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ABSTRACT
Security testing is a pivotal activity in engineering secure software.
It consists of two phases: generating attack inputs to test the sys-
tem, and assessing whether test executions expose any vulnerabili-
ties. The latter phase is known as the security oracle problem.

In this work, we present SOFIA, a Security Oracle for SQL-
Injection Vulnerabilities. SOFIA is programming-language and
source-code independent, and can be used with various attack gen-
eration tools. Moreover, because it does not rely on known attacks
for learning, SOFIA is meant to also detect types of SQLi attacks
that might be unknown at learning time. The oracle challenge is
recast as a one-class classification problem where we learn to char-
acterise legitimate SQL statements to accurately distinguish them
from SQLi attack statements.

We have carried out an experimental validation on six applica-
tions, among which two are large and widely-used. SOFIA was
used to detect real SQLi vulnerabilities with inputs generated by
three attack generation tools. The obtained results show that SOFIA
is computationally fast and achieves a recall rate of 100% (i.e.,
missing no attacks) with a low false positive rate (0.6%).

CCS Concepts
•Security and privacy→Web application security; Penetration
testing; •Software and its engineering→ Software testing and
debugging;
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1. INTRODUCTION
SQL-injection (SQLi) vulnerabilities are amongst the top secu-

rity threats to web-based software systems [8, 28]. Such vulnera-
bilities stem from defects in data validation procedures, such that
when an attacker provides input values that contain fragments of
SQL code, they eventually get injected into SQL queries that are
executed on databases. With such a vulnerability, attackers can run
arbitrary malicious code on databases to acquire or compromise

sensitive data, such as medical records or financial transactions.
The impact of SQLi exploitations can range from enabling fraud to
compromising an organisation’s reputation or even shutting down
its activities. Though the root cause of SQLi has been well stud-
ied [10, 24], in reality, mostly due to time constraints and undisci-
plined development practices, many systems remain vulnerable to
SQLi [12, 19, 28].

When engineering secure software systems and services, soft-
ware testing is one of the main practices to detect faults as well
as security vulnerabilities. Security testing (also called penetra-
tion testing) is a branch of software testing devoted to stress pro-
grams with respect to their security features, with the aim of iden-
tifying vulnerabilities. Security testing involves two major chal-
lenges, generating input values (referred to as test payloads), in-
tended to exercise vulnerabilities, and evaluating whether such pay-
loads manage to expose an actual vulnerability. The security oracle
addresses the latter.

Security testing is highly expensive given the complexity of mod-
ern systems, typically providing a wide range of services, and the
sophistication of attacks and exploitations. To reduce effort and
cost, the research community has focused on automating security
testing. Regarding SQLi, the test input generation problem has
been extensively investigated and automated approaches are avail-
able [3, 10, 15, 16]. Automating the test oracle problem for SQLi
vulnerabilities, however, remains an open problem. This is a signif-
icant obstacle to test automation, as manual oracles severely limit
the number of test execution results a test team can process [5].

In this work, we present SOFIA, a Security Oracle for SQLi At-
tacks. Our goal is to satisfy three important requirements. First,
it must be independent from known attack instances so that new
types of attacks can be detected in the future. This is an impor-
tant leap forward since existing solutions based on attack patterns
can only detect publicly-known and documented attacks. Second,
the oracles should not rely on knowledge about test input data or
their generation algorithm in order to be usable with any given test
generation tool. Third, our proposed oracle should not require the
source code of the SUT, since we target black-box testing. This is
often a mandatory requirement for external security testing (carried
out by third-party penetration testers) or for systems whose source
code is not available.

Most of the existing SQLi oracles either require known attacks
in the learning phase [21] or access to source code [11] [6] [7] [14].
The few approaches that still meet all the three requirements [17]
[26] are fundamentally different than our solution in ways that af-
fect recall and false positive rates. Whereas they detect user inputs
in SQL statements and compare them with user inputs observed
at learning time, we prune data from SQL statements and com-
pare their parse trees. By comparing structure instead of data, our



goal is to enable SOFIA to yield high recall and low false positive
rates. The main motivation is that modelling all possible safe data
is highly difficult, if feasible at all, and false positives are caused
by incomplete models. Further, we observed that a change in query
structure is the most direct manifestation of an SQLi attack.

SOFIA is built using one-class machine classification. SQL state-
ments issued by a SUT to its database are logged and parsed to
create SQL parse trees, which are fed to a clustering algorithm.
The Tree edit distance is used to measure the distance amongst
parse trees. Our approach consists of two phases: Training and
Testing. During training, legitimate SQL statements, which are ob-
tained from regular executions, are grouped into clusters of similar
statements. We refer to this set of clusters as a safe model. Such
a model represents legitimate database accesses in the absence of
attacks.

In the testing phase, when test inputs trigger new SQL state-
ments, our oracle assesses whether the statements can be assigned
to the clusters of the safe model. In the positive case, we can assert
that the statements are safe and no vulnerability is reported. Other-
wise, such statements are classified as anomalous, and hence, vul-
nerability alerts are reported. We have carried out an experimental
evaluation in terms of false positive rate, recall rate, and computa-
tional cost on six real applications and with three different attack
generation tools. The obtained results show that the proposed or-
acle achieves a very low false positive rate (0.6%) and misses no
attack (100% recall) with a low computational overhead.

The proposed oracle is meant to support security testing, by clas-
sifying SQL statements triggered by test cases as legitimate state-
ments or as SQLi attacks. However, since it relies on a black-box
strategy and is trained only on legitimate executions, it could be
also deployed as a database firewall in production to filter SQL
statements and block SQLi attacks before they are actually exe-
cuted. Investigating such potential application is out of the scope
of this paper though and we present and assess the proposed oracle
only in the context of security testing.

The next section provides background and discusses related work.
In Section 3, we discuss the requirements and our strategy for the
security oracle. In Section 4 we present in detail our approach. Sec-
tion 5 reports our experiments to assess the accuracy and speed of
the oracle. Finally, Section 7 concludes our work.

2. BACKGROUND
SQL Injection Vulnerabilities. In systems that use databases,

the SQL statements that query the back-end database are usually
treated by the native application code as strings. These strings are
formed by concatenating different string fragments based on user
choices or the application’s control flow. For example, an SQL
statement can be formed as follows:
1 $sql = "select * from hotelList where country =’";
2 $sql = $sql . $country;
3 $sql = $sql . "’";
4 $result = mysql_query($sql) or die(mysql_error());

The variable $country is an input provided by the user, which is
concatenated with the rest of the SQL statement and then stored in
the string variable $sql. The string is then passed to the function
mysql_query that sends the SQL statement to the database server to
be executed.

