
Towards Security Testing with
Taint Analysis and Genetic Algorithms

Andrea Avancini
Fondazione Bruno Kessler–IRST

Trento, Italy

Mariano Ceccato
Fondazione Bruno Kessler–IRST

Trento, Italy

ABSTRACT
Cross site scripting is considered the major threat to the
security of web applications. Removing vulnerabilities from
existing web applications is a manual expensive task that
would benefit from some level of automatic assistance. Static
analysis represents a valuable support for security review, by
suggesting candidate vulnerable points to be checked man-
ually. However, potential benefits are quite limited when
too many false positives, safe portions of code classified as
vulnerable, are reported.

In this paper, we present a preliminary investigation on
the integration of static analysis with genetic algorithms.
We show that this approach can suggest candidate false pos-
itives reported by static analysis and provide input vectors
that expose actual vulnerabilities, to be used as test cases
in security testing.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging

Keywords
Security testing, Genetic algorithms, Taint analysis, Cross
site scripting

1. INTRODUCTION
Web applications are publicly exposed to attacks that can

compromise their security. Exploitation of their vulnera-
bilities could lead to serious consequences such as denial
of service, sensitive data disclosure, frauds and information
loss.

According to recent studies (e.g., [4]) the most frequent oc-
curring vulnerability is cross site scripting (XSS). This vul-
nerability is due to inadequate validation on user-provided
data, allowing the injection of code snippets (script) in the
web page under attack. Malicious code is then executed by
the browser of legitimate users, causing possible disclosure

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$10.00.

of users’ sensitive data (e.g., authentication tokens or credit
card numbers).

Expert review is the most reliable approach to reveal and
fix vulnerabilities, however it is time consuming and expen-
sive. Static analysis [3] should support this task by propos-
ing candidate vulnerabilities as starting point for manual
review.

Nevertheless, static analysis fails to precisely evaluate all
the cases where run-time information is required (e.g., point-
ers and reflective calls). In these cases, static analysis keeps
a conservative approach, possibly causing safe cases to be
reported as vulnerabilities. Whenever false alarms are too
numerous, a serious limitation is posed to the potential ben-
efit. In fact, the expert should spend valuable time in order
to browse a large portion of code to filter the results of the
tool. Moreover, static analysis usually reports just vulner-
able points, it does not show how the vulnerability can be
exploited. The definition of test cases is left to the manual
intervention of the security engineer.

In this paper, we present an approach to improve static
analysis by integrating genetic algorithms. Taint analy-
sis [10] is used to identify possibly vulnerable execution paths
(target paths) in the application control flow, by statically
detecting when data coming from tainted sources (i.e., from
a possible attacker) are not sanitized before been used in
sensitive statements. Then evolutionary algorithms are re-
sorted to define security test cases, those application inputs
that make the execution flow traverse target paths. Even
if these test cases do not implement actual attacks, they
demonstrate that (and how) input validation can be practi-
cally bypassed. Tests represent a starting point for under-
standing and patching high priority security issues. Such
issues would require immediate attention by the security ex-
pert, because an attacker could develop a successful attack
on top of them.

In case the proposed approach is not able to provide a test
case that executes a specific target path, either the path is
too hard for a genetic algorithm or the path has no solution
at all, because it is infeasible (the path will never be exe-
cuted). Issues in this second category should be inspected
manually, after high priority ones have been fixed.

After some background on cross site scripting and taint
analysis on Section 2, the evolutionary approach is presented
in Section 3. Then, Section 4 presents the tool implementa-
tion and experimental results. After commenting the related
works (Section 5), Section 6 closes the paper.

2. STATIC ANALYSIS

2.1 Cross site scripting
Cross site scripting vulnerabilities are caused by improper

validation of input data (e.g., coming from the user). Data
may contain HTML fragments that could flush to the web
page, altering the resulting content such that malicious code
is injected. When executed by the user browser, such code
may disclose sensitive data to third parties.

Figure 1 shows a portion of PHP code that contains a
reflected XSS vulnerability. This page receives some param-
eters (i.e., firstname and surname) from a previous page,
and displays their values. PHP provides the function html-
specialchars to sanitize strings. It changes special HTML
characters (e.g. “<”, “>” and “"”) in their encoded form
(“<”, “>”, and “"”), safe when used in a web
page. However, the example fails in using it properly.

