
Assessment of Data Obfuscation with Residue Number Coding

Biniam Fisseha Demissie, Mariano Ceccato, Roberto Tiella

Fondazione Bruno Kessler, Trento, Italy
Email: {demissie,ceccato,tiella}@fbk.eu

Abstract

Software obfuscation was proposed as a technique to
mitigate the problem of malicious code tampering, by
making code more difficult to understand and consequently
more difficult to alter.

In particular, “residue number coding” encodes pro-
gram variables to hide their actual values, while support-
ing operations in the encoded domain. Some computations
on encoded variables can proceed without the need to
decode them back in the clear. Despite the obvious ben-
efits of this approach, to the best of our knowledge, no
implementation is available.

In this paper, we describe our implementation of data
obfuscation based on residue number coding. Moreover, we
present an assessment of this obfuscation scheme in terms
of performance overhead, when more and more program
variables are subject to obfuscation.

I. Introduction

Programs often enforce usage conditions, e.g., license
check, that could be broken in case the code is tampered
with by malicious users. Code obfuscation prevents tam-
pering by exploiting the economics of the attack. The
objective of code obfuscation, in fact, is to obstruct code
comprehension and turn attacks much more demanding
and expensive for an attacker. In particular, code obfus-
cation is a winning protection strategy when the cost of
attacking obfuscated code (e.g., attacker time) is more
expensive than the benefit of the successful attack (e.g.,
the cost of the license).

Residue Number Coding (RNC) is a form of data obfus-
cation that offers interesting mathematical properties that
make it a good candidate for large adoption. Variables are
encoded to hide original values, and they do not need to be
decoded back in the clear when used in certain expressions,
i.e. this obfuscation supports operations among obfuscated

values. Though a similar obfuscation technque has been
proposed based on a different encoding scheme [1], to
the best of our knowledge, no implementation is available
for RNC based obfuscation scheme and no empirical
assessment has been conducted to study the impact of this
obfuscation on real programs. Only theoretical evaluations
have been proposed [2], [3], [4].

In this paper, we present our experimental quantification
of data obfuscation based on residue number coding. First
of all we present our implementation of this obfuscation
scheme. Then, we propose our analysis of obfuscated
code, based on the quantification of performance and
memory overhead caused by obfuscation of different sets
of variables. In future work, we intend to involve human
participants to quantify the resilience of this obfuscation
scheme against attacks, as we already did on other state-
of-the-art obfuscations [5].

II. Data Obfuscation

Code obfuscation is the process of transforming a
program P into another semantically-equivalent program
P ′ so that P ′ is harder to understand than P according to
a given definition of “understandability”.

Among the possible transformations that can be ap-
plied to (the source code of) a program to obfuscate its
semantics, data obfuscation transformations aim at hiding
data values by changing the statements where variables are
defined and used. Known data obfuscation transformations
comprise techniques such as change variables scope from
local to global, split or merge variables (both scalar and
arrays), move constants from data to behavior, and change
encoding [6].

In detail, Change Encoding Transformations (CET)
modify how values are represented. Some transformations
might involve only value representation without changing
how values are stored in memory. As a trivial example,
the affine CET that changes the representation of integers
such that a value k is encoded as k′ = 2k + 1, does

not require a type change provided that k′ fits the size
of an integer. Other CETs might actually modify how the
memory is allocated, for example “Merge variables” is a
transformation that pairs two integer variables into a single
long variable.

A CET is a syntactical transformation that, applied to
a program, modifies variable declarations, initializations,
definitions (i.e., assignments statements), variable uses and
the representation of constants. However to fully grasp
the implication of applying a CET, it is useful to study
the bijective mathematical function e : T → T ′ induced
by the transformation from the set T of original values
(also called the clear domain) to the set T ′ of encoded
values (also called the encoded domain). Without any risk
of ambiguity in what follows, e(·) will also denote the
syntactical transformation on the source code. The inverse
function e−1(·) of e(·) is commonly denoted by d(·).

In the rest of this section, to ease the reader in following
the presentation of our work, we will adopt the example
presented in Figure 1(a). This is a fragment of C code that
contains different variables. Let’s assume that for a subset
of them, namely a, b and c, tampering does not represent
a threat. While, the other variables, namely w, x, y and z,
are security sensitive and they need to be protected with
obfuscation.

