
Obfuscating Java Programs by Translating Selected
Portions of Bytecode to Native Libraries

Davide Pizzolotto∗†, Mariano Ceccato∗

∗Fondazione Bruno Kessler, Trento, Italy
†University of Trento, Trento, Italy

Abstract—Code obfuscation is a popular approach to turn
program comprehension and analysis harder, with the aim of
mitigating threats related to malicious reverse engineering and
code tampering. However, programming languages that compile
to high level bytecode (e.g., Java) can be obfuscated only to a
limited extent. In fact, high level bytecode still contains high level
relevant information that an attacker might exploit.

In order to enable more resilient obfuscations, part of these
programs might be implemented with programming languages
(e.g., C) that compile to low level machine-dependent code. In
fact, machine code contains and leaks less high level information
and it enables more resilient obfuscations.

In this paper, we present an approach to automatically
translate critical sections of high level Java bytecode to C code,
so that more effective obfuscations can be resorted to. Moreover,
a developer can still work with a single programming language,
i.e., Java.

Keywords-Source code translation; Program transformation;
Code obfuscation

I. INTRODUCTION

Man-at-the-end (MATE [10]) attacks are those threats to
software security that occur when a program runs in a device
controlled by the end user, potentially involving the user as
attacker. These threats include malicious reverse engineering,
for instance aiming at violating intellectual code property, and
program tampering, to alter the code execution or the data
used.

Code obfuscation is a widely adopted class of techniques
to prevent or mitigate MATE attacks, by transforming the
code to make it harder to understand and analyze, but with-
out changing the code input-output behavior. However, very
widely adopted programming languages compile to a high
level bytecode, that is more difficult to obfuscate, because it
contains detailed structural and type information.

In particular, to meet the requirement of allowing runtime-
time verification and runtime-time optimizations, Java byte-
code has been designed so that it contains significant high level
information. In fact, Java bytecode includes method and class
identifiers, and variables are strongly typed. Moreover, class,
fields and methods are referenced by name in clear text, rather
than by address. Optimized machine code, obtained when
compiling C code contains less information [22], because it
is not meant to support runtime-time verification and run-time
optimization.

As a workaround to these disadvantages coming with Java
bytecode, developers are often suggested to hide critical parts
of a program by implementing them with other languages, that
compile to lower level machine code, such as C1. However,
this practice brings multiple drawbacks:

• A developer has to master an additional programming
language, different than the mainstream language used in
the rest of the software project;

• When portions of the program are written in C and
linked as an external library, many compile-time and
load-time verifications normally performed by Java are
impossible. This exposes the program to potential errors,
whose checking is usually delegated to the Java compiler;

• C code is usually not portable, often it is written for and
runs on a single architecture, or a sub-set of architectures.
Writing portable C code would need additional effort, that
may increase development cost.

In this paper, we present an approach to automatically
translate portions of Java bytecode to C. Depending on the
peculiar confidentiality constraints of a program, a developer is
supposed to annotate those segments of a Java software project
that are required to be translated to C. After compiling the Java
code, our tool detects the annotated parts and removes them
from the bytecode. These parts are automatically translated to
C and converted to a shared library, that is referenced by the
rest of the Java program using the JNI interface.

Differently from other approaches (e.g., Caffeine [13]) that
aim at translating a whole Java program to C code, we
only translate portions of the program and we preserve the
compatibility between the Java and C parts. This allows
the remaining Java part to meet framework or interface re-
quirements potentially imposed by the execution environment.
For instance, Android requires apps to extend system classes
(e.g., in Activities) and some Java methods to adopt specific
signatures.

This translation represents a first step towards the mitigation
of malicious reverse engineering, because more effective ob-
fuscations can apply on translated C code, for instance using
publicly available obfuscation tools for C [3], [23], [20], [19].

1Android authority, How to hide your API Key in Android.
https://www.androidauthority.com/how-to-hide-your-api-key-in-android-
600583/

On the other hand, the full automation of our translation
overcomes the disadvantages of manually writing C code in
Java projects:

• Developers only write and maintain Java code. They do
not have to care about C code, because it is automatically
generated based on the Java one;

• The translation is done at the bytecode level, after the
Java code is compiled. So the Java compiler is still able
to perform all the compile-time verifications, and notify
errors and warnings to the developer;

• A requirement of our translation is to generate fully
portable C code, that can be easily compiled for many
distinct platforms.

Working at bytecode level brings and additional advantage.
Our approach applies not only to programs developed in Java,
but also written in the programming languages that compile to
Java bytecode, e.g., Kotlin, Scala, JRuby, Clojure, and others.

Our paper is structured as follows. Section II covers the
technical background of the adopted technology. Section III
presents our approach and Section IV its empirical validation.
After presenting related work in Section V, Section VI closes
the paper.

II. BACKGROUND

Java code is not compiled to architecture-specific machine
code (like C and C++ do) but to an intermediate representation
called bytecode. Java bytecode instructions are then interpreted
and executed by the Java Virtual Machine, which is available
for each specific execution platform. In this section, we cover
some background on the Java language and on its runtime
environment that is relevant for this paper.

A. Stack Based

The Java Virtual Machine [15] is stack based. It means that
the data structure where the operands are stored is a stack.
All the operations are performed by popping (consuming) data
from the stack, processing them and pushing the results back
onto the stack. For instance, to add two integer values, these
values should be pushed to the stack, then the integer-addition
opcode is called. Two values are popped from the stack and
the addition result is pushed on top of it, where it is available
for the next opcode.

Method calls use the stack similarly to arithmetic operations.
Before calling a method, all the actual parameters should
be already pushed to the stack. The method return value is
available in the stack after the method execution is complete
(in case the called method has a non-void return type).

