
Remote software protection
by orthogonal client replacement ∗

Mariano Ceccato,
Paolo Tonella

Fondazione Bruno
Kessler—IRST

Trento, Italy

{ceccato,tonella}@fbk.eu

Mila Dalla Preda
University of Verona

Verona, Italy

mila.dallapreda@univr.it

Anirban Majumdar
University of Trento

Trento, Italy

anirban.majumdar@unitn.it

ABSTRACT
In a typical client-server scenario, a trusted server provides valu-
able services to a client, which runs remotely on an untrusted plat-
form. Of the many security vulnerabilities that may arise (such as
authentication and authorization), guaranteeing the integrity of the
client code is one of the most difficult to address. This security vul-
nerability is an instance of themalicious host problem, where an
adversary in control of the client’s host environment triesto tamper
with the client code.

We propose a novel client replacement strategy to counter the
malicious host problem. The client code is periodically replaced by
new orthogonal clients, such that their combination with the server
is functionally-equivalent to the original client-serverapplication.
The reverse engineering efforts of the adversary are deterred by the
complexity of analysis of frequently changing, orthogonalprogram
code. We use the underlying concepts of program obfuscationas
a basis for formally defining and providing orthogonality. We also
give preliminary empirical validation of the proposed approach.

Categories and Subject Descriptors
C.2.0 [Computer-communication networks]: General—Security
and Protection; D.2.0 [Software Engineering]: General—Protec-
tion mechanisms

General Terms
Security

Keywords
Obfuscation, Clone Detection, Program Transformation, Software
Security, Remote Trusting

∗This work was supported by funds from the European Commis-
sion (contract No 021186-2 for the RE-TRUST project)

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SAC’09 March 8-12, 2009, Honolulu, Hawaii, U.S.A.
Copyright 2009 ACM 978-1-60558-166-8/09/03 ...$5.00.

1. INTRODUCTION
A network application is an application that needs to exchange

information over the network in order to work correctly. It involves
a service provider, usually calledserver, and a service consumer,
usually calledclient and a communication channel between them.
We consider a scenario where the server is running on a trusted
machine, while the client is running on an untrusted machinethat
might corrupt the client code for malicious purposes. This means
that, before providing the requested service to the client,the server
has to verify whether the client is executing according to its ex-
pectations, i.e., whether the client is in a valid state. This situation
defines theremote trusting problem, where the trusted machine,
i.e., the server, has to ensure that the application runningon the
untrusted machine, i.e., the client, has not been tampered with.

In this work, we face the problem of ensuring the integrity ofpart
of the client code, later called the client’scritical part and denoted
with CP . In this setting, the attacker’s goal is to tamper with the
client application without being detected by the server. The attacker
has full access to the client application and he/she can use any static
and dynamic techniques to reverse engineer it. Given the practical
limitations of available obfuscation technology and the theoretical
ones investigated by Barak et al. [2], we make the assumptionthat
an attacker with enough time and resources can perform a success-
ful attack. However, it should be noticed that a successful attack
involves substantial program comprehension effort, whichis neces-
sarily carried out by human beings. Based on this observation, we
propose a protection scheme which periodically replaces the client
code with a new version. In order to obstruct the comprehension
of the new client code, we aim at generating code that is as orthog-
onal as possible to the previous versions. In this way, the attacker
cannot take advantage of previous attempts. Given sufficient time
and resources, an attacker can crack any obfuscated client,i.e., an
attacker can mount a successful attack on any client code. Orthog-
onal replacement tries to address this issue by limiting thetime that
an attacker has to tamper with a particular version of the client.

Orthogonality is achieved through the application of different se-
mantic preserving transformations (i.e., obfuscations) to the criti-
cal partCP and through splitting of the transformed application
between the server and the client. We denote withCP1, ...CPi

the code of the critical part obtained through semantic preserving
transformations. It turns out that obfuscation alone mightnot be
enough to gain orthogonality. In fact, it might be hard or even im-
possible to makeCPi orthogonal toCP1, ..., CPi−1, becauseCPi

must behave the same asCP1, ..., CPi−1 to preserve the overall
application’s semantics. Our proposal is to split the code of CPi

between the client and the server in order to leave on the client
code that is substantially different from the previous versions. The

splitting of the critical codeCPi is denoted with(Ci, Si), where
Ci denotes the code left on the client andSi the code moved to
the server. Orthogonal client replacement requires the newver-
sion Ci of the client code to be orthogonal to the previous ones
C1, ..., Ci−1. Since the semantics ofCi does not need to be the
same asC1, ..., Ci−1 (the overall semantics ofCP is preserved in
CPi, not that of each clientC1, ..., Ci−1), the proposed protection
scheme offers substantially more possibilities of code transforma-
tion than those achievable via pure client code obfuscation.