1 $a = $ GET [” f i r s tname ”] ;
2 $b = $ GET [”surname”] ;
3 i f (strpos ($a , ”<s c r i p t ”)) {
4 $a=htmlspecialchars ($a) ;

}

5 i f (i sset ($b))
6 $go on b = true ;

else
7 $go on b = fa l se ;

8 i f ($go on b) {
9 $b=htmlspecialchars ($b) ;

}

10 echo $a ; // s ink
11 i f ($go on b) {
12 echo $b ; // s ink

}

Figure 1: Running example of XSS vulnerability on
PHP code.

Values of parameters firstname and surname are assigned
respectively to variables $a and $b (on lines 1 and 2), they
are later printed on the page (lines 10 and 12). Printing $b
is safe, because whenever it is assigned a value, it is also
sanitized (line 9). Conversely, the value of $a is only condi-
tionally sanitized (line 4), but the condition on line 3 fails to
cover all the dangerous cases. The vulnerability can be ex-
ploited by an execution path that reaches the sink statement
on line 10, while skipping sanitization on line 4.

An example of attack vector is represented by passing a
value for firstname equal to <a href=“” onclick=“this.href=
‘evil.php?data=’%2Bdocument.cookie”>click here, be-
cause it alters the page structure. A brand new link (the <a>
tag) is injected, pointing to an external web site controlled
by the attacker (i.e., evil.php). In case such link is triggered
by the legitimate user, his/her cookie is sent to the attacker
site. With the stolen cookie, the attacker can pretend to be
the legitimate user, hijack his/her session and access his/her
sensitive data on the web-site under attack.

2.2 Taint analysis
Taint analysis tracks the tainted/untainted status of vari-

ables throughout the application control flow. A vulnerabil-
ity is reported whenever a possibly tainted variable is used
in a sensitive (sink) statement without been validated. In

Node IN[n] GEN[n] KILL[n] OUT[n]
1 φ {$a} φ {$a}
2 {$a} {$b} φ {$a, $b}
3 {$a, $b} φ φ {$a, $b}
4 {$a, $b} φ {$a} {$b}
5 {$a, $b} ∪ {$b} φ φ {$a, $b}
6 {$a, $b} φ {$go on b} {$a, $b}
7 {$a, $b} φ {$go on b} {$a, $b}
8 {$a, $b} φ φ {$a, $b}
9 {$a, $b} φ {$b} {$a}
10 {$a, $b} ∪ {$a} φ φ {$a, $b}
11 {$a, $b} φ φ {$a, $b}
12 {$a, $b} φ φ {$a, $b}

Table 1: Taint analysis result for the running exam-
ple, vulnerabilities are $a@10 and $b@12.

the case of XSS [21], tainted values are those that come from
the external world (data base and user input) and sinks are
all the print statements that append a string into the web
page. Tainted status is propagated on assignments and ex-
pressions, and it is blocked on sanitization operations (e.g.,
function htmlspecialchars in PHP).

Taint analysis is formulated as a flow analysis [17] prob-
lem, where the information been propagated in the control
flow graph is the set of variables holding tainted values. The
information generated and killed at each node (statement)
n can be defined as follow:

GEN [n] = {v | statement n assigns a (1)

tainted value to v}

KILL[n] = {v | statement n sanitizes (2)

the value of v}

The flow propagation is in the forward direction, with union
as the meet operator at junction nodes. Flow analysis ter-
minates when the following equations produce the least fix-
point:

IN [n] =
[

p ∈ pred(n)

OUT [p] (3)

OUT [n] = GEN [n] ∪ (IN [n] \ KILL[n]) (4)

where pred(n) indicates the set of nodes that precede im-
mediately n in the control flow graph. A vulnerability is
reported when a tainted value reaches a sink statement:

n is a sink for variable v (5)

v ∈ OUT [n] (6)