SQLi is an attack technique in which attackers inject malicious
SQL code fragments into input parameters that lack proper valida-
tion or sanitisation. An attacker might construct input values in a
way that changes the behaviour of the resulting SQL statement and
performs arbitrary actions on the database (e.g. exposure of sensi-

tive data, insertion or alteration of data without authorisation, loss
of data, or even taking control of the database server).

In the previous example, if the input $country received the attack
payload ’ or 1=1 --, the resulting SQL statement is:

select * from hotelList where country=’’ or 1=1 --’

The clause or 1=1 is a tautology, i.e., the condition will always
be true, and is thus able to bypass the original condition in the
where clause, making the SQL query return all rows in the table.
Hence, the above piece of code is vulnerable to SQLi attacks.

In security testing for SQLi, one important task is to generate
such attack payloads so that they can circumvent projection layers
(e.g., web application firewalls or input filtering), inject into vul-
nerable SQL code, and trigger executable SQL statements [15, 2].
Another equally important task is the oracle problem, that is how
to assess whether a test payload detects an SQLi vulnerability. The
traditional way, in a black-box testing context, is to analyse the re-
sponses of the SUT to which legitimate or attack inputs are sent
or to analyse the triggered SQL statements for common attack pat-
terns. We elaborate the limitations of such techniques further in the
next section.

Tree Edit Distance. Ordered labelled trees refer to a tree struc-
ture in which nodes are labelled and edges capture predecessor-
successor relationships amongst nodes. The left-to-right order amongst
siblings is also significant to the semantics of the trees. Parse trees
that structure sentences or programs according to some context-free
grammars are ordered labelled trees.

Transforming one ordered labelled tree (or just tree for brevity)
into another involves three basic types of edit operations: changing
a node label, delete a node, and insert a node. As an example,
taking the trees t1 and t2 in Figure 1, transforming t1 into t2 can
be performed with a sequence of four edit operations: change e to
k, delete c, delete d, add h, or alternatively: change e to k, change
d to h, delete c.

f

e d
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b

f

k h

ba

t1 t2

Figure 1: An example of two ordered labelled trees.

Formally, each edit operation oi is assigned a cost (usually one
unit). The cost of a sequence of edit operations Sj = 〈o1, o2, . . . , oN 〉
is the sum of the cost of all operations oi. Since there are usually
alternative sequences to transform a tree into another, the tree edit
distance between two trees is the minimum cost amongst possible
sequences. When the cost of all edit operations is equal to one, then
the edit distance between two trees is the number of operations of
the shortest sequence that transforms one tree into the other.

3. REQUIREMENTS AND
GENERAL STRATEGY

3.1 Security Oracle Requirements
Most of the classifiers used as security oracles are learned on a

training set that contains both positive and negative examples (at-
tacks and legitimate executions) [4]. However, these approaches



are expected to suffer from two main limitations, namely, (i) the
availability of attacks, and (ii) the representativeness of attacks, es-
pecially when the sample is small as in most practical contexts.

Documented attacks are usually unavailable for many systems.
Some ethical attackers make their techniques and payloads avail-
able on the Internet, but software developers are usually unaware
of them. Even if they are, the number of known attacks is limited.
We also need to account for unknown, new attacks that may appear
after the system’s deployment. As a result, a security oracle would
be much more beneficial for testing (and also in other contexts like
monitoring in production) if it does not require the availability of
documented attacks.

In addition, even when available, attacks used to train security
oracle classifiers are often expected to be representative of possible
attacks that could target a system. Unfortunately, this is normally
not the case as new attacks are being introduced at a very fast pace.
Therefore, a classifier should not rely on documented attacks at the
risk of being ineffective with new ones. Thus, the first requirement
for a security oracle is the following:

Requirement Req1: The security oracle should be indepen-
dent from known instances of successful attacks.

Often in security testing, oracles depend on knowledge about
what attack generation algorithm and what test input data have been
used to determine the expected output if there is a vulnerability. For
example, some oracles classify a test as a successful attack when
the execution output contains the same attack payloads as the in-
puts [15]. This strategy suffers from the observability problem as
the output can be masked by a generic error message, or worse, the
impact of the successful attack cannot be easily observed by the
tester, e.g., like in second order SQLi attacks. Furthermore, this
strategy, because it is specific to test generation algorithms or in-
put data, limits the portability of the oracle. As a result, it may not
work with most attack generation tools, without additional adapta-
tion overhead. It is desirable to define an oracle that is independent
from attack generation strategies so that it can be used with many
attack tools and a variety of attack generation approaches. The sec-
ond requirement is, thus:

Requirement Req2: The security oracle has no knowledge
on what input data are used to test the system.

Often, systems are written using frameworks and third part li-
braries. Since commercial libraries are rarely distributed with source
code, a white-box approach in the generation of a security oracle is
of limited applicability in real industrial settings. In many contexts,
such as for third-party penetration testers, access to source code is
not an option. Thus, the third requirement is:

Requirement Req3: The security oracle should not rely on
the source code of the SUT.

3.2 Our Strategy
Our strategy to create a security oracle for SQLi vulnerabilities

that satisfies the above requirements relies on a black-box, security
safe model, that is a model of safe execution inputs.

Safe model: To be independent from known attacks and attack
tools, we decided to exclude attacks from the training set used to
learn the security oracle. We propose a security oracle that only
takes into consideration legitimate executions and builds a model of
safe SQL statements. Tests will be classified as legitimate if they
generate SQL statements satisfying this safe model and potential
attacks otherwise.

Black-box: The SQL statements sent by the SUT to the back-
end database are the only features considered by the oracle, either
in the training phase and in the testing phase. As a result, such
an oracle can be deployed to test systems developed in many lan-
guages and has no dependency or limitation regarding specific de-
velopment frameworks.

The proposed safe model depends on the specific legitimate exe-
cutions that are being considered. However, using classical black-
box testing techniques, it is much easier to generate a large number
of representative legitimate inputs than it is to generate attacks. The
next section explains in detail the process to construct our security
oracle.