A. Base Transformation

If no further assumptions are made, a transformation
e(·) is applied to source code as follows (base transfor-
mation):
• When a result of the evaluation of an expression
<exp> is assigned to an encoded variable <var>,
<exp> must be encoded, i.e., a statement like

<var>=<exp>;

becomes
<var>=e(<exp>);

• When an encoded variable <var> is used, the decode
function d has to be applied to its value, so that every
use of <var> is replaced by d(<var>);

Thus, for example, applying a base transformation to a
statement like:

z = x+y;

where x, y and z are encoded, the transformed version will
have the form:

z = e(d(x)+d(y));

and, detailing the example, if e(·) is the affine transfor-
mation mentioned before, namely e(ν) = 2ν+1, the same
line will be:

z=2*((x-1)/2+(y-1)/2)+1=x+y-1;

B. Homomorphic Transformations

A function e : T → T ′, where T is equipped with an
operation ⊕ and T ′ with a corresponding operation ⊕′, is
called homomorphic [7], if for all ν1, ν2 ∈ T , the following
condition holds:

e(ν1 ⊕ ν2) = e(ν1)⊕′ e(ν2). (1)

For example, the linear transformation l : int→ int,
defined by l(ν) = 2ν can be easily proved homomorphic
with respect to addition:

l(ν1 + ν2) = 2(ν1 + ν2) = 2(ν1) + 2(ν2) = l(ν1) + l(ν2).

If the encoding function e(·) is homomorphic then
the result of the base transformation can be simplified,
leveraging implications of Equation 1, for example:

z = e(d(x)⊕ d(y)) = e(d(x))⊕′ e(d(y)) = x⊕′ y.

Thus if a transformation is homomorphic with respect
to certain operations, transformed programs will present
these operations performed directly in the encoded domain,
avoiding to expose clear values.

C. Residue Number Coding

Residue Number Coding is a CET based on the Residue
Number System. Residue Number System was introduced
by Garner to improve performance of circuitry for multi-
plication of integers [8]. RNC takes an integer value ν and
splits it in u > 0 components:
e(ν) = (µ1, µ2, ..., µu)
where µk = mod (ν,mk), with m1,m2, ...,mu pair-

wise co-prime1 positive integers. Provided that 0 ≤ ν ≤M
where M = m1 · m2 · ... · mu and under the hypothesis
that m1,m2, ...,mu are pairwise co-prime, the “Chinese
Remainder Theorem” ensures that e(·) is bijective. The
decoding function d(µ1, µ2, ..., µu) can be computed using
the Euclid’s extended greatest common divisor algorithm
[8].

Operations in the encoded domain are defined “per
component”, i.e.:

(µ1, µ2, ..., µu)+
′ (λ1, ..., λu) = (µ1+λ1, ..., µu+λu)

(µ1, µ2, ..., µu) ·′ (λ1, ..., λu) = (µ1 · λ1, ..., µu · λu)
It can be shown that the transformation e(·) is ho-

momorphic both with respect to addition (consequently
subtraction) and multiplication. It is worth noting that, as

mod (µk + rkmk,mk) = mod (µk,mk)
for any integer rk, to improve the strength of the

transformation, a known strategy is to add to each compo-
nent µk a term rkmk where rk is randomly chosen. For

1Two integers m and n are co-prime if gcd(m,n) = 1

/ / s a f e v a r s
i n t a , b , c ;
/ / s e n s i t i v e v a r s
i n t x , y , z ,w;

1 a = 2 ;
2 b = a + 3 ;
3 c = a + b ;
4 x = 1 2 ;
5 y = 7 ;
6 z = x + y ;
7 w = x ∗ y ;
8 z = c ;

/ / s a f e v a r s
i n t a , b , c ;
/ / s e n s i t i v e v a r s
i n t x , y , z ,w;

1 a = 2 ;
2 b = a + 3 ;
3 c = a + b ;
4 x = e (1 2) ;
5 y = e (7) ;
6 z = e (d (x) + d (y)) ;
7 w = e (d (x) ∗ d (y)) ;
8 z = e (c) ;

/ / s a f e v a r s
i n t a , b , c ;
/ / s e n s i t i v e v a r s
i n t x1 , x2 , y1 , y2 ,

z1 , z2 , w1 , w2 ;