Figure 2 shows the control flow graph for the running
example, while Table 1 reports flow values computed by
taint analysis. On node 1, $a is assigned a tainted value
so OUT[1], the set of tainted variables at node 1, is {$a}.
This set propagates to the successor (see Figure 2), node
2, as IN[2]. On node 2, $b is assigned a tainted values,
so OUT[2]={$a,$b} propagates to node 3 as IN[3]. Node
3 does not change flow values, so IN[3]=OUT[3]={$a,$b}
propagates to the successor. Since node 4 sanitizes $a, such
variable is removed from OUT[4] (it is killed) and only $b

begin

1: $a = $_GET[’firstname’]

end

2: $b = $_GET[’surname’]

3: if ($a == $evil_string)

4: $a=htmlspecialchars($a)

3-true

5: if (isset($b))

3-false

6: $go_on_b = true

5-true

7: $go_on_b = false

5-false

8: if ($go_on_b)

9: $b=htmlspecialchars($b)

8-true

10: echo $a

8-false

11: if ($go_on_b)

11-false 12: echo $b

11-true

Figure 2: Control flow graph for the running exam-
ple.

propagates. Node 5 is a special case, because it has two
incoming edges, from nodes 3 and 4. On node 5, incoming
flow (IN[5]) is computed as the union of outgoing flows from
the predecessors (nodes 3 and 4):

IN [5] = OUT [3] ∪ OUT [4] = {$a, $b} ∪ {$b} = {$a, $b}

Since static analysis is not able to tell which one of the two
branches would be executed and there exist at least one flow
that skips sanitization, the worst case is assumed and $a is
conservatively considered tainted on node 5.

Even if later, on node 9, $b is sanitized, a similar argument
holds for node 10, two incoming flows should be merged:

IN [10] = OUT [8] ∪ OUT [9] = {$a, $b} ∪ {$a} = {$a, $b}

Since there exists a potential path where $b is not sanitized
(8-false branch in Figure 2), $b can not be considered safe,
so it is propagated as tainted on node 10.

When flow analysis reaches the fix point, OUT on sink
nodes is inspected. In the example, equations (5) and (6)
are satisfied in two cases, so two vulnerabilities are reported.
They are $a on statement 10 and $b on statement 12.

While the vulnerability on $a is correct (a possible ex-
ploitation is discussed earlier), the result for $b is a false
positive. In fact, the sink statement (line 12) depends on
the condition $go on b = true, whereas skipping sanitiza-
tion (line 9) requires $go on b = false. These two opposite

conditions never hold simultaneously, so the path containing
8-false and 11-true is infeasible. The reported vulnerability
can not be exploited by an attacker.

A more accurate identification of the infeasible paths would
have required more complex analysis. Instead of going for
unnecessary complicated (but still inaccurate) static anal-
ysis, an alternative approach is to stay simple and conser-
vative, but generate test cases as input vectors for feasible
paths in a second step, using genetic algorithms.

3. GENETIC ALGORITHMS FOR PATH SEN-
SITIZATION

The act of finding a set of solutions to a path predicate
expression is defined as path sensitization [1]. Genetic algo-
rithms are resorted to find those inputs for the application
that make its execution traverse target paths, identified by
taint analysis. If such inputs can be found we have that:

1. The corresponding vulnerable path is feasible, it corre-
sponds to a vulnerability that exposes the application
to exploitation by attackers; and

2. Such inputs represent a test case. The application cur-
rently does not pass such test case, it should be fixed
so as to pass the test.

1 popu lat i on = generateRandomPopulation () ;
2 for (T in targetPaths) {
3 while (not covered (T) AND

attempt < maxTry) {
4 s e l e c t i o n = s e l e c t (popu lat i on) ;
5 o f f s p r i n g = crossOver (s e l e c t i o n) ;
6 popu lat i on = mutate (o f f s p r i n g) ;
7 attempt = attempt + 1 ;

}
}

Figure 3: Genetic algorithm for path sensitization

Intuitively, a genetic algorithm evolves a set of solutions
by combining together the good ones in the hope of gener-
ating better ones, until the optimum solution is found. The
details of the algorithm are shown in Figure 3. An initial
population of random set of input values (line 1), is evolved
until the maximum number of trials are completed or the
solution is found (line 3). On each evolution iteration, a
subset of the population is selected (line 4) to form the next
population, by giving more chances to those individuals that
are more likely to generate the final solution, i.e., they have
a better value of the fitness function. Selected individuals
are paired to generate offspring by crossing over their chro-
mosomes (line 5) and by mutating them (line 6), in the hope
of generating better solutions.