B. Opcodes

The Java bytecode language supports a rich set of opcodes,
that are summarized in the following.

Field access: opcodes used to read/write a class field. The
class name, field name and its type are explicit parameters of
this opcode. The field value is read from (or written to) the
stack.

Method call: opcodes used to call a method. The called
method name and the name of the class that defines the
called method are parameters of the instruction. The formal
parameter types are part of the method name. The actual
parameters are expected to be available on the stack before
the call, and the return value (if any) is on top of the stack
when the called method returns. For non static methods, a
pointer to the current class is also an actual parameter on the
stack. The opcode for evaluating dynamic language methods,
such as lambda expressions in the Java language, is a special
case of method call.

New instance: opcodes to allocate new object instances and
new arrays. Once allocated, the pointer to an object/array is
available in the stack.

Control flow: opcodes related to the definition of labels
and of conditioned/unconditioned jumps to labels. A specific
opcode supports the switch-case Java instruction, by specifying
the full jump table. Each value of the switch expression is
assigned a specific label to jump to. Among these opcodes we
have also the return opcodes.

Constants: opcodes used to push a constant (string or
numeric) value into the stack. Different opcodes are used for
different constant types (String, int, float and so on).

Local variables: opcodes to read and write local variables.
Local variable are read/written by coping their values from/to
the stack, or by loading constant values.

Expressions: opcodes related to arithmetic (e.g., sum) and
logical (e.g., xor) operations, type conversion (e.g., from long
to int, or from long to float). A special expression is the
INSTANCEOF opcode that checks whether a given object is
of a given (dynamic) type.

Exception handling: opcodes related exceptions. They are
used to define the extent of the try block, the corresponding
catch block and the type of the exception handled. Addition-
ally, an opcode is used to throw a new exception, that the
caller context might handle.

C. Java Native Interface

The Java Native Interface (or JNI for short) is a framework
that allows Java code to execute native code, i.e. architecture-
specific machine code, typically written in C. The aim of this
framework is to let the JVM run portions of code that are
platform-specific, for instance because they interact directly
with the underlying hardware or because they do low-level
I/O.

JNI is executed when invoking a Java method that has the
native modifier. This method has empty method body and,
whenever called, its corresponding platform-specific binary
code will be executed, from a shared library. Figure 1 shows
an example of native code. The Java code on the left-hand side
defines two methods, sub and add, both of them accept two
integer parameters and return an integer value. While method
sub is fully implemented in Java, method add lacks a Java
implementation. Since second method has the native modifier,
a platform-dependent implementation is expected.

class Calculator{

int sub(int a, int b){
return a - b;

}

native int add(int a, int b);

}

#include <jni.h>

JNIEXPORT jint JNICALL
Java_Calculator_add(

JNIEnv *env,
jobject thisObj,
jint a, jint b) {

jint c = a + b;
return c;

}

(a) Java code (b) C code

Fig. 1: Example of integration of C code in Java with JNI.

Its platform-dependent implementation in C is shown in the
right-hand side of Figure 1. Whenever a Java native method is
executed, the JNI framework delegates a C function following
a strict naming convention. The C function name is obtained
by concatenating the “Java ” prefix, with the Java class name
and the Java native method name. In the example, the C
function Java Calculator add corresponds to the method add
in the class Calculator.

The C function formal parameter list includes a pointer to
the Java execution environment (*env), a pointer to the object
that is called (thisObj) and then the formal parameters of the
Java method for which a machine-dependent implementation
is provided (a and b).

The reference *env to Java execution environment can be
used to interact with the JVM, for instance to inspect structure
of classes, to access their fields and to call their methods.
Moreover, utility functions are available in the environment to
probe execution status, for instance to know if an exception
has been thrown, and to perform type conversion.

Each Java native type is converted to a C type of the same
size, available to the C developer as a macro, e.g. int variables
are visible as jint, signed 32-bit integer. Objects are instead
visible as type jobject.

The C code in the example, just performs the sum in C and
then it returns the numeric value to the Java calling context.

III. TRANSFORMATION

This section presents our approach to transform a Java
program by removing selected parts of it, and by replacing
them with a native C library.

A. Overview

Bytecode
transformation

Transformed
Java	bytecode

Translation
to	C	code

C	code
compilation

Shared	library

Original
Java	bytecode

Fig. 2: Overview of the transformation approach.

The overview of our approach is shown in Figure 2 and
shown in an example of Figure 3. We assume that those Java
methods requiring obfuscations are annotated by developers

with the annotation @Obfuscate (method sum in Figure 3(a)).
Our transformation tool reads the compiled Java bytecode
(Figure 3(b)) and finds these annotations.

The annotated methods are rewritten, by removing their
body and by adding the modifier native so that JNI will be
activated at runtime, as shown in Figure 3(c). Moreover, a call
to System.loadLibrary is added in the class static initialization
section (i.e., the <clinit> method), to bind this class with the
native C library that the translator will create.

The removed Java body is then translated to a C function,
opcode by opcode, and a C source file is emitted as shown in
Figure 3(d). The C code is compiled to a shared library, and
this library is loaded as part of the static initialization of the
rewritten Java class.

The final transformed program consists of the dashed area
in Figure 2, i.e. the rewritten Java bytecode and the compiled
C library.

B. Java Operand Stack Emulation

Our transformation is implemented as an iteration on the
opcodes from the body of the method to translate and ap-
plies opcode-by-opcode. For each opcode found in the Java
bytecode, a set of C statements are appended to the new
C function. Since the Java Virtual Machine relies on the
stack (see Section II-A), also the C code generated by the
translator works on a stack, that emulates in C the original Java
operand stack. Thus, opcodes in the original Java bytecode
that push/pop data are translated as corresponding push/pop
operations on the C stack.