1 a = 2 ;
2 b = a + 3 ;
3 c = a + b ;
4 x1 = 2280 ;

x2 = 2622 ;
5 y1 = 2513 ;

y2 = 2917 ;
6 z1 = x1 + y1 ;

z2 = x2 + y2 ;
7 w1 = x1 ∗ y1 ;

w2 = x2 ∗ y2 ;
8 z1 = e1 (c) ;

z2 = e2 (c) ;

/ / s a f e v a r s
i n t a , b , c ;
/ / s e n s i t i v e v a r s
Encoded x , y , z ,w;

1 a = 2 ;
2 b = a + 3 ;
3 c = a + b ;
4 x = Encoded (1 2) ;
5 y = Encoded (7) ;
6 z = x + y ;
7 w = x ∗ y ;
8 z = Encoded (c) ;

Fig. 1. Running example of C code: (a) original source code, (b) intermediate transformation step, (c)
obfuscated version, and (d) final result with support class and operator overloading.

example, if u = 2 and m1 = 14 and m2 = 15, then every
x ∈ 0, 1, ..., 209 can be represented as:
e(ν) = (mod(ν, 14) + 14r1,mod(ν, 15) + 15r2)

Therefore, the program in Figure 1(a) is transformed by
means of e(·) to the program in Figure 1(c). For the sake of
clarity, an intermediate state of the transformation is shown
in Figure 1(b). In the first step (Figure 1(a) to Figure 1(b)),
encoding and decoding functions are applied to definitions
and uses of all sensitive variables, namely w, x, y and z,
and constants 12 and 7. In the second step, every statement
that contains an assignment to an encoded variable is split
in two to manage the two components (line 4, 5, 6, and
7). Constants ‘12’ in line 4 and ‘7’ in line 5 are encoded
as (2280,2622) and (2513,2917) respectively. Statements
involving addition and multiplication of encoded values
can be simplified due to the homomorphic property of
RNC (line 6 and 7) while assignment to variable ‘z’ at
line 8 requires two function calls to encode the decoded
(clear) value of variable ‘c’.

D. Transformation

We implemented data obfuscation based on RNC (of
two components) as a source code transformation in Clang-
LLVM [9]. LLVM was developed as compiler with the
underlying idea of implementing all the optimizations on
an intermediate language (the LLVM bitcode). A frond-end
translates source code to bitcode and a back-end translates
the (optimized) bitcode to binary. Clang is the LLVM front-
end for C/C++. We relied on the parse tree available in
Clang to implement data obfuscation transformation rules.

The obfuscation transformation requires as input the
names of variables to be encoded with RNC. They are
identified using a configuration file, that lists the (fully
referenced) list of variables to obfuscate, one per line.
Function local variables are prefixed with the name of
function where they are defined, while global variables are
prefixed with the keyword global.

Instead of doubling all those expressions that involve
obfuscated data, as presented in the mathematical back-
ground (see Figure 1(c)), we adopted a support class and
we relied on operator overloading. This class is called
Encoded and two class fields (x and y) store the values
of the two components. Constructors and utility functions
are provided to encode/decode values. Operators are over-
loaded to support operations in the encoded domain as
operations among instances of the Encoded class.

First of all, in the declaration of a sensitive variable,
the type is changed from int to Encoded, see declarations
in Figure 1(d).

Then, assignment expressions are changed according
to the type of the variable in the left-hand side (clear
or encoded). If the type of left-hand side variable is in
the clear domain (e.g., int) and the type of the right-
hand side is encoded, then the expression in the right-
hand side is decoded before the assignment using the
d(·) operator (introduced in Section II-C). No change is
required for statements 1, 2 and 3 because the right-hand
side expressions are already in the clear domain.

Conversely, if the variable in left-hand side of the
assignment is of type Encoded, then all clear variables
and expressions in the right-hand side of the assignment

are changed to the encoded domain using the e(·) operator.
This is the case of statements 4, 5, 6, 7 and 8.

Operations supported by the RNC scheme do not need
to be updated thanks to the operator overloading. In fact,
the sum among integers and the sum among Encoded
variables adopt the same syntactic notation (i.e., +). This
is the case of statements 6 and 7, where the sum symbol
is mapped to the operator defined in the class Encoded.
Conversely, statements 4, 5 and 8 require explicit conver-
sion.

