
An Empirical Study about the Effectiveness of Debugging

When Random Test Cases Are Used

Mariano Ceccato, Alessandro Marchetto

Fondazione Bruno Kessler

Trento, Italy

{ceccato,marchetto}@fbk.eu

Leonardo Mariani

University of Milano Bicocca

Milano, Italy

mariani@disco.unimib.it

Cu D. Nguyen, Paolo Tonella

Fondazione Bruno Kessler

Trento, Italy

{cunduy,tonella}@fbk.eu

Abstract—Automatically generated test cases are usually
evaluated in terms of their fault revealing or coverage capabil-
ity. Beside these two aspects, test cases are also the major source
of information for fault localization and fixing. The impact of
automatically generated test cases on the debugging activity,
compared to the use of manually written test cases, has never
been studied before.

In this paper we report the results obtained from two con-
trolled experiments with human subjects performing debugging
tasks using automatically generated or manually written test
cases. We investigate whether the features of the former type of
test cases, which make them less readable and understandable
(e.g., unclear test scenarios, meaningless identifiers), have an
impact on accuracy and efficiency of debugging. The empirical
study is aimed at investigating whether, despite the lack of
readability in automatically generated test cases, subjects can
still take advantage of them during debugging.

Keywords-Empirical Software Engineering; Debugging; Au-
tomatic Test Case Generation

I. INTRODUCTION

Automatic test case generation is an important area of

software testing. The scientific community has reserved a

great attention to test generation techniques, which are now

available for many popular frameworks and programming

languages. For instance, Randoop can automatically generate

test cases for Java classes by randomly combining method

invocations [13]; PEX can generate test cases that cover all

the statements in a .NET class by combining concrete and

symbolic execution [17]; µTest uses mutation analysis to

generate test suites for Java programs [8].

Empirical evidence has indicated that those automated so-

lutions are effective in discovering programming faults [13],

[2], [17], [10], [8]. However, the data and examples in these

studies also show that automatically generated (autogen, for

brevity) test cases are generally less readable and intuitive

than manually designed test cases. In fact manually defined

test cases usually address a well-defined scenario identified

by a tester, while autogen test cases result from a random

or coverage-oriented process, and do not address a clear

scenario. As a consequence, testers might find it difficult to

interpret a failure exposed by an autogen test case, and the

debugging of such a failure might be expensive compared

to debugging from a manually designed test case.

Even if a certain lack of readability is intrinsic of autogen

test cases, there is no empirical evidence that autogen test

cases impact debugging negatively. Understanding the costs

of test automation, including indirect costs such as the cost

of debugging, is of critical importance for testers who have

the responsibility of designing effective testing strategies for

their software.

In this paper, we present an empirical study that aims

at qualitatively and quantitatively evaluating the impact of

autogen test cases on debugging. Our study considers de-

bugging of 8 faults in the JTopas1 and XML-security2

applications. We evaluate the effectiveness of debugging

when using a manually designed test suite and a test suite

generated by Randoop. The study is based on the activity

of 14 BSc (Bachelor of Science) students and 15 MSc

(Master of Science) students involved in debugging tasks

during two replications of a controlled experiment. In this

study, we used Randoop [13] because among many different

automatic test case generation techniques, we find that

random test cases produced by Randoop are particularly

difficult to understand. Thus, if autogen test cases introduce

inefficiencies in debugging, random test cases are likely to

expose the issue.

Autogen test cases are often short and composed of

simple, but sometimes unrelated, sequences of method calls,

while manually designed tests address rather complicated,

but meaningful, scenarios. Our study investigates whether

debugging tasks driven by autogen test cases are as rea-

sonably accurate and efficient as those driven by manually

designed test cases.

The paper is organized as follow. Section II presents the

design of the experiment. Section III reports the experi-

mental results. Section IV discusses the results. Section V

compares our achievements with related work. Section VI

provides final remarks and discusses future work.

1http://jtopas.sourceforge.net/jtopas/
2http://santuario.apache.org/

II. EXPERIMENT DEFINITION AND PLANNING

This section reports the definition, design and settings of

the experiments in a structured way, following the template

and guidelines by Wohlin et al. [20].

The goal of the study is to investigate the differences

between manually written and autogen test cases, with the

purpose of evaluating how well they support debugging

tasks. The quality focus regards how manually written and

autogen test cases affect the capability of developers to

correctly and efficiently debug the code. The results of this

experiment are interpreted regarding two perspectives: (1) a

researcher interested in empirically validating autogen test

cases and (2) a quality manager who wants to understand

whether the time spent in writing test cases pays off when

facing actual debugging tasks.

The context of the study is defined as follows: the subjects

of the study are developers facing debugging tasks, while the

objects are applications that contain the faults to be fixed.

We collected empirical data from two replications: the first

one involved 7 MSc students of the University of Trento,

attending the course of “Software analysis and testing”. The

second replication involved 14 BSc students of the Univer-

sity of Milano Bicocca, attending the course of “Software

analysis and testing”, and 8 MSc students of the University

of Milano Bicocca, attending the course of “Software quality

control”. Subjects from both studies have skills in Java

programming, debugging, and use of the Eclipse IDE3. The

first replication, with less subjects, provided feedback used

to fine tune the experimental procedure before running the

second, larger replication. For instance, we improved the

training material and the instructions provided to the subjects

before carrying out the second replication.

The applications used in the experiment are two real-

world Java applications, Jtopas and XML-security. Jtopas

is a simple tokenizer that can tokenize text files as inputs

and allows users to customize the grammar of the input

files, by specifying the structure of keywords, compounds

and comments, and the case sensitivity. Jtopas consists of

15 classes and 2,171 MeLOC (Method Lines of Code).

XML-security is a library that provides functionalities to

sign and verify signatures in XML documents. It supports

many mature digital signature and encryption algorithms

on standard XML formats, such as XHTML and SOAP.

It consists of 228 classes, for a total of 14,754 MeLOC.

Both applications are available with a full suite of manually

written tests.

