
How Professional Hackers Understand Protected
Code while Performing Attack Tasks

M. Ceccato∗, P. Tonella∗, C. Basile†, B. Coppens‡, B. De Sutter‡, P. Falcarin§ and M. Torchiano†
∗Fondazione Bruno Kessler, Trento, Italy; Email: ceccato|tonella@fbk.eu
†Politecnico di Torino, Italy; Email: cataldo.basile|marco.torchiano@polito.it
‡Universiteit Gent, Belgium; Email: bart.coppens|bjorn.desutter@ugent.be

§University of East London, UK; Email: falcarin@uel.ac.uk

Abstract—Code protections aim at blocking (or at least delay-
ing) reverse engineering and tampering attacks to critical assets
within programs. Knowing the way hackers understand protected
code and perform attacks is important to achieve a stronger
protection of the software assets, based on realistic assumptions
about the hackers’ behaviour. However, building such knowledge
is difficult because hackers can hardly be involved in controlled
experiments and empirical studies.

The FP7 European project Aspire has given the authors of this
paper the unique opportunity to have access to the professional
penetration testers employed by the three industrial partners. In
particular, we have been able to perform a qualitative analysis
of three reports of professional penetration test performed on
protected industrial code.

Our qualitative analysis of the reports consists of open coding,
carried out by 7 annotators and resulting in 459 annotations,
followed by concept extraction and model inference. We identified
the main activities: understanding, building attack, choosing and
customizing tools, and working around or defeating protections.
We built a model of how such activities take place. We used such
models to identify a set of research directions for the creation of
stronger code protections.

I. INTRODUCTION

Software protection is increasingly used to secure critical
assets that necessarily must be embedded in the code running
on client devices. In fact, client apps running on mobile
devices or web apps based on recent frameworks that delegate
most of the computation to the client (e.g., Angular), perform
critical operations at the client side (e.g., authentication, li-
cense management, IPR1 enforcement). The protected assets
are hence subject to Man-at-the-End attacks, where a malicious
end user may reverse engineer and manipulate the code
running on the client to obtain some illegitimate use of the app
(e.g., saving IPR protected content locally). App developers
resort to software protection (e.g., obfuscation) to prevent such
kinds of attacks. Both theoretically [1] and practically, such
protections are known to be imperfect and a motivated attacker,
given enough time and resources, may eventually defeat them.
Hence, the effectiveness of protections consists in their ability
to delay attacks to the point where they become economically
disadvantageous.

Note on order of authors: The last five authors (in alphabetic order)
participated to open coding, conceptualization and paper writing, while the
first two authors also designed the qualitative analysis and led the experimental
process.

1IPR stands for Intellectual Property Rights.

The authors have participated in the European project As-
pire2, whose goal was the development of advanced software
protection techniques that fall into the following categories:
white box cryptography, diversified cryptographic libraries,
data obfuscation, non-standard virtual machines, client-server
code splitting, anti-callback stack checks, code guards, bi-
nary code obfuscation, code mobility, anti-debugging, and
remote attestation. The project also developed a tool chain
to apply protections (alone or in combinations) on selected
assets. The industrial partners of the project evaluated the
effectiveness of the protection tool chain on three case studies
with professional penetration testers, i.e., ethical hackers. Their
penetration tests produced three reports, with detailed narrative
information about the activities carried out during the attacks,
the encountered obstacles, the followed strategies, and the dif-
ficulty of performing each task. Such reports gave the authors,
academic partners of the project, the unique opportunity to
investigate the behaviour of real-world hackers while carrying
out an attack.

Knowledge about the hackers’ behaviour while understand-
ing protected code to compromise the app assets may provide
important insights on software protection. Indeed, protection
developers design their techniques based on assumptions about
the way hackers will try to break assets when protections
are applied, but these assumptions might reveal as unrealistic
or overlook relevant factors of the attack strategies used in
practice. Therefore, the goal of our research is to build a model
of how professional penetration testers understand protected
code when they are attacking it.

In this paper, we followed a rigorous qualitative analysis
method (described in Section II) to infer four models (pre-
sented in Section III) of the understanding processes followed
by hackers during an attack. Based on such models, we dis-
tilled a set of possible research directions for the improvement
of existing protections and for the development of new ones
(discussed in Section IV).

II. QUALITATIVE ANALYSIS METHOD

A. Data Collection

The three industrial project partners, Nagravision, SafeNet
and Gemalto, are world leaders in their digital security fields.

2https://aspire-fp7.eu



Application C H Java C++ Total

DemoPlayer 2,595 644 1,859 1,389 6,487
LicenseManager 53,065 6,748 819 - 58,283
OTP 284,319 44,152 7,892 2,694 338,103

TABLE I
SIZE OF CASE STUDY APPLICATIONS IN SLOC, DIVIDED BY FILE TYPE

They developed the apps that were protected by means of the
protection tool chain produced by the project. DemoPlayer
is a media player provided by Nagravision. It incorporates
DRM (Digital Right Management) that needs to be protected.
LicenseManager is a software license manager provided by
SafeNet. OTP is a one time password authentication server
and client provided by Gemalto. Table I shows the lines
of code (measured by sloccount [2]) of the three case
study applications. For each case study (first column), the
table reports the amount of C code (in ”*.c” and ”*.h” files,
respectively), the Java code (in ”*.java” files) and the C++
code (in ”*.ccp” and ”*.c++” files). Each application was
protected by the configuration of protections that was deemed
most effective in each specific case.

The professional penetration testers involved in the case
studies work for security companies that offer third party
security testing services. The industrial partners of the project
resort routinely to such companies for the security assessment
of their products. Such assessments are carried out by hackers
with substantial experience in the field, equipped with state-of-
the-art tools for reverse engineering, static analysis, debugging,
tracing and profiling, etc. Moreover, the hackers are able to
customize existing tools, to develop and add plug-ins to exist-
ing tools, as well as to develop new tools if needed. In our case,
external hacker teams have been augmented/complemented
with/by internal professional hacker teams, consisting of se-
curity analysts employed by the project’s industrial partners.

The task for the hacker teams consisted of obtaining access
to some sensitive assets secured by the protections. Specifi-
cally, the task for the DemoPlayer application was to violate a
specific DRM protection; for LicenseManager it was to forge
a valid license key; for OTP it was to successfully authenticate
without valid credentials.