Chromosomes.
Individuals are represented as chromosomes. They con-

tain the input values for the page under analysis. A chromo-
some is a set of pairs, each pair contains a parameter name
and a parameter value. For example, the URL “page.php?
firstname=john&surname=smith” corresponds to the chro-
mosome {(firstname, john), (surname, smith)}. While pa-
rameter names can be found among parameters used in the
web page source code, parameter values are random strings.

Fitness function.
The fitness function corresponds to the approach level, i.e.

the amount of branches from the target path that are exe-
cuted when the application is run with the inputs from the
current individual. The solution for the target path is found
when an individual is able to traverse 100% of the required
branches. The more an individual is near to this condition,
the higher value of fitness function will have.

Selection.
At each iteration a sample of the population is selected

for evolution, the probability of selecting an individual for
the next generation is proportional to the value of its fitness
function. In other words, input values more near to cover the
target path are more likely to be selected for contributing
to the new generation. Then the new generation is subject
to mutation for a possible better improvement of the fitness
function.

One point cross over.
When two individuals are selected for crossing over, their

chromosomes are divided in two pieces. Two brand new in-
dividuals are generated by recombining two halves together.
In the subsequent example, chromosomes A and B have been
split. C is the result of joining the first part of A with the
second part of B, while D is the union of the remaining two
parts:

Example:
A : {(firstname, john), (surname, smith), (age,23)}
B : {(firstname, mark), (address,mainstreet), (job, teacher)}
↓
C : {(firstname, john), (surname, smith), (job, teacher)}
D : {(firstname, mark), (address,mainstreet), (age,23)}

In case, after crossing over, the same parameter appears
twice in a chromosome (possibly with different values), one
of them is randomly removed, keeping the chromosome valid.

Mutation of parameter value.
The value of a parameter is randomly changed. One pair

in the chromosome is chosen with uniform probability and
its parameter value is changed in two alternative ways. Ei-
ther (1) one character of the string is randomly selected
and substituted with a random character or (2) a random
string is concatenated to the existing parameter value. In
the first example the value of parameter surname is selected
for mutation, its first character is changed from “s” to “x”.
In the second example the other alternative modification is
resorted. The random string “x3scr” is appended to the pa-
rameter value.

Example:
A1 : {(firstname, john), (surname, smith)}
↓
A2 : {(firstname, john), (surname,xmith)}

A1 : {(firstname, john), (surname, smith)}
↓
A3 : {(firstname, john), (surname, smithx3scr)}

Insertion of a new parameter.
A new pair is added to the chromosome. The parameter

name is randomly selected among the available parameter
names and its value is a randomly generated string. In the
subsequent example the new chromosome A2 is created by
concatenating a new pair to the chromosome A1.

Example:
A1 : {(firstname, john), (surname, smith)}
↓
A2 : {(firstname, john), (surname, smith), (age,3e)}

Removal of existing parameter.
A pair is randomly selected from the chromosome and re-

moved from it. In the example, the second pair is removed,
resulting in a new chromosome.

Example:
A1 : {(firstname, john), (surname, smith)}
↓
A2 : {(firstname, john)}

String generation.
All the constant strings that appear in the page source

code are collected and stored into a pool. When a new
random string is required, such string is either chosen from
the constant pool (probability 1/2) or randomly generated
(probability 1/2). In the latter case, the following algorithm
is resorted. A character is randomly selected from a set con-
taining alphanumeric characters and special HTML/java-
script characters, i.e. from [a-zA-Z0-9], and [<>?&+-*/=\()[
]"’]. After the first character, a second one is added with
probability 1/2, so the probability of having a string of
length 2 is 1/2. In case the second character has been added,
a third one is added with probability 1/2, so the probability
of a string of 3 characters is 1/22 = 1/4. More characters
are added with a probability that decades exponentially. In
general the probability of generating a string of length n is
1/2n−1.