A. Hypotheses Formulation and Variable Selection

Based on the study definition reported above, we can

formulate the following null hypotheses to be tested:

3http://www.eclipse.org

H01 There is no difference in the accuracy of de-

bugging, when debugging is supported either by

manually written or autogen test cases.

H02 There is no difference in the efficiency of de-

bugging, when debugging is supported either by

manually written or autogen test cases.

These two hypotheses are two-tailed, because there is no

a-priori knowledge on the expected trend that should favor

either manually written or autogen test cases. On the one

hand, manual test cases are meaningful for a developer who

is determining the position of a fault, while automatic tests

may contain meaningless statements and code identifiers,

that may confuse developers. On the other hand, manual tests

could be difficult to understand because they may require

understanding of complex parts of the application logic,

while automatic tests are simpler, since they are generated

without a clear knowledge of the application business logic.

The null hypotheses suggest that we have two dependent

variables: debugging accuracy and debugging efficiency. To

measure debugging accuracy and efficiency, we asked sub-

jects to fix eight faults in the object application source code.

We defined faults that satisfy the following requirements:

(1) faults are located in different parts of the applications;

(2) each fault is revealed by a manual and an autogen test

case; (3) faults do not interact: different faults are revealed

by disjoint (manual or autogen) test cases, that is each test

case reveals at most one fault; and (4) faults are based

on the bugs available in the Software-artifact Infrastructure

Repository (SIR)4. Since Randoop was not able to reveal

some of the SIR faults as provided in the repository, in order

to meet the four requirements we slightly changed some

faults to simplify their detection. However, such changes do

not modify the nature of the faults; they just make the used

test suites able to detect them. For instance, according to the

SIR repository, the fault #3 of JTopas is injected into the

application by removing the getMessage(..) method

from the ExtIndexOutOfBoundsException class. We

changed the location of fault #3 to the TokenException

class, so that it can be revealed by both autogen and manual

tests, since random tests do not expose this fault if left inside

the former class.

When a fault was revealed by multiple test cases, we

randomly selected one test case to use in the study. In reality,

developers often have a larger suite of test cases, that reveal

the fault or can be used for regression testing. However,

providing a full test suite to subjects could represent a too

wide source of variability for a controlled in-lab experiment,

as different starting points could be used by different devel-

opers, based on their own experience and style. Instead, we

wanted all the subjects to start from the same test and work

under exactly the same initial conditions.

4http://sir.unl.edu

In our experiments, the accuracy of debugging is mea-

sured as the number of correctly fixed faults. We objectively

evaluated the correctness of the fixes by running a predefined

set of test cases (not provided to subjects) and checking if

they all pass. The efficiency of debugging is evaluated as

the number of correct tasks (i.e., the number of correctly

fixed faults) divided by the total amount of time spent for

these tasks (measured in minutes): eff =

∑
Corri∑
Timei

; where

Corri is equal to 1 if the i-th task is performed correctly, 0

otherwise, while T imei is the time spent to perform the i-th

task. In other words, efficiency is measured as the number

of correctly performed tasks per minute.

The independent variable (the main factor of the experi-

ment) is the treatment during the execution of debugging

tasks. The two alternative treatments are: (1) manually

written test cases, those distributed as unit tests for the

object applications (i.e., we obtained them from the SIR

repository); and, (2) test cases automatically generated by

Randoop [13].

The understandability of the test cases that reveal faults

might affect the debugging performance and may vary

substantially between manual and autogen test cases. Since

we cannot control this factor in the experiments, because it

depends on how manual test cases have been defined and

how the test case generation algorithm works, we measure

whether any difference occurs in our experimental setting.

The test case understandability might, in fact, represent one

of the key features in which manual and autogen test cases

differ, which could possibly explain some of the observed

performance differences.

Unfortunately, there is no easy, widely-accepted way of

measuring the understandability of test cases. We approxi-

mate such measurement by considering two specific factors

of understandability, namely identifier meaningfulness and

complexity of the test code. For the former factor we manu-

ally classify each identifier in a test case as either Artificial

(automatically generated) or UserDef (user-defined) and

count the respective numbers.

In order to measure the test case complexity, we consider

both static and dynamic metrics, which provide an approx-

imation of how complex a test case is from the developer’s

perspective5. Metrics are computed using the Eclipse plugin

Metrics (http://metrics.sourceforge.net). As static metrics we

measure:

• MeLOC, non-blank and non-comment lines of code

inside each method body;

• McCabe cyclomatic complexity of each test method.

As dynamic metrics, we consider the amount of code ex-

ecuted by each test case. We count it at two granularity

levels:

5Although some of the used metrics are actually size metrics, we regard
them as test case complexity indicators, since they reflect the perceived
complexity associated with using the test case during debugging.

• Exec. methods, the number of methods executed by a

test case;

• Exec. LOCs, the number of statements executed by a

test case.

To determine whether manual and autogen test cases

differ according to the identifier meaningfulness and code

complexity metrics, we introduce two additional, derived

null hypotheses:

DH03 There is no difference in the number of artificial

/ user-defined identifiers of the manually written

and autogen test cases used in the experiment.

DH04 There is no difference in the static / dynamic

complexity of the manually written and autogen

test cases used in the experiment.

Experimental support for the alternative hypotheses asso-

ciated with DH03 and DH04 would provide useful infor-

mation for the interpretation of the results about the two

dependent variables (considered in H01 and H02).

B. Co-factors Identification

We measured the following co-factors that could influence

the dependent variables:

(1) The subjects’ ability: the ability of subjects in performing

debugging tasks was measured using a pre-test questionnaire

and a training session. The pre-test questionnaire included

questions about their programming and debugging ability,

their experience with the development of large applications,

and their scores in academic courses related to development

and testing. In the training session, subjects were asked

to complete tasks that consist of answering some code-

understanding questions and fixing faults in each of the

two object applications. According to the answers given

to the pre-questionnaire and the results of the training lab

we classified the subjects into three categories: high ability

subjects (4 in the first experiment and 5 in the second one)

are those who had experience with the development of large

applications, have an academic score of at least 27/306 and

completed correctly at least 50% of the tasks in the training

lab; medium ability subjects (respectively 2 and 13) are those

who correctly completed at least 25% of the tasks in the

training lab and either had experience with the development

of large applications or have an academic score higher than

27/30; the rest of the subjects are classified as low ability

subjects (respectively 2 and 4).