The notion of orthogonality used in this work is a cognitive no-
tion. In fact, from an attacker’s perspective a programP is orthog-
onal to another programQ if tampering withP does not reduce
the effort involved in tampering withQ, in that no information ac-
quired during the first attack can be reused to mount the second
one. This notion of orthogonality refers to program comprehension
activities carried out by humans beings. Hence, it is hard tode-
fine more precisely and to quantify. Consequently, in this work we
resort to a practical and computable approximation, given by code
(dis-)similarity. The idea is that two programsP andQ are orthog-
onal if they are dissimilar enough, so that analyzingP does not
provide any clue for the analysis of (portions of)Q, since no por-
tion of Q is similar to any portion ofP . Code similarity has been
deeply investigated in the area of clone detection [14, 13, 3]. Most
available clone detection algorithms can be adapted to our purpose,
i.e., to produce an approximate quantification of our notionof or-
thogonality.

The paper is organized as follows: first, we characterize ourpro-
tection scheme in terms of the attacks it is intended to defeat (Sec-
tion 2). Then, we describe the solutions available from the literature
for the problem we are addressing and we explain how our proposal
differs from the existing ones (Section 3). The core of the paper is
Section 4, where we describe our proposal for a novel protection
scheme based on orthogonal client replacement. In Section 5, we
provide a preliminary validation of the approach based on two case
studies. Conclusions and future work are presented at the end of
the paper.

2. ATTACK MODEL
Theremote trusting scenario consists of a trusted machine (called

server) providing services to an untrusted machine (calledclient).
The server has to ensure that the application running on the client
has not been tampered with. This security problem is also called
the remote attestation or software integrity problem. In this sce-
nario, an attacker is a malicious user that aims at altering the client’s
behavior, either by means of static or dynamic analysis, in order
to gain some personal advantage while going undetected fromthe
server. In order to mount a successful attack, the attacker needs to
understand the inner working of the application that he/shewants
to modify.

During the execution of the application, the attacker has access
to all the successive versions of clientC1, ..., Cn delivered by the
server. There are no limits on the static and dynamic code analysis
techniques that he/she can use in order to reverse engineer them.
Moreover, the attacker can access the information exchanged be-
tween the current client and the server(Ci, Si) in the communica-
tion acts occurring during the execution of the application. Given
some understanding of the client code and of its interactionwith the
server, the attacker can either modify the code running on the client
or the content of the client memory (client state) in order togain
some personal advantage. However, the attacker can analyzeand
deduce information only from those portions of the criticalcode
that reside on the client during the execution of the application. In
fact, the attacker has not access to any of the successive versions of

the server codeS1...Si. An attacker succeeds when he/she is able
to gain enough information form the analysis ofC1, ..., Ci in order
to maliciously modify the client codeCi without being caught by
the serverSi.

DEFINITION 1. An attacker A is said to have mounted a suc-
cessful attack on (Ci, Si) if A can alter the execution state of Ci,
either by static or dynamic analysis and manipulation, so as to ob-
tain an unpermitted behavior from Ci which goes undetected by Si

(i.e., if Si is providing any service to Ci, it continues to do so, since
Si considers Ci trusted).

3. RELATED WORK
Software based schemes for remote attestation have been pro-

posed as a possible alternative to purely hardware based solutions.
They usually make the assumption that precise information about
the hardware hosting the client’s execution is available orcan be
obtained. These protection schemes include Swatt [16] and Pio-
neer [15], applicable to embedded devices and desktop computers.
These solutions verify that no malicious modification has occurred
in the software by computing a checksum of the in-memory pro-
gram image. These protection schemes can accurately estimate the
time needed to compute the checksum since they have a precise
knowledge of the client hardware and memory layout. This infor-
mation can be used to detect attacks, since, in general, attacks in-
troduce indirections that increase the execution time (e.g., redirect-
ing memory checksum to a correct copy of the application while
a tampered one is running). The main drawback of this solution
is the assumption to have a collaborative user that providespre-
cise information about the client hardware and its memory layout.
Without this assumption, namely without an accurate prediction
of the checksum computation time, the attacker could bypassthe
protection scheme through the so called memory copy attack [18].
When computing the checksum, the code is accessed in data mode,
while when it is executed it is accessed in execution mode. The
basic idea of the memory copy attack is to redirect every access in
data mode to the original code in order to return the correct check-
sum even when executing a tampered application. Genuinity [12]
is a protection scheme that, in order to deal with the redirection
problem, incorporates the side-effects of the instructions executed
during the checksum procedure itself into the computed checksum.
The authors suggest that the attackers only remaining option, i.e.,
simulation, cannot be carried out sufficiently quickly to remain un-
detected. The possibility of adding code with no side-effects to
unused portions of a code page is a possible way to bypass the
Genuinity protection scheme [17].