4. SOFIA: THE SECURITY ORACLE
The procedure to build and apply the security oracle is summa-

rized in Figure 2. It consists of two phases, Training and Testing
including five steps: Parsing, Pruning, Computing Distance, Clus-
tering, and Classification. These two phases share the first three
steps. Clustering is exclusively part of training while Classifica-
tion is exclusively part of testing.

The process starts with a set of SQL statements, obtained from
safe executions of a SUT, either by executing functional tests or
by monitoring regular system executions. The SQL statements are
parsed and the parse trees represent the objects to be classified.
The fact that our oracle uses only legitimate statements allows us
to avoid the task of manual labelling training data (as legitimate
statements or attacks), as often required by other supervised tech-
niques.

Information from the parse trees, which is specific to concrete
SQL statements and irrelevant for detecting attacks, is removed by
pruning the parse trees. This helps not only in reducing the number
of unique trees to be clustered and better scale, but also improves
the overall attack detection performance.

Clustering relies on the edit distance amongst pruned parse trees.
Clustering is used to group together similar SQL statements. State-
ments with low distance are assigned to the same cluster, while
statements with larger distance are assigned to different clusters.
The final safe model consists of the optimal partition of SQL state-
ments computed by clustering. Note that the training process that
creates safe models from SQL execution logs takes place only once.
Safe models are then ready to support security testing in detecting
SQLi vulnerabilities.

New statements triggered by executing security tests will be clas-
sified using the safe model, by assessing their distance to the cen-
tres of the clusters. If a new statement is close enough to a cluster
centre, it satisfies the model and is classified as benign statement.
Conversely, in the case a new SQL statement does not fit into any
existing cluster, it is considered anomalous and classified as a po-
tential attack. Further details of this process are provided in the
sections that follow with the help of a running example.

Regarding the defined requirements for the security oracle, Re-
quirement Req1 (independence from known attacks) is satisfied
since our approach relies only on logs of benign executions. More-
over, the fact that only database logs are considered by the oracle
ensures that requirement Req3 is also achieved: no access to the
application source code is required. Our classification procedure
complies with requirement Req2 since it exclusively relies on the
SQL statements sent to the database, and not the test case input
values.

4.1 Training Data
Training data are used to construct the security model. How-

ever, differently from other approaches that require both attack and
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Figure 2: The overview SOFIA: the training process for learn-
ing safe models from SQL execution logs; the classification pro-
cess for classifying new SQL statements.

legitimate SQL statements, our approach only relies on the latter
to learn a classifier. In fact, our goal is to construct a model of
safe executions, and classify as anomalous everything that does not
conform to this model.

Training data are collected by executing the functional test suite
of a SUT, or by monitoring its usage during production or accep-
tance testing. We collect execution logs containing SQL statements
executed on the database. To this end, different technologies can
be used depending on the underlying DBMS. For mysql we use
the mysql-proxy tool1 that monitors all traffic to and from mysql
databases. This solution can be ported to other DBMSs as well.
For example, for Java applications that use a JDBC driver to con-
nect to Oracle Database, we can customise the driver to log SQL
statements.

Let us use a running example where the execution log includes
the SQL statements shown in Figure 3. While the three statements
query the user and password columns from the table users, they
differ from one another in the where conditions.

stmt1: select user, password from users
where id = 1;

stmt2: select user, password from users
where id = 2;

stmt3: select user, password from users
where id = 4 and role = 1;

Figure 3: Three samples of SQL log of the running example.

4.2 Parsing
An SQLi attack modifies the semantic of SQL statements, usu-

ally by replacing a value with a piece of SQL code, for example by
adding a tautology to the where clause, or by injecting an additional
select or union statement. These injections, if successful, result in
SQL queries that are valid SQL statements according to the SQL

1https://dev.mysql.com/downloads/mysql-proxy

grammar, but yet have different parse trees. We resort to the parse
trees of SQL statements to detect SQLi attacks.

In our work, we rely on the General SQL Parser2 (GSP for short).
GSP is a Java library that supports various DBMSs, including Or-
acle, SQL Server, DB2, MySQL, Teradata, and Access. Output
parse trees are stored as XML documents for other analysis.

Figure 4 shows the parse trees for the SQL statements of our run-
ning example. As we can see in the figure, the parse trees contain
information that is irrelevant and therefore detrimental to the pro-
cess of learning a classifer through clustering, e.g., specific user ids.
Indeed, some elements in the trees are very specific to the captured
SQL executions and are irrelevant for the detection of attacks. The
pruning process, described next, aims at removing such irrelevant
information from the parse trees.

4.3 Pruning
Pruning could be done according to different strategies depend-

ing on what piece of information should be removed. To decide
about the most effective pruning in our context, we should consider
how attacks are typically carried out. SQLi attacks aim at altering
SQL statements by replacing data with a new piece of SQL code,
i.e. a string or numeric literal is replaced by code. Thus, two legit-
imate SQL statements collected during the execution of the same
feature but with different input data should only differ in terms of
data values. Instead, a legitimate statement and an attack statement
should differ not only with respect to data but also the SQL com-
mand structure in the maliciously injected part.

Based on the above consideration, we decided to prune data val-
ues in parse trees: We replace all the constant numeric and string
values in the tree with the same placeholder (e.g. with the empty
string or with the constant zero). As a result, statements that just
differ in values are characterised by a single pruned tree.

Figure 5 shows the pruned parse trees of our running example.
Nodes with data values are replaced with a place holder (the ? char-
acter). Since stmt1 and stmt2 only differ in data value of the id at-
tribute, their pruned versions are equivalent. For learning purposes,
redundant versions of the same pruned trees will be discarded. Out
of the three statements of the training set for the running example,
only two distinct pruned trees will be considered to construct the
safe model.

Our pruning procedure is straightforward. We analyse the XML
parse trees and replace the content of the leaf nodes of type Tcon-
stant, which contain concrete data values, with a placeholder.

4.4 Computing Distance
Parse trees of SQL statements are ordered and labelled trees. A

metric of tree edit distance for this class of trees has been proposed
by Zhang et al. [23], as discussed in Section 2. Zhang et al. have
also proposed a fast algorithm to calculate tree edit distances in a
polynomial time complexity. Our work makes use of a tool called
approxlib3, that implements this specific algorithm.

