, that sill needs
to (manually apply and) acquire an API-key to authenticate to the REST
API.

Table I
CASE STUDIES TESTED BY THE NOMINAL TESTER.

Total APIs 87

APIs with status code 2xx 62
APIs with status code 5xx 20

APIs with validation error 66

Table II
OPERATIONS TESTED BY THE NOMINAL TESTER.

Total operations 2,612
Tested operations 2,560

Operations with status code 2xx 625
Operations with status code 5xx 151

Operations with validation errors 1,733

studies (first line) have been subject to automated test case
generation and for 62 of them (second line) at least one test
for a nominal execution scenario (status code 2xx) could be
automatically generated. For 20 case studies, the test case
automatically generated by RESTTESTGEN exposed errors
that were not properly handled by the REST API (status
code 5xx). On 66 case studies, invalid response messages
were observed, they are responses inconsistent with their
schema defined in the Swagger.

Table II shows a more detailed perspective, focusing on
the case study operations. Among the total 2,612 opera-
tions, for 2,560 of them test cases could be generated by
RESTTESTGEN. The untested operations are due to some
failure of the tool, such as unsupported input parameter
generation (e.g., files to be uploaded).

In particular, automatically generated test cases found a
nominal execution for 625 of them (status code 2xx) and an
ungraceful error for 151 (status code 5xx).

For 435 test cases the status code was 4xx, but they are not
shown in the table, because they were hard to classify with
a black-box access. In fact, they might be graceful errors
due to programming defects, or just rejected requests due to
failures by RESTTESTGEN in generating appropriate inputs.

Test cases with validation errors are still a majority: in
1,733 tests the response did not match the declared schema.

Considering these results, we can formulate the following
answer to RQN :

The Nominal Tester module of RESTTESTGEN is effec-
tive in automatically generating test cases with black-
box access, because it was able to test 2,560 operations
out of 2,612 operations on real world REST APIs. These
tests exposed 151 faults in the form of not correctly
handled internal errors and 1,733 inconsistent response
messages.

Table III
TEST CASES AUTOMATICALLY GENERATED BY THE ERROR TESTER.

Mutation operator Mutants Status code 2xx Status code 5xx

Missing required 459 283 7
Wrong input type 707 511 16
Constraint violation 119 68 11

Total 1,285 864 23

E. RQE: Error Tester

Subsequently, the 625 nominal test cases with a status
code 2xx have been subject to mutation by the Error Tester
module, and executed on the case studies. Results of this
second module are shown in Table III. For each mutation
operator (first column) the table reports in the second
column how many mutants (i.e., mutated test cases) could
be generated.

The number of mutants is different across mutations,
because different mutations impose different applicability
precondition. For instance, mutation Missing required needs
an input field with the required modifier. In case this
modifier in not present, the mutation does not apply. The
largest amount of mutants (i.e., 707 tests) could be generated
by Wrong input type, because it is the mutation with the
most simple preconditions, i.e. a field of type string, nu-
meric or enum. Then, mutation Missing required generated
459 mutants and, eventually, mutation Constraint violation
generated only 119 mutants, because only few case studies
specify value constraints in their Swagger. In total 1,285
mutants have been generated.

These mutated test cases are then executed on the case
studies and the response status codes are evaluated to assert
the presence of programming defects. Table III reports
how many mutants are still processed as valid input with
status code 2xx (third column) and how many exposed an
unhandled error with status code 5xx (fourth column). The
majority of defects (864 cases) have been recorded for status
code 2xx, they are wrong data that are still handled as
correct. Only 23 cases could expose server errors as status
codes 5xx. It should be noted that these 23 cases of status
code 5xx are different and additional with respect to the
151 cases observed in the previous experiment. In fact, the
test cases generated by the Nominal Tester and by the Error
Tester are not overlapping, i.e. the former module relies on
inputs whose type and value match the Swagger, while the
latter module relies on inputs that violate the Swagger.

Given these data, we can answer to RQE as follows:

The Error Tester module of RESTTESTGEN is effective in
automatically generating error test cases with black-box
access of real world REST APIs, because they revealed
864 cases where wrong data are accepted as valid, and
23 cases with unhandled errors.

F. Threats to Validity

There is a number of limitations that could potentially
limit the validity of our empirical results.

Black-box access. With the aim of considering realistic
case studies, we meant to involve real and existing REST
APIs, hosted by their respective owners. As such, we could
not inspect the case study source code to manually validate
the results of automated testing, with respect to the correct
classification reported by our oracles. Moreover, we could
not measure the code coverage achieved by automatically
generated tests. However, for the second oracle, the clas-
sification was quite objective, because it revealed a defect
whenever the response was inconsistent with the documented
schema.

Oracle based on status code. Using the status code to
assess the result of automated testing might represent a
threat. In fact, while the classification of tests with correct
executions (status codes 2xx) and with unhandled errors
(status code 5xx) is more objective, the classification of tests
with handled errors (status codes 4xx) is more dubious. In
fact, handled errors might occur either because of defects in
the REST API implementation, or because of limitation of
our tool that caused wrong input values to be used in test
cases. Since we could not accurately classify execution with
4xx status codes, we conservatively assumed them to be due
to failures by RESTTESTGEN.