When users are non-collaborative we cannot rely on the predic-
tion of the computational time. In this case, a possible software
only solution consists of exploiting the information exchanged dur-
ing the communication between the client and the server in order to
verify the integrity of the client application through assertions. If
on the one hand the client could send false information to theserver
in order to satisfy the assertion, on the other hand it has to be hon-
est as regarding those information that the server needs to provide
the desired service (otherwise the network application does not ex-
ecute). This means that only certain portions of the client code can
be verified through assertion. Thus, a possible solution consists of
using assertion to verify the integrity of part of the clientapplica-
tion and to move to the server those portions of application that
cannot be verified by the server through assertions [4]. The frag-
ments of code that need to be moved to the server can be computed
through barrier slicing. This solution introduces both a commu-
nication overhead and a computation overhead on the server.The

trade-off between the security and cost of this protection scheme
has been studied in [5]. It is worth mentioning that the idea of
splitting an application between client and server has beenalready
used by Zhang and Gupta in order to prevent software piracy [19].

The solution provided in this work is based on orthogonal re-
placement and uses the combination of different obfuscations, whose
utility has been studied by Heffner and Collberg in [9]. It can be
used whenever barrier slicing [4] is not a viable approach for per-
formance reasons. When the barrier slice containing the security-
sensitive portion of the client requires unacceptable computational
or network resources to be run on the server, we can leave the most
performance-intensive portions of code on the client and use or-
thogonal client replacement to achieve software protection.

4. ORTHOGONAL CLIENT REPLACEMENT
In the following, the fragment of application code that is respon-

sible for maintaining the portion of state that we want to protect is
called thecritical part CP . We assume this portion of the applica-
tion code to be given as an input to the protection scheme.

The basic idea of orthogonal client replacement is to keep on
substituting the critical part of the client with new versions that
are orthogonal to the previous ones. Ideally, orthogonality ensures
that an attacker cannot use the knowledge gained from the (static
and dynamic) analysis of any previous client version to tamper
with the current code of the client’s critical part. Orthogonality
is achieved through the application of semantic preservingtrans-
formations (code obfuscations) and code splitting.

• Obfuscation: By applying semantic preserving transforma-
tions that aim at obstructing code comprehension toCP , we
obtainCP1, ..., CPi. However, obfuscation alone might not
be enough to create different versions of the critical part that
are orthogonal to each other. In fact,CPi has the same se-
mantics ofCP1, ..., CPi−1, so it might be hard or impos-
sible to make it orthogonal to the previous versions, i.e., to
CP1, ..., CPi−1. However, it is possible to select a portion
of the critical partCPi (by splittingCPi between client and
server) that is orthogonal to the previously selected portions
of CP1, ..., CPi−1.

• Code splitting: We split the code of the currentCPi between
the server and the client obtaining(Ci, Si). The splitting
process ensures that the portion of codeCi that resides on the
client is orthogonal with respect to the previous code residing
on the clientC1, ..., Ci−1 (observe that for someCj with
1 ≤ j ≤ i − 1 we might haveSj = ∅, in this caseCj =
CPj).

Thus, thei-th iteration of the orthogonal replacement process aims
at generating a pair(Ci, Si) such that: (1)Ci is orthogonal to the
previous versions of the client codeC1, .., Ci−1; and, (2)(Ci, Si)
is functionally equivalent, denoted≡, to CP : (Ci, Si) ≡ (CP, ∅)