RNC is homomorphic w.r.t. multiplication, sum and
subtraction, and all the operations that can be expressed
as a composition of them (e.g., left shift of n positions is
equivalent to a multiplication by 2n). All the remaining
operations must be performed in the clear, so encoded
value should be decoded, operated and then encoded back.

The final result of the transformation is shown in
Figure 1(d). Even if the transformation is described and
conducted in terms of source code, the compiled binary
version will be delivered and will be potentially subject to
attacks.

III. Empirical Validation

The most conservative strategy to prevent code tam-
pering is obfuscate all, i.e., to apply obfuscation to all
the program variables. However, not all the variables in a
program are expected to be security critical, e.g., variables
related to the GUI might not represent a security threat
in case of tampering. Thus, such an aggressive approach
could cause unmotivated and unacceptable performance
degradation.

The opposite strategy is obfuscate just sensitive. It
consists of obfuscating only the particular program vari-
able(s) that is(are) security sensitive and is(are) prone to
attacks, e.g., those variables in strategy games that store
gold and energy values. However, other variables that are
not intrinsically sensitive could be somehow related to
sensitive variables. Related variables could leak important
information that could be potentially used by the attacker
to guess or tamper with the value of a sensitive variable.

The data-obfuscation tool is executed on several obfus-
cation configurations, resulting in many different obfus-
cated versions of the same program2.

We expect memory overhead due to the fact that
each obfuscated variable is split and represented as two
variables. Computational overhead is expected, because
operations among encoded variables should be performed
twice, once per each of the two dimensions. Moreover,
additional computational overhead is required when ob-
fuscated variables have to be encoded/decoded each time

2The complete experimental setting (tools and case studies) is available
for replication purposes at http://selab.fbk.eu/spro2015/

an operation is performed that is not supported by the
encoding scheme (e.g., division).

Thus, we formulate the subsequent research question
for our empirical assessment:
• RQ1 What is the memory overhead due to data obfus-

cation with residue number coding when increasing
the number of obfuscated variables;

• RQ2 What is the execution time overhead due to
data obfuscation with residue number coding when
increasing the number of obfuscated variables.

A. Metrics

The definition of metrics to consider derives directly
from the research questions. They are:
• Memory: The total amount of memory used by the

process to execute a scenario;
• Time: The total amount of time taken by the process

to execute a scenario;
• Number of Obfuscated Variables: The number of

variables that are subject to data obfuscation.
The execution environment is instrumented to measure

the first two metrics. In particular Memory is measured
using the unix Time utility. We used the command Time
-f "%M" to quantify the maximum resident set size of
the process during its lifetime. This utility also supports
the measurement of the Time taken by a process, however
at a too coarse grain resolution (seconds). A more fine
grain measurement can be achieved by marking the system
time when the process starts and ends. Using system time,
we could reliably3 measure the execution time with the
granularity of the millisecond.

Obscurity of a program code is measured by the number
of program variables that are subject to data obfuscation.

B. Case studies

To answer research questions RQ1 and RQ2 we consider
two case study applications, license check and MD5. The
first case study, license check, is a small routine devoted
to check the validity of a license number to activate a
software component. The serial number contains the date
when the license has been emitted and its validity is meant
to expire 30 days after emission.

The security sensitive variable is the one that holds
the difference between emission date and current date. In
fact, an attacker might tamper with this value to make an
expired license last longer. An attacker might (i) add a
constant value to the current date, (ii) subtract a constant

3To make the measurement reliable, no other process was executed
during the experiment and the machine was disconnected from the
network.

value to the difference, or (iii) add a constant value to the
date extracted from the license number. All these examples
are instances of attacks based on data tampering that could
be mitigated using data obfuscation.

Of course many other attacks are possible based on
other strategies, e.g., tampering with the code to skip
license validation, altering the system date, or tamper with
the system library that fetches the current date. All these
attacks are out of the scope of data obfuscation. Different
protection are effective against these attacks, such as code
obfuscation or remote attestation.

The difference between current date and date from
license should be obfuscated. However, other variables
involved in the computation might leak sensitive informa-
tion, such as dates, days, months, years, and they are also
candidate for obfuscation according to their distance to the
sensitive variable.

