
OBLIVE: Seamless Code Obfuscation for Java
Programs and Android Apps

Davide Pizzolotto∗†, Roberto Fellin∗†, Mariano Ceccato∗
∗Fondazione Bruno Kessler, Trento, Italy
†University of Trento, Trento, Italy

Abstract—Malicious reverse engineering is a problem when
a program is delivered to the end users. In fact, an end user
might try to understand the internals of the program, in order
to elaborate an attack, tamper with the software and alter its
behaviour. Code obfuscation represents a mitigation to these kind
of malicious reverse engineering and tampering attacks, making
programs harder to analyze (by a tool) and understand (by a
human).

In this paper, we present Oblive, a tool meant to support
developers in applying code obfuscation to their programs. A
developer is required to specify security requirements as single-
line code annotations only. Oblive, then, reads annotations and
applies state-of-the-art data and code obfuscation, namely xor-
mask with opaque mask and java-to-native code, while the
program is being compiled. Oblive is successfully applied both to
plain Java programs and Android apps.

Showcase videos are available for the code obfuscation part
https://youtu.be/Bml-BkKP3CU and for the data obfuscation part
https://youtu.be/zUizYVK42ps.

Index Terms—Program transformation; Code obfuscation;
Data obfuscation

I. INTRODUCTION

Java applications and Android apps are shipped in bytecode
format in order to be executed by the Java/Dalvik Virtual Ma-
chine. However, bytecode is quite easy to read and decompile,
much easier than plain binary machine code, and this exposes a
program to Man-at-the-end (MATE [3]) attacks. These attacks
are those mounted by an end user, with the aim of applying
malicious reverse engineering or tampering with the code or
with the program data.

Code obfuscation is becoming more and more widely
adopted [11] by transforming the original program such that
attacker analysis becomes harder. This harder analysis miti-
gates the possibility to be attacked, by turning it impractical
or economically infeasible.

In this paper, we present Oblive, a tool aimed at helping de-
velopers in effectively and quickly applying code obfuscation,
without wasting their time in configuring or applying complex
obfuscation tools. The novel features of Oblive are:

• Seamless integration with the build process: Oblive is
developed on top of Gradle, a mainstream build system,
used in most open source programs (especially Android
apps). As a Gradle plugin, it can intercept the Gradle
build pipeline and extend it exactly where needed. It in-
jects two additional build tasks, that perform respectively
data obfuscation and code obfuscation.

• Obfuscation configuration with code annotations: The
developer is left with the only manual task of deciding
which part of code is the critical one, that should be
obfuscated. This decision is specified by adding Java
annotations, directly in the clear source code.

• Cutting edge obfuscations: Oblive contains two compo-
nents, based on existing obfuscation approaches available
in literature. Data obfuscation includes recent variants of
Xormask [8], that turns static analysis very hard. Code
obfuscation replaces Java methods with an equivalent
implementation in C [7], much harder to analyze.

This paper is structured as follows. Section II describes
the motivations behind the need of Oblive. We describe the
implementation and architecture of Oblive in Section III. The
assessment of resilience and correctness of obfuscated code is
covered in Section IV. Then, Section V compares Oblive with
the state of the art, and Section VI closes the paper.

II. MOTIVATION

Many business sectors (especially apps) require software
artifacts to be delivered with a fast time-to-market. In these
contexts, the development and deployment process should be
simple and smooth. Complex or external tools might represent
a threat to a fast delivery of new products or updates. While
obfuscation would be highly beneficial, it would be adopted
only when it would guarantee fast deployment. Thus a first
requirement for an obfuscation tool is:

Requirement Req1: Obfuscation tools should be seam-
lessly integrated in the program build process and
should not be run manually by developers.

Oblive meets this requirement, because it is implemented as
a plugin for Gradle, one of the mainstream build environments
for Java and Android. To integrate our obfuscation in an
existing Java or Android project, a developer just needs to
specify a dependency (one line to edit) in the main Gradle
build script. Our plugin would be automatically downloaded
at the first build (as Gradle plugins normally are) and cached
locally for future builds.