The hacker team activities could not be traced automatically
or through questionnaires. In fact, such teams ask for minimal
intrusion into the daily activities performed by their hackers
and are only available to report their work in the form of a
final, narrative report. As a consequence, we had no choice
but to adopt a qualitative analysis method. Based on existing
qualitative research techniques [3], we defined the qualitative
analysis method to be adopted in our study, consisting of the
following phases: (1) data collection; (2) open coding; (3)
conceptualization; (4) model analysis. Although some of the
practices that we have adopted are in common with grounded
theory (GT) [4], [5], the following key practices of GT [6]
could not be applied to our case studies: immediate and
continuous data analysis, theoretical sampling, and theoretical

OPEN CODING PROCEDURE:
1) Open the report in Word and use Review → New Comment to add

annotations
2) After reading each sentence, decide if it is relevant for the goal of

the study, which is investigating “How Professional Hackers Understand
Protected Code while Performing Attack Tasks”. If it is relevant, select
it and add a comment. If not, just skip it. Please, consider that in some
cases it makes sense to select multiple sentences at once, or fragments
of sentences instead of whole sentences.

3) For the selected text, insert a comment that abstracts the hacker activity
into a general code understanding activity. Whenever possible, the
comment should be short (ideally, a label), but in some cases a longer
explanation might be needed. Consider including multiple levels of
abstractions (e.g., use dynamic analysis, in particular debugging). The
codes used in this step are open and free, but the recommendation is to
use codes with the following properties:

a) use short text;
b) use abstract concepts; if needed add also the concrete instances;
c) as much as possible, try to abstract away details that are specific

of the case study or of the tools being used;
d) revise previous codes based on new codes if better labels/names

are found later for the abstract concepts introduced earlier.

Fig. 1. Coding instructions shared among coders

saturation, because we had no option to continue data sampling
based on gaps in the inferred theory.

Although the final hacker reports are in a free format, we
wanted to make sure that some key information was included,
in particular information that can provide clues about the
ongoing program comprehension process. Hence, we have
asked the involved professional hackers to cover the following
points in their final attack report:

1) type of activities carried out during the attack;
2) level of expertise required for each activity;
3) encountered obstacles;
4) decisions made, assumptions, and attack strategies;
5) exploitation on a large scale in the real world.
6) return / remuneration of the attack effort;
While, in general, attack reports covered these points, not

all of the points are necessarily covered in all attack reports or
with the same level of details. In particular, quantitative data,
such as the proportion of time devoted to each activity, were
never provided, whereas qualitative indications about several
of the suggested dimensions are present in all reports, though
with different levels of verbosity and detail.

B. Open Coding

Open coding of the reports was carried out by each aca-
demic institution participating in the project. Coding by seven
different coders was conducted autonomously and indepen-
dently. Only high level instructions have been shared among
coders before starting the coding activity, so as to leave
maximum freedom to coders and to avoid the introduction of
any bias during coding. These general instructions are reported
in Figure 1.

The annotated reports obtained after open coding were
merged into a single report containing all collected annota-
tions. We have not attempted to unify the various annotations
because we wanted to preserve the viewpoint diversity as-
sociated with the involvement of multiple coders operating
independently from each other. Unification is one of the main
goals of the next phase, conceptualization.



C. Conceptualization

This phase consists of a manual model inference process
carried out jointly by all coders. The process involves two
steps: (1) concept identification; (2) model inference.

The goal of the concept identification is to identify key con-
cepts that coders used in their annotations, to provide a unique
label and meaning to such concepts and to organize them into
a concept hierarchy. The most important relation identified
in this step is the “is-a” relation between concepts, but other
relations, such as aggregation or delegation, might emerge as
well. In this step, the main focus is a static, structural view
of the concepts that emerge from the annotations. The output
is thus a so-called “lightweight” ontology (i.e., an ontology
where the structure is modelled explicitly, while axioms and
logical constraints are ignored).

The goal of the model inference is to obtain a model with
explanation and predictive power. To this aim, the concepts
obtained in the previous step are revised and the following
relations between pairs of concepts are conjectured: (1) tem-
poral relations (e.g., before); (2) causal relations (e.g., cause);
(3) conditional relations (e.g., condition for); (4) instrumental
relation (e.g., used to). Evidence is sought for such conjectures
in the annotations. The outcome of this step is a model
that typically includes a causal graph view, where edges
represent causal, conditional and instrumental relations, and/or
a process view, where activities are organized temporally
into a graph whose edges represent temporal precedence.
This step is deemed concluded when the inferred model is
rich enough to explain all the observations encoded in the
annotations of the hacker reports, as well as to predict the
expected hacker behaviour in a specific attack context, which
depends on context factors such as the features of the protected
application, the applied protections, the assets being protected,
the expected obstacles to hacking.

Correspondingly, two joint meetings (over conference calls)
have been organized to carry out the two steps. During
each meeting, the report with the merged codes was read
sentence by sentence and annotation by annotation. During
such reading, abstractions have been proposed by coders either
for concept identification (step 1) or for model inference
(step 2). The proposed abstractions have been discussed; the
discussion proceeded until consensus was reached. During
the process, whenever new abstractions were proposed and
discussed, the abstractions introduced earlier were possibly
revised and aligned with the newly introduced abstractions.

Although the conceptualization phase is intrinsically subjec-
tive, subjectivity was reduced by: (1) involving multiple coders
with different backgrounds and asking them to reach consensus
on the abstractions that emerged from codes; (2) keeping
traceability links between abstractions and annotations. Trace-
ability links are particularly important, since they provide the
empirical evidence for the inference of a given concept or
relation. Availability of such traceability links allows coders
to revise their decisions later, at any point in time, and allows
external inspectors of the model to understand (and possibly

TABLE II
NUMBER OF ANNOTATIONS BY ANNOTATOR AND BY CASE STUDY REPORT

Annotator
Case study A B C D E F G Total

P 52 34 48 53 43 49 NA 279
L 20 10 6 12 7 18 9 82
O 12 22 NA 29 24 11 NA 98

Total 84 66 54 94 74 78 9 459

revise/change) the connection between abstractions and initial
annotations.