4.1 Orthogonality
Intuitively, a statements of client codeCj is orthogonal to a

statementp of client codeCi, denoteds ⊥ p, when the analysis of
statements in Cj does not reveal any information about statement
p in Ci. Orthogonal client replacement aims at generating new ver-
sions of the client code where all the statements of the new client
are orthogonal to all the statements of the previous clients. How-
ever, there are portions of the critical code, such as systemcalls,
library calls, and I/O operations, that cannot be modified when ap-
plying the semantic preserving transformations toCP and whose

computation cannot be moved to the server. We call these frag-
ments of the critical partinvariable. This means that there is a
limit on the degree of orthogonality that we can achieve. In other
words, we can be orthogonal only with respect to those portions of
the critical part that are not invariable. According to Figure 1, let

invariable

CPi CPj

Figure 1: CPi and CPj share the invariable part

Black denote the instructions of the critical part that are invariable,
namely that are necessarily common to all the transformed versions
of the critical part and must be necessarily left on the client. Let
White be the instructions of the critical part that can be modified
or moved to the server. In particular, every possible variant CPi

of the critical part will share the invariable fragments, i.e., for all
CPi we have thatCPi = Black ∪ White(CPi). Moreover, for
everyCPi we have thatBlack andWhite(CPi) form a partition,
i.e.,Black ∪White(CPi) = CPi andBlack ∩White(CPi) = ∅.
The splitting(Ci, Si) is such thatCi = Black∪White(Ci), where
White(Ci) denotes the variable statements ofCi. Thus, we de-
fine the orthogonality betweenCi andCj only with respect to their
variable part, namelyWhite(Ci) andWhite(Cj). In particular,
we say thatCi is orthogonal with respect toCj if all the statements
in White(Ci) are orthogonal to all the statements inWhite(Cj).

DEFINITION 2. Ci is orthogonal to Cj , denoted Ci ⊥ Cj , if
∀p ∈ White(Cj), ∀q ∈ White(Ci): p ⊥ q.

This means that two versions of the client code are orthogonal when
they differ in everything but the invariable partBlack , that cannot
be changed or moved by definition. It is clear that the invariable
partBlack is application dependent and defines a limit on the de-
gree of protection that can be achieved by our technique. Forin-
stance, if the code of the critical part presents many invariable state-
ments, namely ifBlack is almost equal toCP , very little can be
either modified or moved to the server. In this case, orthogonal re-
placement offers limited support. On the other hand, whenBlack

contains few statements of the critical part, many orthogonal client
copies can be generated by our technique.

The notion of orthogonality is a cognitive notion, based on the
amount of knowledge abouts ∈ Cj a programmer can reuse when
trying to understandp ∈ Ci. As such, it is hard to define precisely
and operationally. However, the proposed approach requires a way
to estimate it. While in this section we keep the notion of orthogo-
nality quite abstract, in Section 5 we provide an approximation of
this notion, based on clone detection, that can be used in practice.
It should be however noticed that our approach is more general
than its instantiation based on clone detection. In the future, better
approximations of our cognitive notion of orthogonality may lead
to implementations of our technique that better match our original
idea.

Of course, there could be other forms of orthogonality (e.g.,
message orthogonality) which may increase the level of protection
achieved. In this work, we address explicitly only statement or-
thogonality, which might also indirectly result in other forms of

orthogonality. Further investigation of such forms is partof our
ongoing research.

4.2 Orthogonal client generation

Orthogonal client generation
INPUT
CP : Client critical part
C1, ..., Ci−1: previous client code
OUTPUT
Ci: Next client,Si: next server
BEGIN
1 Repeat
2 CPi = RandomTransform(CP)
3 CP := CPi

4 (Ci, Si) := MoveCompToServer(CPi , C1, ..., Ci−1)
5 Until (Ci ⊥ C1) ∧ ... ∧ (Ci ⊥ Ci−1)
6 Output(Ci, Si)
END

Figure 2: Orthogonal client generation algorithm

The algorithm in Figure 2 describes in more details the process
that we use to generate orthogonal client copies. The condition of
theUntil at line 5 ensures that the new client codeCi is orthog-
onal to the previous ones.

By choosingCi = Black andSi = White(Ci) we can trivially
satisfy the condition at line 5. This solution coincides with the bar-
rier slicing solution [4] and actually requires no further orthogonal
replacement of the client, since the attacker is left with nopossibil-
ity of tampering with the client code (no sensitive client code is left
on the client). In this work, we assume that the barrier slicing solu-
tion is not applicable for performance reasons. This means that
there are some client’s computations belonging toWhite(CPi)
that cannot be moved to the server because of the major perfor-
mance penalty associated with their server-side execution. They
must be left on the client even though they are security sensitive.
These performance-intensive statements ofCP can be properly an-
notated in order to ensure that the computation they implement re-
mains on the client in all successive client versions. This does not
mean that they remain unchanged on the client (that would pre-
vent orthogonal client generation): they can be transformed during
the execution of Step 2 of the algorithm in Figure 2, but the trans-
former has to keep track of the annotations, so that the newlygener-
ated code has still information about what client portions cannot be
moved to the server for performance reasons. The split step (Step
4 in the algorithm shown in Figure 2) will not be allowed to move
them to the server.