Some tools indeed do not require manual effort to ap-
ply, for instance ProGuard1 comes with AndroidStudio2, the

1https://www.guardsquare.com/en/products/proguard
2https://developer.android.com/studio/



mainstream IDE for Android Apps. However, even if fast to
apply, this tool only supports quite basic obfuscations, such as
identifier renaming, that are quire established in literature since
some years [6]. The most recent obfuscation algorithms [8],
[7] are only available as separate tools. So an additional
requirement is the following:

Requirement Req2: Obfuscation tools should implement
advanced state-of-the-art obfuscation algorithms.

Oblive satisfies this requirement by implementing two of the
most recent and resilient data and code obfuscation algorithms,
whose effectiveness against malicious reverse engineering has
been assessed [2].

A last feature that implies fast adoption of an obfuscation
tool, is to be simple to use. In fact, often complex configuration
files need to be written in a domain specific language (such
as ProGuard configuration files) that developers might not be
familiar with. Alternatively, even more complex command-line
options might be needed to drive and configure obfuscation
algorithms.Thus, the last requirement is:

Requirement Req3: Obfuscation transformations should
be configured with a language that is familiar to de-
velopers, i.e. not a domain-specific language and not
command-line options.

Oblive meets this requirement by relying on Java annota-
tions to specify obfuscation parameters. These annotations are
pure Java code, which is familiar to Java developers. In fact,
Java annotations are largely used to configure mainstream tools
and libraries, such as the Spring framework3 with its many
submodules. Moreover, common IDEs often provide support
when writing annotations with code completion, suggestions
and syntax checking.

In the rest of the paper, we will show how Oblive practically
meets all these requirements, to deliver a novel, effective and
easy way to integrate a catalog of obfuscation transformations.

III. TRANSFORMATION

In this section, we describe the architecture of Oblive.
With the aim of helping software developers in adopting
state of the art obfuscation simply and quickly, our tool is
based on source code annotation. Oblive automatically applies
obfuscation transformations to the compiled bytecode. It has
been developed as a Gradle plugin, in order to apply both to
Android apps and to Java desktop developers.

Oblive contains two main components that integrate two
obfuscation algorithms. They are data obfuscation with Xor-
mask [8], and code obfuscation with Java2c [7]. These two
obfuscation algorithms have have been extensively described
in previous works, however, we summarize them here for
completeness.

A. Data Obfuscation: Xormask

The Xormask component is used to hide sensitive values
of class fields. Values are encoded with a mask, so that the

3https://spring.io/

clear value of the field is difficult to guess using malicious
reverse engineering attacks based on static analysis. The value
is encoded using a bitwise xor mask. The value is decoded as
needed, thus limiting the windows of exposure of the sensitive
clear value.

The Xormask component can be applied in three different
variants, each one with increasing level of obscurity, at the
cost of increased execution overhead. The simplest variant is
the Constant xormask, where the mask is a static constant
stored in the code. This variant provides the least resilience
but its runtime impact is almost negligible. The most advanced
variant, the Opaque xormask, requires the attacker to solve an
NP-hard problem using K-clique [7] every time the variable is
accessed in order to get the mask value. A trade-off between
the two is represented by the Opaque with cache xormask,
which uses the same K-clique NP-hard problem, but the
solution is computed only once and then stored in a cache for
fast access. It is less secure, because an attacker could also
access the cache to retrieve the mask and decode the clear
value.

B. Code Obfuscation: Java2c
The Java2c component is used to hide an entire method

body, by translating it to native code (i.e., C code that is
later compiled into a native library) that will be dispatched
together with the application. As such it is subject to the
Java constraints that prevents constructors to be native, but
any other Java method can be obfuscated with this approach.

The Java2c component reads the Java code, opcode by
opcode, and emit their C counterpart implementation, es-
sentially emulating the JVM in the generated C code. The
C implementation is written in such a way that it is still
possible to query the JVM for regular Java method calls,
exception handling and field access, thus granting the ability
of translating every Java opcode and preserving the semantics
of the overall program.

C. Plugin Integration
To integrate Oblive as a Gradle plugin, the developer has

to specify a dependency in the main Gradle build script (the
build.gradle file) as shown in Figure 2. This will make Gradle
load our plugin, that specifies how to change the build process
to apply code and data obfuscation at the right build phase,
i.e. just after compiling the source code into Java bytecode.