(2) The subjects’ experience: we classified BSc students as

low experience subjects and MSc students as high experience

subjects.

(3) The object system (aka application): since we adopted a

balanced design with two systems, subjects could show dif-

ferent performance on different systems. Hence the system

is also a co-factor.

6In the Italian academic grade system, a score of 27/30 corresponds to
a B in the ECTS grade system; to an A- in the US system.

(4) The experiment session (aka Lab): subjects could spend

some effort to familiarize with the experimental environment

during the first session. We measured whether any learning

effect occurred between the two labs.

(5) The fault to be fixed: as faults are all different, the

specific features of the fault to be fixed may interact with

the main factor.

For each co-factor, we test if there is any effect on the

debugging accuracy and debugging efficiency and we check

their interaction with the main factor. We formulate the

following null hypotheses on the co-factors:

H0ci the co-factor i, i = 1..5, does not significantly

interact with the kind of test cases to influence

accuracy and efficiency in performing debugging

tasks.

These null hypotheses are also two-tailed, because we do

not have any a-priori knowledge about the direction in which

a co-factor could influence accuracy and efficiency.

C. Experimental Design

We adopted a counter-balanced design: each replication of

the experiment consisted of two experimental sessions (Lab

1 and Lab 2), with 2-hours allocated for each lab. Subjects

have been split into four groups, balancing the level of ability

and experience in each group. This design ensures that each

subject works on the two applications (Jtopas and XML-

security) and with the two different treatments (manually

written and randomly generated test cases), as shown in

Table I. Moreover, this design allowed us to study the effect

of each co-factor, using statistical tests (i.e., analysis of

variance).

Table I
EXPERIMENTAL DESIGN. R = RANDOOP TEST CASES, M = MANUALLY

WRITTEN TEST CASES.

Group1 Group2 Group3 Group4

Lab 1 Jtopas M XmlSecurity M Jtopas R XmlSecurity R

Lab 2 XmlSecurity R Jtopas R XmlSecurity M Jtopas M

D. Experimental Procedure and Material

Before the experiment, we asked the subjects to fill a

pre-questionnaire in which we collected information about

their ability and experience in programming and testing.

Subjects have also been trained with lectures on testing

and debugging. Moreover, subjects participated in a training

laboratory where they were asked to cope with debugging

tasks very similar to the experiment on the object appli-

cations. This made us confident that subjects were quite

familiar with both the development/debugging environment

and the source code of the applications to debug. We

wanted to make sure that subjects spend enough time to

familiarize with the applications during training, so that the

time measured during the actual experiment was required

mostly to understand the test case and to identify and fix

faults on already familiar applications. The accuracy in the

training tasks has been recorded and used to assess the

subjects’ level of ability.

To perform the experiment, subjects used a personal

computer with the Eclipse development environment (al-

ready used in the training), equipped with a standard Java

debugger. We distributed the following material:

• The application code: depending on the group either

Jtopas or XML-security. The code contains four faults;

• Four test cases: either manually written or autogen,

depending on the group the subjects belong to, as

shown in Table I. Each test case reveals exactly one

fault; test cases are supposed to be addressed in order

and they are sorted according the their difficulty, from

easier to harder to fix;

• Slides describing the experimental procedure.

Before the experiment, we gave subjects a clear descrip-

tion of the experimental procedure, but no reference was

made to the study hypotheses. The experiment has been

carried out according to the following procedure:

1) Import the application code in Eclipse;

2) For each of the four test cases, (i) mark the start time,

(ii) run the test case and use it to debug the application

and fix the fault (iii) mark the stop time;

3) Create an archive containing the modified source code

and send it to the experimenter by email;

4) Fill a post-experiment survey questionnaire.

During the experiment, teaching assistants were present in

the laboratory to prevent collaboration among subjects and

to verify that the experimental procedure was respected – in

particular that faults were addressed in the right order and

time was correctly marked.

After the experiment, subjects have been asked to fill

a post-experiment survey questionnaire, devoted to gaining

insight about the subjects’ behavior during the experiment

and finding justification for the quantitative observations.

The questionnaire consists of 17 questions, expressed in a

Likert scale [12], related to: Q1: Whether the time given

to complete the tasks was enough; Q2: Clarity of tasks;

Q3-4: Difficulties experienced in understanding the source

code of the application and the source code of the test

cases; Q5: Difficulties in understanding the features under

test; Q6: Difficulties in identifying the portion of code to

change; Q7-8: Use and usefulness of the Eclipse debugging

environment; Q9: Number of executions of the test case;

Q10-11: Percentage of total time spent looking at the code

of the test cases and of the application; Q12: Difficulties in

using the test cases for debugging; Q13: Whether the bugs

have been fixed without fully understanding them, relying

just on test cases; Q14: Need for inspecting the application

code to understand bugs; Q15: Perceived level of redundancy

in test cases; Q16: Usefulness of local variables in test cases

to understand the test; Q17: Whether they found the test

cases misleading.

E. Analysis Method

We used a non-parametric statistical test to check the two

hypotheses related to the accuracy and efficiency of subjects

in performing debugging tasks (H01 and H02). The use of

non-parametric tests does not impose any constraint on the

normal distribution of the population. Since the empirical

data is intrinsically paired (the same subjects attended both

labs, thus worked with both randomly generated and man-

ually written test cases), we used the Wilcoxon two-tailed

paired test [20] to check the hypotheses. In order to use this

test, however, we had to make the experimental data paired,

by removing data points of subjects who did not participate

in both experimental sessions (few students could not attend

both labs). Such a test allows to check whether differences

exhibited by the same subjects with different treatments

(manual and random tests) over the two labs are significant.

We assume significance at a 95% confidence level (α=0.05),

so we reject the null-hypothesis when p-value<0.05. The

same statistical test was used to address the derived null

hypotheses DH03 and DH04.