Let us consider the SQL statement of the attack in Figure 6(a),
for which the corresponding (pruned) parse tree is shown in Fig-
ure 6(c). We note that this tree is quite similar to the parse tree of
the legitimate statement 3 in Figure 5(b). In fact, we note that these
trees are more similar (distance is 11) than the two legitimate state-
ments stmt1 and stmt3 (distance is 22). This example highlights the
fact that parse tree distance alone is not enough to detect attacks.
We need to infer a classification amongst legitimate statements, in
this case using clustering to group similar trees, and compare a
candidate attack with its closest cluster. The underlying rationale
2http://sqlparser.com/
3http://www.cosy.sbg.ac.at/ augsten/src
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Figure 4: Parse trees of the SQL statements.
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Figure 5: Pruned parse trees of the example SQL statements.

is that, though a legitimate SQL statement does not obviously need
to be similar to all legitimate statements resulting from test exe-
cutions, there should be a cluster with similar statements. Once
parse tree distances are computed amongst all the pairs of pruned
parse trees, an algorithm can be applied to generate an optimal set
of clusters, as described next.

4.5 Clustering
We address our clustering problem using the k-medoids algo-

rithm [22]. This algorithm is a variant of k-means clustering, based
on the search for k representative samples, namely the medoids,
amongst the observations of the dataset. After finding a set of k
medoids, k clusters are constructed by assigning each observation
to the nearest medoid. We need to find k representative samples that
minimize the sum of the dissimilarities of the observations to their
closest representative object. Furthermore, we consider a measure
of cluster diameter. The diameter of a cluster is the maximal dis-
tance between the observations in the cluster and its medoid. To
build a safe model, training data are clustered into k clusters, char-
acterised by their medoids and diameters.

The adoption of k-medoids clustering is more appropriate in our
context than the standard k-means [13] approach. K-means in-
volves the notion of mean point, which in our case would mean
an average tree for all the observations in the same cluster. Since
such a hypothetical tree is insensible in our context, we adopt k-
medoid, instead. It picks a representative element for each cluster
(i.e., the medoid), instead of computing a fictitious average tree.

It is very important to identify the appropriate number of clus-
ters k. Clusters should be small enough to distinguish attacks from
legitimate statements based on parse tree distances, but clusters
should also be large enough to capture representative groups of
similar legitimate statements. More specifically, a too small value
of k would elaborate a partition that contains few large clusters.
A large cluster would contain very different parse trees, with large
distances from each other, and its medoid would not be representa-
tive of all the members of the clusters. Also, with large clusters, the
distance between an attack and the cluster medoid may be compa-

rable to the cluster diameter. Thus, actual attacks would be wrongly
classified as legitimate statements (false negatives).

On the other hand, a large number of clusters k may result in
many clusters that contain too few elements to be representative
and enable reliable comparisons with new parse trees. False alarms
(false positives) may result from new legitimate statements whose
tree is at a distance from the closest medoid that is higher than the
cluster’s diameter.

To decide the most appropriate number of clusters (i.e., the value
of k), we adopt a standard approach, the Akaike information crite-
rion (AIC) [1, 18]. It entails balancing the trade-off between the
goodness of fit of the model and the size of the model. The un-
derlying rationale is to increase the complexity of the model (i.e.,
k increases) as far as the gain in precision is high, and stop when
the increase in precision is not significant. To achieve this objec-
tive, we adopt a penalty factor for each new cluster. To determine
the number of clusters in this way, we select the best k that mini-
mizes the fitness function f composed of two terms: (i) distortion,
a measure of the extent to which SQL statements deviate from the
prototype of their clusters (e.g., RSS for k-medoids); and (ii) the
model complexity that is proportional to the number of clusters:

f(k) = RSS(k) + 2 ·M · k
Where RSS is the residue sum of square, i.e. the error that

we commit by approximating each observation in a cluster by the
corresponding medoid, and M is the dimensionality of the vector
space. In our case M=1, because the only feature used in clustering
is the tree-edit distance.

The resulting optimal set of clusters, each associated with a medoid
and diameter, represents the safe model used as an oracle to classify
newly executed SQL statements. Table 1 shows the final clustering
configuration for the running example.

Table 1: Clustering results for the running example.
Cluster Medoid Elements

1 stmt1 stmt1, stmt2
2 stmt3 stmt3



4.6 Classification
Intercepted SQL statements undergo the testing (classifying) pro-

cess depicted in Figure 2: they are parsed, pruned, and eventu-
ally classified as safe or malicious. The classification procedure is
described with respect to the test sample (a malicious statement)
shown in Figure 6 and consists of the following steps:

1. Parsing and Pruning: When the test SQL statement (Fig-
ure 6(a)) is intercepted by our database proxy, it is parsed (Fig-
ure 6(b), malicious injected code highlighted in red) and pruned
(Figure 6(c), pruning highlighted in green) as described previously.

2. Computing Distance: The tree edit distance is used to iden-
tify the closest cluster in the safe model. To compute this result,
the pruned parse tree T of the test (Figure 6(c)) is compared to the
pruned parse tree of each medoid. In our example, the distances
from the medoids are shown in Figure 6(d) as 18 and 11, respec-
tively.

The medoid with the smallest distance from the test (stmt3 in our
example) determines the nearest cluster (cluster 2). Determining
the nearest cluster is fast since the medoids’ parse trees are pre-
computed and only k tree edit distances need to be evaluated. In
the example only two comparisons are required.

3. Distance-versus-diameter classification: We check whether
the test fits the nearest cluster by comparing its diameter and the
distance between the test parse tree and medoid. Alternative mea-
sures could be used, such as the distance corresponding to the 95th
percentile of cluster elements instead of its diameter, to deal with
potential outliers. However, this is out of scope for this work.

In our example, the diameter4 of cluster 2 is equal to 0. We
compare the distance between the test T and the nearest medoid
(distance is 11) with the diameter (equals to 0). When the distance
to the medoid is smaller than or equal to the diameter, the test is
deemed to fit this cluster and it is classified as a safe execution.
However, in our example the test falls outside of the cluster border
(distance > diameter) and is classified as a potential attack.

5. EXPERIMENTAL EVALUATION
This section presents the experimental evaluation designed and

conducted to assess the proposed security oracle.

5.1 Research Questions and Variable Selection
We investigate the following main research questions:

• RQ1: How accurate is SOFIA in classifying legitimate SQL
statements and SQL-injection attacks?
• RQ2: How fast is SOFIA in classifying SQL statements as le-

gitimate or attacks?
• RQ3: How does SOFIA compare to main-stream alternative

tools in terms of accuracy and speed?