While the Java operands stack is used to store operands and
results, Java local variables are stored in an array and accessed
by index with the LOAD and STORE opcodes. Similarly to the
operands stack, also the local variables array is replicated by
the C code generated by the translator.

The size of the operands stack and of the variables array
is known at compile time and thus they are implemented in
our C layer as statically allocated arrays. We just introduced a
small difference, due to the different size of variables between
the Java bytecode and the JNI environment exposed to C code.
In Java bytecode, the operands stack and the variables array
contains elements of 32-bit. Java values that are 64-bit long
(double and long) consume two elements.

However, the JNI support for numeric types is different,
because all the Java types are represented in JNI as a C union
of 64-bit. For this reason, our operands stack and our variable
array are defined in C as array of 64-bit elements, and any
value consumes just one element.

The example in Figure 3 shows how we translate a portion
of Java that involves the operand stack. In the right-hand side,
the original Java source code adds two local variables x and
y and assigns the result to z, then this value is returned. This
compiles to the Java bytecode in Figure 3(b), ILOAD opcodes
load integer variables 1 and 2 (corresponding to x and y)
in the operands stack. These operands are consumed by the
integer addition IADD and the result is pushed to the stack.
This value is read by ISTORE and written to the variable

class Calculator {

@Obfuscate
int sum(int x, int y){
z=x+y;
return z;

}

}

@Obfuscate
sum(II)I

ILOAD 1
ILOAD 2
IADD
ISTORE 3
ILOAD 3
IRETURN

native sum(II)I

static <clinit>
LDC "libSim.so"
INVOKESTATIC
java/lang/System.loadLibrary
(Ljava/lang/String;)V

RETURN

#include <jni.h>

JNIEXPORT jint JNICALL Java_Calculator_add(
JNIEnv *env, jobject thisObj,
jint x, jint y) {

jvalue vars[4]
Push(vars[1]);
Push(vars[2]);
Push((int)Pop() + (int)Pop());
vars[3] = Pop();
Push(vars[3]);
return (int)Pop();

}

(a) Java source code (b) Java bytecode (c) Transformed Java bytecode (d) Translated C source code

Fig. 3: Example of transformation of Java bytecode and the corresponding translated C code.

3 (corresponding to z). Then IRETURN reads the computed
integer value from the stack and returns it.

The C source code generated by our translator is shown
in Figure 3(d). ILOAD and ISTORE opcodes are translated
to pushes and pops to copy values from the operands stack
to local variables vars and vice-versa. The IADD opcode is
translated as the integer C sum, with 2 pops from the stack
(operands) and 1 push to the stack (result), similarly to what
the original IADD operand did in Java. The IRETURN opcode
is translated into a C return.

C. Arithmetic

In Java, every arithmetic operation is compiled to a bytecode
opcode of a specific type (e.g, integer, float and so on). Each
bytecode opcode can be directly translated to an arithmetic
operator available in C. This simple translation is possible,
because the set of arithmetic operations in the Java bytecode
and operators in the C language are the same. For instance, in
Figure 3 the integer sum in Java is translated with the integer
sum in C.

The only special cases are logical and arithmetic shifts.
While Java bytecode supports both kind of shifts, C applies
one or the other depending on the operand type being signed
or unsigned. In our tool, this has been solved with a type cast,
to be consistent with the Java semantics.

D. Control Flow

Control flow manipulation includes opcodes providing con-
ditional branching and looping. While Java provides keywords
to implement a structured control flow (e.g., while and for),
when Java code is compiled to bytecode, only labels, gotos
and if branches are left. C supports goto and labels, so
these opcodes are directly translated to the corresponding C
keywords.

Java bytecode supports two switch opcodes, namely
TABLESWITCH and LOOKUPSWITCH. They are translated
with canonical C switch statements. Although the Java lan-
guage supports switch statements with String values, that in C
are not supported, they are compiled to bytecode switches on
integer values, so the same translation pattern applies.

It is also worth noting that unnecessary labels must not be
translated, when they appear in dead Java bytecode (e.g., after
a return statement), because this is not allowed in C.

E. Method Call and Field Access
When the annotated code calls other Java methods or

accesses fields of Java classes a special translation is required,
because methods and fields are directly visible to Java code,
but they are not directly visible to C code. The workaround
is to call methods and access fields by name using reflection
features available in the JNI utility functions.

Figure 4 shows the Java source code and bytecode used
for calling method sum, and the C code resulting from our
translation. Java bytecode uses the INVOKE* opcodes to
perform method calls. When this opcode is interpreted and
executed by the JVM, the number of parameters required by
the called methods (two parameters in the example) are popped
automatically from the operands stack and the result of the
call, if any, is pushed back onto the stack.

In C, instead, the function call expects actual parameters
as an array. So, the array par is created before calling the
function, and two Pops instructions are added to fill the
parameter array. An additional pop instruction is added to
retrieve the target, i.e. the class instance that contains the
method to call. Then, the Java method can be called using the
JNI utilities with the parameter array and the target object.
After the call is returned, the return value is explicitly pushed
to the stack.

Some invocation variants are available in Java bytecode, so
they require a special translation.

Virtual calls: Virtual method calls are those for
which class inheritance matters. This is the case of
opcodes INVOKEVIRTUAL, INVOKESTATIC and
INVOKEINTERFACE. In this cases, the inheritance tree
of the called class should be visited, and the most specific
method implementation should be called. For this purpose, the
JNI layer provides the utility functions Call[type]MethodA,
where [type] should be replaced the return type of the called
Java method (primitive type, Object or Void). The only
difference between INVOKEVIRTUAL and INVOKESTATIC
is that the first requires an instance of the called class, while
the second does not because it calls a static Java method.
INVOKEINTERFACE works the same as INVOKEVIRTUAL.