4. EXPERIMENTAL RESULTS
The approach has been implemented in a prototype and

empirically evaluated on a case study.

4.1 Implementation
Taint analysis has been performed using Pixy [10], an open

source tool for static analysis of PHP code. Pixy reports
those control flow paths that reach vulnerable sinks and skip
sanitization. They are target paths for the subsequent ge-
netic search.

The application under analysis is instrumented. Probes
are inserted on branches so that when a branch is traversed,
the corresponding probe is triggered. Information about the
traversed branches is stored in the resulting web page as an
easily recognizable annotation.

The genetic algorithm described in Section 3 has been im-
plemented in Java and run on the instrumented application.
Parameters of the genetic algorithm have been set up ac-
cording to what proposed in literature [8]. In particular an
elitist approach has been adopted, with the 10% of the best
individuals kept alive across generations. The population is
composed of 70 individuals and evolution has been run over
500 generations. The cross-over probability has been set to
Pc = 0.7 and mutation probability to Pm = 0.01.

The genetic algorithm works as a client application that
simulates a web-browser. HTTP requests are sent to the
instrumented server. Requests encode individuals as URLs,
with parameter values passed by GET. For each request, a
page is elaborated and returned by the server, together with
data on traversed branches, to be used for the computation
of the fitness function.

4.2 Empirical data
The proposed approach has been validated on a case study

application, PhpNuke1 version 6.9. It is an open source
content management system implemented in PHP, with a
persistent back-end on MySql. It contains 1,046 PHP source
files for a total of 157,000 lines of code.

Among the XSS vulnerabilities reported by taint analy-
sis, some are due to data stored in the data base, (persistent
XSS) so they are out of the scope of the present investigation
and they have not been considered. The remaining 9 cases
have been analyzed with the genetic algorithm. Vulnerabil-
ities, listed in the first column of Table 2, are named after
the tainted variable that reaches an echo statement (variable
$confirmNewUser causes three distinct vulnerabilities).

As sanity check, our approach has been compared with
random testing, to show that our approach at least performs
better than random. 50,000 random test cases have been
generated and evaluated on the case study. Experimental
results are summarized in Table 2. For each vulnerability,
the table reports how many branches, among the ones in
the target path (second column), have been covered by test
cases from the genetic search (third column) and by random
testing (fourth column).

While random testing succeeded just in one case, in four
cases out of nine our approach managed to find a test case
that traverses the full target path. When the genetic algo-
rithm converged, a solution was always found in less than 50
iterations, suggesting that our estimation for the maximum
attempts (i.e. 500) was appropriate. In these cases, the
algorithm was able to find proper input values that satisfy
fairly complex boolean conditions on decision points, so as
to trigger the corresponding expected branches.

For the other five vulnerabilities, no solution could be
found after 500 iterations. In particular, for confirmNew-
User1, confirmNewUser2 and my headlines, the search was
not able to go beyond a particularly hard branch. Such
branch depends on complex constraints on input values, that
our approach was not able to satisfy. For finishNewUser, the
problem involved some checks performed by the application
on the password selected during registration. The password
was not only required to be long and complex but also equal
to the string specified in the password confirmation field. For
edithome, path conditions depended on values stored on the
data base by other pages not considered in the search.

4.3 Considerations
In this experiment, the most baseline approach has been

adopted, a simple fitness function and very generic muta-
tion operators. In fact, the intended objective was to study
how a genetic algorithm works in the elementary case. By
identifying limitations and weak points, considerations are
formulated on how to improve such basic approach.

1http://phpnuke.org/

Run-time configuration.
No simplifications or reductions are imposed on the code

in order to be analyzed by the proposed approach. Assuming
that the fully installed application runs in a production-like
environment, all the identified input values are true posi-
tives, they are security test cases that should guide security
patches. However, such test cases are strongly connected to
the run-time set-up. In fact, in case the application is con-
figured in a different way, different paths could be executed
for the same input values. For this reason it is important
to perform the analysis on the final configuration. For in-
stance, in case the web application adopts a plug-in oriented
architecture, the analysis should be repeated whenever new
plug-ins are installed.

