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ABSTRACT
Malicious reverse engineering is a prominent activity conducted
by attackers to plan their code tampering attacks. Android apps
are particularly exposed to malicious reverse engineering, because
their code can be easily analyzed and decompiled, or monitored
using debugging tools, that were originally meant to be used by
developers.

In this paper, we propose a solution to identify attempts of mali-
cious reverse engineering on Android apps. Our approach is based
on a series of periodic checks on the execution environment (i.e.,
Android components) and on the app itself. The check outcome is
encoded into a Magic Number and send to a sever for validation.
The owner of the app is then supposed to take countermeasures
and react, by disconnecting or banning the apps under attack.

Our empirical validation suggests that the execution overhead
caused by our periodic checks is acceptable, because its resource
consumption is compatible with the resources commonly available
in smartphones.
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1 INTRODUCTION
The extensive diffusion of Android attracted not only the attention
of end-users and app providers, but also of attackers interested in
applying malicious reverse engineering to tamper with app code1.
Attackers can be willing to alter the behaviour of apps for many
reasons, such as unlocking premium features for free, or removing
advertisements. As a matter of fact, many tampered app (also called

1https://resources.malwarebytes.com/files/2019/01/Malwarebytes-Labs-2019-State-
of-Malware-Report-2.pdf

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
SSPREW 2019, December 9-10, 2019, San Juan, Puerto Rico, USA
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-9999-9/18/06. . . $15.00
https://doi.org/10.1145/1122445.1122456

repacked or piggybacked apps) can be identified across different app
stores [13].

It is notorious the case of a popular music player that adopted
a freemium business model. This app offered all its end-users free
listening to music, and premium features (i.e., no ads) only to paid
accounts. This app attracted the attention of attackers, that dis-
tributed tampered versions with unlocked premium features for
free. Eventually, these tampered versions were so popular and so
easy to find, that app owners started a cleaning campaign to ban
all the accounts supposed to use a hacked version2.

An extensive user study conducted with professional hackers [6,
7] revealed that (malicious) reverse engineering is a prominent task
to plan, elaborate and assess tampering attacks. In fact, before figur-
ing out how to change the code, an attacker has to identify where
to perform the change. Thus, in order to mitigate tampering attacks,
it is of crucial importance to limit the possibility of understanding
and analyzing the code.

In this paper, we propose a solution to detect attempts to ap-
ply malicious reverse engineering to Android apps. In particular,
we propose a series of checks to verify several distinct aspects of
the execution environment, to spot different classes of reverse en-
gineering tools, such as emulators, root access, instrumentation
frameworks and customized (e.g., tampered) operating system. Sub-
sequently, in case the execution environment is safe, we propose
also to check the app itself, to spot possible instrumentation and
tampering. The result of all these checks is used to compute aMagic
Number that is sent over to a remote server, where the check result
is verified by the app owner. In case this verification fails, the app
might be considered under malicious reverse engineering and, thus,
the app owner might react e.g. by disconnecting suspicious app
instances [4, 5, 8].

Similarly to other protections, also our solution comes with
the cost of increased resource consumption. Thus, in this paper,
we additionally present the results of our empirical investigation,
conducted to quantify the cost of our solution. Memory, CPU and
network overhead has been measured on distinct devices when the
checks are more and more frequent. Empirical data seem to indicate
that our solution can be largely adopted in a wide set of devices.

The rest of the paper is organized as follows. Section 2 covers the
background about some popular tools and approaches to analyze
Android apps. Section 3 presents the high-level architecture of our
approach, that is later discussed in detail. In particular, Section 4
covers all the checks and Section 5 describes how check results are

2J. Sommerlad, Spotify Cracks Down on Premium Pirates Streaming for Free.
https://www.independent.co.uk/life-style/gadgets-and-tech/news/spotify-premium-
piracy-crackdown-apps-bypass-restrictions-accounts-deactivated-music-streaming-
a8241936.html
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turned into the Magic Number that is reported to the server. Our
empirical validation is described in Section 6. After comparing our
approach with the state of the art in Section 7, Section 8 closes the
paper.

2 BACKGROUND
This section presents the background knowledge about rooted de-
vices, SELinux and Magisk.

2.1 Android Root Permission and Rooted
Devices

In Unix-like operating systems (such as Android), we refer to root
as a user with administrative capabilities. Root is granted full con-
trol of all functioning of the operating system with no limitations.
Conversely, a regular user has a limited access to the filesystem
and devices. In Android, limitations and boundaries to what a user
is allowed to do are specified by the carriers and the hardware
manufacturers, in order to protect the device from users, who (ac-
cidentally or not) might alter or replace system applications and
settings [24].

A rooted device is a device where an app or a process can be
granted root permissions. When root permissions are granted, sys-
tem security settings can be changed, that would be otherwise
inaccessible to a normal Android user. Further, the entire operating
system could be replaced with a custom one (custom ROM) that
would enforce no restriction to the user, letting her/him modify
any part of it at will.

There are two main ways to obtain root privileges. A vulnerabil-
ity in the device can be exploited to do privilege escalation, or by
executing the su binary from within the device, that starts a new
process with root privileges. The first one is referred to as soft root,
while the second one is known as hard root. Both methods result in
altering system files and properties. These change traces represent
valuable clues that could be exploited to reveal root access.

2.2 SELinux and Magisk
SELinux3, stands for Security Enhanced Linux, it is a kernel module
meant to enforce limits to all users, including root. Starting from
Android 5, SELinux is enabled by default on devices, to enforce
mandatory access control over all the processes. Thus, on recent
devices, acquiring root privileges is not enough to mount a success-
ful attack, but additionally SELinux policies should be disabled or
patched. This strategy is also applied by Magisk4.