The first research question concerns the accuracy of the oracle
in classifying SQL statements. Missed attacks may lead to unad-
dressed security defects and false alarms lead to significant wasted
effort, which should remain within reasonable bounds.

The second research question is about the amount of time taken
by the classifier to make a decision on a newly observed SQL state-
ment. Fast run-time classification of attacks during testing is im-
portant to support efficient test automation.

The third research questions is meant to compare SOFIA with
available and comparable alternative solutions, which can be con-
sidered a baseline on which to improve, both in terms of classifica-
tion accuracy and speed.
4Because of the small size of the running example, each cluster
contains just one pruned parse tree, so diameter is equal to 0.

select user, password from users
where id = 4 or role = role;

(a) Statement

[root]
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select [fields] [where]

user password where [expression]

[expression] or [expression]

id = 4 role = role

(b) Parse tree

[root]

[select]

select [fields] [where]

user password where [expression]

[expression] or [expression]

id = ? role = role

(c) Pruned parse tree

Cluster Medoid Diameter Test distance
1 stmt1 0 18
2 stmt3 0 11

(d) Cluster diameters and distance

Figure 6: Classification of a malicious statement.

Accuracy in our context is characterised by attack detection rate
(we want to detect as many attacks as possible) and false positive
rate. We need to minimise false positives as they trigger unnec-
essary manual analysis, which is expensive. The more false posi-
tives, the more analysis effort is being wasted and the scalability of
the approach is being compromised. Accuracy is quantified by the
standard Recall and FPR (False Positive Rate) metrics from infor-
mation retrieval:

• True Positives (TP): The number of actual attacks that are cor-
rectly classified by the oracle as attacks;
• False Positives (FP): The number of legitimate statements that

are incorrectly classified by the oracle as attacks;
• True Negatives (TN): The number of legitimate statements that

are correctly classified by the oracle as safe;
• False Negatives (FN): The number of actual attacks that are

incorrectly classified by the oracle as safe statements;
• Recall: The ratio between the correctly detected attacks and

all the actual attacks TP
TP+FN

;
• FPR: The ratio between false positives and all the actual legit-

imate statements FP
FP+TN

;

Classification time is measured as follows:

• C-Time: Amount of time spent by the classifier to make a
decision on a test outcome.

Time is measured by instrumenting the oracle. System time is
probed before starting and after concluding the complete classifi-
cation procedure for each SQL statement. It includes the amount



of time spent for parsing the statement, pruning its tree, and the
amount of time for computing its distances to the medoids of the
safe model oracle.

The amount of time required to train the oracle is less interest-
ing because training is done just once in a while and has therefore
limited practical implications. It will not be further discussed here.

5.2 Subject Applications
The subject applications considered in this study are web ap-

plications and web services that use an SQL relational database.
Moreover, since the security oracle will be assessed on real vulner-
abilities, we selected applications by inspecting their bug-tracking
systems and the Common Vulnerabilities and Exposures reposi-
tory5 that keeps track of publicly known vulnerabilities and expo-
sures. The chosen subject applications contain real SQL-injection
vulnerabilities.

The applications considered in the study are:

• HotelRS: written in PHP, HotelRS is a service-oriented based
system providing web services for room reservation. It was
developed and used by Coffey et al. [9].
• SugarCRM: written in PHP, SugarCRM is a popular customer

relationship management system6.
• Taskfreak: written in PHP, Taskfreak is a web project manage-

ment application7.
• Theorganizer: a web application that supports management

and organisation of the activities in a personal agenda8. The
server is written in Java (using Servlets, J2EE and Spring JDBC).
• Wordpress: written in PHP, Wordpress is a popular blogging

and news publishing platform9. Wordpress has many utility
plugins that are vulnerable to SQLi. We have two variants of
Wordpress, one with the newstatpress plugin10 that provides
access statistics to Wordpress; the other with landing-pages11,
a plugin for customising templates and attracting more visits
to blogging sites.

We use the test suites of the subject applications for generating
training data. Wordpress comes with a large test suite of more than
3700 phpunit test cases. For Taskfreak and Theorganizer, we reuse
the test suites generated by available techniques [25, 20] and its
accompanying tool12. For the remaining two, HotelRS and Sugar-
CRM, we manually defined test suites that exercise all operations
of their web services with various domain inputs.

Our reliance on real vulnerabilities in applications makes our re-
sults more representative of the current situation though it is impos-
sible to predict what these results will be with future types of vul-
nerabilities. However, as described above, because our approach
does not learn from specific attacks and relies on learning to char-
acterise safe statements, we hope that the safe model will be able
to handle future types of vulnerabilities as well.

5.3 Attack Generation
To evaluate the classifier, both legitimate executions and attacks

are required. However, our oracle is independent of the input data
generation strategy adopted to generate the attacks. Thus, we will

5https://cve.mitre.org
6http://www.sugarcrm.com
7http://www.taskfreak.com
8http://www.apress.com/9781590596951
9https://wordpress.org

10https://wordpress.org/plugins/newstatpress
11https://wordpress.org/plugins/landing-pages
12http://selab.fbk.eu/magic

evaluate the accuracy of the oracle with diverse attack generation
tools:

• burpsuite: A commercial security testing tool suite13. It has a
vulnerability scanner that targets many types of vulnerabilities,
including those in the OWASP top 10 [28]. For detecting SQLi,
burpsuite (version 1.6.23) has a fixed list of 134 built-in SQLi
test payloads, such as:

’a or 1=1-- | //* | replace | drop table

When scanning for SQLi vulnerabilities, burpsuite uses these
payloads as request parameters and submits them to a target
system. It then analyses the obtained responses from the sys-
tem to detect SQL code or error messages in order to report
SQLi issues.
• sqlmap: A popular open source tool for penetration testers to

detect and exploit SQLi vulnerabilities14. It supports various
database management systems and implements many heuris-
tics to generate test payloads for different types of SQLi, in-
cluding boolean-based blind, time-based blind, error-based,
UNION query-based, stacked queries and out-of-band.
• Xavier: A framework for the automated testing of web ser-

vices for SQLi vulnerabilities [3] [2]. Powered by a grammar
developed specifically for SQLi attacks and machine learning,
Xavier can generate diverse test payloads that can bypass web
application firewalls and detect SQLi vulnerabilities.