The second case study is MD5, a routine to compute
the checksum of files. This program has been selected
because we meant to study the effect of data obfuscation
on an I/O intensive example. To this aim we identified the
sensitive variable as the one that stores and accumulates
the checksum value.

C. Experimental Setting

To study the impact of obfuscation, a set of execution
scenarios have been defined for the two case studies. For
license check, we defined 365 scenarios, corresponding to
valid licenses emitted on consecutive dates. Part of the
licenses are valid, the rest of them are expired.

The execution of this program is quite fast, and the
time to initialize the process could dominate the time to
execute the process. To avoid this problem, we artificially
modified the program by introducing an iteration of 1000
executions of the main function. In this way, the program
execution time dominates the total time and any variation
of execution time due to obfuscation would be more
evident. In this context license check can be considered
a cpu-intensive case study.

For MD5, we defined 4 scenarios, that consist in 4 files
of increasing size for which to compute the checksum.
The files are installation packages for Spin (2Mb), Skype
(17 Mb), Chrome (36 Mb) and Eclipse (145 Mb). To
avoid the bias effect of non-deterministic event during the
experiment, each execution is repeated 10 times.

The experimental process consists of running the origi-
nal (clear) code on the execution scenarios, to collect Mem-
ory and Time. Then, for increasing number of variables to
be obfuscated we apply data obfuscation, we execute the
obfuscated code and we collect Memory and Time values.
To make sure that data obfuscation preserves the original
semantics, on all the scenarios output of the obfuscated

code is compared to the output of clear code using the
unix diff. In this way we test the obfuscated code for
correct behaviour, because we need to be confident that
the transformations applied by our tool did not introduce
errors or deviations on the original functionalities.

The experiment has been conducted on a laptop with
Intel Core i3 2.3 GHz CPU (4 cores), 4 GB of memory,
running Ubuntu 12.10 64 bit.

D. Results

The trend of memory consumption on license check is
shown in Figure 2. The first box in the plot represents
the clear code, where no variable is obfuscated. More and
more variables are obfuscated, respectively 2, 7 and 8
variables. Consequently, more memory is required to run
the program.

0 2 7 8

1
0

6
5

1
0

7
0

1
0

7
5

1
0

8
0

Number of Obfuscated Variables

M
e

m
o

ry
 [

K
B

y
te

s
]

Fig. 2. Boxplot of memory consumption (li-
cense check).

Figure 3 shows the boxplot of the time required to run
the program. Also in this case, the more variables are
obfuscated, the more time is taken by the execution.

To test if the trend observed on the graphs is statistically
significant, we use the Pearson correlation test to check
if Memory and Time are correlated with the Number of
Obfuscated Variables. This test computes the correlation
coefficient r, a symmetric, scale-invariant measure of as-
sociation between two random variables. It ranges from
−1 to +1, where the extremes indicate perfect (positive or
negative) correlation and 0 means no correlation. It also
computes a p-value, and we observe statistical significance
with a confidence of 95% when p-value is <0.05. In case
of statistical significant correlation, we provide also the
linear coefficient of the linear interpolation.

Table I reports the results of the statistical test for
license check, with statistical significant cases highlighted

0 2 7 8

0
2

0
4

0
6

0
8

0
1

0
0

1
2

0
1

4
0

Number of Obfuscated Variables

T
im

e
 [

m
s
]

Fig. 3. Boxplot of execution time (license
check).

in boldface. As observed on the graphs, both Memory and
Time report a significant correlation with the Number of
Obfuscated Variable (p-values <0.05, and r is near to 1).
The linear coefficients allow to quantify the obfuscation
overhead for the first case study. When adding a new
variable to the list of variables to obfuscate, we expect that
the process requires additional 1.19 KBytes of memory and
8.85 milliseconds of time to complete the execution.

TABLE I. Correlation between obfuscation
and cost (license check).

Metrics P-value Correlation Coefficient
Memory & # of Obf. Variables <0.01 0.85 1.19
Time & # of Obf. Variables <0.01 0.98 8.85

To understand if these observations hold also for an I/O
intensive program, we repeat the same experiment with the
second case study, i.e., MD5. We run this program with 4
distinct input of increasing size.