Magisk is a “systemless” root method, which is installed by mod-
ifying the boot image file boot.img. As soon as the device boots
using this patched image, the SELinux policy rules are patched to
have an unrestricted context and a Magisk daemon is started in
this unrestricted context. After this, the boot continues as in the
original device. In this way, the daemon has full capabilities of root
within an unrestricted SELinux context.

When an app needs root access, it requests it to the Magisk
daemon (by executing the Magisk su binary). To hide its traces,
root privileges are granted without changing the UID/GID of the

3https://source.android.com/security/selinux
4https://github.com/topjohnwu/Magisk

process, but by opening a root shell that is accessible via a UNIX
socket.

Magisk is referred to as systemless root, because it tampers with
the boot process and not the /system folder. However, in case a
particular attack needs to alter the /system folder, e.g. by adding
executable binaries there, Magisk supports it in a stealthy way.
Instead of changing the folder (which could be detected), Magisk
exploits bind mounts5, to dynamically mount and unmount files
in folders and by overlaying them, so the systemless feature is
preserved.

It is worth noting that the security service introduced by Google,
named SafetyNet, which can tell apps if the device is safe to be
trusted, can be easily bypassed6 using the features offered byMagisk.

3 REFERENCE ARCHITECTURE

App
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Magic Number
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Figure 1: Reference architecture.

Our approach is composed as shown in Figure 1. When malicious
reverse engineering is a problem, the app performs a two-fold check:

Execution environment check: First of all, the underlying
Android environment is checked to spot traces and clues of reverse
engineering tools, analysis frameworks and inspection attempts.
These checks include verifying if the app is executed within an
emulator, or in a device with root access, if the file-system has
been altered to support dynamic analysis, if the standard Android
environment has changed in an inconsistent way, if traces can
be found of dynamic instrumentation tools and what kernel the
underling linux layer is using.

App self-check: Even if no traces of malicious reverse engineer-
ing can be found on the underlying Android execution environment,
we still need to check the integrity of the app, because an attacker
might try to tamper with the app code and instrument it by inject-
ing tracing instructions, in order to perform dynamic analysis by
inspecting execution traces. The verification of the app integrity
makes sense only when the checks on the Android execution envi-
ronment pass, so we are confident that the app self-checks are not
subverted by the underlying Android infrastructure.

The detail of all these checks is presented in Section 4.

5https://github.com/topjohnwu/Magisk/blob/master/docs/details.md
6https://magiskroot.net/bypass-safetynet-issue-cts/ “Bypass SafetyNet Issue: CTS Pro-
file Mismatch Errors”
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The results of these checks are included in the security report
and also encoded as part of a Magic Number. More details about
the check report and the magic number are included in Section 5.
The Magic Number is computed by the app in a way that:

• The Magic Number is different for each execution and can
not be replayed. I.e., the attacker can not just intercept this
value for a valid app and reuse it in a tampered app; and
• It is difficult for an attacker to guess and predict what is the
right value to use.

The algorithm used to compute the Magic Number is described in
Section 5.

Based on the received Magic Number, the server is assigned the
responsibility to make the final decision about whether the app is
working as expected or if it is under malicious reverse engineering.

Server-side reaction: In case an attack is detected, countermea-
sure might be taken to react and block the app under malicious
reverse engineering. A reaction by the app code would have limited
effectiveness, because an attacker might tamper with app code and
skip the reaction, by simply replacing the decision making code
with the constant decision of never reacting. We suggest to make a
more secure decision at the server side. In case the server notices
malicious reverse engineering on a client app, it would immediately
block that app, for instance by stopping delivering content.

A possible approach to block apps controlled by malicious users
or by attackers is represented by client-server code splitting [2, 3, 22].
According to this approach, a part of the app is sliced away, such
that (i) the slice is very small with respect to the size of the whole
app; and (ii) the slice is crucial for the correct functioning of the
app because, without that part, the app does not work properly.

The slice is never delivered to the end-user, and it is installed on
the server, where it is remotely executed every time this is needed
by the sliced app. In this way, to work properly, the sliced app
always requires a server to execute its missing code. The protection
consists in refusing to remotely execute the slice for those client
apps where malicious reverse engineering has been detected.

Client-server code splitting is not a novel contribution of this
paper. A detailed description of it can be found on those articles that
proposed and assessed this reaction technique [2, 3, 22]. Reaction
is in general out of the scope of this paper

4 DETECTION OF MALICIOUS REVERSE
ENGINEERING

Malicious reverse engineering can be deployed in many differ-
ent ways. Based on the results of user studies involving profes-
sional hackers [6, 7], we collected a list of attack strategies and
attack tools that are relevant for program understanding, mali-
cious reverse engineering and code tampering. Additionally, we
surveyed practitioner and technical informal literatures, includ-
ing forums (such as stackoverflow and slashdot), guidelines (by
Google, Facebook and Owasp) and Android security blogs (such as
http://www.vantagepoint.sg/blog/).

Based on our survey of recommended checks, we implemented
the following approaches.

4.1 Emulator Detection
To reverse engineer an app, it can be quite useful to run it in an
emulator, i.e. a simulated smartphone that runs on the developer
computer and controlled by the development environment. Our
approach to emulator detection is based on identifying Android
properties and directories known to be used by emulator engines.
A similar method based on Android Properties is also adopted by
Facebook in their react-native framework7 for detecting emulators.
Table 1 contains some values of Android properties that we use to
this aim.