In order to understand whether the test case complexity is

a property which characterizes the main treatment (manual

vs. autogen test cases), we measured the performance of the

test case complexity metrics as predictors of the treatment.

Specifically, we computed the confusion matrix where each

test case complexity metrics is a possible actual factor, and

the binary classification between manual and autogen test

cases is the predicted factor. Standard classification met-

rics (number of true/false positives/negatives) and derived

metrics (precision, recall, accuracy and F-measure) are then

used to assess the degree to which manual and autogen test

cases can be separated using the test case complexity as the

distinguishing feature. Specifically, correct classifications are

indicated as TP (true positives, i.e., correctly classified as

Autogen) and TN (true negatives, i.e., correctly classified

as non-Autogen), while errors are of two types: FP (false

positives, i.e., manual test cases classified as Autogen) and

FN (false negatives, i.e., autogen test cases classified as non-

Autogen). Among the several indicators that can be used to

assess the quality of a classifier [18], we consider four of

the most widely used indicators: precision, recall, accuracy

and F-measure. They are defined as follows: precision = TP

/ (TP + FP); recall = TP / (TP + FN); accuracy = (TP +

TN) / (TP + FP + TN + FN); F-measure = 2 precision *

recall / (precision + recall).

The analysis of co-factors, that is the test of hypotheses

H0c1 , H0c2 , H0c3 , H0c4 , H0c5 , is performed using a two-

way Analysis of Variance (Anova) and, when detected,

interactions are visualized using interaction plots.

Regarding the analysis of survey questionnaires, we eval-

uate questions related to availability of enough time, general

difficulties found by subjects and the use of the debugging

environment (Q1-Q8) by verifying that the answers are

either “Strongly agree” (2) or “Agree” (1). We test medians,

using a one-tailed Mann-Whitney test for the null hypothesis

Q̃x ≤ 0, where 0 corresponds to “Undecided”, and Q̃x is

the median for question Qx.

Among these questions, for those specific to test cases

(Q4-Q8), answers of subjects using manually written tests

were compared with answers of subjects using randomly

generated tests. In this case a two-tailed Mann-Whitey test

is used for the null hypothesis Q̃Random = Q̃Manual . The

same comparison is also performed for questions Q9-Q17.

III. RESULTS

A. Debugging Accuracy

Figure 1 (top) shows the box-plot of the accuracy of

fault fixing. The figure compares the number of correct

answers given by subjects in the first experiment (left-hand

side), second experiment (middle), and overall results (right-

hand side), when faults are debugged using either manually

written or randomly generated test cases.

Figure 1 (bottom) reports descriptive statistics including

the number of subjects who participated in both Labs (paired

analysis), mean, median and standard deviation, together

with the p-value for the Wilcoxon’s test. We can notice that

subjects who used autogen tests showed better accuracy (i.e.,

correctly fixed more faults) than subjects who used manually

written tests, in both experiments. Even if the trend is clearly

evident, data from the first experiment are not statistically

significant. This could be due to the small number of

subjects involved in the first experiment. Data from the

second experiment and overall data confirm this trend with

significance at 95% confidence level, although showing a

smaller gap between random and manually written tests.

Thus we can reject H01 and conclude that subjects perform

significantly better when using autogen tests than manually

written tests.

B. Debugging Efficiency

The same procedure used with accuracy was also applied

to efficiency. Figure 2 (top) shows the box-plot for efficiency

with the two treatments. It compares the efficiency of the

subjects in the first (left-hand side) and second experiment

(middle) and overall result (right-hand side), when faults

are debugged using either manually written or randomly

generated test cases.

Figure 2 (bottom) reports descriptive statistics of the

paired data and the p-value for the Wilcoxon test. The

trend shown for accuracy is confirmed here: the efficiency

of subjects working with autogen tests is higher than when

working with manually written tests.

While data from the first experiment are not significant

(though the trend is evident), data from the second exper-

iment and from the two experiments together confirm the

manual random manual random manual random

0
1

2
3

4

A
c
c
u

ra
c
y
 (

#
 o

f
c
o

rr
e

c
t

ta
s
k
s
)

Exp I Exp II All

Exp N diff.mean diff.median diff.sd p.value

I 4 1.25 1.00 2.22 0.42
II 16 0.38 0.00 0.62 0.04
All 20 0.55 0.00 1.10 0.03

Figure 1. Analysis of accuracy

trend observed in the first experiment, with a significance

at 95% confidence level, although showing a smaller gap

between random and manually written tests. Thus we can

reject H02 and conclude that subjects perform significantly

faster when using random tests than manually written tests.

manual random manual random manual random

0
.0

0
0

.0
5

0
.1

0
0

.1
5

E
ff

ic
ie

n
c
y
 (

#
c
o

rr
e

c
t/

ti
m

e
[m

])

Exp I Exp II All

Exp N diff.mean diff.median diff.sd p.value

I 4 0.05 0.05 0.06 0.12
II 16 0.01 0.01 0.03 0.03
All 20 0.02 0.01 0.04 0.01

Figure 2. Box-plots of fixing efficiency.

C. Test Case Understandability

Comparing the number of artificial and user-defined iden-

tifiers in the fault revealing test cases of JTopas and XML-

security (see Table II), one can see that no artificially

generated identifier is present in any of the manual test cases.

User-defined identifiers are of course present also in autogen

test cases. For instance, names of classes instantiated or

methods called in the test cases. Artificial identifiers may

be present in manual test cases as well, for instance when

code generation tools (e.g., tools for parser generation from

grammars) are used. This never happens in our two case

studies.

Each random test case has on average 28 artificial identi-

fiers more than the corresponding manual test case and such

a difference is statistically significant at level 0.05 according

to the Wilcoxon paired test. Random tests have on average

15 non-artificial identifiers less than the corresponding man-

ual tests. This difference is statistically significant at level

0.1 (not at level 0.05).