The results of the Pearson correlation for MD5 are
reported on Table II. Different execution scenarios are
analyzed separately. In the analysis of Memory, shown in
Table II(a), we observe statistical significance in three out
of four cases, however the r is fairly far from perfect
correlation (case of r=1). In the significant cases, the
memory increase per obfuscated variable is approximately
of 1 KByte.

Differently from license check, for MD5 the memory
consumption is quite flat, with no apparent effect due
to obfuscation. The only noticeable difference between
executions seems to be due to the size of the input data,
i.e., most of the memory is allocated by the I/O. The
incremental fraction of memory required by the obfusca-

tion is negligible with respect to existing program memory
requirements.

The analysis of the correlation between obfuscation
and execution time is shown in Table II(b). None of the
execution scenario reached statistical significance (p-value
is never <0.05), execution time and number of obfuscated
variables look non-correlated (r near to 0).

IV. Related Work

Data obfuscation transformations are described and
qualitatively analyzed in various previous works (e.g. [10]
and [6]). Drape et al. [2] describe how data obfuscation
transformations can be formalized using data refinement:
a setting that allows to formally prove transformations
correctness. Residue Number Coding and its homomorphic
properties are presented in a work by Zhu, W. and Thom-
borson C. [3]. Their study concerns theoretical properties
of the RNC transformation. The same authors published
an article on applying homomorphic data obfuscation to
array indexing [4]. All these works present definitions,
applications and qualitative analyses for data obfuscation
techniques in general, and homomorphic data obfuscation
in particular, but they lack to address implementations and
empirical assessment to evaluate effective applicability of
data obfuscation in the real world.

In the past, the assessment of obfuscation transforma-
tions has been conducted by measuring the complexity
introduced by obfuscation mainly through code metrics.
However, their objective was mainly to measure the effect
of code obfuscation on program statements, rather than the
effect of data obfuscation on data structures.

The most related work on the assessment of code ob-
fuscation has been presented by Heffner and Collberg [11].
They used metrics for obfuscation potency and perfor-
mance degradation as they aimed at finding the optimal
sequence of obfuscations to be applied to different parts
of the code in order to maximize complexity and reduce
performance overhead. With a similar goal, Jakubowski et
al. [12] presented a framework for iteratively combining
and applying protection primitives to code. They also
considered code size, cyclomatic number and knot count
metrics to evaluate the code complexity.

Collberg et al. [6] proposed the use of complexity
measures in obfuscation tools to help developers choose
among different obfuscation transformations. A high-level
approach has been proposed by Collberg et al. [10] when
they defined the concept of potency of an obfuscation
as the ratio between the complexity (measured with any
metric) of the obfuscated code and the complexity of the
original source code, and the concept of resilience, i.e.,
how difficult is to automatically de-obfuscate the protected
code. Karnick et al. [13] defined more precise metrics

TABLE II. Correlation between obfuscation and cost (MD5).
Input P-value Correlation Coefficient
2 Mb <0.01 0.58 1.16

17 Mb 0.07 0.29 -
36 Mb <0.01 0.66 1.05

145 Mb 0.03 0.34 0.72

Input P-value Correlation Coefficient
2 Mb 0.61 -0.08 -

17 Mb 0.84 0.03 -
36 Mb 0.06 -0.30 -

145 Mb 0.35 0.15 -
(a) Memory & Number of Obfuscated Variables (b) Time & Number of Obfuscated Variables

for potency (combining nesting, control-flow and variable
complexities), resilience (as the number of errors generated
decompiling obfuscated code) and cost (as an increment of
memory usage).

Many authors have chosen just a few particular metrics
with the assumption that these were good indicators of
software complexity and ensure a harder task for the
attacker when they try to break the code. Anckaert et
al. [14] attempted to quantify and compare the level of
protection of different obfuscation techniques. In particu-
lar, they proposed a series of metrics based on code, control
flow, data and data flow: they computed such metrics on
some case study applications (both on clear and obfuscated
code), however without performing any validation on the
proposed metrics. Linn et al. [15] define the confusion
factor as the percentage of assembly instructions in the
binary code that cannot be correctly disassembled by the
disassembler, assuming that the difficulty of static code
analysis will increase with this metrics, even if it strongly
depends on the disassembly tools and algorithms used.