Most of the defects detected by the Error tester are
incorrect data accepted as valid (status code 2xx). This
result highlights a potential limitation of the Status Code
Oracle used in the Nominal Tester. This oracle might have
incorrectly classified a test case run as a pass just because of
its status code 2xx, that was also observed in case of invalid
input values.

Missing authentication. To increase the number of REST
APIs in our experiment, we decided to minimize the manual
effort required to prepare each case study. Since account
creation would have required a substantial effort and, some-
times, interaction with the REST API owner, e.g. to motivate
why API access is required, we tested only those case studies
that did not require account creation. This might represent
a threat to the validity of our results, because sensitive
operations might be forbidden to anonymous users (e.g.,
delete a resource) and the experiment might be limited to
less crucial operations that, thus, are considered of lower
importance by a case study owner. Nonetheless, the final
case studies include a reasonably large number of REST
APIs (consistent with related work [1], [7], [16]), that could
be tested to a large extent.

Nondeterminism. RESTTESTGEN was executed only
once per case study. However, since our algorithm contains
non-deterministic components, e.g. in fuzzing input param-
eters, a more accurate experimental setting should have in-
cluded multiple executions (e.g. 10-30 repetitions). We plan

to conduct a more extensive and complete experimentation,
with more case studies and with more executions per each
case study, as part of our future work.

VIII. RELATED WORK

The specificity of REST APIs attracted the attention of the
testing research community only recently. Novel approaches
to test REST APIs have been proposed that can be divided
in black-box approaches and white-box approaches.

A white-box perspective in automated testing relies on the
availability of API source code to perform static analysis, or
to instrument it to collect execution traces and metric values.
A black-box approach, instead, does not require any source
code, which is often the case when using closed source
components and libraries. However, a black-box access to
the REST API lacks much information potentially useful
for the automatic test case generation.

The most related work is, probably, by Ed-douibi et
al. [7]. They proposed a model-based approach for black-
box automatic test case generation of REST APIs. A model
is extracted from the Swagger/OpenAPI specification of a
REST API, to generate both nominal test cases (with input
values that match the model) and faulty test cases (with
input values that violate the model). However, they do not
explicitly model the dependencies among operations, while
we define the Operation Dependency Graph to this aim.
Moreover, we dynamically update this graph to decide the
most appropriate operation for the next test. Additionally,
we integrate the response dictionary in a series of heuristics
to automate input data generation.

Another limitation of their approach is that it only ap-
plied to read-only operations, called safe operations by the
authors, because they meant to avoid operations with side-
effect on the API state. Conversely, our approach explicitly
models side effect of operations (i.e. the CRUD semantics,
see Section V-A) and exploits them to decide the order in
which to test operations.

Similarly to our approach, also Atlidakis at al. [2] model
the dependencies among the operations in a REST API to
elaborate an appropriate ordering. However, while they use
dependencies to pre-compute the order to test operations
(e.g., using Breadth-first search or random walk), we propose
to compute the next operations to test dynamically, based on
the outcome of the operations that could be tested so far.

Segura et al. [16] proposed a complete different black-
box approach, where the oracle is based on metamorphic
relations among requests and responses. For instance, they
send two queries to the same REST API, where the second
query has stricter conditions than the first one (e.g., by
adding an additional constraint). The result of the second
query should be a proper subset of entries in the result
of the first query. When the result is not a sub-set, the
oracle revealed a defect. However, this approach only works
for search-oriented APIs. Moreover, this technique is only

partially automatic, because the user is supposed to manually
identify the metamorphic relation to exploit and what input
parameters to test.

White-box approaches are complementary to ours, be-
cause they assume to have access to the code of the API
to test. Arcuri [1] proposed a fully automated white-box
testing approach, to generate test cases with evolutionary
algorithms. Similarly to ours, Arcuri’s approach requires the
API specification (i.e., the Swagger). Differently than us, his
approach also requires access to the Java bytecode of the
REST API to test. In fact, the objective is to achieve high
code coverage. This approach has been implemented and
available as a tool prototype called EvoMaster.

Many approaches have been proposed so far to test Web-
services, based on their WSLD specification [3], [10]–[14],
[17], [18], [20]. An extensive survey of techniques for
automated testing of Web-services has been conducted and
reported by Bozkurt et al. [4] and by Canfora et al. [5], [6].

Despite similar objectives, Web-services and REST APIs
are conceived on top of different interaction models. Web-
services are mostly based on SOAP [9], a message oriented
model (mainly meant to overcome limitations of previous
solutions, such as CORBA, Java/RMI, DCOM), while REST
APIs rely on the concept of web resources accessible through
stateless operations [8].

IX. CONCLUSION

This paper presents RESTTESTGEN, a novel approach
for automatically generating black-box test cases for REST
APIs. The Operation Dependency Graph is defined to model
data dependencies among the operations in a REST API.
This allows our approach to dynamically decide in which
order to test operations, such that the input data required to
test an operation are available from the output data of those
already tested.

