
Static Analysis and Penetration Testing from the
Perspective of Maintenance Teams

Mariano Ceccato
Fondazione Bruno Kessler

Trento, Italy
ceccato@fbk.eu

Riccardo Scandariato
Chalmers and University of Gothenburg

Gothenburg, Sweden
riccardo.scandariato@cse.gu.se

ABSTRACT
Static analysis and penetration testing are common tech-
niques used to discover security bugs in implementation code.
Penetration testing is often performed in black-box way by
probing the attack surface of a running system and discover-
ing its security holes. Static analysis techniques operate in a
white-box way by analyzing the source code of a system and
identifying security weaknesses. Because of their different
nature, the two techniques report their findings in two differ-
ent ways. This paper presents an exploratory study meant
to determine whether a vulnerability report generated by a
security tool based on static analysis is more or less useful
than a report generated by a security tool based on penetra-
tion testing. The usefulness is judged from the perspective
of the developers that have to devise a vulnerability-fixing
patch. The initial results show an advantage when using
penetration testing in one of the two cases we investigated.

CCS Concepts
•Software and its engineering → Maintaining soft-
ware; •Security and privacy→ Penetration testing; Vul-
nerability scanners; •Social and professional topics →
Software maintenance;

Keywords
Software maintenance; Static analysis; Penetration testing

1. INTRODUCTION
Vulnerabilities are defects that expose a software system

to a security threat. As an example of vulnerability, con-
sider a piece of server-side code that executes the following
SQL statement, which is built from some user-provided in-
put: "SELECT * FROM Users WHERE UserId = " + getRe-

questString("UserId"). If a malicious user would pro-
vide the string "myUserId; DROP TABLE Suppliers" as in-
put, the execution of the above statement would cause the
deletion of an entire table from the database. This is an

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ESEM ’16, September 08-09, 2016, Ciudad Real, Spain
c© 2016 ACM. ISBN 978-1-4503-4427-2/16/09. . . $15.00

DOI: http://dx.doi.org/10.1145/2961111.2962611

example of a SQL Injection attack, which is possible due to
a vulnerability in the code. The example above is a hefty
programming mistake, as a parametrized statement should
have been used instead. In general, however, even small pro-
gramming error can have a sizeable security impact. The
anatomy of the Heartblead vulnerability in OpenSSL ex-
poses this very issue all too well: two missing lines of code
have compromised the integrity of the entire Internet in 2014
[13].

Two techniques that are widely used to localize vulner-
abilities are static analysis and penetration testing. These
techniques are supported by several commercial tools, like
IBM AppScan or Klocwork, which automate the process of
discovering the vulnerabilities to a large degree. Detecting
a vulnerability, although challenging, is just one side of the
coin. Once vulnerabilities are detected, their nature need
to be understood by the maintenance teams and a fix need
to be developed. The information about the discovered vul-
nerability provided by the tools to the maintenance teams is
different depending on the discovery technique used. Typi-
cally, static analysis tools report the ‘sink’ of a vulnerability,
i.e., the point where the harm to an information asset could
potentially take place. In the example above, a static analy-
sis tool would report the line of code containing the incorrect
SQL statement. A penetration testing tool would report the
entry point to the application where malicious user input
could be used to cause harm. In the example above, the
tool would report the URL and the malicious payload used
as attack vector, which is the ‘source’ of the vulnerability.
Hence, static analysis narrows down the location of the secu-
rity issue, while penetration testing provides an executable
scenario for the developer to replicate the problem.

The contribution of this paper is an exploratory controlled
experiment involving a small number of master students as
participants. The goal of the empirical study is to determine
whether a vulnerability report generated by a security tool
based on static analysis is more or less useful than a report
generated by a security tool based on penetration testing.
The usefulness of the report is judged from the perspective
of the developers that have to devise a bug-fixing patch to
close the vulnerability.