Later, a broad study [16] have been conducted to
compare the effect of 44 obfuscations on 4 millions line of
code with 10 metrics, including (Chidamber and Kemerer)
modularity, (cyclomatic) complexity and size (lines of
code). In order to provide reliable results, a statistically
sound evaluation has been conducted.

V. Conclusion

This paper presents our implementation of data obfus-
cation with residue number coding. It also presents a study
to analyze how performance degrades when obscurity
increases (i.e., the number of obfuscated variables). Results
suggest that this obfuscation scheme is quite lightweight,
because it does not impose dramatic costs in terms of
computation and memory overhead.

Acknowledge

The research leading to these results has received fund-
ing from European Union Seventh Framework Programme
(FP7/2007-2013) under grant agreement number 609734.

References

[1] “The tigress diversifying c virtualizer,” http://tigress.cs.arizona.edu/
#data, 2015.

[2] S. Drape, C. Thomborson, and A. Majumdar, “Specifying impera-
tive data obfuscations,” in Information Security. Springer, 2007,
pp. 299–314.

[3] W. Zhu and C. Thomborson, “A provable scheme for homomorphic
obfuscation in software security,” in The IASTED International
Conference on Communication, Network and Information Security,
CNIS, vol. 5, 2005, pp. 208–212.

[4] W. Zhu, C. D. Thomborson, and F.-Y. Wang, “Obfuscate arrays by
homomorphic functions.” in GrC, 2006, pp. 770–773.

[5] M. Ceccato, M. Di Penta, P. Falcarin, F. Ricca, M. Torchiano, and
P. Tonella, “A family of experiments to assess the effectiveness
and efficiency of source code obfuscation techniques,” Empirical
Software Engineering, vol. 19, pp. 1040–1074, 2014.

[6] C. Collberg, C. Thomborson, and D. Low, “A taxonomy of obfus-
cating transformations,” Dept. of Computer Science, The Univ. of
Auckland, Technical Report 148, 1997.

[7] R. L. Rivest, L. Adleman, and M. L. Dertouzos, “On data banks
and privacy homomorphisms,” Foundations of secure computation,
vol. 4, no. 11, pp. 169–180, 1978.

[8] H. L. Garner, “The residue number system,” Electronic Computers,
IRE Transactions on, no. 2, pp. 140–147, 1959.

[9] C. Lattner and V. Adve, “Llvm: A compilation framework for
lifelong program analysis & transformation,” in Proceedings of the
2004 International Symposium on Code Generation and Optimiza-
tion (CGO’04), Palo Alto, California, Mar 2004.

[10] C. S. Collberg and C. Thomborson, “Watermarking, tamper-
proofing, and obfuscation: tools for software protection,” IEEE
Trans. Softw. Eng., vol. 28, pp. 735–746, August 2002. [Online].
Available: http://dl.acm.org/citation.cfm?id=636196.636198

[11] K. Heffner and C. Collberg, “The obfuscation executive,” in Infor-
mation Security. Springer, 2004, pp. 428–440.

[12] M. H. Jakubowski, C. W. Saw, and R. Venkatesan, “Iterated
transformations and quantitative metrics for software protection.”
in SECRYPT, 2009, pp. 359–368.

[13] M. Karnick, J. MacBride, S. McGinnis, Y. Tang, and R. Ramachan-
dran, “A qualitative analysis of java obfuscation,” in Proceedings
of 10th IASTED International Conference on Software Engineering
and Applications, Dallas TX, USA, 2006.

[14] B. Anckaert, M. Madou, B. D. Sutter, B. D. Bus, K. D. Bosschere,
and B. Preneel, “Program obfuscation: a quantitative approach,” in
QoP ’07: Proc. of the 2007 ACM Workshop on Quality of protection.
New York, NY, USA: ACM, 2007, pp. 15–20.

[15] C. Linn and S. Debray, “Obfuscation of executable code to
improve resistance to static disassembly,” in Proceedings of the
10th ACM conference on Computer and communications security,
ser. CCS ’03. New York, NY, USA: ACM, 2003, pp. 290–299.
[Online]. Available: http://doi.acm.org/10.1145/948109.948149

[16] M. Ceccato, A. Capiluppi, P. Falcarin, and C. Boldyreff, “A large
study on the effect of code obfuscation on the quality of java code,”
Empirical Software Engineering, p. (to appear), 2014.