Two distinct testing modules are presented, the Nominal
Tester and the Error Tester, to automatically generate test
cases related to nominal execution scenarios and to error
management scenarios. The empirical assessment showed
that the proposed approach is effective in testing real worlds
REST APIs, and in detecting a considerable amount of
implementation defects.

As future work, we plan to extend the testing capability
of RESTTESTGEN to try and assess the presence of security
defects in the implementation of REST APIs. This would
require to attempt black-box proof-of-concept attacks and to
define a brand new oracle, capable to detecting successful
attacks. Additionally, we plan to the extend our implementa-
tion to support authentication, to perform a wider empirical
validation, possibly including more complex and critical
REST APIs, such as those related to the FinTech domain.

REFERENCES

[1] A. Arcuri. Restful api automated test case generation with
evomaster. ACM Transactions on Software Engineering and
Methodology (TOSEM), 28(1):3, 2019.

[2] V. Atlidakis, P. Godefroid, and M. Polishchuk. Restler: State-
ful rest api fuzzing. In Proceedings of the 41st International
Conference on Software Engineering, ICSE ’19, pages 748–
758, Piscataway, NJ, USA, 2019. IEEE Press.

[3] X. Bai, W. Dong, W.-T. Tsai, and Y. Chen. Wsdl-based
automatic test case generation for web services testing. In
IEEE International Workshop on Service-Oriented System
Engineering (SOSE’05), pages 207–212. IEEE, 2005.

[4] M. Bozkurt, M. Harman, and Y. Hassoun. Testing web
services : A survey. 2011.

[5] G. Canfora and M. Di Penta. Testing services and service-
centric systems: Challenges and opportunities. It Professional,
8(2):10–17, 2006.

[6] G. Canfora and M. Di Penta. Service-oriented architectures
testing: A survey. In Software Engineering, pages 78–105.
Springer, 2007.

[7] H. Ed-Douibi, J. L. C. Izquierdo, and J. Cabot. Automatic
generation of test cases for REST APIs: A specification-
based approach. In 2018 IEEE 22nd International Enterprise
Distributed Object Computing Conference (EDOC), pages
181–190. IEEE, 2018.

[8] R. T. Fielding. Architectural styles and the design of network-
based software architectures, volume 7. University of Cali-
fornia, Irvine Doctoral dissertation, 2000.

[9] M. Hadley, N. Mendelsohn, J. Moreau, H. Nielsen, and
M. Gudgin. Soap version 1.2 part 1: Messaging framework.
W3C REC REC-soap12-part1-20030624, June, pages 240–
8491, 2003.

[10] S. Hanna and M. Munro. Fault-based web services testing.
In Fifth International Conference on Information Technology:
New Generations (itng 2008), pages 471–476. IEEE, 2008.

[11] Y. Li, Z.-a. Sun, and J.-Y. Fang. Generating an automated
test suite by variable strength combinatorial testing for web
services. Journal of computing and information technology,
24(3):271–282, 2016.

[12] C. Ma, C. Du, T. Zhang, F. Hu, and X. Cai. Wsdl-based
automated test data generation for web service. In 2008
International Conference on Computer Science and Software
Engineering, volume 2, pages 731–737. IEEE, 2008.

[13] E. Martin, S. Basu, and T. Xie. Automated robustness testing
of web services. In Proceedings of the 4th International
Workshop on SOA And Web Services Best Practices (SOAWS
2006), 2006.

[14] J. Offutt and W. Xu. Generating test cases for web services
using data perturbation. ACM SIGSOFT Software Engineering
Notes, 29(5):1–10, 2004.

[15] C. Pahl and P. Jamshidi. Microservices: A systematic map-
ping study. In Proceedings of the 6th International Confer-
ence on Cloud Computing and Services Science (CLOSER
2016), pages 137–146, 2016.

[16] S. Segura, J. Parejo, J. Troya, and A. Ruiz-Corts. Meta-
morphic testing of restful web apis. IEEE Transactions on
Software Engineering, PP:1–1, 10 2017.

[17] H. M. Sneed and S. Huang. Wsdltest-a tool for testing web
services. In 2006 Eighth IEEE International Symposium on
Web Site Evolution (WSE’06), pages 14–21. IEEE, 2006.

[18] W.-T. Tsai, R. Paul, W. Song, and Z. Cao. Coyote: An xml-
based framework for web services testing. In 7th IEEE Inter-
national Symposium on High Assurance Systems Engineering,
2002. Proceedings., pages 173–174. IEEE, 2002.

[19] P. Willett. The porter stemming algorithm: then and now.
Program, 40(3):219–223, 2006.

[20] W. Xu, J. Offutt, and J. Luo. Testing web services by
xml perturbation. In 16th IEEE International Symposium on
Software Reliability Engineering (ISSRE’05), pages 10–pp.
IEEE, 2005.

[21] M. Zhang, B. Marculescu, and A. Arcuri. Resource-based test
case generation for restful web services. In Proceedings of the
Genetic and Evolutionary Computation Conference, GECCO
’19, pages 1426–1434, New York, NY, USA, 2019. ACM.