To improve the present approach, configuration could be
considered as an additional dimension to be explored by the
generic algorithm, so as to search for particularly danger-
ous application configurations that would be missed by the
present analysis.

Fitness function.
A fairly basic fitness function has been used for this first

assessment. The fitness function only counts how many
branches are hit by an individual among the branches re-
quired by the target path (approach level). Even if quite
simple, this measurement shown good performance, in many
cases populations were able to converge to a solution.

Currently, if two individuals deviate from the target path
at the same branch, they are given the same fitness func-
tion. However, an higher score should be given to the one
that is more near to satisfy the missed branch condition. A
more advanced fitness function should take into account the
branch distance.

A more sophisticated fitness function is expected to bring
better results than the experimented baseline. Solutions
could be found for those populations that currently do not
converge and, for those ones that do converge, solutions
could be found faster, requiring less iterations.

Mutation operators.
Mutation operators are of limited help. Though they are

very generic and mutation probability is very low, it is very
unlikely that they could bring improvements on the fitness
function, especially for strings with complex syntax. More
specific mutation operators could be based on syntax defi-
nition, so as to keep a value valid while mutating it.

Local optima.
Sometimes, the initial population contains potentially good

individuals that are very similar to a solution, because they
differ just for few characters. However, such similarity is
not reflected by the fitness function, so they are discarded
because other individuals are selected to form the next gen-
eration. An early excessive reward to bad individuals makes
the population lose valuable genetic data and the search
terminates in a local optimum, thus failing to find the final
solution (global optimum).

Specific mutation operators should be adopted to make
the population leave local optima and a different fitness func-
tion should be designed to avoid over-fitting.

Vulnerability Target Genetic search Random
branches Covered br. Solved? Covered br. Solved?

confirmNewUser1 4 2 no 1 no
confirmNewUser2 4 2 no 1 no
confirmNewUser3 3 3 yes 1 no

finishNewUser 4 2 no 2 no
userinfo 2 2 yes 1 no

mail password 5 5 yes 1 no
userinfo 2 2 yes 2 yes
edithome 3 2 no 2 no

my headlines 5 2 no 1 no

Table 2: Empirical results on the case study.

Constrained strings.
Occasionally, input strings correspond to structured data

having a specific syntax, such as date, values from prede-
fined set (e.g., enumerations) or numeric values. Currently,
syntax is not considered when generating string values. The
probability that a random string hits a valid value is very
low and many evolution cycles are spent just to search for
correct values. We tried to limit this problem, by reusing
string values from the constant strings available in the source
code of the web page. Taking into consideration expected
syntax when generating random strings may bring major
improvements.

Soundness.
Our approach is sound in the sense that (1) test cases are

generated only for feasible paths and (2) test cases actually
trigger execution paths where a tainted variable is used in a
sink statement. However, test cases trigger vulnerable paths,
they do not trigger (exploit) vulnerabilities. Test cases are
not instances of actual XSS attacks, as they are not meant
to inject code in the web pages. Their purpose is to show
the way input data can skip validation.

In order to generate test cases that are actual attacks, an
additional condition should be verified at the sink statement,
to require that the content of the tainted is valid java-script
code. This has not been implemented and is left as future
work.

Completeness.
The approach is not complete, in some cases no test could

be generated but we can not tell whether the problems were
due to infeasible paths or to the limitations of the current
approach. In these cases, our approach does not differ from
static analysis and manual inspection is required.

5. RELATED WORKS
The adoption of static analysis for identifying vulnerabil-

ities was initially proposed as a way to support manual in-
spection [3]. Originally called type-state analysis [18], taint
analysis has been largely adopted to detect inadequate or
missing input validation, resulting in cross site scripting [22]
[10], SQL-injection [9] and buffer overflow [16] vulnerabili-
ties. In order to mitigate inaccuracy of pure taint analysis
due to conservativity, more sophisticated analyses have been
integrated, such as string analysis [22], program slicing [11],
points-to analysis [12] and model checking [20]. The present
paper takes a different direction, instead of going for a more

complex but still inaccurate static analysis, candidate vul-
nerabilities reported by static analysis are subject to path
sensitization to filter likely false positives and to find con-
crete instance of true positives.