Then, obfuscated code will continue with the remaining
build process, possibly edited by other plugins. For instance,
the Android plugin requires the Java bytecode to be converted
to Dalvik bytecode, be packaged into an APK archive and be
cryptographically signed.

D. Annotation Syntax
Oblive requires code annotations in order to apply code or

data obfuscation. The annotation is @Obfuscate with some
parameters that depend on the particular code/data obfuscation
to be deployed.

Here we present the parameters for the data obfuscation.
Figure 1 shows an example where the string variable apiKey



(a) Xormask with constant mask obfuscation (b) Xormask with opaque mask obfuscation

Fig. 1: Examples of code annotation for data obfuscation with Xormask.

...
apply plugin: ’eu.fbk.plugin.hardening’
...

Fig. 2: The Gradle snippet that loads Oblive

is obfuscated with a constant mask on the left and with an
opaque mask on the right. The protections parameter
specifies which kind of obfuscation we want to apply, in this
case the xormask. mask specifies the xormask variant to use.
If the variant chosen is CONSTANT, maskConstantValue
specifies the mask static constant value. If the variant chosen
is instead the OPAQUE one, opaqueConstantAlgorithm
specifies the algorithm used to generate the opaque constant
and parameters sets a parameter that corresponds to the
size of the hard problem used to generate the opaque constant.
Then, cache is a boolean representing if the problem should
be solved just once and then cached. Note that the larger
the problem size, the higher the data obscurity, but also the
slower the code. Thus we recommend to keep a value of 16.
In order to simplify the usage of Oblive, most of these values
are defaulted to recommended ones.

Fig. 3: Example of code annotation for code obfuscation with
Java2c.

Figure 3 shows an example of the code obfuscation where
the Java2c obfuscation is applied to the method encrypt. For
code obfuscation with Java2c, the parameter protections
is the only parameter to specify.

E. Transformation

Oblive is implemented in the form of a Gradle plugin
defining two novel Gradle tasks, called xormask and java2c,

named after the two components that obfuscate the bytecode.
The Gradle plugin takes the Java bytecode generated by the
compileJavaCodeWithJavac Gradle task and applies
the two obfuscation tasks to it, thus modifying the generated
bytecode files.

When the Java2c transformation is applied, an additional
task that compiles the C code starts at the end of the plugin
obfuscation. The generated C binary files are ready to continue
with the Gradle pipeline in a transparent way. Then, the build
continues with the ordinary Java or Android tasks, and the
packaged app/application (apk or jar file) is automatically
generated.

It is worth noting that the plugin ensures that the two
obfuscation tasks are applied in the aforementioned order due
to the inability of the Xormask component of obfuscating
native code produced by the Java2c component.

IV. EMPIRICAL VALIDATION

Both Xormask and Java2c components of Oblive have been
tested and evaluated especially in terms of execution overhead
of obfuscated code [8], [7]. In this paper, instead, we focus
on assessing the correctness of the generated code and the
automation of the obfuscation process.

A. Case Studies

For our empirical evaluation, we collected several open
source Android apps, by searching those available as open
source in GitHub4. Our initial list of apps has been filtered
to keep only those for which the test cases are available, and
that use Gradle as a build system.

In our experimental validation, we considered three open
source Android apps:

• cyclestreets/android, a journey planner system;
• owntracks/android, a tracking application;
• duckduckgo/android a search engine.

B. Correctness

In order to assess the correctness of Oblive, we first ran the
entire test suite on the clear version of the case study Android
projects. We, then, proceeded to obfuscate with Java2c the
10 longest methods of each case study, with methods selected

4https://github.com/



among those covered by test cases. Additionally, for each class
containing these methods, we also obfuscated with Xormask
a random field among the most used.

Then, we executed the obfuscated code on two Android
devices, one with an x86 processor and one with an ARM
processor. We observed that every test passing in the clear
code was also passing in the obfuscated code. Thus, we can
conclude that Oblive preserves the semantics of the obfuscated
code of these case studies.

C. Resilience to Manual Inspection

In order to test obscurity of the code, we decompiled
the application with the javap bytecode viewer, part of
the Orcale Java Development Kit, and with the CFR Java
decompiler5, to manually verify if the produced bytecode was
indeed obfuscated.