In summary, the number of meaningless identifiers (Arti-

ficial) in random test cases is substantially greater than in

manual test cases and the number of meaningful identifiers

(UserDef) substantially smaller. Hence, we can reject the

null hypothesis DH03, but the alternative hypothesis does

not explain the observed difference in accuracy and effi-

ciency, which goes in the opposite direction, with random

tests associated to superior performance.

Table II
OCCURRENCES OF ARTIFICIAL/USER-DEFINED IDENTIFIERS IN THE

TEST CASES

Autogen tests Manual tests

Artificial IDs UserDef IDs Artificial IDs UserDef IDs

JTopas

T1 20 4 0 36

T2 18 9 0 59

T3 19 8 0 26

T4 61 22 0 16

XML-security

T1 7 3 0 9

T2 63 27 0 18

T3 13 5 0 20

T4 23 7 0 21

Table III
PAIRED ANALYSIS OF STATIC (TOP) AND DYNAMIC (BOTTOM) TEST

CASE METRICS (WILCOXON’S TEST).

Metric N diff.mean diff.median diff.sd p.value

MeLoc 8 0.62 0.50 21.12 1.00
McCabe 8 -0.62 0.00 2.07 0.59
Methods 8 -91.38 -65.00 120.77 0.04
LOCs 8 -559.38 -416.50 725.33 0.04

Comparing the values of the complexity metrics for

random and manual test cases per fault, one can observe

(see Table III) that while static metrics (MeLOC and Mc-

Cabe) exhibit no substantial difference between manual and

random test cases, dynamic metrics (Executed methods and

executed LOCs) show a major difference when comparing

manual and random test cases. In both applications, the

number of methods and statements executed by manual test

cases is substantially higher than by random tests. The ratio

is the order of two for Jtopas, while it is even bigger for

XML-security (reaching an order of magnitude when LOCs

are considered).

As we can see from the results in Table III, for dynamic

metrics the difference between manual and random test cases

is statistically significant at 95% confidence level, so we can

reject the null hypothesis DH04 (with respect to dynamic

metrics).

In summary, manual test cases are dynamically more

complex and this might explain the observed performance

degradation exhibited by subjects working with manual test

cases, despite the presence of more meaningful identifiers

in these test cases.

We computed the confusion matrix (not shown for lack

of space) associated with a nearest neighbor classifier that

predicts the test case type based on one of the two dynamic

complexity metrics (either the executed methods or LOCs).

The predictor classifies each test case by determining the test

case having the closest dynamic complexity metrics value

and assigning it to the class (Autogen or Manual) of such

closest test case [5].

Table IV
PREDICTION PERFORMANCE METRICS FOR THE TEST CASE BASED

NEAREST NEIGHBOR CLASSIFIER ON EXECUTED METHODS OR LOCS.

Metric Precision Recall Accuracy F.measure

Exec. Methods 0.75 0.75 0.75 0.75
Exec. LOCs 0.80 1.00 0.88 0.89

Executed LOCs is a better predictor than executed meth-

ods. The values reported in Table IV (bottom) for this indi-

cator are quite close to 1, showing that in our experiment it is

possible to predict the type of a test case from complexity

metrics (specifically, executed LOCs) with high accuracy.

This means that the two types of test cases used in the

experiment (autogen vs. manual) can be characterized with

high accuracy as low dynamic complexity vs. high dynamic

complexity.

D. Analysis of Co-factors

For lack of space we do not report all the Anova tables,

but just the p-values. However, all detailed analysis results

can be found in the technical report [3].

For each co-factor, Table V shows the result of the two-

way Anova of efficiency by treatment and co-factor, for the

first and second experiment, and for the overall results.

We first analyze Ability (high, medium or low) and Ex-

perience (BSc, or MSc student). For the first experiment,

we cannot consider Experience as a co-factor, because all

subjects involved in the first experiment share the same level

(i.e, MSc). We can notice that both Ability and Experience

have a significant effect. While Ability does not, Experience

does interact with the main factor treatment in a (marginally)

statistically significant way when we consider overall data

(p-value = 0.07). The interaction plot in Figure 3 (top)

shows that experienced subjects are definitely more efficient

when working with random tests rather than manual tests,

while less experienced subjects only marginally improve

their efficiency when working with random tests.

We can hence see that while for non-skilled/non-

experienced subjects the difference between manual and au-

togen tests is small, skilled/experienced subjects performed

better when they worked with random tests than with manual

tests.

Table V
ANOVA OF EFFICIENCY BY TREATMENT & CO-FACTORCi

Co-factor Exp I Exp II All

Treatment 0.01 0.05 0.01
Ability 0.01 0.00 0.00
Treatment:Ability 0.15 0.36 0.55

Treatment 0.08 0.01
Experience 0.01 0.00

Treatment:Experience 0.17 0.07

Treatment 0.09 0.11 0.02
System 0.61 0.30 0.59
Treatment:System 0.55 0.17 0.19

Treatment 0.09 0.09 0.02
Lab 0.41 0.13 0.10
Treatment:Lab 0.71 0.02 0.04

0
.0

1
0

.0
2

0
.0

3
0

.0
4

0
.0

5

Treatment

M
e

a
n

 o
f

e
ff

ic
ie

n
c
y

manual random

 Experience

msc

bsc

0
.0

1
0

.0
2

0
.0

3
0

.0
4

0
.0

5

Treatment

M
e

a
n

 o
f

e
ff

ic
ie

n
c
y

manual random

 Lab

lab2

lab1

Figure 3. Interaction plots between Treatment & Experience (top) and
Treatment & Lab (bottom), for efficiency (both experiments)

We also analyze whether the particular System used in the

experiment (Jtopas or XML-security) influenced the results.

The two-way Anova by Treatment and System (Table V, 3rd

sector) indicates no significant effect of the applications and

no interaction with the main factor.

Let us now analyze the Lab as co-factor (Table V, bot-

tom). We can notice that Lab is a significant co-factor in the

second experiment and overall, thus there is a learning effect

between the two experimental sessions. Figure 3 (bottom)

shows the interaction plot between the efficiency and the

labs. Subjects who used random tests first do not show any

learning effect, while there is a significant learning effect

for subjects who used manually written test cases first.