5.4 Alternative Oracles
Apart from assessing SOFIA on diverse applications, it is inter-

esting to investigate how it fares when compared to existing tools
with similar goals. We found only two alternative tools: antiSQLi
and GreenSQL15.

antiSQLi is a tool provided by the vendor of the SQL parser we
use in our work, which takes log files containing SQL statements
as inputs, and reports whether their content is classified as attacks
or legitimate statements.

GreenSQL is a popular database security solution for controlling
database accesses, blocking SQLi attacks, among other features.
It intercepts communications between applications and databases,
learns patterns of regular SQL statements, and then, blocks mali-
cious ones from getting to databases under protection.

5.5 Experimental Procedure
To collect SQL statements, we install and configure the subject

applications, each on a separate virtual machine having mysql and
mysql-proxy ready. mysql-proxy helps intercept and log all the SQL
statements that an application sends to its database. We, then, ex-
ecute the test suite that comes with each application to collect le-
gitimate executions, i.e., safe statements. After that, we run the
attack tools to generate attacks. The logs of attack tools are man-
ually analysed and statements are labelled as attack or safe. Such
analysis is required as safe statements can result from attacks since
the system might perform routine updates or run additional queries
before executing the attack statements. Note that the labelling task
is only relevant for our assessment purposes; it is not needed in the
real usage of the oracle.

We adopt a 10-fold validation strategy to check our oracle on
different partitions of training and testing data. The training data of
each subject application, consisting exclusively of safe statements,

13http://portswigger.net/burp
14http://sqlmap.org
15http://www.greensql.com



is divided randomly into 10 sets of approximately the same size, to
form 10 partitions:

• Nine sets of legitimate statements represent the training set.
They are used to train the safe model of the oracle. In our case,
this is done only on legitimate statements and there is no need
to split attacks across training and testing sets;
• The remaining set of legitimate statements is merged with the

attacks to form the testing set. The oracle is used to classify
each entry in the testing set using the safe model.

This process is iterated 10 times, once per each of the 10 possible
partitions. The classification elaborated by the oracle for the testing
set is compared with the actual labelling, to evaluate the oracle ac-
curacy. The 10-fold validation, including training and testing for all
subject applications, was executed using a HPC (high-performance
computing) system at the University of Luxembourg [27], where
the CPU speed on nodes is 2.26GHz, and a 4Gb RAM was avail-
able to each process.

5.6 Experimental Results
Table 2 reports the number of SQL statements per application

that have been considered in our study. The first two columns con-
tain the name of the application and the tool used to generate the
attacks, respectively. The subsequent columns report the number
of legitimate statements and the number of successful attacks. The
last two columns indicate the number of distinct pruned trees for
legitimate statements and attacks. We cannot explore all combina-
tions subject applications and tools because of certain application
characteristics (web-based and web services) and the intended us-
age of the tools: Xavier targets web services while the others target
standard web-based applications. In total, we obtain nine datasets
for the experimental evaluation.

Table 2: Summary of the datasets used in our experiment: nine
datasets obtained from six applications and three attack tools.

Application T. Tool #Legit. #Attack #Pruned #Pruned
Legit. Attack

HotelRS Xavier 10,392 1,871 2,124 442
SugarCRM Xavier 100,683 196 52 78
Taskfreak burpsuite 7,502 3 29 2
Taskfreak sqlmap 7,503 4 30 2
Theorganizer burpsuite 1,516 28 27 17
Theorganizer sqlmap 1,616 27 25 18
Wordpress-
newstatpress

burpsuite 196,556 314 860 277

Wordpress-
newstatpress

sqlmap 148,325 4 809 2

Wordpress-
landingpage

sqlmap 171,487 170 843 65

We can observe, based on the data shown in Table 2, that the
datasets used in our experiments are diverse in terms of the number
of safe statements, ranging from 1k to 170k. Likewise, the num-
ber of attack statements generated by different tools varies from
three to 1,871 attacks. Also, we can see that the number of parse
trees after pruning is significantly reduced. For example, for sub-
ject Wordpress-landingpage and tool sqlmap, there were originally
more than 171k safe statements and 170 attacks. However, after
pruning, there are only 843 safe and 65 attack cases left, respec-
tively. Overall, the percentage of reduction for all subject applica-
tions after tree pruning ranges from 79% to more than 99%. As a
result, pruning helps reducing the time required by SOFIA, espe-
cially for training. Note that burpsuite cannot generate any attack

on Wordpress-landingpage and, therefore, this pair is not investi-
gated.

Table 3 provides experimental results. For each application, the
performance of SOFIA is measured using Recall, false positive
rate, and C-Time, as previously described. The values in the ta-
ble represent the average over the 10 partitions of training/testing
data and executions.

Table 3: Results of our approach: data averaged from 10-fold
cross validation. T.(ms) is classification C-Time measured in
millisecond.

App./tool TP FP TN FN Recall FPR T.(ms)
HotelRS/
Xavier

1,871 0.0 1,039.2 0 1.0 0.000 25.14

SugarCRM/
Xavier

196 1.0 10,067.3 0 1.0 0.000 463.77

Taskfreak/
burpsuite

3 0.3 749.9 0 1.0 0.000 48.13

Taskfreak/
sqlmap

4 0.4 749.9 0 1.0 0.001 152.91

Theorganizer/
burpsuite

28 0.9 150.7 0 1.0 0.006 26.11

Theorganizer/
sqlmap

27 0.5 161.1 0 1.0 0.003 29.07

Wordpress-
newstat/
burpsuite

4 28.5 14,804.0 0 1.0 0.002 33.70

Wordpress-
newstat/
sqlmap

170 29.3 17,119.4 0 1.0 0.002 28.92

Wordpress-
landingpage/
sqlmap

314 28.0 19,627.6 0 1.0 0.001 20.30

Regarding RQ1, results in Table 3 show that SOFIA yields a
perfect Recall of 100% for all the subject applications and achieves
a very low false positive rate across all applications (0.006 at the
highest). When we consider the absolute number of false positives
(FP), they are mostly below 1.0 on average. The highest FP is only
29.3, therefore suggesting that manual analysis is feasible even in
the worst case.

Thus we can provide a clear answer to RQ1:

SOFIA yields a very high accuracy when classifying both
legitimate SQL statements and attacks.