Instead of statically searching for security faults, other
approaches resort on monitoring the application (often call-
ing it dynamic analysis) while it runs in production. For
instance, in [5] the application execution is monitored by
several anomaly reasoners and a firewall blocks those in-
teractions classified as abnormal. The principal drawback
in monitoring is represented by run-time and memory over-
head. Program slicing has been proposed by Walter et al. [2]
to limit code instrumentation only to the actual vulnerable
part.

Genetic search has been used on procedural code [14], to
generate new test cases and improve coverage, considering
the distance from an uncovered structural properties (e.g.,
a branch or a def-use chain) as fitness function. This ap-
proach has been extended [19] to test object oriented code,
by searching not only for input values, but also for a method
invocation sequence. Del Grosso et al. [8] applied genetic al-
gorithms to identify tests to expose buffer overflows using
a complex fitness function. Tests are searched with high
statement coverage, that execute lots of vulnerable state-
ments and deeply nested code, and that write data as near
as possible to the buffer boundary. An evolutionary inspired
approach has been used also by Zulkernine et al. [7] on secu-
rity, for a totally different purpose. Network scanner rules
are searched that maximize the ability in revealing and clas-
sifying intrusions.

Concolic execution [15, 23, 13, 6] is an alternative popu-
lar approach that mix symbolic and concrete execution to
generate test cases. The code under test is executed initially
on random inputs and symbolic constrains on are collected
at run-time on assignments and decision points (branches).
When a branch is traversed that diverges from the target
flow, the condition of such branch is negated and added to
constraints collected so far and sent to a solver. The solver
computes new input values, that make the execution avoid
the wrong branch. Concolic execution suffers the limits of
the adopted solver, that often (to guarantee decidability) is
able to reason only on liner constraints.

6. CONCLUSION
In this paper, we presented a preliminary investigation on

combining static analysis with a genetic algorithm to sup-
port security testing. Proper test cases have been gener-

ated for actual vulnerabilities, as input values that make
the application traverse vulnerable control-flow paths. A
tool prototype has been implemented and applied on a real
PHP application. The proposed approach shown good per-
formance in generating security tests for reflected cross site
scripting vulnerabilities.

By observing the experimental results, considerations have
been drown on promising directions for improvement. As
future work, we intend to improve our approach, for exam-
ple by using a more advanced fitness function that includes
branch distance and by extending mutation and crossover
operators. Moreover, we intend to investigate whether the
presented technique is effective on a broader set of vul-
nerabilities, including persistent and DOM-based cross site
scripting, SQL-injection and cross site request forgery.

7. REFERENCES
[1] B. Beizer. Software testing techniques (2nd ed.). Van

Nostrand Reinhold Co., New York, NY, USA, 1990.

[2] W. Chang, B. Streiff, and C. Lin. Efficient and
extensible security enforcement using dynamic data
flow analysis. In CCS ’08: Proceedings of the 15th
ACM conference on Computer and communications
security, pages 39–50, New York, NY, USA, 2008.
ACM.

[3] B. Chess and J. West. Secure programming with static
analysis. Addison-Wesley Professional, 2007.

[4] S. Christey and R. A. Martin. Vulnerability type
distributions in cve. Technical report, The MITRE
Corporation, 2006.

[5] C. Criscione and S. Zanero. Masibty: an anomaly
based intrusion prevention system for web
applications. In Black Hat Europe 2009, 2009.

[6] D. E. Cristian Cadar, Daniel Dunbar. Klee: Unassisted
and automatic generation of high-coverage tests for
complex systems programs. In USENIX Symposium
on Operating Systems Design and Implementation,
pages 209–224. USENIX Association, 2008.

[7] R. H. Gong, M. Zulkernine, and P. Abolmaesumi. A
software implementation of a genetic algorithm based
approach to network intrusion detection. In Software
Engineering, Artificial Intelligence, Networking and
Parallel/Distributed Computing, 2005 and First ACIS
International Workshop on Self-Assembling Wireless
Networks. SNPD/SAWN 2005. Sixth International
Conference on, pages 246–253, May 2005.