Last, we analyze the role of faults as a co-factor to see

if the faults influenced the result and/or interacted with the

main factor (manual vs. autogen test) to influence the result.

We cannot study the impact of the co-factor on accuracy

and efficiency, as they are metrics over all faults, and we are

interested in each fault individually. So we resort to Corri
and T imei as the dependent variable available for each (i-th)

fault.

The analysis is performed separately for the two systems

(Jtopas and XML-Security) because faults are different.

Results of the two-way Anova by Treatment and Fault

on Correctness are significant only for JTopas overall (see

Table VI), but they never interact with the main factor.

Results of the two-way Anova by Treatment and Fault on

Time are significant for JTopas on the first and second

experiment, while for XML-Security they are significant on

the second experiment and overall (see Table VI), but again

they never interact with the main factor.

Table VI
ANOVA OF CORRECTNESS/TIME BY TREATMENT & FAULT

Correctness Time

Co-factor Exp I Exp II All Exp I Exp II All

Treatment 0.87 0.77 0.34 0.26 0.04 0.90
Fault(JT) 0.07 0.45 0.00 0.00 0.00 0.08
Treatm:Flt(JT) 0.95 0.70 0.15 0.38 0.11 0.12

Treatm 0.00 0.52 0.02 0.03 0.92 0.01
Fault(XS) 1.00 0.90 0.71 0.33 0.00 0.01

Treatm:Flt(XS) 1.00 0.07 0.64 0.43 0.60 0.59

E. Analysis the Post Questionnaire Survey

We used answers to questions from Q1 to Q8 to gain

insights on the subjects’ activity. Results are summarized

in Table VII. Considering data over all the experiments,

answers to questions Q1, Q2, Q4, Q7 and Q8 produced

statistically significant results (p-value < 0.05), while an-

swers to the other questions are not significant. Subjects

found the time slightly insufficient to accomplish all the

tasks (Q̃1 = 0, i.e. “not certain”). Subjects considered the

tasks to be clear (Q2) and, overall, they had no difficulty in

understanding the source code of the test cases (Q4). Finally,

the debugger was used (Q7) only in the second experiment

but it was judged useful (Q8) in all the experiments. During

the first experiment even if judged useful, subjects did not

significantly use the debugger (p-valueQ7 = 0.85).

Table VII
ANALYSIS OF POST QUEST Q1-Q8. MANN-WHITNEY TEST FOR THE

NULL HYPOTHESISmedian(Qx) <= 0

Quest. Exp I Exp II All
median p.value median p.value median p.value

Q1 0.00 0.81 0.50 0.01 0.00 0.05

Q2 2.00 0.00 1.00 0.00 1.00 0.00
Q3 0.00 0.74 0.00 0.36 0.00 0.52
Q4 1.00 0.03 0.50 0.07 1.00 0.02

Q5 0.50 0.04 0.00 0.98 0.00 0.86
Q6 0.00 0.84 0.00 0.76 0.00 0.85
Q7 -1.00 0.85 1.00 0.00 1.00 0.00

Q8 1.00 0.03 1.00 0.00 1.00 0.00

Then we compared the answers for questions specific

to test cases (Q4 to Q17), to understand if any statistical

difference can be observed between subjects who worked

with manually written test cases and those who used autogen

ones. The unpaired Mann-Whitney’s test never reported

statistical significance, so we omit the table for lack of space

(it can be found in the technical report [3]).

We can notice a remarkable difference in the use of

the Eclipse debugger between the first and the second

experiment (see Q7 in Table VII). In fact, subjects involved

in the first experiment declared to have used the Eclipse de-

bugger less than subjects involved in the second experiment

(even though both recognize the potential usefulness of the

debugger; see Q8 in Table VII). This might explain the larger

gap between manual and random test cases observed in the

first experiment, compared to the second experiment (see

Figures 1 and 2 for a comparison of accuracy and efficiency,

respectively). Without the debugger, subjects could take

advantage only of simple test cases (i.e., those generated

by Randoop), while they could not manage the complexity

of most manual test cases, resulting in lower performance

in the latter case. On the contrary, subjects who used the

debugger more extensively were able to take advantage also

of the complex test scenarios. However, they also had better

performance with the simpler, random tests.

The extensive use of the debugger in the second experi-

ment compared to the limited use of the debugger in the first

experiment might also explain the learning effect mentioned

in the analysis of the lab as co-factor. The learning effect

has been observed only for the subjects who worked with

manually written tests first. We can hypothesize that after

analyzing manual tests with the debugger, subjects gain

a knowledge of the debugging environment that can be

effectively reused when analyzing random tests. On the

contrary, subjects who analyzed random tests first did not

gain knowledge that can be used in the analysis of man-

ually written tests, due to the simplicity of the executions

considered before.

IV. DISCUSSION

A. Interpretation of Findings

The key result of the experiment is that (1) autogen test

cases affect positively debugging, by improving the accuracy

and efficiency of developers conducting fault localization

and bug fixing tasks and that (2) in our experiment, manually

written test cases are more complex than autogen test cases,

but they contain more meaningful identifiers.

We can summarize our interpretations (Int) of the data

collected in our experiment as follows:

Int1: Meaningfulness of test case identifiers does not

affect debugging accuracy and efficiency. Manual test cases

have more non-artificial identifiers and substantially less

artificially generated identifiers (see analysis of identifiers

in test cases). However, this does not result in superior

debugging performance of subjects using manual test cases.

Indeed, the opposite is true. We think the presence of

meaningless identifiers in autogen tests is not an influential

factor because such identifiers appear only when debugging

the top-level methods in execution (i.e., the test methods).

Below such top level, identifiers are perfectly understandable

and meaningful. Moreover, any difficulty of interpretation of

a test method due to its identifiers does not matter as long

as the test reveals a fault. Subjects probably did not even

attempt to attribute an intent to autogen tests.