III. RESULTS

Table II shows the number of annotations produced by
the seven annotators (indicated as A, B, C, D, E, F, G), on
the three case study reports (indicated as P: DemoPlayer; L:
LicenseManager; O: OTP). Each annotation is labelled by
a unique identifier having the following structure: [<case
study> : <annotator> : <number>] (e.g., [P:D:7]) to sim-
plify traceability between inferred concepts and models on one
side and annotations supporting them on the other side.

A. Identified Concepts

Figures 2, 3, 4 show a meaningful portion of the taxonomy
of concepts resulting from the conceptualization process car-
ried out by the annotators. The top concepts in the taxonomy
correspond to the main notions that are useful to describe the
hacker activities. These are: Obstacle, Analysis / reverse engi-
neering, Attack strategy, Attack step, Workaround, Weakness,
Asset, Background knowledge, Tool. Among them, due to lack
of space we omit the hierarchies for Workaround, Weakness,
Asset, Background knowledge, Tool. 3 Moreover, we do not
report the static relations among taxonomy concepts due to
lack of space.

1) Obstacle: As expected, in the Obstacle hierarchy (Fig-
ure 2) we find the protections that are applied to the software
to prevent the hacker attacks (under concept Protection). We
observe that this is not the only kind of obstacle reported by
hackers.

In particular, Execution environment and Tool limitations are
also major impediments to the completion of an attack. In a
report we read “Aside from the [omissis] added inconveniences
[due to protections], execution environment requirements can
also make an attackers task much more difficult. [omissis]
Things such as limitations on network access and maximum
file size limitations caused problems during this exercise”; on
this part one coder annotated [P:F:7]: “General obstacle to
understanding [by dynamic analysis]: execution environment
(Android: limitations on network access and maximum file
size)”. Similar sentences are found about tool limitations,
which were then annotated with e.g. [P:A:33]: “Attack step:
overcome limitation of an existing tool by creating an ad hoc
communication means”.

3The full taxonomy is available at
http://selab.fbk.eu/ceccato/hacker-study/ICPC2017.owl



Obstacle
Protection

Obfuscation
Control flow flattening

Opaque predicates

Anti debugging

White box cryptography

Execution environment
Limitations from operating system

Tool limitations
Analysis / reverse engineering

String / name analysis

Symbolic execution / SMT solving

Crypto analysis

Pattern matching

Static analysis

Dynamic analysis
Dependency analysis

Data flow analysis

Memory dump

Monitor public interfaces

Debugging

Profiling

Tracing

Statistical analysis
Differential data analysis

Correlation analysis

Black-box analysis
File format analysis

Fig. 2. Taxonomy of extracted concepts (part I)

The Analysis / reverse engineering hierarchy (see Figure 2)
is quite rich and interesting. It includes very advanced tech-
niques that are part of the state of the art of the research
in code analysis, such as Symbolic execution / SMT solving;
Dependency analysis; Statistical analysis. Of course, hackers
are well aware of the most recent advances in the field of code
analysis.

2) Attack step: The central concept that emerged from
the hacker reports is Attack step, whose hierarchy is split
(for space reasons) between Figures 3 and 4. An Attack
step represents each single activity that must be executed
when implementing a chosen Attack strategy. The top level
concepts under Attack step correspond to the major activities
carried out by hackers. Hackers that opted for dynamic attack
strategies first of all prepare the environment (concept Prepare
environment) to ensure the code can be executed under their
control. Then, they usually spend some time understanding
the code and its protections by means of a variety of activities
that are subconcepts of Reverse engineer app and protections
in the taxonomy. Once they have gained enough knowledge
about the app under attack, they build a strategy (concept Build
attack strategy), they execute any necessary, preliminary task
(concept Prepare attack) and they actually execute the attack
by manipulating the software statically or at run time (concept
Tamper with code and execution). Finally, they analyze the

Attack strategy

Attack step
Prepare the environment

Reverse engineer app and protections
Understand the app

Preliminary understanding of the app
Identify input / data format

Recognize anomalous/unexpected behaviour

Identify API calls

Understand persistent storage / file / socket

Understand code logic

Identify sensitive asset
Identify code containing sensitive asset

Identify assets by static meta info
Identify assets by naming scheme

Identify thread/process containing sensitive asset

Identify points of attack
Identify output generation

Identify protection

Run analysis

Reverse engineer the code
Disassemble the code
Deobfuscate the code*

Build the attack strategy
Evaluate and select alternative step / revise attack strategy

Choose path of least resistance

Limit scope of attack
Limit scope of attack by static meta info

Fig. 3. Taxonomy of extracted concepts (part II); * indicates multiple
inheritance

attack results and decide how to proceed (concept Analyze
attack results).

3) Reverse engineer app and protections: The attack step
Reverse engineer app and protections includes several activi-
ties in common with general program understanding (see Fig-
ure 3), but it also includes some hacking-specific activities. For
instance, recognizing the occurrence of program behaviours
that are not expected for the app under attack (concept Rec-
ognize anomalous/unexpected behaviour; [P:A:27] “Identified
strange behaviour compared to the expected one (from their
background knowledge)”) is very important, since it may point
to computations that are unrelated with the app business logic
and are there just to implement some protection. It might
also point to variants of well known protections ([P:E:17]
“Infer behaviour knowing AES algo details”). Identification of
sensitive assets in the code (concept Identify sensitive assets;
[P:D:4] “prune search space of interesting code, using very
basic static (meta-) information”) and of points of attack
(concept Identify points of attack; [P:E:14] “Analyse traces
to locate output generation”) are other examples of hacking-
specific program understanding activities.

4) Build attack strategy: When iteratively building the
attack strategy (concept Build attack strategy), it is very
important to be able to reduce the scope of the attack to a
manageable portion of the code. This key activity is expressed
through the concept Limit scope of attack ([O:D:5] “use



Attack step
Prepare attack

Choose/evaluate alternative tool
Customize/extend tool

Port tool to target execution environment

Create new tool for the attack
Customize execution environment
Build a workaround
Recreate protection in the small

Assess effort
Tamper with code and execution

Tamper with execution environment

Run app in emulator

Undo protection
Deobfuscate the code*
Convert code to standard format
Disable anti-debugging

Obtain clear code after code decryption at runtime

Tamper with execution
Replace API functions with reimplementation

Tamper with data

Tamper with code statically

Out of context execution
Brute force attack

Analyze attack result
Make hypothesis

Make hypothesis on protection

Make hypothesis on reasons for attack failure

Confirm hypothesis

Fig. 4. Taxonomy of extracted concepts (part III); * indicates multiple
inheritance

symbolic operation to focus search”). Within such narrowed
scope, hackers evaluate the alternatives and choose the path of
least resistance (concepts Evaluate and select alternative steps
/ revise attack strategy and Choose path of least resistance;
see, e.g., the sentence: “As the libraries are obfuscated, static
analysis with a tool such as IDA Pro is difficult at best”,
annotated as [P:D:5] “discard attack step/paths”).

