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Abstract—Programs often run under strict usage conditions
(e.g., license restrictions) that could be broken in case of code
tampering. Possible attacks include malicious reverse engineer-
ing, tampering using static, dynamic and hybrid techniques.
Many code protection techniques (e.g., code obfuscation) have
been proposed to mitigate the problem of attacks to software
integrity, by turning code resilient to attacks or just more
difficult to understand and, consequently, to attack.

Effectiveness of software protection in limiting or retard-
ing attacks is often assessed by using various code metrics.
However, metrics alone give a limited (and potentially biased)
quantification of the level of protection. Human studies are
required to validate metrics and to objectively quantify how
effective is code protection in blocking malicious tampering.
Human studies would shown if metrics approximate the actual
effort required by an attacker break protections. However,
these studies are very expensive and time consuming. The
contribution of the whole research community is required to
achieve this demanding objective.

I. INTRODUCTION

With sufficient effort and resources, most software pro-
tection techniques can be defeated under the man-in-the-
end (MATE) attack model. In fact, the information needed
to break a software system is often present, possibly in
obfuscated form, in the executable binary or bytecode.
Hence, they can be accessed and controlled by the attacker.
Assessing software protections means to estimate the extra
delay an attacker would incur due to a particular protection
technique used on a given application.

Most of the existing assessments of software protection
techniques (in particular, for code obfuscation) are based
on metrics, estimating the increased code complexity, or the
increased difficulty of static code analysis. Only a few works
are based on attacks performed by human subjects, but very
few of them applied rigorous approaches, such as those
available from the area of empirical software engineering.

II. ASSESSMENT BASED ON METRICS

The evaluation of the increased strength introduced by
obfuscation techniques has been mainly addressed by using
code metrics. Even if metrics are based on reasonable
assumptions about the expected problems that an attacker
would face to defeat the code protections, they just estimate
and approximate a specific level of security that the under-
lying application is supposed to receive.

Collberg et al. [6] proposed the use of complexity mea-
sures in code obfuscation tools to help developers choose
among different obfuscation transformations. A high-level

approach has been proposed by Collberg et al. [7] when
they defined the concept of potency of an obfuscation as the
ratio between the complexity (measured with any metric)
of the obfuscated code and the complexity of the original
source code, and the concept of resilience, i.e. how difficult
it is to automatically de-obfuscate the protected code.

Karnick et al. [10] defined more precise metrics for
potency (combining nesting, control-flow and variable com-
plexities), resilience (as the number of errors generated when
decompiling the obfuscated code) and cost (as an increment
of memory usage). Heffner and Collberg [8] used metrics for
obfuscation potency and performance degradation as they
aimed at finding the optimal sequence of obfuscations to be
applied to different parts of the code in order to maximize
complexity and reduce performance overhead. With a similar
goal, Jakubowski et al. [9] presented a framework for
iteratively combining and applying protection primitives to
code; they also used code size, cyclomatic number and knot
count metrics to evaluate the code complexity.

Many authors have chosen just a few specific metrics,
under the assumption that these are good indicators of the
software complexity and of the task difficulty for attackers
trying to break the code. Anckaert et al. [1] attempted to
quantify and compare the level of protection of different
obfuscation techniques, with metrics based on code, control
flow, data and data flow, without however performing any
validation on the proposed metrics. Linn et al. [11] define the
confusion factor as the percentage of assembly instructions
in the binary code that cannot be correctly disassembled by
the disassembler, assuming that the difficulty of static code
analysis will increase with this metrics, even if it strongly
depends on the disassembly tools and algorithms used.

Tamada et al. [13] have proposed a mental simulation
model to evaluate program obfuscation. The mental model
simulates the short term memory of humans as a FIFO
queue of limited, fixed size. Then, the authors compute six
metrics that account for the difficulty possibly encountered
by humans understanding the program, in accordance with
the simulation model. They show that the values of such
metrics increase – hence making program understanding
more difficult – when a number of well-known obfuscation
techniques are applied to the program to be protected.

Probably the most comprehensive analysis is represented
by the comparison conducted by Ceccato et al. [2]. This
study considered many different applications from different
domains, consisting of more than 4 millions lines of code.



Forty four different obfuscations have been applied to the
code. The effects of each obfuscation have been quantified
separately as the changes occurred to the code according to
10 metrics, including Chidamber and Kemerer’s modularity,
(cyclomatic) complexity and size (lines of code). In order to
provide reliable results, a statistically sound evaluation has
been conducted.

III. ASSESSMENT BASED ON HUMAN STUDIES

Empirical software engineering is devoted to the de-
sign and execution of controlled experiments to study how
developers change their productivity while working with
alternative tools/approaches. Empirical software engineering
requires several steps for carefully defining the experimental
environment, such as stating the experimental hypotheses,
defining relevant variables to measure, preparing attack tasks
to be executed by the participants, profiling the participants,
analyzing the data with proper statistics and elaborating the
threats to the observation validity.

Despite the benefits of experimental investigation, in the
security literature only a few works are based on attacks
performed by human participants on binary code [12] and
even fewer works [3], [5] are based on sound empirical
approaches, because the latter are expensive to conduct and
time consuming. As an example, the comparison of just
two obfuscation techniques with the involvement of humans
playing the role of attackers took a quite long time to be
concluded [3].

Sutherland et al. [12] conducted an experimental study on
the complexity of binary reverse engineering. The authors of
this study asked a group of 10 students (of heterogeneous
level of experience) to perform static analysis, dynamic
analysis and change tasks on several C (compiled) programs.
They found that the participants’ ability was significantly
correlated with the success of threverse engineering tasks
they were asked to perform.

Our initial investigation on this topic is described in
some works [4], [5], [3] devoted to present the design,
planning and results of a series of experiments devoted to
compare the level of protection offered by two of the most
common code obfuscation techniques, identifier renaming
and opaque predicates. This study compared, by means
of statistical tests and effect size measures, the capability
and efficiency of participants in performing attack tasks on
clear and obfuscated code. The study was able to quantify
the increased effort necessary to understand and attack an
obfuscated program, with respect to the effort necessary for
the non-obfuscated one.
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