In case of code obfuscation, both javap and CFR showed
just the native signature of the method. Additionally, per
Java2c implementation, also the constant strings are not writ-
ten in the .rodata section of the generated native library,
thus increasing resilience.

In matter of data obfuscation with the opaque mask, javap
and CFR showed the NP-hard problem required to collect
the data mask. In particular, the latter tried but failed at
reconstructing the problem in plain Java code, generating
around a thousand lines of code for every use of the obfuscated
field. In all the cases, including the most simple with a static
constant mask, the clear value of the field was hidden.

D. Resilience to Automated Analysis

Finally, we also studied the resilience of the code generated
by Oblive against automatic analysis by tools, in particular
with respect to malware detection. In particular, we used one
of the most popular collection of malware detection kits, i.e.
VirusTotal malware scanner6. Although hiding malware is not
the intended use of our tool, this is an effective way to measure
the impact of obfuscation with an analysis tool that applies
with a very specific analysis goal.

We took a malicious app from the Drebin malware
dataset [1], namely BlackListPro and we decompiled it. We
manually inspected the decompiled sources to understand the
malicious behavior. Then, we implemented a piece of proof-
of-concept malware with a similar behaviour, to be used in our
empirical evaluation. This consisted in reading data from the
filesystem and then sending part of it as SMS to an hardcoded
destination number.

We submitted this app to the VirusTotal online scanner. Out
of 60 services available in VirusTotal, 21 of them reported
malware or unwanted behaviour in our app.

Then, we applied code obfuscation to the method that sends
the SMS, and we applied data obfuscation to the variable
holding the phone number, destination of this SMS. After
submitting the obfuscated app for scanning, only 1 out of 60
services detected our obfuscated app as malware.

5http://www.benf.org/other/cfr/
6https://www.virustotal.com

The scan results are reported in Figure 4, they are the
two screenshots of the virus scan on respectively the clear
application and the obfuscated application.

We can thus assess that our obfuscation increases the
resilience against automated code analysis.

V. RELATED WORK

Obfuscation is used to make code obscure, so that it is more
complex to understand by a potential attacker, who wants
to reverse engineer it. Obfuscation techniques change code
structure without changing its functional behavior through
different kinds of code transformations [10], [9]. It is well-
known that for binaries that mix code and data, disassembly
and de-compilation are undecidable in the worst case [5].

Data obfuscation targets data and data structures contained
in the program. Oblive automates our previous approach [8],
that aims at encoding program values using a mask that is
quite difficult for static analysis to recover, because it would
require to solve a computationally expensive hard problem.

The idea of translating Java bytecode to C was investigated
by Hsieh et al. [4] with the aim of making a program execute
faster, and by us [7] to turn malicious reverse engineering
more difficult and to enable more efficient obfuscations. We
reused the latter approach in Oblive, with a much higher level
of automation.

Other obfuscation tools for Java and Android are available
and the most prominent ones are SandMark7, Allatori8, Zelix9,
DexGuard10. Among them, SandMark is the only academic
one. It includes proof-of-concept implementations of novel
obfuscations elaborated by its academic authors. However, the
tool is not very easy to configure, because each obfuscation
accepts a different set of command line arguments, to be
properly configured.

Allatori, Zelix and DexGuard are instead quite robust com-
mercial tools, but they implement quite established obfus-
cations [11]. Oblive, instead, implements novel cutting-edge
research obfuscations [8], [7].

Similarly to SandMark, also Allatori obfuscations can be
configured using command line parameters. Instead of relying
on (potentially quite complex) command line parameters,
Oblive aims at supporting highest productivity by adopting
code annotations. In fact, while command line options require
to be manually checked against the documentation, annotation
syntax is check by the compiler, and possibly also suggested
by the IDE.

Zelix and DexGuard, instead, require a configuration file
written in a custom language. Even if configuration templates
can be easily found and adapted, developers are supposed to
spend some time and familiarize with the new syntax, to be
able to customize available configuration templates to their
needs. In our case, instead, annotations are used to drive

7http://sandmark.cs.arizona.edu/
8http://www.allatori.com/
9http://www.zelix.com/klassmaster/
10https://www.guardsquare.com/en/products/dexguard



(a) Apk without obfuscation (b) Apk with obfuscation

Fig. 4: Results of the malware detection in our crafted apk with unwanted behaviours

obfuscations. Annotations are coded in pure Java, which is
already familiar to developers.