The rest of this paper is organized as follows. In Section
2, we specify the research questions. Section 3 describes
the set-up of the experiment. In Section 4, we report the
observed results. Section 5 discusses the threats to validity.
In Section 6, we overview the related work. Finally, Section
7 presents the concluding remarks.

http://dx.doi.org/10.1145/2961111.2962611

2. EXPERIMENTAL DEFINITION
In this study we use a representative tool for each of

the investigated techniques: HP Fortify Source Code An-
alyzer (www.fortify.com) for static analisys and Burp Suite
(portswigger.net) for penetration testing. These tools have
been successfully used in the past to analyze the web appli-
cations used as objects in this study. The choice of the tools
has been influenced by our previous study comparing static
analysis to penetration testing with respect to vulnerability
detection [10]. In this study we use the same tools and ap-
plications used previously, hence facilitating the aggregation
of the experimental results in order to obtain an end-to-end
assessment of the techniques.

For each identified vulnerability, the static analysis tool
produces a report containing the line number of the af-
fected file and additional contextual information, including
(i) the type of vulnerability (e.g., SQL Injection or Cross-
Site Scripting) and its estimated severity (on a 1 to 5 range).

The penetration testing report contains the entry point
to the application (as URL), the malicious input to be used
to replicate the attack, the type of vulnerability and a short
description of the attack steps to follow.

Examples of the above-mentioned security reports are pro-
vided online in our replication package[4].

The goal of this study is to analyze the effect of said secu-
rity reports with the purpose of evaluating how they support
corrective maintenance. In particular, the experiment aims
at answering the following two research questions:

• RQ1: Is there a difference between static analysis re-
ports and penetration testing reports in supporting a
correct removal of vulnerability defects?

• RQ2: Is there a difference between static analysis re-
ports and penetration testing reports in supporting a
fast removal of vulnerability defects?

3. EXPERIMENTAL SETTINGS

3.1 Context
The participants of this experiment are 12 second-year

master students from the University of Trento, attending the
Security Testing course. They are fluent in the programming
language used in the study (i.e., Java).

The objects of this experiment are two similar open-source
Java web systems, Pebble and Roller. Both application
are fully-featured blogging platforms and support multiple
users, customization of blogs via templates, threads of com-
ments from blog visitors, and so on. Pebble (pebble.sourceforge.
net) contains about 56 thousand lines of code (KLOC). We
used version 2.6.3. Roller is (roller.apache.org) is very sim-
ilar to Pebble in terms of size (62 KLOC) and functionality.
We used version 5.0.1.

3.2 Tasks and Experimental Design
We selected particular releases of Pebble and Roller that

contain some known and documented vulnerabilities, that
the participants are supposed to fix. Applications have been
subject to static analysis (via Fortify SCA) and penetration
testing (via Burp Suite) to collect security reports. For the
experiment, we selected two vulnerabilities per application,
among those that are detected by both static analysis and
penetration testing.

Table 1: Experimental design. Order of tasks (A-D)
and treatments (SA, PT).

Lab System Group 1 Group 2 Group 3 Group 4

1 Pebble TSA
A ,TSA

B TSA
B ,TSA

A TPT
A ,TPT

B TPT
B ,TPT

A

2 Roller TPT
C ,TPT

D TPT
D ,TPT

C TSA
C ,TSA

D TSA
D ,TSA

C

As shown in Table 1, throughout the course of the experi-
ment, each participant completes 4 tasks, consisting of fixing
a vulnerability (TA-TD) using the reports generated by ei-
ther the static analysis (SA) technique or the penetration
testing (PT) technique. The tasks are carried out in two lab
sessions, one for each system. Each participant works on
both systems and uses both techniques (i.e., treatments).
The order of the tasks and treatments is randomized.

3.3 Measures and Hypotheses
The independent variable of the experiment is the type

of report used to identify the vulnerability (i.e., generated
via static analysis or penetration testing). The measures we
collect are:

• Correctness: For each task we assess whether the par-
ticipant correctly fixed the vulnerability;

• Productivity: We measure the time spent by a par-
ticipant to complete a task and we compute the pro-
ductivity as the ratio between the number of correctly
completed tasks and the time spent on them.

To track the time, participants are asked to use toggle1,
a web application for time keeping. Participants are also
asked to submit the edited code to the authors, who verified
if the fix was indeed correct or not. The success of each
maintenance task has been assessed by one of the authors,
who inspected the source code to understand the performed
changes and ran a test to verify that the security defects had
been removed.