Non-virtual calls: Non-virtual method calls are calls to
a specific method belonging to a class, without descending
inheritance tree. They are used for example to call parent
class’ methods. Non-virtual method calls are supported by

int x = sum(1, 2);
return x;

ALOAD 0
ICONST_1
ICONST_2
INVOKEVIRTUAL B.sum (II)I
ISTORE 1
ILOAD 1
IRETURN

Push(var[0]);
Push(1);
Push(2)
jvalue par[2];
par[1] = Pop();
par[0] = Pop();
jvalue target = Pop();
CallIntMethodA("MyClass", "sum", "(II)I", target, par);
var[1] = Pop();
Push(var[1])
return (int)Pop();

(a) Java source code (b) Java bytecode (c) C source code

Fig. 4: Example of translation of method call.

the INVOKESPECIAL opcode. The translation is similar to
the case virtual calls. A first difference is that a different JNI
utility function is used, i.e. CallNonvirtual[type]MethodA.

A special case is when INVOKESPECIAL is used to call a
class constructor, because, memory should be allocated for the
new object to be created. In the Java bytecode, before calling a
constructor, space is allocated with the opcode NEW. While in
Java bytecode allocation and constructor call are two separate
actions, in the JNI a single utility function NewObject encloses
both of them.

Field Access: Field access is translated using reflec-
tion, similarly to method calls, using JNI utility functions
Set[type]Field, SetStatic[type]Field, Get[type]Field or Get-
Static[type]Field. Different functions are available to read or
write instance fields and static fields, and different functions
are available for fields of different types.

Arrays: Java arrays are allocated on the heap, similarly to
Java objects. The allocation of one-dimensional arrays with the
opcodes NEWARRAY and ANEWARRAY can be translated to a
call the JNI function New[type]Array, with the array size as
parameter. The opcode MULTIANEWARRAY, used to allocate
a multidimensional array, is translated as multiple calls to the
aforementioned function. The ARRAYLENGTH opcode to read
array length is translated to the JNI function GetArrayLength.

F. Exception Detection
In Java, exceptions implicitly alter the control flow, because

whenever an exception is thrown, the execution is interrupted
and transferred to an exception handling block. However, Java
exceptions do not interrupt the control flow in the C code.
So, the translation has to explicitly simulate the Java model
to preserve original control flow and the original program
semantic.

To translate the Java exception model in C, we need to
distinguish three cases that can occur:

• Thrown exceptions: exceptions created and thrown in the
annotated Java method (to be translated) by the ATHROW
opcode;

• Forwarded exceptions: exceptions that are created and
thrown by a method that is called by the translated
method, so they occur after method calls. In Figure 5(a),
MyException is an example of forwarded exception,
thrown by the called method; and

• System exceptions: exceptions that can happen after a
statement that is not a method call, such as division

by zero after arithmetic operations. In Figure 6(a),
ArithmeticException is an example of system exception,
thrown by an expression statement.

The first problem is to detect that an exception is thrown.
For each case, a different translation strategy apply.

Thrown exceptions: These exception are easily detected
statically, when the ATHROW opcode is found.

Forwarded exceptions: Forwarded exceptions are created
by a called Java method and they are not handled by it, so
they are forwarded to the caller, i.e. the method translated to
C.

Since the invoked method runs on the JVM layer, in order
to detect that one of these exceptions occurred, we have to use
the JNI utility function ExceptionOccurred after each method
call.

System exceptions: System exceptions can be thrown po-
tentially by non-call opcodes. Since checking for exceptions
after every instruction would be computationally too expen-
sive, these checks must be minimized.

Since all system exceptions are subclasses of RuntimeEx-
ception, a first optimization consists in only checking for
this exception type in C code, and not for all the possible
sub-types. By manually inspecting the Java documentation2,
we listed all the opcodes after which we should check for
an exception. They are for example array access for Index-
OutOfBoundsException, divisions for ArithmeticException or
CHECKCAST opcodes for ClassCastException. The second
optimization consists in checking for system exceptions only
after this subset of opcodes.

G. Try-Catch Blocks

Figure 5(a) shows an example of Java code with a try-catch
block. The try block contains the exception handled code. In
case it throws an exception, the corresponding catch exception
handling code is executed. In Java catch blocks are typed, in
the example the type is MyException.

Figure 5(b) shows the compiled Java bytecode. The try-
catch block is compiled to a TRYCATCH opcode, with three
labels and a type as arguments. L0 and L1 are labels that
delimit the try block, L2 is the label of the catch block and
MyException is the type of the caught exception.

2Java SE 8 RuntimeException subclasses list and documentation.
https://docs.oracle.com/javase/8/docs/api/java/lang/RuntimeException.html

Thrown exceptions: An ATHROW opcode that creates a
new exception is translated simply by creating an exception
object in C. Then, the type of the exception object is inspected
using the IsInstanceOf JNI utility function, in order to jump
to the appropriate exception handler block. In case no block is
found for this exception type, the JVM is informed about the
exception with a ThrowNew JNI function and the execution of
the transformed method is interrupted. The Java calling context
is supposed to handle this exception.

Forwarded exceptions: Figure 5 shows an example of how
forwarded exceptions are translated. Forwarded exceptions are
translated similarly to thrown exceptions, but with a different
detection method. When the exception is caught by the C
code, the JVM must be informed about that with a call to
the JNI function ExceptionClear. Otherwise, the exception is
propagated back to the Java calling method.

Additionally, when an exception is caught by the C code,
the operands stack must be cleared and the JVM exception
added with the JNI function ExceptionDescribe, in order to
keep the JVM stack and translated stack aligned.