Android Property Value
Build.FINGERPRINT generic
Build.HARDWARE goldfish

Build.MODEL Emulator
Build.MANUFACTURER Genymotion

Build.PRODUCT google_sdk
Table 1: Android properties used for emulator detection.

Considering that reading Android properties might be hooked or
circumvented by an expert attacker, we complement it with an ad-
ditional lightweight implementation. Manually analyzing the Geny-
motion emulator and the Bluestacks, we listed some file-system
paths and files that are unique to these emulators and, thus, can be
used to identify these emulators. Table 2 includes a small part of
the paths that we are checking.

/dev/vboxguest
/dev/vboxuser
/fstab.vbox86
/init.vbox86.rc

/data/bluestacks.prop
/data/data/com.bluestacks.appsettings

com.bluestacks.settings.apk
Table 2: Paths used for emulator detection.

4.2 Root Detection
Attacks can be mounted by acquiring root privileges. In fact, an app
with root privileges (i.g., the system administrator in linux), not
only can access all the hardware components (network interface,
I/O) but it can also break the Android sandboxing principle and
read/write other apps private data.

Our approach for root detection is based on looking for the
binaries used for gaining root privileges, or for specific files known
to be used by root managers.

First of all, we use the linux command "which su", to reveal the
presence of su binary in the system, that can be used to run a
process with root privileges.

Then, we check for the presence of some files, that could be a
clear indication of the presence of root in the system. The first one

7https://stackoverflow.com/a/21505193/9378427
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is SuperSu, a commonly used root manager. It modifies the system
files and installs its APK in the path /system/app/Superuser.apk.

Other pathswe check are /data/adb/magisk.db, /data/magisk/resetprop,
/cache/magisk.log and /sbin/.magisk/mirror/data/adb/magisk.dbwith
the aim of detecting files that theMagiskmanager uses. Additionally,
we check several other locations known to store binaries related to
root like busybox and su, and other properties specific to Magisk.

Finally, we check if other root managers are installed on the
device, or apps that require root privilege to work. Some of these
apps is listed in Table 3.

com.saurik.substrate
com.topjohnwu.magisk
eu.chainfire.supersu
kingoroot.supersu
com.yellowes.su

com.chelpus.luckypatcher
Table 3: Apps indicating root privileges.

4.3 File System Read/Write Mode Check
Suspicious permissions granted to apps or file-system permissions
can be a clue that a malicious reverse engineering environment
has been setup, or that root privileges could have been acquired.
As already mentioned above, bypassing Android sandboxing usu-
ally results in several system files with changed permissions, or
additional files that should not exist.

For security and stability reasons, normally, specific parts of the
Android filesystem are read-only. Yet, when an attacker acquires
root privileges, specific directories are mounted in read-write mode,
in order to enable the modification of system files and complete spe-
cific attack tasks. Our approach consists of checking the read/write
mode of specific paths in the file-system, some of them coming from
those involved in RootBeer8, a prominent library for Android root
detection. These are /system, /system/bin, system/sbin, system/xbin,
/vendor/bin, /etc and /sbin.

4.4 SELinux Status Check
SELinux stands for Security Enhanced Linux and it was introduced
in Android to enforce mandatory access control over all the pro-
cesses. Since Android 5, SELinux is set to enforced by default9, to
limit what can be accessed or modified, even by root. This means
that, even if root is present, when SELinux in is enforcing mode,
modifications to system files are blocked at kernel level. Thus, the
kernel on attacker devices is often patched to support a permissive
or disabled SELinux, to let an attacker fully control the device.

In our implementation, we employ two ways to detect the state
of SELinux, at increasing level of complexity. The first approach
is still based on Android properties, in particular the properties
ro.build.selinux and ro.boot.selinux. The first one reports the SELinux
status from the boot image boot.img, while the second one checks
if the Kernel is currently configured in the permissive mode.

8https://github.com/scottyab/rootbeer/
9https://source.android.com/security/selinux

For the second way, we propose to indirectly detect SELinux
by identifying the contents of the enforce file, which is a file
holding the current mode of SELinux. To this aim, we read the
file /proc/filesystems, which is supposed to list those filesystems
that were compiled into the kernel, or whose kernel modules are
currently loaded. Thus, we detect if the selinuxfs file system is
present, which would imply that SELinux is currently loaded in the
kernel.

Since Android 8, reading this file should be blocked by SELinux10.
Thus, a successful read in Android 8 is already a clue of malicious
reverse engineering, because it means that SELinux is disabled or
in permissive mode.

Alternatively, for previous versions of Android, we try to detect
the value selinuxfs in /proc/filesystems. In case we find it, we know
that SELinux is running, but we still do not know in what mode it
is running. In order to determine the mode, we search for selinuxfs
in /proc/mounts and, in particular, for a file named enforce. If the
content of this file is “1” the SELinux is in enforcingmode, otherwise
if the content is “0” the state is permissive.

4.5 Android Properties Check
System properties can be used to spot malicious reverse engineer-
ing. Upon boot, the file Default.prop is copied from the boot image
boot.img to the System directory. This file contains all informa-
tion about the specific build in execution, such as whether the
debuggable flag is enabled, if adb can run as root, and many other
information. These information are essential in detecting a setup
that could be used for malicious reverse engineering.

A debugger is commonly used to test an app under development.
In Android, the debugger communicates with the Dalvik virtual
machine (that runs the app code) using Java Debug Wire Protocol
(JDWP), a protocol that allows an app development platform to
read/write the state of a running app, to inspect its memory and to
do step-wise execution. To this aim, a dedicated thread is created
when the Dalvik virtual machine starts an app, that waits for a
debugger to attach.