Based on the measures chosen, we can formulate the fol-
lowing null hypotheses:

• H0C : There is no difference in the correctness of vul-
nerability fixing tasks when supported by static anal-
ysis and penetration testing;

• H0P : There is no difference in the productivity par-
ticipants working on vulnerability fixing tasks when
supported by static analysis and penetration testing.

3.4 Questionnaires: Measure Co-Factors and
Interpret Results

We also asked the participants to answer a profiling pre-
questionnaire and a feedback post-questionnaire. The pre-
questionnaire collects information about the abilities and
experience of the involved participants. This is important to
analyse the effect of ability and experience in the successful
completion of fixing tasks. Among the co-factors that can
potentially affect the results, we measured and analyzed the
following ones:

1https://toggl.com/

www.fortify.com
portswigger.net
pebble. sourceforge.net
pebble. sourceforge.net
roller.apache.org

• The System to fix: as detailed above, we considered
two systems: Pebble and Roller. Although they are
comparable in terms of features and complexity, par-
ticipants may perform differently on different systems;

• The Task: for each application, two fix tasks have been
defined. Although they have been identified to be quite
similar in terms of complexity, performance could be
different on different tasks;

• The Task Order: there could be a learning effect be-
tween the first and the second task and this could in-
fluence the performance of participant;

• The Experience: The proficiency of a participant with
Java, their knowledge of security and their industrial
experience might influence accuracy and productivity
of fixing tasks;

The post-questionnaire collects information about how each
security report helped participants to understand the vulner-
ability defect and to fix it. The questionnaires are available
online [4].

3.5 Experimental Procedure
Training. Before each experiment, participants attended

a lecture to recall the notion of both static analysis and pen-
etration testing, and to clarify the experimental procedure.

Before the actual experiment, participants have been in-
volved in a warm-up session where they have been asked to
perform some fixing tasks (similar to those in the study) on
a sample web application. The objective was to make par-
ticipants confident with the experimental environment, and
to make sure that they are aware of the kind of tasks that
they were supposed to perform during the experimental labs.
For the experiment, participants used a personal computer
equipped with with Apache Tomcat and Mysql sever. The
purpose of the training was also to test that their working
environment were correctly configured, in order to start the
experimental labs with a fully functional setup.

Material. We distributed the following material to our
participants:

• A short textual documentation of the system they had
to fix, including how to compile, deploy and start it in
the local web server;

• The source of the system to fix;

• The description of the two tasks (i.e., the two vulner-
abilities to be fixed)(see Table 1).

Execution. The experiment was carried out according
to the following procedure. Participants had to: (i) Fill the
profiling questionnaire; (ii) Read the application description;
(iii) Compile the application with Eclipse, deploy and run
the application (Pebble or Roller) to familiarise with it; (iv)
Read the first vulnerability report; start the timer; perform
the task and fix the vulnerability; stop the timer; (v) Read
the second vulnerability report; start the timer; perform the
task and fix the vulnerability; stop the timer; (vi) After
completing all tasks, create an archive containing the mod-
ified source code and send it to the experimenter by email,
together with the time report; and (vii) Complete a post-
experiment survey questionnaire.

During the experiment, the authors monitored the labo-
ratory to prevent collaboration among participants, and to
check that participants properly followed the experimental
procedure.

3.6 Analysis Procedure
The difference between the output variable (Correctness

and Productivity) obtained under different treatments (static
analysis vs. penetration testing) is tested using non-parametric
statistical tests, assuming significance at a 95% confidence
level (α=0.05). So, we reject the null-hypotheses when p-
value<0.05. All the data processing is performed using the
R statistical package [9].

To analyse the differences in terms of Correctness, we
looked at the frequencies of correct/wrong tasks and we used
a test on categorical data, because the tasks can be either
correct (completed successfully) or incorrect (completed un-
successfully). In particular, we used Fisher’s exact test [6]2.

To test the differences in Productivity we perform the one-
tailed Mann-Whitney U test on all samples [11].

To quantify the magnitude of differences among the two
labs, we used two kinds of effect size measures, the odds ratio
for the categorical variable Correctness and the Cliff’s delta
effect size [7] for Productivity. The effect size is computed
using the effsize package [12].

An odds ratio of 1 indicates that the condition or event
under study is equally likely in both groups (participants
using SA and those using PT). An odds ratio greater than
1 indicates that the condition or event is more likely in the
first group. An odds ratio less than 1 indicates that the
condition or event is less likely in the first group.