In the example of Figure 5, the value returned by In-
vokeStatic is not the output of the function, which is pushed
onto the operands stack, but an integer which is non-zero if
an exception occurred.

Then, if this value is non-zero, the AlignWithJVM creates a
copy of the exception for the JNI layer, and the exception type
is compared with every catch block with the InstanceOf(stack,
“MyException”) call. If there is a match, the JVM is informed
about the fact that the exception is handled locally with a
call to ClearException and the control jumps to the catch
block. Otherwise, if no catch block matches this exception
type, the function returns and the caller Java code will handle
this exception.

System exceptions: Inheritance tree of system exception is
known at transformation time. In fact, system exceptions are
defined by the JVM implementation and not by user code, so
we do not need to inspect their type by dynamically calling
IsInstanceOf. Thus, we can solve every catch block directly
at transformation time.

In our support C functions that could throw a system
exceptions (such as IDiv to compute division between integer
values), a zero return value means correct execution, while
a return value greater than zero means that an exception
occurred.

In case of non-zero return value, the exception inheritance
tree is considered at transformation time. If exception hap-
pened inside a try block, a goto is added to the corresponding
catch block (whose type is known at transformation time).
Otherwise, an exception is created and this method returns, so
the exception is passed to the Java calling context.

An example of this translation can be seen in Figure 6. In
the example, the IDiv function returns non-zero if an exception
occurred, and this is verified at runtime in a conditional
branch. The label to jump to is decided in the following
way: since the candidate exception is ArithmeticException, we
search in the code for catch blocks for all the corresponding

try {
MyClass.MethodThrowingException();

} catch (MyException e) {
return 1;

}
return 0;

(a) Java code

TRYCATCHBLOCK L0 L1 L2 MyException
L0:
INVOKESTATIC MyClass.methodThrowingException ()V
L1:
ICONST_0
IRETURN
L2:
ICONST_1
IRETURN

(b) Java bytecode

int exception;
jvalue params0[0];
exception = InvokeStatic("MyClass",
"methodThrowingException", "()V", params0);

if (exception) {
AlignWithJVM(stack);
if (InstanceOf(stack, "MyException")) {
ClearException();
goto L2;

}
else {
//here the exception is not cleared
//caller Java code will handle this exception
return;

}
}
Push(0);
return (int)Pop();
L2:
Push(1);
return (int)Pop();

(c) Translated C code

Fig. 5: Forwarded exception in Java code, Java bytecode and
its translation in C.

supertypes, they are ArithmeticException, RuntimeException,
Exception, Throwable. The translator found a catch block for
ArithmeticException at label L2, so the branch is a goto to the
matching catch block, i.e. goto L2.

IV. EMPIRICAL VALIDATION

In this section, we demonstrate the feasibility of our ap-
proach by adopting it on some software projects, and by
collecting some performance measurements. We assess our
approach by investigating the following research questions:

• RQarch: Do translated code execute correctly on different
architectures?

• RQtime: What is the performance overhead of a trans-
formed program?

• RQscale: Does performance scale when translating a
larger and larger part of a program?

The first search question RQarch is meant to check that
translation does not introduce errors in the programs. This
should be checked on different architectures to confirm that
the portability requirement of Java is still met on translated
code.

Translation is expected to come with the cost of some

int retval;
try {
retval = x/y;

} catch (ArithmeticException e) {
retval = 0;

}

TRYCATCHBLOCK L0 L1 L2 ArithmeticException
L0:
ILOAD 1
ILOAD 2
IDIV
L1:
IRETURN
L2:
ICONST_0
IRETURN

Push(vars[1]);
Push(vars[2]);
int exception = IDiv(stack);
if(exception)
goto L2;

return Pop();
L2:
Push(0);
return Pop();

(a) Java code (b) Java bytecode (c) Translated C code

Fig. 6: System exception in Java code, Java bytecode and its translation in C.

performance overhead. RQtime is meant to investigate how
longer programs take to execute, after they are transformed.

The last research question RQscale measures how the
performance degrades when a larger and larger portion of a
program is subject to translation. This dimension is important
to tune an optimal trade-off between adequate obscurity and
acceptable performance degradation.

Other properties of translated/obfuscated code, such us how
harder it is to understand and to attack, are out of the
scope of the present paper. To investigate these properties,
human studies and controlled experiment are required, and
we are planning and conducting them as part of our research
activity [5], [24], [6]

A. Case Studies

In our experiments, we consider three open source Java
applications. Even though our approach applies to compiled
Java bytecode, we decided to opt for open source projects
because they come with test cases. We rely on test cases to
assess execution correctness of translated code.

Table I shows some data about our case studies. For each
case study (first column), the table shows the number of classes
(second column), the total number of lines of Java code (third
column) and the number of available test cases (last column).

Name Classes LoCs Tests

Joda Time 247 15,016 4,222
Java2word 53 1,165 308
JFreeChart 658 52,041 2,176

TABLE I: Case studies.

The case study programs are:
• Joda Time: A date and time library using several calendar

systems, used to be the de-facto standard prior to Java SE
8 and its java.time;

• Java2word: A library used to create Word documents
from Java code and export its XML representation; and

• JFreeChart: A library used to create and display charts in
Java applications, written with either Swing or JavaFX.

B. Experimental Setting

When defining our experimental setting, we aimed at iden-
tifying meaningful transformation configurations, effective to
answer our research questions. In particular, we meant to
translate only methods that can be tested to a large extent.

To achieve this objective, we ran the full test suite of each
case study with Emma3 and we collected coverage data. Only
those methods whose code coverage was at least 70% were
considered as candidates for translation. We also collected
code data such as (i) the method length in terms of number
of basic blocks and LoCs and (ii) the number of times each
method is executed by test cases.