The Dalvik virual machine decides whether to create this thread
or not based on the ro.debuggable flag11. This flag means that the
debugging protocol should be activated for the app under develop-
ment. This would allow an attacker to attempt dynamic analysis.

If also flag ro.secure and flag service.adb.root are detected, we can
be quite confident not only that debugging is activated, but also
that it is allowed to run as root. This grants all privileges to the
attacker connecting through adb, and allows her/him to manipulate
the device at will. This is a common strategy used to remount the
system directory and to grant root access to the device, or when
Dynamic Binary Instrumentation tools are used12.

4.6 Dynamic Binary Instrumentation
Detection

An effective practice to reverse engineering Android apps is to use
hooking frameworks and dynamic instrumentation tools. There are

10https://github.com/CypherpunkArmory/UserLAnd/issues/59
11https://developer.android.com/studio/debug
12https://android.stackexchange.com/questions/28653/obtaining-root-by-modifying-
default-propro-secure
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many of these tools available, including Frida13, Artist14, Whale15
and Xposed16.

Xposed can be used to hook into method calls. The hooking
capabilities allow an attacker to inject new code right before or
right after a hooked method call, and thus modifying the behav-
ior of the app at specific places. This is achieved by Xposed by
replacing the file /system/bin/app_process with a custom one that
contains the Xposed runtime, because this file is used by Android
to spawn new app processes. A succesfull attack can be scripted
as an Xposed module and then shared. Modules have the form of
Android apps that, once installed on a device, will be recognized
by the Xposed framework and automatically loaded and applied to
mount an attack.

Our approach aims at detecting indirect clues of the presence of
Xposed and Frida. In fact, Xposed and Frida require some libraries
to be mapped into the memory of the app, in order to let an attacker
inject code. We resort to /proc/self/maps, that describes a region of
continuous virtual memory in the app. To detect Xposed, we look
for libraries app_process32_xposed and XposedBridge.jar which we
know are loaded by default. For Frida, we specifically look for the
library frida-agent-32.so which is loaded upon hooking. To avoid
being detected and hooked, instead of implementing this detection
in Java, we implemented it in C using the fopen primitive to read
/proc/self/maps.

These clues might change in future versions of the dynamic
instrumentation frameworks, for example because of library re-
naming. Thus, in order for our detection to stay accurate, we need
to monitor updates and the evolution of these frameworks, and
update our detection clues accordingly.

4.7 Kernel Signature Check
An alternative approach to detect a rooted Android device is by
detecting a custom build with the ro.build.TAGS property. This is the
Android property that contains the tags that describe the current
build. These tags may provide information related to the keys used
to sign the kernel, when it was compiled, like unsigned or debug. We
specifically search for three values, namely “test-keys”, “dev-keys”
and “release-keys”.

The first two values mean that the kernel was compiled but not
signed by an official developer. A third party, instead, signed the
kernel, for instance an attacker built and signed it, after applying
custom changes to enable malicious reverse engineering. This is
a hint that this device can not be considered a safe environment,
because system components could have been hijacked.

In case the value “release-keys” is found, it indicates that an
official developer signed the build, so this kernel is more trustful.

4.8 App Signature Check
In case an attacker managed to bypass all the security checks im-
plemented, the tampered app is repackaged and signed, of course
using a different singing key than the secret key owned by the
original developer. By implementing one additional security check,

13https://github.com/frida/frida
14https://github.com/Lukas-Dresel/ARTIST
15https://github.com/asLody/whale
16https://repo.xposed.info/

we can verify whether the app has been repackaged, based on its
signature. The way we retrieve the signature is critical, because
tools exist that automatically bypass common methods for reading
the signature. In fact, an attacker might make tampered apps report
the original signature, thus bypassing signature checks.

Signature spoofing can be done in several ways:
• Patching the system: this consists in tampering with the
underlying Android framework, to make it return the origi-
nal signature instead of the actual one, when the app requests
it. This can be achieved using an Xposed Module17, by patch-
ing the system with a tool like Tingle18, or using a custom
ROM; or
• Patching the app: Directly tampering with the app, and
dynamically divert the call to getPackageInfo of the Pack-
ageMangaer, to some custom code that ignores the invalid
signature provided by Android and just returns a local copy
of the original signature expected by the app check.

Our protection is inspired by a StackOverflow post19, i.e. avoid-
ing calls to Android libraries, because they could be hooked by an
attacker to circumvent our check.

Initially, we get the package name of the app by inspecting
/proc/self/cmdline. Then, we read /proc/self/maps, which is a file
containing the currently mapped memory regions and it includes
also the pathname if the region in question is mapped from a file. In
our case, since the region is mapped using the APK, the pathname
would be the location of the APK file. Then, we resort to theminizip
library20 to read the content of the APK file and, in particular,
the META-INF/*.RSA signature file, where the star * matches any
signature file name. Using the pkcs7 library21, we verify that the
file we chose is actually a signature file, and then we parse the
certificate and we extract the public key, which is it hashed (using
SHA256) and added to the check report that will be sent to the
server.

4.9 Security Report
When the security checks are completed, a report is filled with the
check results. This report includes the app signature as SHA256
hash. Then, the report continues with the detailed results of all the
checks, encoded as a 10-bit value as shown in Table 4.

Position Security Check
1-2 Emulator Detection
3 Root Detection
4 Root Detection (Apps)
5 FS Read/Write Mode
6 SELinux Status
7 Android Properties
8-9 Dynamic Binary Instrumentation
10 Kernel Signature

Table 4: 10-bit value as report of the security checks.