For independent samples, Cliff’s delta provides an indica-
tion of the extent to which two (ordered) data sets overlap,
i.e., it is based on the same principles of the Mann-Whitney
test. Cliff’s Delta ranges in the interval [−1, 1]. It is equal
to +1 when all values of one group are higher than the val-
ues of the other group and −1 when reverse is true. Two
overlapping distributions would have a Cliff’s Delta equal to
zero. The effect size is considered small for 0.148 ≤ d < 0.33,
medium for 0.33 ≤ d < 0.474 and large for d ≥ 0.474 [5].

The analysis of co-factors is performed using a General
Linear Model (GLM). It consists in fitting a linear model
of the dependent output variables (Correctness or Produc-
tivity) as a function of the independent input variables (all
factors, including the treatment, i.e., the vulnerability de-
tection tool). A general linear model allows to test the sta-
tistical significance of the influence of all factors on the out-
put variable. In case of relevant factors, interpretations are
formulated by visualising the associated interaction plots.

4. RESULTS
In this section, we present and analyse the results of the

study.

4.1 Analysis of Correctness
First of all, we consider the correctness of the tasks, which

consist of removing code-level security defects. Table 2 re-
ports the number of correct and wrong tasks delivered by

2Fisher’s exact test is more accurate than the χ2 test for
small sample sizes, which is another possible alternative to
test the presence of differences in categorical data. The same
analysis was conducted by [3].

Table 2: Analysis of Correctness (Fisher test and
Odds ratio).

Static Analysis Pen. Testing

Correct Wrong Correct Wrong P OR

Pebble 5 7 2 8 0.38 2.72
Roller 3 3 8 0 0.05 0.00

SA PT SA PT

0
1

2
3

4
5

P
ro

d
u

c
ti
v
it
y
 [

c
o

rr
e

c
t

fi
xe

s
/h

]

Pebble Roller

Figure 1: Box plot of Productivity.

participants3, organized according to the kind of security
report they received (static analysis or penetration testing).
Different Systems are reported separately in distinct rows.

For Pebble, there is no clear trend, because the number
of incorrect fixes is consistently higher than the number of
correct tasks both with static analysis and with penetration
testing. Conversely, a trend seems to be present when work-
ing with Roller. In this second case, when participants are
provided with static analysis reports the number of correct
and incorrect fixes are the same (3 versus 3 tasks), while
when they are provided with penetration testing reports the
number of correct tasks is higher (8 versus 0 tasks).

We apply Fisher’s test to check if the observed trend is
statistically significant. The absence of a clear trend for
Pebble is confirmed by the test, as no statistically significant
difference is achieved. In the case of Roller, the p-value (“P”
column) is still not <0.05, but the odds ratio is very small
(“OR” column). Possibly, the lack of significance is due to
the limited number of participants. Thus, we can answer to
RQ1 in this way:

The correctness when fixing vulnerabilities (on Roller) is
higher when the participants are provided with vulnerabil-
ity reports generated by penetration testing. However, the
difference is not statistically significant.

4.2 Analysis of Productivity
In Figure 1, we report the box-plot of productivity, mea-

sured as the number of correct tasks divided by the time
required to elaborate them. Since we pre-filter security re-
ports, productivity does not include detection of false pos-
itives. While for Pebble, the productivity of the two ap-
proach looks similar, on Roller the productivity of partic-
ipants working with penetration testing looks higher than

3The sum of tasks does not amount to the number of par-
ticipants, because not all the participants attended all the
labs not all tasks have been delivered.

Table 3: Analysis of Productivity (Mann-Whitney
test).

Static Analysis Pen. Testing

Mean Std dev Mean Std dev P ES

Pebble 1.19 1.77 0.22 0.47 0.22 0.35
Roller 0.81 1.30 2.81 1.93 0.02 -0.79

Table 4: Co-factors of Correctness (general linear
model).

Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.1077 0.4930 0.22 0.8286

TreatmentSA -0.0914 0.1674 -0.55 0.5894
SystemRoller 0.4451 0.1722 2.58 0.0152

TaskB 0.0551 0.1676 0.33 0.7446
Task.order 0.1163 0.1681 0.69 0.4948

java.exp 0.2064 0.1906 1.08 0.2882
security.exp -0.0221 0.2071 -0.11 0.9157

work.exp 0.0007 0.2318 0.00 0.9976

the productivity of those who work with static analysis.
Table 3 reports descriptive statistics and statistical anal-

ysis of productivity. While on Pebble no statistical signif-
icance is observed, on Roller the difference in productivity
is statistically significant (p-value <0.05) with a large effect
size (“ES” column). In particular, the average productivity
with penetration testing is more than trice than the produc-
tivity of static analysis (2.81 vs 0.18 correct tasks per hour).
So we can answer to RQ2 in this way:

The productivity when fixing vulnerabilities (on Roller) is
higher when the participants are provided with vulnerability
reports generated by penetration testing.

4.3 Analysis of Co-Factors
In this section, we report about the co-factors that could

have influenced the dependent variables of our experiment
(Correctness and Productivity).

Table 4 reports the analysis of co-factors of Correctness
obtained by applying the general linear model method. Sta-
tistically significant coefficients are in boldface. The par-
ticular System used in the experimental session influenced
significantly the Correctness of vulnerability-fixing tasks.

From the interaction plot in Figure 2 we can notice that
vulnerability-fixing tasks on Roller (first lab) are consis-
tently completed with higher correctness than on Pebble
(second lab). This effect is particularly evident for Pene-
tration Testing. This could be interpreted as an asymmetric
learning effect among successive labs: when participants al-
ready practised with Static Analysis in the first lab, in the
second lab they achieved higher correctness with Penetra-
tion Testing. Conversely, previous practice with Penetration
Testing in the first lab does not help in completing correct
fixing tasks when working with Static Analysis in the second
lab.

Previous practice in fixing vulnerabilities with the support of
static analysis yields higher correctness when subsequently
working with the support of penetration testing.

As shown in Table 5, we then consider the relation be-

0
.2

0
.4

0
.6

0
.8

1
.0

System

m
e

a
n

 o
f

c
o

rr
e

c
t

fi
xe

s

1st Lab (Pebble) 2nd Lab (Roller)

 Treatment

PenTesting

StaticAnalysis

Figure 2: Interaction plot of system and treatment
in correctness.

Table 5: Co-factors of Productivity (general linear
model).

Estimate Std. Error t value Pr(>|t|)
(Intercept) 2.9656 2.9207 1.02 0.3339

TreatmentSA -0.6948 0.8360 -0.83 0.4253
SystemRoller -0.6659 0.8381 -0.79 0.4454

TaskB -0.0440 0.7716 -0.06 0.9556
Task.order 2.2303 0.7945 2.81 0.0186

java.exp -0.9411 1.1161 -0.84 0.4188
security.exp -1.9509 0.9000 -2.17 0.0554

work.exp -1.2714 1.2865 -0.99 0.3463

tween co-factors and the Productivity. We observe that the
Order of the tasks influences productivity in a statistically-
significant way (p-value <0.05).

From the interaction plot in Figure 3, we can see that both
for Static Analysis and for Penetration Testing in the 2nd

task productivity is consistently higher. Not surprisingly,
this can be explained as a learning effect between successive
tasks in the same system (while using the same technique).
During the first task, the productivity is possibly lower be-
cause participants spent some time to familiarize with the
new System under maintenance. The acquired knowledge
helps to complete the second task with higher productivity.

The productivity in fixing vulnerability defects (on the same
system and with the same type of vulnerability report) im-
proves along subsequent fixing tasks.

4.4 Analysis of Post-Questionnarie
At the end of the study, we asked the participants to fill

in a short questionnaire, which is available online [4]. Only
8 participants provided feedback.

The respondents agreed that a static analysis report makes
it easier to understand the cause of a vulnerability with re-
spect to a penetration testing report (6 respondents in favor
of SA vs 2 respondents for PT). In particular, the respon-
dents mentioned in an open question that a static analysis
report gives an advantage when it comes to localizing the
portion of the code that needs to be fixed.