Annotated methods are translated from Java to C, according
to the annotation syntax accepted by our tool, as described
in Section III. In our experiment, we considered different
translation configurations, corresponding to different sets of
annotated methods. We developed a small annotation tool, that
injects annotations directly into Java bytecode, according to
the experimental configurations decided based on test cover-
age, method length and number of executions.

As soon as the Java bytecode is translated to C (and
compiled), all the test cases are executed again to make sure
that translation did not alter the program correctness.

C. Correctness of Translated Code

Even if test first was adopted, and a large number of unit
tests have been used to check translation at development
time, we mean to validate correctness also on real world case
studies.

The translated C code should execute correctly on multiple
architecture, as the original Java program did. In particular, this
includes processors with different architectures and instruction
sets, with 32 bit or 64 bit registers length. Thus, we considered
the following test hosts:

• x86 64: MacBook Pro with an Intel i5-4258U @
2.40GHz CPU, running a 64 bit operating system;

• ARM: Raspberry Pi 1 model B with a Broadcom
BCM2835 SoC mounting a 500Mhz ARMv6 CPU (over-
clocked to 700Mhz), running Raspbian version 32 bit.

All the test cases pass for all the three case studies on every
test host, so we can answer RQarch as follows:

Translated C code executes correctly on processors
with different instruction sets, with 32 bit and 64 bit
architectures.

D. Performance Overhead of Transformed Code

To measure performance overhead, we defined an transfor-
mation configuration for each case study, consisting of a set

3EMMA: a free Java code coverage tool. http://emma.sourceforge.net/

of methods with the following requirements. First of all, we
consider only methods that are tested quite exhaustively, so
we require that at least 70% of their code is covered by test
cases. These methods are sorted by code length in ascending
order and the top larger 10 methods are selected. These 10
methods are annotated to be translated.

Then, we ran the original code and the transformed code
on the two reference hosts and we collected the test execution
time. The measurement has been repeated 100 times to reduce
random errors and increase the accuracy.

Table II shows the result of this experiment with a distinct
line per each case study on each host. The table shows the
case study name and the host on the first and second columns
respectively. Then, the table reports the average time (in
seconds) and standard deviation for original code (third and
fourth columns) and for the translated code (fifth and sixth
columns). The last column reports the relative time increase
due to transformation.

Name Arch Original Transformed Deltamean sd mean sd

Joda Time x86 64 0.82 0.03 0.96 0.04 +18%
Joda Time ARM 20.55 0.30 24.84 0.31 +21%
Java2word x86 64 0.68 0.02 0.77 0.02 +14%
Java2word ARM 8.26 0.26 9.09 0.18 +10%
JFreeChart x86 64 3.85 0.42 4.03 0.47 +5%
JFreeChart ARM 40.34 0.64 42.33 0.58 +5%

TABLE II: Execution time for original and transformed pro-
grams.

As we can observe, the case study with larger time increase
is Joda Time with an average performance overhead between
+18% and +21%, on x86 64 and on ARM respectively.
Java2word has a lower performance overhead, between +10%
and +14%. A minor performance overhead of +5% has been
observed for JFreeChart, and in x86 64 host the time differ-
ence between transformed and original code is lower than the
standard deviation.

Considering these results, we can answer RQtime as fol-
lows:

The performance overhead due to code transformed are
larger (+[18-21]%) for Joda Time, lower for Java2word
(+[10-14]%) and minor for JFreeChart (+5%).

E. Relation between Translation Extent and Speed

The last research question investigates the relation be-
tween the ratio of the program subject to translation and the
execution-time overhead. To study this phenomenon, we con-
ceived a number of different configurations with an increasing
number of annotated methods. As in the previous experiment,
we only consider methods with code coverage above 70%.
However, instead sorting them by size, we now sort methods
by the number of times they are executed by the test suites.
In fact, we are interested in studying the worst case scenario,
when the translated code is crucial for the program because it

is executed a lot of times and might largely impact the user
experience.

For this experiment we only consider one of the three
case studies, i.e. Joda Time, the one with most significant
performance overhead recorded so far. The first configuration
is the original code. The next configuration is one with just one
translated method, i.e. the method that is the most executed
by the test suite. Then, a new configuration is defined by
translating another method, and so on until we have in total
64 configurations. Each configuration has been executed 100
times.

The box plot in Figure 7 reports the time taken to execute
the full test suite. As we can see, for the first 20 configurations
there is not major performance overhead because transformed
program takes similar time to run as the original program
(first configuration at the left-hand side). Then execution time
starts to increase significantly with the number of translated
methods.

0 3 6 9 13 17 21 25 29 33 37 41 45 49 53 57 61

1
.0

1
.5

2
.0

of translated methods

T
im

e
 [
s
e

c
]

Fig. 7: Test suite execution time with increasing number of
translated methods.

The same data can also observed from a different perspec-
tive. In particular, we are interested to study how many times
the translated methods have been executed. Figure 8 shows this
trend. The x-axis reports (in logarithmic scale) the number of
time that translated methods are executed. The y-scale reports
the execution time of the test suite (in seconds). As we can see,
below the 100 executions of translated methods, no noticeable
overhead is evident. Then, an increasing trend can be observed.

The last perspective is shown in Figure 9, where the
considered configurations are shown in terms of the lines of
Java code that are subject to code translation, still with the
x-axis in logarithmic scale. Performance overhead is minor
when less than 1000 LoCs are translated. Then an increase is
observed.

Considering all these results, we can answer RQscale as
follows:

1 100 10000

0
.8

0
.9

1
.0

1
.1

1
.2

1
.3

1
.4

of executions of translated methods (log scale)

T
im

e
 [
s
e

c
]

Fig. 8: Test suite execution time with increasing number of
executed translated methods.