Moreover, considering RQ2, the time required to classify a new
statement is small, with an average across case studies of 92ms and
a median of 29ms. For most of the case studies, classification takes
around 30ms per statement, with the exception of Sugar-xavier that
takes more than 400ms. The reason for this difference is that, on
average, the parse trees of SQL statements used by Sugar are larger
and thus lead to longer tree-edit distance calculations.

Thus we can answer RQ2:

SOFIA is fast in classifying SQL statements, taking on aver-
age 92ms per classification.

Furthermore, to answer RQ3, we compared SOFIA to antiSQLi
and GreenSQL.

Following the same procedure as for SOFIA, we ran these two
industrial tools against all nine datasets and measured their accu-
racy and time. GreenSQL was given the same training data that had
been used to train SOFIA. antiSQLi inspects SQL statements based
on its own SQLi filters and, therefore, no training was needed. The
same testing data were then checked by GreenSQL and antiSQLi.



For each dataset, TP and FN were measured by counting the num-
ber of attack SQL statements correctly classified as attacks or in-
correctly classified as safe, respectively. Likewise, we measured
the average number of safe statements classified as attacks (FP)
and safe (TN). Further, we measured the average execution time
the tools required to parse and check a statement.

Table 4: Results of antiSQLi and GreenSQL. T.(ms) is the aver-
age time in millisecond the tools need to process one statement.

App/tool TP FP TN FN Recall FPR T.(ms)
antiSQLi
HotelRS/
Xavier

1,579 827.0 212.2 292 0.84 0.796 320

SugarCRM/
Xavier

50 1,237.6 8,830.7 146 0.25 0.123 314

Taskfreak/
burpsuite

1 12.9 737.3 2 0.33 0.017 250

Taskfreak/
sqlmap

4 13.0 737.3 0 1.00 0.017 303

Theorganizer-
/ burpsuite

28 123.0 28.6 0 1.00 0.811 302

Theorganizer-
/ sqlmap

27 133.0 28.6 0 1.00 0.823 312

Wordpress-
newstatpress-
/ burpsuite

0 5,389.6 9,442.9 4 0 0.363 306

Wordpress-
newstatpress-
/ sqlmap

154 5.562.0 11,586.7 16 0.91 0.324 294

Wordpress-
landingpage-
/ sqlmap

155 5,682.0 13,973.6159 0.49 0.289 300

GreenSQL
HotelRS/
Xavier

1,871 0.0 1.039.2 0 1.0 0.000 6

SugarCRM/
Xavier

133 2,020.6 8.047.7 63 0.68 0.201 5

Taskfreak/
burpsuite

3 0.3 749.9 0 1.0 0.000 6

Taskfreak/
sqlmap

4 0.4 749.9 0 1.0 0.001 5

Theorganizer-
/ burpsuite

28 59.1 92.5 0 1.0 0.390 5

Theorganizer-
/ sqlmap

27 58.7 102.9 0 1.0 0.363 5

Wordpress-
newstatpress-
/ burpsuite

4 1,372.0 13,460.0 0 1.0 0.093 5

Wordpress-
newstatpress-
/ sqlmap

170 1,360.4 15,788.3 0 1.0 0.079 5

Wordpress-
landingpage-
/ sqlmap

314 1,671.6 17,984.0 0 1.0 0.085 5

Table 4 shows the Recall, FPR, and execution time of antiSQLi
and GreenSQL. We can observe that FPR and Recall of antiSQLi
are significantly worse compared to those of SOFIA. antiSQLi missed
many attacks on all the case studies (FN > 0) and, as a result, Re-
call of some cases is very low. It wrongly classified safe statements
as attacks (high FP rate) on many cases, leading to a poor FPR of
0.823 (or 82.3%). In particular, no attack was correctly identified
on one case (TP = 0). GreenSQL is as good as SOFIA in all but one
subject (SugarCRM) with respect to Recall. However, GreenSQL
reported many false positives that resulted in an order of magnitude
higher FPR (up to 0.363) as compared to that of SOFIA (0.006).

Regarding the time taken to process an SQL file, antiSQLi takes
on average 300ms, which is higher than the average time required

by SOFIA (92ms). GreenSQL takes only about 5ms and is therefore
faster than SOFIA at the cost of a much higher number of false pos-
itives. It is worth noticing that GreenSQL is a leading industrial tool
while SOFIA is a currently research prototype. Besides, because
of technical reasons, GreenSQL could not run on the HPC but on a
server that happened to have a higher CPU frequency than the com-
puter used for SOFIA and antiSQLi. This setting clearly favoured
GreenSQL in detecting attacks faster and prevents us from drawing
objective conclusions regarding its comparison with SOFIA regard-
ing its run-time speed.

To compare accuracy and classification time, we used the non-
parametric Wilcoxon test. The use of non-parametric tests requires
no distributional assumption. Such a test checks whether differ-
ences in performance recorded for SOFIA and antiSQLi are sta-
tistically significant16. Results show that SOFIA performs signifi-
cantly better than antiSQLi with respect to Recall, FPR and time (p-
values are, respectively, 0.028, 0.008 and 0.011). Similarly, SOFIA
fares significantly better than GreenSQL in terms of FPR (p-value
= 0.028). Thus, we can provide a clear answer to RQ3:

SOFIA is significantly more accurate than antiSQLi and
GreenSQL and significantly faster than antiSQLi in classi-
fying legitimate SQL statements and SQLi attacks.

5.7 Threats to Validity
To help increase the external validity of our results, which is the

main challenge in our study, we relied on various applications from
different domains and written using different programming lan-
guages, and three different attack generation tools. Further, to en-
sure our accuracy results were realistic, we resorted to standard 10-
fold validation involving multiple training/testing data sets. How-
ever, we have to recognise the inherent limitations of such studies
as we cannot predict accuracy on future vulnerabilities. The fact
that our learning approach does not rely on the specific vulnerabili-
ties in our application systems helps alleviate this problem but does
not eliminate it entirely.

6. RELATED WORK
We review SQLi detection techniques that are based on analysing

SQL statements at run-time. Table 5 summarizes which of our
security oracle requirements (see Section 3.1) are met by related
work. Our requirements are: Req1 training is independent from
known attacks; Req2 classification is neither based on the knowl-
edge of test input data nor on the input data generation algorithm;
and Req3 analysis does not require access to source code.