The answers to the questionnaire did not show any prefer-
ence in the respondents for what concerns the actual correc-
tion of the vulnerabilities. None of the two types of report

1
.5

2
.0

2
.5

3
.0

3
.5

Task.order

m
e
a
n
 o

f
 P

ro
d
u
ct

iv
ity

1 2

 Treatment

PenTesting
StaticAnalysis

Figure 3: Interaction plot of task order and treat-
ment in productivity.

seems to simplify the devising of a fix for the vulnerability
(2 respondents prefer static analysis report, 2 prefer pene-
tration testing, 4 are undecided).

5. THREATS TO VALIDITY
We identified the main threats to the validity that can

affect our results [14] as conclusion, internal, construct, and
external validity threats.

To limit the conclusion validity threats (relationship be-
tween the treatment and the outcome) we used objective
statistical tests. In particular, the Fisher’s exact test is
more accurate than the χ2 test for small sample sizes and
Mann-Whitney test is non-parametric, very robust and sen-
sitive [8].

Among the internal validity threats (additional factors
that may affect an independent variable) we considered learn-
ing and fatigue effects. The raining sessions was meant to
limit learning effect, splitting the experiment in two labs
was indented to limit fatigue. The adopted design allowed
measure the learning among consecutive tasks as a co-factor.

To limit the Construct validity threats (relationship be-
tween theory and observation), we tried to measure time
and correctness as objectively as possible. Moreover, sub-
jects were not aware of the study hypotheses, and they were
told they would not be evaluated on their performance.

Eventually, the treats to the external validity concern the
generalization of the findings. Our study was limited to two
tools for security review (Fortify SCA and Burp Suite), cho-
sen mainly for uniformity with previous studies [10], two
web systems and just students as participants. All in all,
young software developers that might be assigned mainte-
nance tasks are not so different from last year master stu-
dents in Computer Science. Clearly, further studies with
more systems and different participants are needed to con-
firm or contradict the results from this study.

6. RELATED WORK
To the best of our knowledge, this is the first study inves-

tigating the effect of different types of vulnerability reports
(e.g., entry points vs. sinks) in the process of understanding
and fixing the corresponding security issues.

Instead, the two techniques used in this study to generate
the vulnerability reports have been investigated extensively.

Scandariato et al. [10] conducted an empirical study with 9
master students to compare static analysis and penetration
testing as tools for security code review. Results show that
when a participant uses static analysis, on average they de-
tect more vulnerabilities then when using penetration test-
ing, however with a comparable number of false alarms. Ad-
ditionally, static analysis scores a higher productivity, mean-
ing that participants who use static analysis report a higher
number of correct results per hour than participants who
use penetration testing.

Both Austin and Williams [2] and Antunes and Viera [1]
performed a case study where security experts applied the
two techniques to identify the vulnerabilities of several ap-
plications. Both studies concur in saying that static anal-
ysis yields more results (in terms of actual vulnerabilities
found) but at the cost of a lower precision (due to more
false alarms).

7. CONCLUSION
Previous studies supported the thesis that static analysis

allows a faster detection of more security defects than pene-
tration testing (possibly at the cost of more false positives).
In this paper, we focused on the subsequent problem: af-
ter they have been successfully detected, defects should be
also removed. We presented an exploratory controlled ex-
periment to compare static analysis and penetration testing
from a corrective maintenance point of view.

Preliminary results suggest that those participants who
work on security reports that are produced by the penetra-
tion testing technique might fix security defects with higher
correctness and in faster way.

Our interpretation of this result is that penetration test-
ing represents a better support for maintenance, because it
gives richer information to developers. In fact, a static anal-
ysis report mostly indicates the point in the code that is
considered defective. So, a developer has to figure out by
theirselves how it can be exploited by an attack. While in
some cases this is enough to remove a defect quickly, in com-
plex cases more information could be crucial. In particular,
penetration testing provides an executable scenario to repli-
cate the dynamics of an attack. Moreover, the test case can
be executed after patching the code, allowing the developer
to quickly assess the correctness of change in a reliable way.

Despite more replications being required to confirm this
finding, this exploratory study was important to assess our
experimental design and to formulate suggestions to improve
it. For instance, we noticed mortality, i.e. not all the partic-
ipants attended the second lab. Probably, the least skilled
students perceived the fist lab as very demanding, so they
decided to skip the second lab (as participation was on a vol-
untary basis). As a result, the second lab was attended by
less participants but with more homogeneous background,
i.e. consistently more skilled. Lower variability in the par-
ticipants’ profile could be one reason for higher significance
to the second lab. In future replications, we will enforce a
preliminary filtering of participants, e.g. with a small test,
in order to select them based on their actual skills.