17https://repo.xposed.info/
18https://github.com/ale5000-git/tingle
19https://stackoverflow.com/a/50976883/9378427
20https://github.com/nmoinvaz/minizip
21https://github.com/liwugang/pkcs7
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The first two bits are for the result of emulator detection, indi-
cating that an emulator was found. Two bits are needed because
two different checks are performed, each of them having a sepa-
rate indicator and each could provide useful information either on
its own or in combination with the other one. The bit in position
three and four represent the result of root detection, respectively
at Android level and at the app level. For the Android level we
employ techniques to identify existence of root like detecting the
root binary, and for the app level we check whether any of the
installed apps is known to require root. The subsequent bits report
the checks on the file system (fifth bit), the status of SELinux (sixth
bit) and Android properties (seventh bit). Then, two bits (eighth
and ninth bit) are for the result of Dynamic Binary Instrumentation
detection, one of them reports the result for finding files related to
the frameworks, while the other one indicates if a library belonging
to a framework is already loaded. This information is useful on
the server side, because if the first bit is not flipped but the second
one is, it would mean that an attacker managed to bypass the first
security check while failed for the second one which is much harder.
In that case, a stricter policy could block the app more urgently, or
ban it for a longer period of time. The last bit (i.e., the tenth bit) is
related to the check of the kernel signature.

5 CHECK REPORT AS MAGIC NUMBER
When all the verifications and checks described in the last section
are complete, their outcome should be sent to the server for vali-
dation. In order to defend against replay attacks or precomputed
report values, we propose to use a Magic Number. This approach
is based on an algorithm that takes into account check results to
compute a (magic) numeric value. Then, the server is supposed
to verify this value using the same algorithm. If the expected and
received values do not match, it means that a malicious reverse
engineering attack might be in place, so the client that sent the
wrong Magic Number should be disconnected.

The Magic Number is composed of two main parts. The first
part is a random unique id, and the second part is a security report
checksum.

5.1 First Part
The first part of the Magic Number is computed using the pseudo
code shown in Algorithm 1. InitRandomNumber is assigned a ran-
dom value that is n digits long. This same value is used to compute
other two values, i.e. sec and third in a deterministic way, using
arithmetic expressions, based on some constant values X1, Y1, X2,
Y2 that are decided at protection time (either configured by the
developer or randomly generated otherwise when compiling the
code). Eventually, each of these three values is truncated to keep
only its first n characters, then these values are all concatenated
and returned.

The concatenated value will be validated at the server side. First
of all, the server will check that this value has not been observed
earlier in other messages. Second, the arithmetic operations are
checked, following the exact same process as the client used initially
to calculate the number, to verify that the number is consistent.

The length n of the initial random number and the length of
the concatenation (i.e., 3*n) can be configured by the developer, to

guarantee enough variability to support a large number distinct
check messages. A longer number and more complex arithmetic
operations could be used, to enforce a more secure scheme against
attackers.

Algorithm 1 Magic Number - Part 1

1: procedure
2: InitRandomNumber← random n-digits number
3: sec ← InitRandomNumber ∗ X1 + Y1
4: sec ← sec(0 : n)
5: third ← InitRandomNumber ∗ X2 + Y2
6: third ← third(0 : n)
7: return ← concatenate(InitRandomNumber, sec, third)

5.2 Second Part
The second part in the magic number represents a checksum of
the report. The pseudo code in Algorithm 2 shows how this second
part is computed. It uses a portion of the app signature, a portion of
the Android user-ID that is running the app, a portion of the first
part of the Magic Number already computed and a portion of the
10-bit number report (see Section 4.9).

Algorithm 2 Magic Number - Part 2

1: procedure
2: SignSlice← signature(S1 : S2)
3: UIDSlice← userid(U1 : U2)
4: FSlice← firstMagicNumber(F1 : F2)
5: IndicatorsCnt← Count occurences of 1
6: concatenate:
7: s ← concatenate(SignSlice, UIDSlice, FSlice, IndicatorsCnt)
8: List = []
9: for character in s do
10: List ← abs(Unicode(character)) + X3
11: return ← String(List)

Some characters are taken from the app signature (from the S1-th
to the S2-th character) and some characters from the Android user-
id (those with positions in the interval [U1,U2]). Then, a portion of
the first part of the Magic Number is also taken, in particular the
characters from the F1-th to the F2-th are considered. The last value
(i.e., IndicatorsCnt) is computed by counting how many occurrences
of “1” are found in the 10-bit number included in the report.

Here, we only include the number of occurrences of “1”, but not
specific positions of them, because any non-zero value indicates a
security alert. An attacker would try and hide an attack by removing
a “1” from the security report. However, the attacker would not
be able to predict what other changes are required to the magic
number in order to make it consistent with the tampered report.

These four values are concatenated in the string s, that is later
converted character-by-character into a string composed only of
digits, by using the Unicode representations of each character, plus
the constant value X3. This last string is then interpreted as a nu-
meric value and it represents the second part of the Magic Number.
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The constant values S1, S2, U1, U1, F1, F1 and X3 are decided
at protection time, possibly by the developer who applies our ap-
proach.

5.3 Server Side Validation
When the report is received at the server side, the server checks this
Magic Number against the complete check report. This verification
follows the same algorithms used to compute this value at client
side. This includes not only checking that the first and second part
of the Magic Number are correct, but also that they are consistent
to each other, by verifying the portion of the first part that is used
to compute the second part.