5) Tamper with code and execution: Another remarkable
difference from general program understanding is the sub-
stantial amount of code and execution manipulation carried
out by hackers. Indeed, a core attack step consists of the
alteration of the normal flow of execution (concept Tamper
with code and execution in Figure 4). This is achieved in many
different ways, as apparent from the richness of the hierarchy
rooted at Tamper with code and execution. Some of them are
very hacking-specific and reveal a lot about the typical attack
patterns. For instance, activity Replace API functions with
reimplementation is carried out to work around a protection,
by replacing its implementation with a fake implementation by
the hackers ([P:F:49] “New attack strategy based on protection
API analysis: replace API functions with a custom reimple-
mentation to be done within the debugging tool”). Activity
Tamper with data is carried out to alter the program state
and circumvent a protection (sentence “to set a fake value
in virtual CPU registers in order to deceive the debugged
application”, annotated as [O:D:11] “tamper with data to

Fig. 5. Model of hacker activities related to understanding the app and
identifying sensitive assets

circumvent triggering protection”). Out of context execution
is carried out to run the code being targeted by an attack, e.g.,
a protected function, in isolation, as part of a manually crafted
main program (sentence “write own loader for [omissis]
library”, annotated as [L:D:20] “adapt and create environment
in which to execute targeted code out of context”). Moreover,
hackers tamper with the execution to undo the effects of a
protection (concept Undo protection), often to reverse engineer
the clear code from the obfuscated one (concepts Deobfuscate
the code, Convert code to standard format, and Obtain clear
code after code decryption at runtime).

B. Inferred Models
Due to lack of space, we cannot present and comment all the

temporal, causal, conditional and instrumental relations that
have been inferred from the hacker reports and their anno-
tations during the second plenary conference call involving
all the annotators. Since some temporal relations have already
been commented during the presentation of the taxonomy of
concepts, we do not include this kind of relations. For what
concerns the other three kinds of relations emerged during
the discussion, we have grouped them by the kind of hacker
activity they represent. Hence, they are presented as part of
four models: (1) a model of how hackers understand the app
and identify sensitive assets (shown in Figure 5); (2) a model
of how they make or confirm a hypothesis, to build their attack
strategy (Figure 6); (3) a model of how they choose, customize
and create new tools (Figure 7); (4) a model of how they build
workarounds and undo or overcome protections (Figure 8).

1) How hackers understand protected software: Let us
consider the first model, shown in Figure 5. Hackers carry
out understanding activities with the goal of identifying the
sensitive assets in the code that are the target of their attacks.
Ultimately, identification of such sensitive assets allows hack-
ers to narrow down the scope of the attack to a small code
portion, where their efforts can be focused in the next attack
phase (see the “cause” relation in Figure 5). In this process,
(static / dynamic) program analysis and reverse engineering
play a dominant role. They are used to understand the app,
identify sensitive assets and also to limit the scope of the attack
(see “used to” relation in Figure 5). For instance, dynamic
analysis of IO system calls is used to limit the scope of the
attack ([L:D:24] “prune search space for interesting code by
studying IO behavior, in this case system calls”), because some



Fig. 6. Model of hacker activities related to making / confirming hypotheses and building the attack strategy

IO operations are performed in the proximity of the protected
assets. String analysis is used for the same purpose ([L:D:26]
“prune search space for interesting code by studying static
symbolic data, in this case string references in the code”),
because some specific constant strings are referenced in the
proximity of sensitive assets. Tampering with the execution
is also a way to identify sensitive assets ([O:E:5] “static
analysis + dynamic code injection to get the crypto key”).
When libraries with well known functionalities are recognized,
hackers get important clues on their use for asset protection
(“condition for” relation in Figure 5, based on annotations
such as [O:E:6] “static analysis: native lib is using java library
for persistence giving clues on data stored to attacker”).

Based on this model, we expect the hackers’ task to be-
come harder to carry out when program analysis and reverse
engineering are inhibited and when tampering of the program
execution is not allowed. In fact, these are the core activities
executed to identify sensitive assets and limit the attack scope.
Hiding the libraries that are involved in the protection of the
assets, not just the protection itself, seems also very important
to stop / delay hackers.

2) How hackers build attack strategies: Figure 6 shows a
model of how hackers come to the formulation and validation
of hypotheses about protections, and how this eventually leads
to the construction of their attack strategy. Hypothesis making
requires (see “cause” relations in Figure 6) running (static
/ dynamic) program analyses and interpreting the results by
applying background knowledge on how code protection and
obfuscation typically work (e.g., [O:E:4] “static analysis to
detect anti-debugging protections”). Identifying protections
or libraries involved in protections is also a very important
prerequisite to be able to formulate hypotheses. When an
attack attempt fails (see “condition for” relation on the left
in Figure 6), the reasons for the failure often provide useful
clues for hypothesis making (sentence “As the original process
is already being ptraced, this prevents a debugger, which
typically uses the ptrace system, from attaching”, annotated as
[P:A:50] “Guess: avoid the attachment of another debugger”).

To confirm the previously formulated hypotheses, further
analyses are run and interpreted based on background knowl-
edge (see “cause” relations connected to Confirm hypothesis).
Pattern matching is also very useful to confirm hypotheses
([P:F:26] “Repeated execution patterns are identified and
matched against repeated computations that are expected to
be carried out by the relevant code”; [P:D:25] “mapping of

observed (statistical) patterns to a priori knowledge about
assumed functionality”). Another activity that contributes to
the confirmation of previously formulated hypothesis is the
creation of a small program that replicates the conjectured
protection ([P:F:47] “Understanding is carried out on a simpler
application having similar (anti-debugging) protection”).