50 100 200 500 1000 2000

0
.8

0
.9

1
.0

1
.1

1
.2

1
.3

1
.4

of Java LoC that are translated to C (log scale)

T
im

e
 [
s
e

c
]

Fig. 9: Test suite execution time with increasing number of
Java lines that are translated.

Performance overhead due to code translation is neg-
ligible when the portion of translated code is limited.
In Joda Time we observed negligible runtime overhead
for less than 20 methods that, in total, are executed less
than 100 times and that consist in approximately 1000
LoCs.

V. RELATED WORK

Obfuscation is used to make application code obscure so
that it is more complex to understand by a potential attacker
who wants to reverse engineer it. Obfuscation techniques
change code structure without changing its functional behavior
through different kinds of code transformations [25], [21].
It is well-known that for binaries that mix code and data,
disassembly and de-compilation are undecidable in the worst
case [16]. On the other hand, under specific and restrictive
conditions, some work reported that de-obfuscation is an NP-
easy problem [2]. Further, it was proven that a large number
of functions cannot be obfuscated [4].

Many algorithms for code obfuscation have been proposed
in the literature. In the taxonomy by Collberg et al. [8],
they have been classified into layout, data and control-flow
obfuscation.

The most related category is layout obfuscation. This cat-
egory includes transformations that change or remove useful
information from the intermediate language code or the source
code without affecting the instructions that contribute to the
actual computation. Usually removing debugging information,
comments, and scrambling/renaming identifiers fall within the
domain of layout obfuscation.

Identifier renaming [7] is an instance of layout obfuscation
that removes relevant information from the code by changing
the names of classes, fields and operations into meaningless
identifiers, so as to make it harder for an attacker to guess the
functionalities implemented by different parts of the applica-
tion.

Data obfuscation category of transforms targets data and
data structures contained in the program. Using these trans-
formations, data encoding can be changed [20], variables can
be split or merged, and arrays can be split, folded, and merged.

The objective of control-flow obfuscation is to alter the flow
of control within the code. Reordering statements, methods,
loops and hiding the actual control flow behind irrelevant
conditional statements classify as control-flow obfuscation
transforms. Obfuscation based on Opaque predicates [9] is
a control-flow obfuscation that tries to hide the original
behavior of an application by complicating the control flow
with artificial branches. An opaque predicate is a conditional
expression whose value is known to the obfuscator, but is hard
to deduce statically by an attacker. An opaque predicated can
be used in the condition of a newly generated if statement.
One branch of the if statement contains the original application
code, while the other contains a bogus version of it. Only the
former branch will be executed, causing the semantics of the
application to remain the same. In order to generate resilient
opaque predicates, pointer aliasing can be used, since inter-
procedural static alias analysis is known to be intractable.

With the increasing adoption of Java as a programming
language, the idea of translating Java bytecode to C was
investigated [13], but mainly as a way avoid the overhead due
to the Java interpreter, i.e. by turning the whole Java program
into a single machine-dependent executable. In our approach,
we instead keep the original Java program structure, and only
selected portions are translated to C to turn analysis more
difficult and to enable more efficient obfuscations.

Other obfuscation approaches that rely on code translation
are based on an obfuscated Virtual Machine [1], [14] (OVM
for short). Binary machine-dependent code is translated to
a custom opcodes that can be interpreted by the OVM. (A
portion of) the clear code is replaced by the corresponding
custom opcodes and the OVM is appended to the program.
When the obfuscated program is launched, the OVM takes
control: it reads, decodes and executes the custom opcodes.
Such OVM can make it much harder to reverse-engineer
programs because standard disassemblers and standard tracing
tools (e.g., debuggers) do not target the custom opcodes, and
because the attackers are not familiar with them.

These types of VMs are susceptible to OVM replacement
attacks, in which an attacker replaces the original OVM that

implements a number of security features by one that lacks
those features [11].

This attack is possible, because the application itself is
not dependent to the specific OVM. As a countermeasure,
techniques have been proposed to inject such bindings [12].

Furthermore, these OVMs are susceptible to tracing at-
tacks [17], [18], in which attackers collect and analyze ex-
ecution traces to separate VM engine code (e.g., the code that
maintains the software cache) from the original application
code being executed in the software cache. From the remaining
application code trace, they can then reconstruct the original
program.

VI. CONCLUSION

Obfuscation is a quite popular technique to protect programs
from malicious reverse engineering. However, programming
languages such as Java that compile to highly structured
bytecode still leak a lot of information to a potential attacker
even if delivered in obfuscated form.

In this paper, we proposed an approach based on program
transformation to translate Java bytecode to C. Essentially,
security sensitive portion of code (annotated as such by the
developer) are automatically removed from the Java program
and translated to C. This C code is then compiled to machine-
dependent binary code, and executed whenever the original
code is called.

As future work, we intend to pipeline this transformation
tool with available obfuscation tools for C, to complete the
tool-chain and enable very strong obfuscations on Java pro-
grams. Moreover, we plan to design and conduct controlled
experiments and user studies to measure how much harder is
our code to reverse engineer and attack than the original Java
code.

ACKNOWLEDGEMENT

This work has partially been supported by the activity “API
Assistant” of the action line Digital Infrastructure of the EIT
Digital and the GAUSS national research project, which has
been funded by the MIUR under the PRIN 2015 program
(Contract 2015KWREMX).

REFERENCES

[1] B. Anckaert, M. Jakubowski, and R. Venkatesan. Proteus: virtualization
for diversified tamper-resistance. In Proceedings of the ACM workshop
on Digital rights management, pages 47–58. ACM, 2006.