This approachmeets keys security requirements in order to block
these attacks:

Replay attack: Every execution of the above algorithms would
produce a new, different value for the Magic Number, because the
first part is based on a random value generated on each execution.
Thus, a valid Magic Number intercepted during a valid execution
of the app can not be reused multiple times. In fact, reusing a value
would be easily detected at server side, when the same value is
observed twice.

The randomness of the first part of the Magic Number is based
on the srand() function in C, seeded with the time in seconds. This
allows to have a different random number after one second. This
means that when security checks are required faster than once per
second, the same random number is reused. This is not a problem,
because our server side implementation is compatible with this
scenario. In fact, the server allows the same magic number to be
reused by the same user within one second. Additionally, a collision
in the first part of the Magic Number among two different users is
allowed, because their second part (which includes the User-IDs)
would be different and, therefore, distinguishable at server side.
Conversely if the same Magic Number is repeated across different
users, it means that both parts of the Magic Number are spoofed
and, therefore, we assume an attack is attempted that should be
blocked by the server.

Precomputation attack: An attacker might try to compute a
correct value offline, and then hardcode it in a tampered app, to
send a valid Magic Number to the server, even if the app is under
malicious reverse engineering. This attack is very hard to mount,
first of all because a single valid value can not be reused multiple
times. Then, it is quite hard to reverse engineer the algorithm
used to compute the Magic Number, in fact its implementation is
native code (compiler C code should be harder to analyze than Java)
and it is obfuscated. Further, arithmetic operations in Algorithm 1
and constant values used in Algorithm 1 and in Algorithm 2 can
be arbitrarily changed, virtually enabling unlimited new versions
of the app for frequent updates [4, 5, 8], thus making potential
precomputation attacks expire soon.

6 EMPIRICAL VALIDATION
In this section, we evaluate the resource consumption of our ap-
proach for detecting malicious reverse engineering.

6.1 Research Questions
To conduct our empirical validation we formulated the following
research questions:
• RQCPU : What is the computational load overhead caused
by our approach?
• RQMem :What is the memory overhead caused by our ap-
proach?
• RQNet :What is the network overhead caused by our ap-
proach?

The approach proposed by us to detect malicious reverse engi-
neering comes at cost of some performance overhead. In particular,
the first research question is meant to investigate the CPU con-
sumption of our checks. The second research question is still about
the overhead of our approach, but on the memory consumption.
Eventually, the third research question measures the network us-
age, needed to communicate the check results to the server. By
answering these research questions, we will be able to quantify if
the cost of the proposed approach is affordable for smartphones.

6.2 Experimental Environment
We run the experiment on Firebase Test Lab22, a paid service pro-
vided by Google to test apps. This service also provide analytics
on the CPU, RAM and Network consumption on the app under
test. This service allows to run tests on physical devices and on
emulators.

6.3 Metrics
To answer research questions, we adopted the following metrics:
• CPU Load: We measure the CPU consumption using the
inbuilt tools provided by Firebase Test Lab. The tools report
an average of the overall CPU consumption of the device.
• Memory: The amount of memory used by the device, mea-
sured in MB, as reported by Firebase Test Lab.
• Net: The amount of data in KB exchanged via the network
interface, either Received or Sent. They are measured by Fire-
base Test Lab platform tools.
• Interval: The amount of time (measured in seconds) between
two consecutive security checks. This interval is configured
by us and hard-coded in the app under analysis.

6.4 Devices, App and Scenario
We chose devices that are commonly used and that have different
Android versions. The list of devices used in our empirical validation
is shown in Table 5. The first column reports the model of the device,
the second column is the API level supported by the device, which
maps directly to a version of Android. Then, the table reports the
number of cores available in the device (third column) and their
speed in GHz (fourth column). The last column reports the amount
of RAM memory in GB.

While the majority of the devices have many cores and at least
4 GB of memory, Nokia 1 is a peculiar case. We chose that device
because it belongs to the low-end spectrum of Android smartphones.
We considered it an interesting scenario to observe the impact of our

22https://firebase.google.com/products/test-lab/
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Device API Cores CPU Freq RAM
Pixel 2 28 8 4x 2.35 + 4x 1.9 4 GB

One Plus 5 26 8 4x 2.35 + 4x 1.9 6 GB
Huawei Mate 9 24 8 4x 2.4 + 4x 1.8 4 GB
Xperia XZ1 26 8 4x 2.45 + 4x 1.9 4 GB
Nokia 1 27 4 4x 1.1 1 GB

Table 5: Hardware specifications of devices used in the em-
pirical validation.

implementation in low-end devices, where RAM and CPU resources
are limited.

As a testing app, we used a simple calculator. This app does only
basic arithmetic operations, and we chose it due to its simplicity and
the low footprint on resource usage. So, we expect the impact on
the resource consumption due to security checks to be evident. We
created five different versions of this app, with different intervals
between running the security checks. We chose to run the tests
with intervals of 10, 5, 2, 1 and 0.5 seconds. Although running a
security check every half a second may seem extreme, we included
this configuration in our experimental setting to collect results also
in particularly adverse case, towards a worst case analysis.

To run this app in Firebase Test Lab, we defined a use case that
resemble a normal execution scenario by the end-user, because
we are interested in quantifying the overhead that an end-user
would experience in her/his daily usage. This scenario consists in
21 arithmetic operations between numbers, like 5 + 2 = 7, where
overall it lasts approximately 40 seconds. The test is recorded using
a Roboscript a capture-and-replay tool available in Firebase Test
Lab.

6.5 RQCPU : Results of Computation Overhead
Figure 2 shows the average of CPU consumption for the five dif-
ferent check intervals (x-axis). The first value on the left-hand side
represents the original clean app with no security checks, as a base-
line reference for comparison. Different devices are represented
with lines with different colors.