[8] C. D. Grosso, G. Antoniol, E. Merlo, and P. Galinier.
Detecting buffer overflow via automatic test input
data generation. Computers and Operations Research,
35(10):3125 – 3143, 2008. Special Issue: Search-based
Software Engineering.

[9] Y.-W. Huang, F. Yu, C. Hang, C.-H. Tsai, D.-T. Lee,
and S.-Y. Kuo. Securing web application code by
static analysis and runtime protection. In WWW ’04:
Proceedings of the 13th international conference on
World Wide Web, pages 40–52, New York, NY, USA,
2004. ACM.

[10] N. Jovanovic, C. Kruegel, and E. Kirda. Pixy: A
static analysis tool for detecting web application
vulnerabilities (short paper). In SP ’06: Proceedings of
the 2006 IEEE Symposium on Security and Privacy,
pages 258–263, Washington, DC, USA, 2006. IEEE

Computer Society.

[11] J. Krinke. Information flow control and taint analysis
with dependence graphs. In 3rd International
Workshop on Code Based Security Assessments
(CoBaSSA 2007), pages 6–9, 2007.

[12] V. B. Livshits and M. S. Lam. Finding security
vulnerabilities in java applications with static analysis.
In SSYM’05: Proceedings of the 14th conference on
USENIX Security Symposium, pages 271–286,
Berkeley, CA, USA, 2005. USENIX Association.

[13] R. Majumdar and K. Sen. Hybrid concolic testing. In
ICSE ’07: Proceedings of the 29th international
conference on Software Engineering, pages 416–426,
Washington, DC, USA, 2007. IEEE Computer Society.

[14] R. Pargas, M. J. Harrold, and R. Peck. Test-data
generation using genetic algorithms. Journal of
Software Testing, Verifications, and Reliability,
9:263–282, September 1999.

[15] K. Sen, D. Marinov, and G. Agha. Cute: a concolic
unit testing engine for c. In Proceedings of the 10th
European software engineering conference, pages
263–272, New York, NY, USA, 2005. ACM.

[16] U. Shankar, K. Talwar, J. S. Foster, and D. Wagner.
Detecting format string vulnerabilities with type
qualifiers. In SSYM’01: Proceedings of the 10th
conference on USENIX Security Symposium, pages
16–16, Berkeley, CA, USA, 2001. USENIX
Association.

[17] M. Sharir and A. Pnueli. Program Flow Analysis:
Theory and Applications, chapter Two approaches to
interprocedural data flow analysis, pages 189–233.
Prentice Hall, 1981.

[18] R. Strom and D. Yellin. Extending typestate checking
using conditional liveness analysis. Software
Engineering, IEEE Transactions on, 19(5):478–485,
May 1993.

[19] P. Tonella. Evolutionary testing of classes. In ISSTA
’04: Proceedings of the 2004 ACM SIGSOFT
international symposium on Software testing and
analysis, pages 119–128, New York, NY, USA, 2004.
ACM.

[20] L. Wang, Q. Zhang, and P. Zhao. Automated
detection of code vulnerabilities based on program
analysis and model checking. In Source Code Analysis
and Manipulation, 2008 Eighth IEEE International
Working Conference on, pages 165–173, Sept. 2008.

[21] G. Wassermann and Z. Su. Static detection of
cross-site scripting vulnerabilities. In ICSE ’08:
Proceedings of the 30th international conference on
Software engineering, pages 171–180, New York, NY,
USA, 2008. ACM.

[22] G. Wassermann and Z. Su. Static detection of
cross-site scripting vulnerabilities. In Software
Engineering, 2008. ICSE ’08. ACM/IEEE 30th
International Conference on, pages 171–180, May
2008.

[23] G. Wassermann, D. Yu, A. Chander, D. Dhurjati,
H. Inamura, and Z. Su. Dynamic test input generation
for web applications. In ISSTA ’08: Proceedings of the
2008 international symposium on Software testing and
analysis, pages 249–260, New York, NY, USA, 2008.
ACM.

	Introduction
	Static analysis
	Cross site scripting
	Taint analysis

	Genetic algorithms for path sensitization
	Experimental results
	Implementation
	Empirical data
	Considerations

	Related works
	Conclusion
	References