Once hypotheses about the protections are formulated and
validated, an attack strategy can be defined. This requires
all the information gathered before, including the results of
the analyses, background knowledge, identified assets and
identified protections (see “cause” relations connected to
Build the attack strategy). Another important input for the
definition of the (revised) attack strategy is the observation
of anomalous or unexpected behaviours (sentence “[omissis]
It seems that the coredump didn’t contain all of the process’
memory [omissis]”, annotated as [P:C:31] “Anomaly detected
causing doubt in the tool’s abilities: change attack strategy”).
In fact, unexpected crashes or missing data might point to
previously unknown protections that are triggered by the
hackers’ attempts or to tool limitations. In turn, this leads to
the definition of alternative attack paths.

An important condition that determines the feasibility of
an attack strategy is the amount of effort required to im-
plement it (see “condition for” relation connected to Build
the attack strategy). Hence, effort assessment is one of the
key abilities of hackers, who have to continuously estimate
the effort needed to implement an attack, contrasting it with
the expected chances of success ([P:D:51] “assessment of
effort needed to extend existing tool to make it provide a
workaround around a protection, i.e., defeat the protection that
prevents an attack step, in this case based on the concepts
of the protection”). Even if potentially very effective, attack
strategies that are deemed as extremely expensive (e.g., manual
reverse engineering and tampering of the code binary) are
often discarded to favour approaches that are regarded as more
cost-effective.

Based on the model shown in Figure 6, we can notice
that hypothesis making and attack strategy construction are
inhibited by the same factors that inhibit app understanding
and sensitive asset identification. In addition, a further factor
comes into play: the estimated effort to implement an attack.
Hence, even protections that can be eventually broken play
potentially a key role in preventing attacks, if they contribute
to increase the effort required for attacking the target sensitive
assets.



Fig. 7. Model of hacker activities related to choosing, customizing and
creating new tools

3) How hackers chose and customize tools: Hackers
resort extensively to existing tools for their attacks. An impor-
tant core set of the hackers’ competences is deep knowledge
of tools: when and how to use them; how to customize
them. Figure 7 shows how hackers evaluate, choose, configure,
customize, extend and create new tools. The starting point is
usually the result of some analysis and/or the observation of
some specific obstacle, which leads to the identification of
candidate tools (see “cause” relation in Figure 7). Then, a key
factor that determines both tool selection and customization
is the execution environment and platform. Other important
factors are known limitations of existing tools, which might
be inapplicable to a specific platform / app ([P:A:23] “[omis-
sis] Attack step: dynamic analysis with another tool on the
identified parts to overcome the limitation of Valgrind”), as
well as observed failures of previously attempted dynamic
analysis ([P:C:38] “Experiment with tool options to try to cir-
cumvent failures of the tool”), which may suggest alternative
approaches and tools (see “condition for” relations on the left
in Figure 7).

Once tools are selected and customized, they are used to
find patterns, by running further analyses on the protected
code, or they are used directly to undo protections and
mount the attacks (see “used to” relations in the middle of
Figure 7). When existing tools are insufficient for the hackers’
purposes, new tools might be constructed from scratch. This
is potentially a very expensive activity, so it is carried out only
if existing tools cannot be adapted for the purpose in any way
and if alternative tools or attack strategies are not possible.
One case where such tool construction from scratch tends to be
cost-effective is when hackers want to execute a part of the app
out of context, to better understand its protections (see “used
to” relation connected to Out of context execution). In fact, this
usually amounts to writing small scaffolding code fragments
that execute parts of the app or library under attack in an
artificial, hacker-controlled, context ([L:E:17] “write custom
code to load-run native library”).

The model in Figure 7 shows that tools play a dominant
role in the implementation of attacks. Hence, code protections
should be designed and realized based on an amount of
knowledge of tools and of their potential that should be as
deep and sophisticated as the hackers’ one. Preventing out of
context execution is another important line of defence against
existing and new tools.

4) How hackers workaround and defeat protections:
The actual execution of an attack aims at undoing or defeating
protections, or at building a workaround that can circumvent
a protection. Figure 8 shows a model of such activities.
Undoing a protection is usually regarded as quite difficult
and expensive. Hackers prefer to overcome a protection by
tampering with the code or the execution (see incoming
relations of Overcome protection in Figure 8). This means
that instead of reversing the effect of a protection (e.g., de-
obfuscating the code), they gather enough information to
be able to manipulate the code and the execution so as to
achieve the desired effect, without having actually eliminated
the protection. Overcoming a protection eventually relies on
the possibility to alter the normal flow of execution (this is the
reason for a causal relation between Tamper with execution
and Overcome protection). In some instances, altering the
execution flow is not enough or possible. In such cases,
hackers may write custom code (Build workaround) that is
integrated with or replaces the existing code, with the purpose
of preserving the correct functioning of the app, while at the
same time making the protections ineffective.

Hackers run program analyses to obtain information useful
to manually undo protections. For instance, dynamic analysis
and symbolic execution can be used to understand if a pred-
icate is (likely to be) an opaque one, such that one of the
two branches of the condition containing the predicate can be
assumed to be dead code that was inserted just to obfuscate
the program ([L:F:2] “Undo protection (opaque predicates) by
means of dynamic analysis and symbolic execution”). The
analyses needed to undo protections may be quite sophis-
ticated, hence requiring non trivial tool customization (see
incoming relations of Undo protection in Figure 8).

To overcome a previously identified protection, hackers
alter the execution. For instance, if they have identified some
library calls used to implement a protection, they may try
to intercept such calls and replace their parameters on the
fly; they may skip the body of the called functions and
return some forged values; or, they may redirect the calls to
other functions ([O:F:17] “Tamper with system calls (ptrace)
that implement the anti-debugging protection by means of
an emulator”; see causal relation to Overcome protection in
Figure 8). To achieve the desired effect, this might require
also altering the code (see “used to” relation to Overcome
protection; [L:F:7] “Tamper with protection (anti-debugging),
by patching the code [omissis]”).

Tampering with the execution can be more or less expensive,
depending on the intended manipulation of the execution
([P:C:48] “Investigate API usage of the protection to see
how much effort it is to emulate it”). For this reason, a key



Fig. 8. Model of hacker activities related to building workarounds and undoing / overcoming protections

decision support activity is Effort assessment (see “condition
for” relation at the top in Figure 8). In practice, implementing
execution tampering requires a lot of skills on tools, in partic-
ular on emulators, and on the customization of the execution
environment (see “used to” relations at the top). Hackers may
even resort to a custom execution kernel ([O:F:18] “Tamper
with system calls (ptrace) that implement the anti-debugging
protection by means of a custom kernel”).