We can notice that for almost all devices (except Nokia 1), the
CPU consumption is almost constant for any check interval. In-
stead, for Nokia 1, CPU consumption increases linearly as the check
frequency increases.

Table 6 reports the result of a numerical comparison between the
clear and the protected app, each column represents the increase
when a different check interval is experimented. Different devices
are represented in different rows.

We see that for the shortest interval, most of the devices report
an increase in CPU consumption of at most 1.3%. For the Nokia 1,
instead, we see that it reaches almost 12% increase, when checks are
performed each 0.5 seconds. However, CPU overhead is a reasonable
1.75% when we check every 5 seconds.

Considering that Nokia 1 is a low-end device, these results sug-
gest that too frequent security checks (such as twice per second)
are not appropriate. We observe an acceptable impact on CPU con-
sumption only on mid and high-end devices.

Devices 10 sec 5 sec 2 sec 1 sec 0.5 sec
Pixel 2 0.26 0.33 0.28 0.75 0.85

OnePlus 5 1.33 1.56 1.48 1.75 1.29
Huawei Mate 0.12 0.44 0.54 0.74 0.94
Xperia XZ1 0.05 0.17 -0.27 0.82 1.18
Nokia 1 3.49 1.75 4.61 7.66 11.78

Table 6: Average CPU load increase depending on the inter-
val between checks.

6.6 RQMem : Results of Memory Overhead
Figure 3 shows the RAM consumption (in MB) on different devices
for different check intervals, with the original app with no check on
the left-hand side. The difference in memory consumption between
the original and the protected app is shown in Table 7. As we can
see, the RAM consumption increase does not depend on the check
interval. Thus, the amount of RAM required for the security checks
is independent of how often the security check is occurring. The
increase of RAM consumption reaches at most, 13 MB for the Pixel
2 device, while for the rest of the devices it remains lower than
10MB.

We can conclude that the footprint of the security checks is rela-
tively lightweight, even for the Nokia 1 device, where the available
RAM is limited to 1 GB. There is a slight increase in the gradient in
the measurements when the frequency of the checks increase.

Devices 10 sec 5 sec 2 sec 1 sec 0.5 sec
Pixel 2 11.8 11.6 10.8 12.2 13.6

OnePlus 5 5.8 6.1 6.8 7.1 7.6
Huawei Mate 7.1 7.6 7.8 8.3 8.6
Xperia XZ1 5.4 6.0 6.5 7.4 7.9
Nokia 1 7.3 6.0 8.0 8.6 9.8

Table 7: Average RAM consumption increase (measured in
MB) with decreasing interval between checks.

6.7 RQNet : Results of Network Overhead
Figure 4 and Figure 5 show the network resources consumed during
the experiment, respectively for the incoming traffic and for the
outgoing traffic. The app with no check is displayed on the left-
hand side, followed by apps with checks at increasing frequency
(decreasing check interval).

As expected, the network overhead increases when checks are
more frequent and more check reports are sent. Additionally, we
also observe different network usages for the different devices.
In particular, the gap between Nokia 1 and Xperia XZ1 is quite
significant. This is explained by considering how the execution
scenario is run. Each scenario includes the same interactions (i.e., 21
different arithmetic calculations) to be performed, but this scenario
takes shorter on faster devices (30 seconds Xperia XZ1) on and
it takes longer on slower devices (80 seconds Nokia 1). Since the
checks are performed at a strict pace, different duration of the
execution scenario means different number of checks performed
and thus, different number of check reports sent to the server.



Revealing Malicious Remote Engineering Attempts
on Android Apps with Magic Numbers SSPREW 2019, December 9-10, 2019, San Juan, Puerto Rico, USA

6.1 6.1 6.2 5.8
6.9 7.2

13.4

16.9
15.2

18.0

21.1

25.2

Intervals (sec)

Av
er

ag
e 

CP
U 

%

0.0

10.0

20.0

30.0

Clean 10 5 2 1 0.5

Pixel 2 OnePlus 5 Huawei Mate 9 Xperia XZ1 Nokia 1 (Android GO)

Figure 2: CPU consumption for protected apps with decreasing interval between checks.

In order to avoid this problem, we decided to change the exper-
iment to measure network overhead. Instead of performing the
checks at a constant pace, they are executed after each arithmetic
computation, when the equal button of the calculator is pressed.
In this way, the number of checks is independent from the device
speed and the network traffic is comparable across devices. Table 8
reports the results of this last experiment. All the devices report
approximately the same amount of data being received/sent during
the test run, i.e. around 40 KB sent and 18 KB received.

Device Incoming Outgoing
Pixel 2 17.2 41.6

OnePlus 5 17.4 40.5
Huawei Mate 17.3 39.4
Xperia XZ1 17.5 40.2
Nokia 1 18.4 41.7

Table 8: Incoming/outgoing network traffic (in KB) for pro-
tected apps.

6.8 Considerations
When the security checks are performed twice per second, which
means the highest possible load, the mid and high-end devices
reported an increase in CPU load of less than 1%. For the low-end
device, like Nokia 1, running two checks per second is not quite
acceptable (CPU load increase of 12%). However, performing a check

every 5 seconds leads to only 1.75% increase in the CPU load, which
is acceptable. Based on these results, we can safely assume that our
implementation is light-weight on most devices and it is expected
not to cause a negative impact.