Int2: Test case complexity affects debugging accuracy

and efficiency. Manual test cases exercise complex, long

execution scenarios that require substantial effort to be

fully understood. Autogen test cases are simple, short linear

sequences of method invocations that do not require any

dedicated understanding activity (see analysis of dynamic

test case complexity). In our experiment, this difference

may (at least partially) explain the superior performance of

autogen test cases. The difference in the dynamic metrics be-

tween manual and random test cases can be attributed to the

different way in which the test cases have been constructed.

Manual test cases have been designed to exercise a high level

usage scenario, which involves application functionalities

requiring a complex and extensive code execution. On the

other hand, random test cases are focused on implementation

functionalities (not user requirements) and consider a portion

of the implementation quite locally, with a limited amount

of dependencies from other code portions.

Int3: Ability and experience are key factors affecting

the debugging performance. Even when provided with sim-

ple test cases, inexperienced programmers had a hard time

fixing the bugs (see analysis of interaction between treatment

and experience). Availability of focused, simple test cases

empowers the fault finding capabilities of developers only

if these have enough previous experience and related skills.

Debugging is a hard task that requires training and disci-

pline, and it cannot be learned in the short time provided by

an empirical study like ours.

Int4: Debugging performance improves over time, es-

pecially if developers are exposed to complex test scenarios.

We observed a learning effect, which was particularly rel-

evant when manual (hence more complex) test cases were

used (see analysis of interaction between treatment and lab).

This seems to indicate that debugging tasks conducted in the

past affect to a major extent the performance expected on

a new debugging task. We think this has probably to do

with an incrementally learned capability of fine tuning the

debugging strategy, depending on the test scenario at hand.

Such capability can be learned, but it requires training on

complex scenarios.

Int5: Usage of advanced debugging environments is

fundamental with complex test scenarios. Only subjects able

to effectively use the Eclipse debugger could use the more

complex, manual test cases to fix bugs (see analysis of

feedback questionnaire). When the complexity of a test case

becomes high, automation of the debugging activities is

required in order for the tester to be able to effectively and

efficiently investigate the execution, and locate and fix the

fault. Still, simpler test cases amplify the benefits of the

debugging environment.

We think the collected results have interesting implica-

tions on the use of tools for automated test case generation

and on the testing process as a whole. The debugging capa-

bilities of skilled and experienced testers can be amplified

by providing them with focused and simple autogen test

cases that reveal the fault to be fixed. Such a benefit is not

compromised by the use of meaningless identifiers in the

test cases. Hence, whenever the same bug can be revealed by

complex, manual test cases, but also by simple, automated

tests, the latter are preferable to maximize the debugging

performance.

Based on the results obtained in our experiment, we

reconsidered the whole testing process and the potential

room for automated test case generation. We think that our

results suggest the following strategy: (1) first, generate

automated test cases and fix any bug possibly revealed

by them; (2) write/consider manual test cases only later,

since these are less effective for the bugs revealed by both

classes of tests. However, since manual test cases tend to be

more complex, we think they should not be replaced by the

automated ones. They should be just considered later, for

those bugs that require complex execution scenarios to be

exposed.

B. Threats to Validity

The main threats to the validity of this experiment belong

to the conclusion, internal, construct and external validity

threat categories.

Conclusion validity threats concern the relationship be-

tween treatment and outcome. We used non parametric

statistical tests (Mann-Whitney and Wilcoxon) [20] that do

not require normal distribution of the experimental data.

The only parametric test we performed is Anova (used

only to assess the interactions), which is however robust

for deviations from normality. The survey questionnaire was

designed using standard scales.

Internal validity threats concern external factors that may

affect the independent variable. Subjects were not aware of

the experimental hypotheses. Subjects were not rewarded

for the participation in the experiment and they were not

evaluated on their performance in doing the experiment.

Construct validity threats concern the relationship be-

tween theory and observation. They are mainly due to

how we measure the accuracy of debugging. We relied on

previously defined test cases to objectively evaluate whether

the fixes were correct. The ability of subjects was estimated

during the training phase, on similar debugging tasks, and

using the exam scores.

External validity concerns the generalization of the find-

ings. We considered test cases generated by Randoop. Work-

in-progress aims at experimenting with test cases generated

using other techniques, such as concolic testing. Even if we

considered two different real-world systems from different

domains and with different complexity, more replications are

desirable on other applications. The study was performed

in an academic environment which may differ substantially

from the industrial one. However, we mitigate this threat by

considering ability and experience as a co-factor.

V. RELATED WORK

Multiple strategies can be used to automatically generate

unit test cases. For instance, it is possible to combine

concrete and symbolic execution [17], [16], use dynamically

detected assertions [10], apply mutation analysis [8] and ran-

domly combine method invocations [13]. These techniques

have been reported several times as effective solutions for

revealing programming faults [1], [4], [6]. However, no stud-

ies are available about the impact of automatically generated

test cases on debugging activities. In this paper, we report an

experiment that, for the first time, measures the effectiveness

of automatically generated test cases when used as part of

debugging tasks. In particular we compare manually defined

test cases with random test cases generated by Randoop.

Our results indicate that automatically generated test cases

represent a valid support for debugging. Even if in this study

automatically generated test cases outperformed manually

defined test cases in terms of accuracy and efficiency, we

have to recall that automatically generated tests suffer well

known limitations, such as the impossibility to generate

domain-dependent oracles as well as the capability to gen-

erate tests of moderate length and complexity only [1].

Most of the literature on empirical studies related to

testing and debugging presented experiments that do not

involve human subjects. For instance, Frankl and Weiss [7]

compared the capability of revealing faults when test cases

satisfy different coverage criteria. However, their work did

not consider the intensive manual activity spent to locate the

fault, after a test case revealed it. A few empirical works on

software testing and debugging involved human subjects, but

they considered directions different from the work presented

in this paper. For instance, the studies by Ricca et al [15] and

Huang et al [11] focused on the testing process and strategy,

evaluating the impact of the “test first” strategy either on the

accuracy of change tasks or on the quality of the final code.