Whenever protections cannot be easily undone or overcome,
hackers build workarounds. Hence, the trigger for this activity
is an observed obstacle that cannot be circumvented by simpler
means (see “cause” relation at the bottom in Figure 8). Since
building workarounds is typically an expensive activity, effort
estimation is routinely conducted before starting this attack
step (see “condition for” relations at the bottom; [P:A:51]
“Identification of a potential trick to avoid the protection
technique. Estimation of the consequences (scripts and time
wasted on this)”). Moreover, identifying the specific protection
to circumvent is a prerequisite for the construction of the
proper workaround (see “condition for” relation at the bottom
in Figure 8). For instance, hackers may intercept decrypted
code before it is executed rather than trying to decrypt it
([O:G:3] “[omissis] Bypass encryption; weakness: decryption
before execution”).

Based on the model of execution tampering to undo /
overcome / circumvent protections shown in Figure 8, we
can again notice that effort assessment is a key activity that
is carried out continuously. Moreover, such continuous effort
estimation leads hackers to prioritize their attack attempts. If
undoing a protection is regarded as too difficult and too effort
intensive, hackers may switch to dynamic manipulation of the
execution, so as to overcome the protection without defeating
it. When everything else fails, solutions that are typically
very expensive, such as building a custom workaround or
customizing the execution environment, might become the
only viable options (before eventually giving up).

IV. DISCUSSION

A. Research Agenda

Based on the observed attack steps and strategies, we have
identified the following research directions for the develop-
ment of novel or improved code protections.

a) Protections should inhibit program analysis and re-
verse engineering (see “used to” relation outgoing from
Analysis / reverse engineering in Figure 5): While several

of the existing protections are designed to inhibit program
analysis (e.g., control flow flattening; opaque predicates) and
(manual) reverse engineering (e.g., variable renaming), in our
study we have noticed that hackers use really advanced pro-
gram analysis techniques, like dependency analysis, symbolic
execution and constraint solvers. These advanced analyses are
indeed very powerful, but they come with known limitations.
For instance, dependency analysis is difficult when pointers or
reflection are extensively used; symbolic execution is difficult
when loops and black box functions are used; constraint
solvers may fail if non linear or black-box constraints are
present in expressions. Protection developers may exploit such
limitations to artificially inject constructs that are difficult to
analyze into the program. Since manual intervention might
be needed to help tools deal with such artificially injected
constructs, it would be interesting to design an empirical
study to test the effectiveness of such solution. The study
may compare, both qualitatively and quantitatively, a control
group and a treatment group, which attack an app respectively
without/with artificially injected constructs. The two groups
would be allowed to use the same program analysis tools. The
qualitative comparison could be focused on the difference in
attack strategies and manual comprehension steps between the
two groups.

b) Protections should prevent manipulation of the exe-
cution flow and of the runtime program state (see relations
outgoing from Tamper with execution in Figure 5 and Fig-
ure 8): Intercepting the execution and replacing the invoked
functions or altering the program state is a key step in most
successful attacks. Protections that inhibit debuggers (e.g.,
anti-debugging techniques) or that check the integrity of the
execution (e.g., remote attestation) are hence expected to
be particularly important and effective. Another approach to
prevent execution tampering is the use of a secure virtual
machine for the execution of critical code sections. Our study
provides empirical evidence on the importance of pushing
these research directions even further. Human studies could
be designed to determine the strategies adopted by attackers
to workaround each of the above mentioned protections. Such
empirical studies would be also useful to assess quantitatively
the relative strength of the alternative protections.

c) Libraries involved in code protections should be hid-
den (see relations outgoing from Recognizable library in
Figure 5 and Figure 6): Libraries represent a side channel
for attacks that is often overlooked by protection developers.



Our study shows that protecting the code of the app is not
enough and that the libraries used by the app code may
leak information useful to hackers and may offer them viable
attack points. Techniques to prevent attacks to libraries and
to obfuscate the use of libraries or the libraries themselves
deserve more attention from protection developers. Moreover,
vulnerability indicators and metrics could be defined to de-
termine the occurrence of libraries, system calls and external
calls, which can be regarded as potential points of attack.

d) Protections should be selected and combined by esti-
mated attack effort (see relations outgoing from Effort assess-
ment in Figure 6 and Figure 8): The (theoretical) strength
of a protection is of course important, but according to our
study the perceived effort to defeat a protection is even
more important (and indeed it may differ from the actual
strength). This means that even theoretically weak protections
(e.g., variable renaming) should be included if they increase
the attack effort, which could be estimated through novel
attack effort prediction metrics. Moreover, synergies among
protections could be investigated that may increase the effort
necessary to defeat them more than linearly (e.g., code guards
that render unusable code modified for out of context exe-
cution purposes + obfuscation to render modifications more
complex). To actually prioritize the protection to apply, more
effective metrics that estimate the potency of protections would
be needed, either when applied in isolation or in combination
with other protections. Moreover, it would be interesting to
empirically assess the correlation between such metrics and
the actual delays introduced by protections. The correlation
between perceived effort and actual delay would also be worth
extensive empirical investigation.

e) Effectiveness of protections should be tested against
features available at existing tools or by customizing exist-
ing tools (see Choose tool / evaluate alternative tools and
Customize / extend / configure tool in Figure 7): While
this practice might sound quite obvious, in our experience it
is overlooked by protection developers, who usually assess
the strengths of protections either theoretically or through
metrics. Empirical evaluation based on deep knowledge and
customization of existing tools may provide useful insights for
the improvement of the proposed techniques.

f) Out of context execution of protected code should be
prevented (see Out of context execution in Figure 7): This
attack strategy is not much known and investigated, but in our
study it appeared to play a quite important role. Protection
developers should design techniques to make the protected
code tangled with the rest of the app code, so as to make out of
context execution difficult to achieve. A human study could be
conducted to measure the difficulty of out of context execution
when the protected code is made arbitrarily tangled with the
rest of the app in comparison with the initial, untangled code.

g) Protections should be difficult to circumvent without
rewriting part of the code as a workaround to them (see
Build workaround in Figure 8): While the perfect protection
for a software asset may not exist [1], practical protections
should be designed such that the only way to defeat them is

writing substantial code (e.g., a new library, a new kernel, a
replacement function, etc.). In fact, this increases the attack
effort and deters or defers the attack. What workarounds
hackers write in practice and how they elaborate them is yet
another research topic on which little is known and that would
deserve further investigation.