Table 5: Security oracle requirements met by related work.
Papers Req 1 Req 2 Req3

Halfond et al. [11]
Bisht et al. [6]
Buehrer et al. [7]
Kemalis et al. [14]

X X –

Pinzon et al. [21] – X X
Liu et al. [17]
Valeur et al. [26] X X X

White-box approaches [11] [6] [7] [14] require the source code
to be available for instrumentation or analysis, so they do not meet
requirement Req3. Halfond et al. proposed AMNESIA [11], a meth-
od based on program analysis to build models (non-deterministic

16We assume a 95% confidence level, so a p-value < 0.05 indicates
a statistically significant result.



finite automata) for each and every legitimate query of an appli-
cation. The application is instrumented and each SQL query sent
to the database is validated by finding an accepting path in the au-
tomaton. If not possible, the query is considered to be an attack.
Bisht et al. proposed CANDID [6], an approach that compares a
developer’s intended query structure with the actual query struc-
ture found during program execution. While both AMNESIA and
CANDID show promising evaluation results and they meet require-
ment Req1 and Req2, but they require access to the source code and
its instrumentation, which limits their applicability and violates re-
quirement Req3.

Buehrer et al. have proposed SQLGuard, which compares parse
trees of each SQL statement before and after the inclusion of user
inputs at runtime [7]. If the trees corresponding to a statement (with
and without user inputs) are different after removing constants, then
the statement is considered to result from SQLi attacks. In compar-
ison to our approach, which does not require any change to the
source code, the application of SQLGuard requires SQL queries to
be rewritten using a Java library provided by SQLGuard’s authors,
thus Req3 is not fully met.

Several approaches based on anomaly detection have been pro-
posed in the literature [14, 17, 21, 26]. Many of them look similar
to ours because they contain the same two high-level steps: train-
ing and detection. We provide below a detailed comparison with
our work, which aims at addressing three main limitations of prac-
tical importance: false positives, the difficulty to obtain a somewhat
complete set of of actual and varied attacks for learning purposes,
and the need to handle new attack variants.

Kemalis et al. proposed SQL-IDS, a specification-based approach
to detect malicious SQL statements [14]. Even if this approach
does analyse source code directly, the user has to provide the spec-
ification of all benign SQL statements for the application under
protection. SQL-IDS monitors the application during runtime and
each query that does not comply with the specification is treated
as malicious. Req3 is not fully met by this approach, because it
requires precise knowledge of the source code to be manually pro-
vided to the tool. In our proposed approach, the user does not have
to provide any specification for benign statements, because the safe
model is automatically inferred from the learning set.

The remaining approaches are black-box, i.e. they do not require
source code, so they meet requirement Req3. Pinzon et al. pro-
posed an anomaly detection approach combining neural networks
and support vector machine to classify SQL queries into benign or
malicious statements [21]. In contrast to our approach, they em-
ploy supervised machine learning techniques that require a suffi-
cient number of known attack statements. As it is very much driven
by what known attacks were fed to the learner, such an approach
does not met requirement Req1 and it might have difficulties recog-
nising new attacks.

To the best of our knowledge, only two approaches [17][26] fully
meet all of our three requirements. However, we overcome their
limitations by achieving (i) low sensitivity to learning set incom-
pleteness and (ii) a very low false positive rate.

Liu et al. proposed SQLProb [17], a tool that uses string align-
ment to detect the part of an SQL query that corresponds to user
input, by detecting the difference between a new query (require-
ments Req2 and Req3) and all the queries observed at learning time
(requirement Req1). The tool reports an anomaly when the part of
the parse tree that corresponds to detected user input contains non-
constant leaf nodes (e.g., arithmetic or logic operators). As one
might expect, the reliability of this approach is very sensitive to the
completeness of learning, that is whether all types of queries are
accounted for. Completeness is required to identify correctly the

user input in the SQL query. Identifying user inputs is a difficult
and error-prone step that could lead to false positives when train-
ing is partial. Unfortunately, false positives were not reported by
the authors. After investigation, it turned out that the tool was not
available and therefore a comparative study was not possible. Nev-
ertheless, our approach does not entail extracting user inputs and
is therefore by design more robust. We do not need all types and
variants of safe queries to be available at the training phase and,
thanks to the distance measure that we adopt, as demonstrated by
our empirical study, we obtain accurate results even when we have
no guarantee of completeness during training.

Valeur et al. [26] used machine learning to learn relevant charac-
teristics from user inputs of benign SQL queries. In the training
phase, several statistical models characterising relevant features,
such as character distribution and string length, are learned from
attack-free SQL queries (requirement Req1), in order to capture
patterns and ranges of expected values. In the detection phase, a
query is intercepted (requirements Req2 and Req3) and parsed, and
its input values are compared to detect anomalies against models
resulting from training queries with identical parse tree structure.
This approach requires an exact match between the parse tree to
classify and those in the learning set, while we tolerate a degree
of difference using tree distance. Moreover, Valeur et al. learn a
statistical distributions of values from legitimate SQL statements,
while we remove these values and consider only pruned parse trees.
These two fundamental differences allow us to dramatically reduce
false positives based on results reported by Valeur et al. In our ap-
proach, legitimate statements are correctly classified as safe if they
belong (i.e., show acceptable distance) to one of the clusters of our
model. Our approach is therefore more resilient, as demonstrated
by our empirical results.

7. CONCLUSION
Having in mind realistic industrial settings, we elicited three re-

quirements for an ideal security oracle for security testing of SQLi
vulnerabilities. We presented a novel approach that satisfies all of
these requirements and we implemented it into a tool that we call
SOFIA. SOFIA learns a safe model characterising legitimate SQL
statements, based on information logged during normal system ex-
ecutions. To do so, SQL statements are parsed and then parse trees
are pruned to remove information that is irrelevant to whether an
SQL statement is safe or not. Based on their tree-edit distance,
similar parse trees are grouped using clustering and the resulting
set of clusters is used as a safe models. SOFIA classifies new SQL
statements by comparing and contrasting them with these clusters.
Executions whose SQL statements do not sufficiently fit into any of
the clusters of the safe model are classified as attacks.

We assessed the accuracy of SOFIA as a security oracle with
three different attack generation tools on six PHP and Java systems.
No attack was missed and the rate of false positives was very low,
thus making SOFIA a reliable and cost-effective approach. Fur-
ther, the classification of SQL statements was on average below
100ms, thus making it possible to execute a large number of test
cases within time constraints. Last, SOFIA significantly outper-
formed two widely used alternative tools in terms of classification
accuracy and execution speed for one of the tools.
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