Considering the memory overhead due to our checks, we noticed
that the worst case is for the device Pixel 2, where the RAM needed
for the checks reached 13.5 Mb. Considering that this device has
4 GB of Ram, we conclude that the memory overhead caused by
our checks is negligible. For the low-end device Nokia 1, with only
1 GB of RAM, we record less than 10 MB of memory overhead.
This can be also considered a negligible and acceptable cost. So, we
conclude that our implementation has a low footprint in terms of
RAM consumption.

Concerning network overhead, we observed 40 KB of data being
sent and 20 KB been received. Considering that in 2018 the average
download speed worldwide was 21.35 Mbps and the average upload
speed was 8.73 Mbps23, the network cost of our checks is almost
negligible.

All in all, we can conclude that the overall cost (including CPU,
memory and network overhead) of the checks approach that we
propose to detect malicious reverse engineering is small and appro-
priate for modern smartphones.

7 RELATEDWORK
The first approaches to check for the integrity of the code under ex-
ecution were based on remote attestation. One of the first and most

23https://www.speedtest.net/insights/blog/2018-internet-speeds-global/
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common applications of it is the Integrity Measurement Architecture (IMA) proposed by the Trusted Computing Group (TCG) [9, 17].
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Figure 5: Outgoing network traffic (measured in KB) for protected apps with decreasing interval between checks

However, TCG realisation is based on a hardware module, the
Trusted Platform Module (TPM), which acts as the self-protecting
trust base. As the technology evolved, the TCG approach evolved
as well, thus TCG has extended the hardware-based solution to
virtual and cloud-based environment [15, 18]. In general, hardware-
based solutions could be used as tamper detection, but they barely
apply to the mobile context where constraints on special purpose
hardware can not be imposed.

Software-only mechanisms have been proposed. Armknecht et
al. [1] have coined the definition of software attestation, to dis-
tinguish software-only approaches from the ones that follow the
TCG approach. Software-only approaches are divided in three cat-
egories, depending on the properties used to compute and verify
attestations: time-based attestation, where being able to compute
an answer in time is indeed the integrity evidence; static attesta-
tion, where static properties of the application are considered, like
binaries and read-only memory properties; and embryonal works
that use dynamic properties to infer execution correctness.

Time-based approaches estimate a time limit within which the
evidence must be produced and sent to the verifier, if the time
exceeds this estimation the evidence is not accepted. Seshadri et
al. [19] realized their prototype, namely Pioneer, based on time-
based attestation. Integrity, with their solution, is assessed through
the precise estimation of the execution time of precise code frag-
ments executed as attestation proofs.

The earliest proposal of static attestation is the Spinellis’ soft-
ware reflection, which proposed the hash of random parts of the
memory [21]. Similar solutions are SWATT, proposed by Seshadri et
al. [20], a software-based solution that monitors target code mem-
ory regions, and MobileGuards, proposed by Grimen et al. [10],

short-lived attestation agents downloaded from a trusted server.
Kennel et al. [12] proposed a set of genuinity tests based on static
information.

App repackaging has been identified as a serious issue. A large
set of apps frommultiple marketplaces have been compared to iden-
tify repackaging based on code similarity [16, 25]. This approach
works when considering a large number of app for comparison and
confirmed the problem of app repacking. However, this approach
does fit the problem of deciding if the current app under execution
has been tampered.

Countermeasures against app repacking have been proposed,
based on the analysis and prof-of-concept repackaging attacks on
a number of banking apps [11]. Countermeasures includes (i) self-
signing restriction (requiring marketplace signature in order to
publish an app) which violates the Android open policy stating that
anyone may publish an app; (ii) adoption of code obfuscation to
substantially increase the effort needed by an attacker to reverse
engineer the app; and (iii) usage of hardware-based security solu-
tions based on TPM, that could be embedded into a smartphone,
with the overhead of additional hardware cost.

Signature checking has been also integrated with code obfusca-
tion [14] to mitigate tampering attacks. Moreover, the app signature
is verified multiple times, with different approaches and in different
locations in the code, with the aim of making is very hard for an
attacker to identify and defeat them. Additionally, instead of trig-
gering a failure immediately when detecting a repackaging attack,
they transmit the detection result to another node and delay the
failure, thus making it even harder for an attacker to pinpoint the
origin of the failure. However, they acquire the public key from
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the app using the Package Manager, which as shown in Section 3 is
quite easy to hook.

Amodified kernel is proposed byWang et al. [23], where a kernel-
level Android app protection scheme is presented. This approach
works as long as we assume that an attacker is not tampering
with the kernel, which is not the case when tools link Magisk are
deployed. All in all, this solution can not be deployed by an app
developer, who can not request end-user to install specific kernel
modules before downloading her/his app.

8 CONCLUSION
Malicious reverse engineering is a prominent prerequisite for at-
tacks based on code tampering. This paper presents an approach
based on local checks to identify attempts of malicious reverse
engineering on Android apps. Our approach is based on (i) accu-
rate checks on the Android execution environment to spot traces
of unauthorized analysis; and (ii) consistency checks on the app
code. It is important to check both of these perspectives at the same
time, because each one could be exploited by an attacker to hide an
ongoing analysis on the other one.

Our empirical validation suggests that our approach causes ac-
ceptable execution overhead, and that it is applicable for a wide
variety of devices. The interval between two consecutive checks
can be tuned to support also low-end devices with limited compu-
tational power and memory.

In our ongoing research agenda, we plan to continue investigat-
ing on this topic, first of all by accurately validating the detection
capability of our approach. In particular, we plan to test it on the
most advanced tools for automated analysis of Android apps. More-
over, we plan to involve expert hackers and ask them to try and
subvert or workaround our checks. Based on this user study, new
and more effective checks might be elaborated, the overcome the
limitations of our current implementation.
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