B. Threats to Validity

External validity (concerning the generalization of the find-
ings): The purpose of our qualitative study was to infer models
of the hackers’ activities starting from the hacker reports.
Being the result of an inference process grounded on con-
crete observations, our models may not have general validity.
Further empirical validation is needed to extend the scope
of their validity beyond the context of this study. However,
during conceptualization we aimed explicitly at abstracting
away the details, so as to distill the general traits of the
ongoing activities. Moreover, in order to obtain models that are
applicable in an industrial context, the study was conducted in
realistic a setting, involving professional hackers who are used
to perform similar attack tasks as part of their daily working
routine.

Construct validity (concerning the data collection and anal-
ysis procedures): We adopted widely used practices from
grounded theory to limit the threats to the construct validity
of the study. To be sure that reports contain all the needed
information, we asked professional hackers to cover a set of
topics while filling their reports, including obstacles, activities,
tools and strategies.

Internal validity (concerning the subjective factors that
might have affected the results): In order to avoid bias and
subjectivity, coding was open (no fixed codes) and it was per-
formed by the seven coders independently and autonomously.
Moreover, precise instructions have been provided to guide
the coding procedure. To complete concept identification and
model inference, two joint meetings have been organized. All
the interpretations were subject to discussion, until consensus
was reached. Traceability links between report annotations and
abstractions have been maintained. This was effective not only
to document decisions, but also in case of model revision,
to base changes on evidences from the reports. While some
subjectivity is necessarily involved in the process, the above
mentioned practices aimed at minimizing and controlling its
impact.

V. RELATED WORK

The related literature consists of the empirical studies
conducted to produce a model of program comprehension
and of the developers’ behaviour. Empirical studies on the
effectiveness of code protections are also relevant.

A. Models of program comprehension and of the developers’
behaviour

There is agreement, based on large scale observations [7],
that program comprehension involves both top-down and
bottom-up comprehension, and that often the most effective



strategy is a combination of the two, known as the integrated
model [8], [9]. A less systematic combination of top-down
and bottom-up models is called the opportunistic model of
program comprehension [7].

Programmers resort to a top-down comprehension strategy
when they are familiar with the code. They take advantage
of their knowledge of the domain [10] to formulate hypothe-
ses [11] that trigger comprehension activities. Hypotheses [11]
can take the form of why/how/what conjectures about the
expected implementation. Comprehension activities carried
out on the code aim at verifying the hypotheses on which
uncertainty is highest.

The bottom-up strategy is preferred by programmers who
are relatively unfamiliar with the code. Programmers may start
with the construction of a control flow model of the program
behaviour [10], to continue with higher level abstractions, such
as the data flow model, the call hierarchy model and the inter-
process communication model.

In the integrated model [8], programmers work at the ab-
straction level that is deemed appropriate and switch between
top-down and bottom-up models. While the bottom-up phase
is usually quite systematic, the top-down phase tends to be
opportunistic and goal driven [12], [13]. The opportunistic
strategy has been found to be much more effective and
efficient than the systematic strategy when applied to large
systems [14]. However, it has the disadvantage of producing
incomplete models and partial understanding, which might
affect negatively program modification [8], [15], [9].

Existing program comprehension models have been inves-
tigated in specific contexts, such as component based [16]
or object oriented [17] software development, but to the
best of our knowledge ours is the first work considering
the comprehension process followed by professional hackers
during understanding of protected code to be attacked.

The use of qualitative analysis methods in software engi-
neering has gained increasing popularity in recent years and
among the various qualitative methods, GT appears to be
the most popular one. However, according to a survey [6]
conducted on 98 papers that have been published in the
9 top ranked journals, GT is largely misused in existing
software engineering studies. In fact, key features of GT, such
as theoretical sampling, memoing, constant comparison and
theoretical saturation, are often ignored. The survey [6] reports
some of the topics investigated in the 98 qualitative empirical
studies analyzed for the survey. These include studies on the
software engineering process and on software development
teams, especially in the agile context. No mention is made in
the survey of any qualitative analysis dealing with the program
comprehension process carried out by professional hackers.

B. Empirical studies on the effectiveness of code protection

There are two main research approaches for the assessment
of obfuscation protection techniques, respectively based on
internal software metrics [18], [19], [20], [21], [22], [23] and
on experiments involving human subjects [24], [25], [26], [27].

Assessment by means of experiments with human subjects
has been first presented in a work by Sutherland et al. [24],
who found the expertise of attackers to be correlated with the
correctness of reverse engineering tasks. They also showed
that source code metrics are not good estimators of the delays
introduced by protections on attack tasks, if binary code is
involved. Ceccato et al. [25] measured the correctness and
effectiveness achieved by subjects while understanding and
modifying decompiled obfuscated Java code, in comparison
with decompiled clear code. This work has been extended
with a larger set of experiments and additional obfuscation
techniques in successive works [26], [27].

While human experiments conducted to measure the effec-
tiveness of protections often draw also some qualitative con-
clusions on the activities carried out by the involved subjects,
their main goal is not to produce a model of the comprehension
activities carried out against the protected code. Moreover,
the involved subjects are usually students, not professional
hackers. Hence, while these studies contributed to increase our
knowledge of the effectiveness of various software protection
techniques, they did not develop any thorough model of code
comprehension during attack tasks.

VI. CONCLUSIONS AND FUTURE WORK

We have applied a rigorous qualitative analysis methodology
to the hacker reports produced in the execution of three case
studies. The output of such analysis consists of an ontology
of concepts that describe the hacker activities and four models
that describe: how hackers understand the app and identify
sensitive assets, how they make and confirm hypotheses to
build their attack strategy, how they choose and customize
tools and how they workaround and defeat protections. From
such models we have derived guidelines for the design of soft-
ware protections and for the development of new protections.

In our future work, we intend to corroborate the inferred
models with the analysis of additional case studies. Moreover,
we plan to conduct controlled experiments to validate the key
causal relations that have been inferred in our models, in order
to measure quantitatively the strength of such relations and to
test their significance from the statistical point of view.