[2] A. Appel. Deobfuscation is in NP. Princeton University, Aug, 21:2,
2002.

[3] S. Banescu, C. Collberg, V. Ganesh, Z. Newsham, and A. Pretschner.
Code obfuscation against symbolic execution attacks. In Proceedings
of the 32Nd Annual Conference on Computer Security Applications,
ACSAC ’16, pages 189–200, New York, NY, USA, 2016. ACM.

[4] B. Barak, O. Goldreich, R. Impagliazzo, S. Rudich, A. Sahai, S. Vadhan,
and K. Yang. On the (im) possibility of obfuscating programs. Lecture
Notes in Computer Science, 2139:19–23, 2001.

[5] M. Ceccato, M. Di Penta, P. Falcarin, F. Ricca, M. Torchiano, and
P. Tonella. A family of experiments to assess the effectiveness and
efficiency of source code obfuscation techniques. Empirical Software
Engineering, 19:1040–1074, 2014.

[6] M. Ceccato, P. Tonella, C. Basile, B. Coppens, B. D. Sutter, P. Falcarin,
and M. Torchiano. How professional hackers understand protected
code while performing attack tasks. In Proceedings of the 25th IEEE
International Conference on Program Comprehension (ICPC), 2017.

[7] J.-T. Chan and W. Yang. Advanced obfuscation techniques for java
bytecode. Journal of Systems and Software, 71(1-2):1–10, 2004.

[8] C. Collberg, C. Thomborson, and D. Low. A taxonomy of obfuscating
transformations. Technical Report 148, Dept. of Computer Science, The
Univ. of Auckland, 1997.

[9] C. Collberg, C. Thomborson, and D. Low. Manufacturing cheap,
resilient, and stealthy opaque constructs. In Proceedings of the 25th
ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, POPL ’98, pages 184–196, New York, NY, USA, 1998.
ACM.

[10] P. Falcarin, C. Collberg, M. Atallah, and M. Jakubowski. Guest editors’
introduction: Software protection. IEEE Software, 28(2):24–27, March
2011.

[11] S. Ghosh, J. Hiser, and J. W. Davidson. Replacement attacks against vm-
protected applications. ACM SIGPLAN Notices, 47(7):203–214, 2012.

[12] S. Ghosh, J. Hiser, and J. W. Davidson. Software protection for
dynamically-generated code. In Proceedings of the 2nd ACM SIGPLAN
Program Protection and Reverse Engineering Workshop, page 1. ACM,
2013.

[13] C.-H. A. Hsieh, J. C. Gyllenhaal, and W.-m. W. Hwu. Java bytecode to
native code translation: The caffeine prototype and preliminary results.
In Proceedings of the 29th annual ACM/IEEE international symposium
on Microarchitecture, pages 90–99. IEEE Computer Society, 1996.

[14] W. Hu, J. Hiser, D. Williams, A. Filipi, J. W. Davidson, D. Evans, J. C.
Knight, A. Nguyen-Tuong, and J. Rowanhill. Secure and practical de-
fense against code-injection attacks using software dynamic translation.
In Proceedings of the 2nd international conference on Virtual execution
environments, pages 2–12. ACM, 2006.

[15] T. Lindholm, F. Yellin, G. Bracha, and A. Buckley. The Java virtual
machine specification. Pearson Education, 2014.

[16] C. Linn and S. Debray. Obfuscation of executable code to improve
resistance to static disassembly. In Proceedings of the 10th ACM
conference on Computer and communications security, pages 290–299.
ACM, 2003.

[17] J. Raber. Virtual deobfuscator - a darpa cyber fast track funded effort.
In Black Hat USA 2013, 2013.

[18] M. I. Sharif, A. Lanzi, J. Giffin, and W. Lee. Rotalume: A tool for
automatic reverse engineering of malware emulators. 2009.

[19] B. D. Sutter, P. Falcarin, B. Wyseur, C. Basile, M. Ceccato, J. DAn-
noville, and M. Zunke. A reference architecture for software protection.
In 2016 13th Working IEEE/IFIP Conference on Software Architecture
(WICSA), pages 291–294, April 2016.

[20] R. Tiella and M. Ceccato. Automatic generation of opaque constants
based on the k-clique problem for resilient data obfuscation. In 2017
IEEE 24th International Conference on Software Analysis, Evolution
and Reengineering (SANER), pages 182–192, Feb 2017.

[21] E. Valdez and M. Yung. Software disengineering: Program hiding
architecture and experiments. In International Workshop on Information
Hiding, pages 379–394. Springer, 1999.

[22] L. Vinciguerra, L. Wills, N. Kejriwal, P. Martino, and R. Vinciguerra.
An experimentation framework for evaluating disassembly and decom-
pilation tools for c++ and java. In Reverse Engineering, 2003. WCRE
2003. Proceedings. 10th Working Conference on, pages 14–23. IEEE,
2003.

[23] A. Viticchié, C. Basile, A. Avancini, M. Ceccato, B. Abrath, and
B. Coppens. Reactive attestation: Automatic detection and reaction to
software tampering attacks. In Proceedings of the 2016 ACM Workshop
on Software PROtection, SPRO ’16, pages 73–84, New York, NY, USA,
2016. ACM.

[24] A. Viticchié, L. Regano, M. Torchiano, C. Basile, M. Ceccato, P. Tonella,
and R. Tiella. Assessment of source code obfuscation techniques. In
Proceedings of the 16th IEEE International Working Conference on
Source Code Analysis and Manipulation, pages 11–20, 2016.

[25] C. Wang, J. Davidson, J. Hill, and J. Knight. Protection of software-
based survivability mechanisms. In Dependable Systems and Networks,
2001. DSN 2001. International Conference on, pages 193–202. IEEE,
2001.