More replications of this experiment are in fact required
to confirm our findings and overcome the limitations of the
present study. The limited number of participants (12 in
our study) should be increased and participants with more
diverse profiles (last year master students, in this study)
should be involved.

Nonetheless, to the best of our knowledge, even if just with
an exploratory objective, this is the first controlled exper-
iment aimed at comparing static analysis and penetration
testing as support for security maintenance.

Acknowledgment
The research leading to these results has received funding
from European Union Seventh Framework Programme (FP7/2007-
2013) under grant agreement number 609734.

8. REFERENCES
[1] N. Antunes and M. Vieira. Comparing the

effectiveness of penetration testing and static code
analysis on the detection of SQL injection
vulnerabilities in web services. In IEEE Pacific Rim
International Symposium on Dependable Computing
(PRDC), 2009.

[2] A. Austin and L. Williams. One technique is not
enough: A comparison of vulnerability discovery
techniques. In International Symposium on Empirical
Software Engineering and Measurement (ESEM), ’11.

[3] M. Ceccato, M. Di Penta, P. Falcarin, F. Ricca,
M. Torchiano, and P. Tonella. A family of experiments
to assess the effectiveness and efficiency of source code
obfuscation techniques. Empirical Software
Engineering, 19(4):1040–1074, 2014.

[4] M. Ceccato and R. Scandariato. Replication package:
Static analysis vs penetration testing.
http://selab.fbk.eu/ceccato/replication-packages/
SAvsPT-replication-package.zip, 2016.

[5] J. Cohen. Statistical power analysis for the behavioral
sciences (2nd ed.). Lawrence Earlbaum Associates,
Hillsdale, NJ, 1988.

[6] J. L. Devore. Probability and Statistics for Engineering
and the Sciences. Duxbury Press; 7 edition, 2007.

[7] R. J. Grissom and J. J. Kim. Effect sizes for research:
A broad practical approach. Lawrence Earlbaum
Associates, 2nd edition edition, 2005.

[8] H. Motulsky. Intuitive biostatistics: a
nonmathematical guide to statistical thinking. Oxford
University Press, 2010.

[9] R Core Team. R: A Language and Environment for
Statistical Computing. R Foundation for Statistical
Computing, Vienna, Austria, 2015.

[10] R. Scandariato, J. Walden, and W. Joosen. Static
analysis versus penetration testing: A controlled
experiment. In Software Reliability Engineering
(ISSRE), 2013 IEEE 24th International Symposium
on, pages 451–460, Nov 2013.

[11] D. Sheskin. Handbook of Parametric and
Nonparametric Statistical Procedures (4th Ed.).
Chapman & All, 2007.

[12] M. Torchiano. effsize: Efficient Effect Size
Computation, 2015. R package version 0.5.5.

[13] C. Williams. Anatomy of openssl’s heartbleed: Just
four bytes trigger horror bug. http://www.theregister.
co.uk/2014/04/09/heartbleed explained/, 2014.

[14] C. Wohlin, P. Runeson, M. Höst, M. Ohlsson,
B. Regnell, and A. Wesslén. Experimentation in
Software Engineering - An Introduction. Kluwer
Academic Publishers, 2000.

http://selab.fbk.eu/ceccato/replication-packages/SAvsPT-replication-package.zip
http://selab.fbk.eu/ceccato/replication-packages/SAvsPT-replication-package.zip
http://www.theregister.co.uk/2014/04/09/heartbleed_explained/
http://www.theregister.co.uk/2014/04/09/heartbleed_explained/

	Introduction
	Experimental Definition
	Experimental Settings
	Context
	Tasks and Experimental Design
	Measures and Hypotheses
	Questionnaires: Measure Co-Factors and Interpret Results
	Experimental Procedure
	Analysis Procedure

	Results
	Analysis of Correctness
	Analysis of Productivity
	Analysis of Co-Factors
	Analysis of Post-Questionnarie

	Threats to Validity
	Related work
	Conclusion
	References