DexProtector11 and DashO12 are tools that also provide
some support to obfuscation (similarly to Oblive), but are more
focused on run-time protections, such as anti-tampering and
anti-debugging.

VI. CONCLUSION AND FUTURE WORK

In this paper we presented Oblive, an obfuscation tool
implemented as a Gradle plugin, aimed at helping developers
in delivering state-of-the-art obfuscation transformations with
reduced effort. This plugin uses xor masking with different
level of resilience, ranging from low overhead constant masks
to advanced techniques requiring the attacker to solve NP-hard
problems in order to retrieve statically the obfuscated value.
Moreover, Oblive uses also an automatic translator from Java
code to C code in order to obfuscate entire portions of code
while maintaining portability by using cross compilation. We
assessed that Oblive was able to trick automatic decompilers
and evade mainstream malware detection.

As future work, we intend to continue integrating more
and more novel obfuscation transformations in Oblive, and
possibly conduct controlled experiments and usability studies
to assess our approach. We also plan to release Oblive as open
source software.

ACKNOWLEDGEMENT

This work has partially been supported by activities “API
Assistant/STAnD” and “Teı̂chos” of the action lines Digi-
tal Infrastructure and Digital Finance of the EIT Digital,
and the GAUSS national research project, which has been
funded by the MIUR under the PRIN 2015 program (Contract
2015KWREMX).

11https://dexprotector.com/
12https://www.preemptive.com/products/dasho/overview

REFERENCES

[1] D. Arp, M. Spreitzenbarth, H. Gascon, K. Rieck, and C. Siemens.
Drebin: Effective and explainable detection of android malware in your
pocket. 2014.

[2] M. Ceccato, P. Tonella, C. Basile, B. Coppens, B. D. Sutter, P. Falcarin,
and M. Torchiano. How professional hackers understand protected
code while performing attack tasks. In Proceedings of the 25th IEEE
International Conference on Program Comprehension (ICPC), 2017.

[3] P. Falcarin, C. Collberg, M. Atallah, and M. Jakubowski. Guest editors’
introduction: Software protection. IEEE Software, 28(2):24–27, March
2011.

[4] C.-H. A. Hsieh, J. C. Gyllenhaal, and W.-m. W. Hwu. Java bytecode to
native code translation: The caffeine prototype and preliminary results.
In Proceedings of the 29th annual ACM/IEEE international symposium
on Microarchitecture, pages 90–99. IEEE Computer Society, 1996.

[5] C. Linn and S. Debray. Obfuscation of executable code to improve
resistance to static disassembly. In Proceedings of the 10th ACM
conference on Computer and communications security, pages 290–299.
ACM, 2003.

[6] J. Nagra and C. Collberg. Surreptitious Software: Obfuscation, Wa-
termarking, and Tamperproofing for Software Protection: Obfuscation,
Watermarking, and Tamperproofing for Software Protection. Pearson
Education, 2009.

[7] D. Pizzolotto and M. Ceccato. Obfuscating java programs by trans-
lating selected portions of bytecode to native libraries. In 2018 IEEE
18th International Working Conference on Source Code Analysis and
Manipulation (SCAM), pages 40–49. IEEE, 2018.

[8] R. Tiella and M. Ceccato. Automatic generation of opaque constants
based on the k-clique problem for resilient data obfuscation. In 2017
IEEE 24th International Conference on Software Analysis, Evolution
and Reengineering (SANER), pages 182–192, Feb 2017.

[9] E. Valdez and M. Yung. Software disengineering: Program hiding
architecture and experiments. In International Workshop on Information
Hiding, pages 379–394. Springer, 1999.

[10] C. Wang, J. Davidson, J. Hill, and J. Knight. Protection of software-
based survivability mechanisms. In Dependable Systems and Networks,
2001. DSN 2001. International Conference on, pages 193–202. IEEE,
2001.

[11] Y. Wang and A. Rountev. Who changed you?: obfuscator identification
for android. In Proceedings of the 4th International Conference on
Mobile Software Engineering and Systems, pages 154–164. IEEE Press,
2017.