A few attempts have been made to investigate the relation

between testing and debugging. Fry et al [9] presented

an observational study on the accuracy of human subjects

in locating faults. They discovered that certain types of

faults are difficult to locate for humans. For instance, “extra

statement” faults seem to be easier to detect than “missing

statement” faults. However, the authors did not investigate

the role of test cases. Weiser et al. [19] empirically evaluated

the impact of a slicing tool on debugging. They did not

observe any improvement when developers used a slicing

tool to debug small, faulty programs. Parnin and Orso [14]

performed an experiment to investigate how developers use

debugging tools and whether these improve performance.

Tools are proven to help complete debugging tasks faster.

Still, this study does not consider the role of test cases.

VI. CONCLUSION

To the best of our knowledge, this is the first human-

based study that evaluates the impact of different kinds of

test cases on debugging. The data we collected from two

experiments indicate that automatically generated test cases

positively affect debugging, improving both the accuracy and

the efficiency of developers working on fault localization and

bug fixing tasks.

This result demonstrates that even if automatically gener-

ated test cases contain less understandable identifiers, the

simplicity of these tests facilitates the implementation of

correct fixes. In our experiments, subjects took advantage

of the simple structure of the tests to debug problems faster

and better, especially when subjects were well experienced.

To corroborate our findings, this study needs to be ex-

tended in several directions, such as considering more ap-

plications, more types of faults and more test case generation

techniques. Nevertheless, the results reported in this paper

provide useful insights for testers and software engineers,

and clarify issues related to the yet unexplored interplay

between test automation and human factors.

REFERENCES

[1] J. Andrews, A. Groce, M. Weston, and R.-G. Xu. Random test
run length and effectiveness. In Proceedings of the 2008 23rd
IEEE/ACM International Conference on Automated Software
Engineering, ASE, pages 19–28, Washington, DC, USA,
2008. IEEE Computer Society.

[2] N. E. Beckman, A. V. Nori, S. K. Rajamani, R. J. Simmons,
S. D. Tetali, and A. V. Thakur. Proofs from tests. IEEE
Transactions on Software Engineering, 36:495–508, 2010.

[3] M. Ceccato, C. D. Nguyen, A. Marchetto, L. Mariani, and
P. Tonella. Debugging tasks supported either by manual
or automatic test cases, analysis of two replications: Trento
and Milano. Technical report, FBK, TR-FBK-SE-2011-4 0,
http://se.fbk.eu/en/techreps, September 2011.

[4] I. Ciupa, A. Leitner, M. Oriol, and B. Meyer. Experimental
assessment of random testing for object-oriented software. In
Proceedings of the 2007 international symposium on Software
testing and analysis, ISSTA ’07, pages 84–94, New York, NY,
USA, 2007. ACM.

[5] T. M. Cover and P. E. Hart. Nearest neighbor pattern
classification. IEEE Transactions on on Information Theory,
13(1):21–27, 1967.

[6] J. W. Duran. An evaluation of random testing. IEEE
Transactions on Software Engineering, 4:438 – 444, 1984.

[7] P. G. Frankl and S. N. Weiss. An experimental comparison
of the effectiveness of the all-uses and all-edges adequacy
criteria. In Proceedings of the symposium on Testing, analysis,
and verification, TAV4, pages 154–164, New York, NY, USA,
1991. ACM.

[8] G. Fraser and A. Zeller. Mutation-driven generation of unit
tests and oracles. In Proceedings of the 19th international
symposium on Software testing and analysis, ISSTA, pages
147–158, New York, NY, USA, 2010. ACM.

[9] Z. P. Fry and W. Weimer. A human study of fault localization
accuracy. In Proceedings of the 2010 IEEE International
Conference on Software Maintenance, ICSM ’10, pages 1–
10, Washington, DC, USA, 2010. IEEE Computer Society.

[10] P. Godefroid, N. Klarlund, and K. Sen. DART: directed
automated random testing. In Proceedings of the 2005 ACM
SIGPLAN conference on Programming language design and
implementation, PLDI, pages 213–223, New York, NY, USA,
2005. ACM.

[11] L. Huang and M. Holcombe. Empirical investigation towards
the effectiveness of test first programming. Inf. Softw. Tech-
nol., 51:182–194, January 2009.

[12] A. N. Oppenheim. Questionnaire Design, Interviewing and
Attitude Measurement. Pinter, London, 1992.

[13] C. Pacheco and M. D. Ernst. Randoop: feedback-directed
random testing for java. In Companion to the 22nd ACM
SIGPLAN conference on Object-oriented programming sys-
tems and applications companion, OOPSLA, pages 815–816,
New York, NY, USA, 2007. ACM.

[14] C. Parnin and A. Orso. Are automated debugging techniques
actually helping programmers? In Proceedings of the Interna-
tional Symposium on Software Testing and Analysis, ISSTA,
USA, 2011. ACM.

[15] F. Ricca, M. Torchiano, M. D. Penta, M. Ceccato, and
P. Tonella. Using acceptance tests as a support for clarifying
requirements: A series of experiments. Information and
Software Technology, 51(2):270 – 283, 2009.

[16] K. Sen, D. Marinov, and G. Agha. Cute: a concolic unit
testing engine for c. SIGSOFT Softw. Eng. Notes, 30:263–
272, September 2005.

[17] N. Tillmann and J. D. Halleux. Pex: white box test generation
for .NET. In Proceedings of the 2nd international conference
on Tests and proofs, TAP, pages 134–153, Berlin, Heidelberg,
2008. Springer-Verlag.

[18] C. J. van Rijsbergen. Information Retrieval (2nd ed.). But-
terworths, London, UK, 1979.

[19] M. Weiser and J. Lyle. Experiments on slicing-based de-
bugging aids. In Papers presented at the first workshop
on empirical studies of programmers on Empirical studies
of programmers, pages 187–197, Norwood, NJ, USA, 1986.
Ablex Publishing Corp.

[20] C. Wohlin, P. Runeson, M. Höst, M. Ohlsson, B. Regnell, and
A. Wesslén. Experimentation in Software Engineering - An
Introduction. Kluwer Academic Publishers, 2000.