ACKNOWLEDGMENT

The research leading to these results has received funding
from the European Union Seventh Framework Programme
(FP7/2007-2013) under grant agreement number 609734.

REFERENCES

[1] B. Barak, O. Goldreich, R. Impagliazzo, S. Rudich, A. Sahai, S. Vadhan,
and K. Yang, “On the (im) possibility of obfuscating programs,” Lecture
Notes in Computer Science, vol. 2139, pp. 19–23, 2001.

[2] D. A. Wheeler, “More than a gigabuck: Estimating gnu/linuxs size,”
2001.

[3] U. Flick, An Introduction to Qualitative Research (4th edition). London:
Sage, 2009.

[4] B. G. Glaser and A. L. Strauss, The Discovery of Grounded Theory.
Chicago: Aldine, 1967.

[5] A. Strauss and J. Corbin, Basics of Qualitative Research: Grounded
Theory Procedures and Techniques. London: Sage, 1990.



[6] K. Stol, P. Ralph, and B. Fitzgerald, “Grounded theory in software
engineering research: a critical review and guidelines,” in Proceedings
of the 38th International Conference on Software Engineering, ICSE
2016, Austin, TX, USA, May 14-22, 2016, 2016, pp. 120–131.

[7] A. von Mayrhauser and A. M. Vans, “Industrial experience with an
integrated code comprehension model,” Software Engineering Journal,
vol. 10, no. 5, pp. 171–182, 1995.

[8] ——, “Comprehension processes during large scale maintenance,” in
Proceedings of the 16th International Conference on Software Engi-
neering, Sorrento, Italy, May 16-21, 1994, pp. 39–48.

[9] ——, “Identification of dynamic comprehension processes during large
scale maintenance,” IEEE Trans. Software Eng., vol. 22, no. 6, pp. 424–
437, 1996.

[10] N. Pennington, “Stimulus structures and mental representations in expert
comprehension of computer programs,” Cognitive Psychology, vol. 19,
no. 3, pp. 295 – 341, 1987.

[11] S. Letovsky, “Cognitive processes in program comprehension,” Journal
of Systems and Software, vol. 7, no. 4, pp. 325–339, 1987.

[12] A. von Mayrhauser and A. M. Vans, “Hypothesis-driven understanding
processes during corrective maintenance of large scale software,” in
1997 International Conference on Software Maintenance (ICSM ’97),
1-3 October 1997, Bari, Italy, Proceedings, 1997, pp. 12–20.

[13] ——, “Program understanding needs during corrective maintenance of
large scale software,” in 21st Intern. Computer Software and Applica-
tions Conference (COMPSAC’97), 1997, USA, 1997, pp. 630–637.

[14] D. C. Littman, J. Pinto, S. Letovsky, and E. Soloway, “Mental models
and software maintenance,” Journal of Systems and Software, vol. 7,
no. 4, pp. 341–355, 1987.

[15] A. von Mayrhauser and A. M. Vans, “On the role of hypotheses during
opportunistic understanding while porting large scale code,” in 4th
International Workshop on Program Comprehension (WPC ’96), March
29-31, 1996, Berlin, Germany, 1996, pp. 68–77.

[16] A. A. Andrews, S. Ghosh, and E. M. Choi, “A model for understanding
software components,” in 18th International Conference on Software
Maintenance (ICSM 2002), Maintaining Distributed Heterogeneous Sys-
tems, 3-6 October 2002, Montreal, Quebec, Canada, 2002, p. 359.

[17] J. Burkhardt, F. Détienne, and S. Wiedenbeck, “Object-oriented program

comprehension: Effect of expertise, task and phase,” Empirical Software
Engineering, vol. 7, no. 2, pp. 115–156, 2002.

[18] C. Collberg, C. Thomborson, and D. Low, “A taxonomy of obfuscating
transformations,” Dept. of Computer Science, The Univ. of Auckland,
Technical Report 148, 1997.

[19] M. Ceccato, A. Capiluppi, P. Falcarin, and C. Boldyreff, “A large study
on the effect of code obfuscation on the quality of java code,” Empirical
Software Engineering, vol. 20, no. 6, pp. 1486–1524, 2015.

[20] B. Anckaert, M. Madou, B. De Sutter, B. De Bus, K. De Bosschere,
and B. Preneel, “Program obfuscation: a quantitative approach,” in Proc.
ACM Workshop on Quality of protection, 2007, pp. 15–20.

[21] C. Linn and S. Debray, “Obfuscation of executable code to improve
resistance to static disassembly,” in Proc. ACM Conf.Computer and
Communications Security, 2003, pp. 290–299.

[22] S. K. Udupa, S. K. Debray, and M. Madou, “Deobfuscation:
Reverse engineering obfuscated code,” in Proceedings of the 12th
Working Conference on Reverse Engineering. Washington, DC,
USA: IEEE Computer Society, 2005, pp. 45–54. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1107841.1108171

[23] A. Capiluppi, P. Falcarin, and C. Boldyreff, “Code defactoring: Eval-
uating the effectiveness of java obfuscations,” in Reverse Engineering
(WCRE), 2012 19th Working Conference on. IEEE, 2012, pp. 71–80.

[24] I. Sutherland, G. E. Kalb, A. Blyth, and G. Mulley, “An empirical exam-
ination of the reverse engineering process for binary files,” Computers
& Security, vol. 25, no. 3, pp. 221–228, 2006.

[25] M. Ceccato, M. Di Penta, J. Nagra, P. Falcarin, F. Ricca, M. Torchiano,
and P. Tonella, “The effectiveness of source code obfuscation: An
experimental assessment,” in IEEE 17th International Conference on
Program Comprehension (ICPC), May 2009, pp. 178–187.

[26] M. Ceccato, M. Di Penta, P. Falcarin, F. Ricca, M. Torchiano, and
P. Tonella, “A family of experiments to assess the effectiveness and
efficiency of source code obfuscation techniques,” Empirical Software
Engineering, vol. 19, no. 4, pp. 1040–1074, 2014.

[27] A. Viticchié, L. Regano, M. Torchiano, C. Basile, M. Ceccato, P. Tonella,
and R. Tiella, “Assessment of source code obfuscation techniques,” in
Proceedings of the 16th IEEE International Working Conference on
Source Code Analysis and Manipulation, 2016, pp. 11–20.