The procedureRandomTransform picks up a set of seman-
tic preserving transforms from a catalog and applies them toCP .
Such transformations perform proper propagation of the annota-
tions that mark the performance-intensive statements, so that they
are available also in the new code. FunctionMoveCompToServer
decides which portions of the transformed critical part to move
to the server so as to guarantee orthogonality of the new client
with respect to the previous clientsC1...Ci−1. However, state-
ments marked as performance-intensive must be left on the client
by MoveCompToServer(hence excluding the barrier slicing solu-
tion).

One way to gain orthogonality is to keep on the client the portion
of code of the transformed critical partCPi obtained during thei-th
iteration that already differs from the previous versions of the client
codeC1, ..., Ci−1. LetOrthSt(White(CPi),White(Cj)) = {p ∈

White(CPi) | ∀q ∈ White(Cj) : p ⊥ q} be the set of state-
ments ofWhite(CPi) that are orthogonal to all the statements in
White(Cj). In other words,OrthSt(White(CPi),White(Cj))
denotes the portion of the critical codeWhite(CPi) that is orthog-
onal to the client codeWhite(Cj). The portion ofCPi that should
be left on the client, i.e.,Ci, can be computed as:

Ci = Black ∪
\

1≤j≤i−1

OrthSt(White(CPi),White(Cj))

∪PerfIntens(White(CPi))

The idea is to leave on the client the statements ofCPi that are
orthogonal to all the statements of all the previous client versions,
plus the invariable partBlack and the performance-intensive state-
ments, that cannot be moved or modified. TheUntil condition
of the algorithm in Figure 2 (line 5) evaluates to false whenever
PerfIntens(White(CPi)) is not orthogonal to the previous clients.
In such a case, alternative transformations must be tried inorder to
achieve orthogonal client generation (i.e., the algorithmiterates un-
til the orthogonality condition is met).

4.3 Transformation catalog
Orthogonality of the clients is achieved through the use of a

transformation catalog of obfuscations. An obfuscating transfor-
mation modifies a program in order to make it more difficult to
understand and to reverse engineer, while preserving its function-
ality. Here we briefly elucidate the salient aspects of obfuscating
transformations from Collberget al. [6].

The quality of an obfuscating transformation is measured interms
of its potency, resilience andcost. The potency of an obfuscating
transformation measures the obscurity that has been added to a pro-
gram, namely how much more complex is the obfuscated program
to analyze with respect to the original one. The resilience of an
obfuscation measures how difficult it is to break for an automatic
deobfuscator. The cost of an obfuscating transformation measures
the computational overhead added to the obfuscated programwith
respect to the original one.

Obfuscating transformations are usually classified according to
the information they target. In the taxonomy by Collberget al. [6],
three types of obfuscations are discussed.

• Layout obfuscation: This category of transforms changes or
removes useful information from the intermediate language
code or the source code without affecting the instructions that
contribute to the actual computation. Usually removing de-
bugging information, comments, and scrambling/renaming
identifiers fall within the domain of layout obfuscation.

• Data obfuscation: This category of transforms targets data
and data structures contained in the program. Using these
transformations, data encoding can be changed, variables can
be split or merged, and arrays can be split, folded, and merged.

• Control-flow obfuscation: The objective of this category
of transforms is to alter the flow of control within the code.
Reordering statements, methods, loops and hiding the actual
control flow behind irrelevant conditional statements classify
as control-flow obfuscation transforms.

5. EMPIRICAL VALIDATION
We conducted a preliminary evaluation of the proposed approach

by instantiating its components and conducting some case studies.
Specifically, we chose a particular definition of orthogonality and

a particular set of obfuscating transforms. While the empirical re-
sults that we have obtained may suffer from some of these specific
choices, the proposed approach is quite general and can accom-
modate further improvements that overcome the limitationsof the
current implementation. So, this empirical validations should be
regarded as a proof of concept, rather than an actual and thorough
assessment of the method.

We first describe how we approximate in practice the notion of
orthogonality, followed by a description of obfuscating transfor-
mation we have used. We give also some details about the tool
implementing the transforms and the orthogonality check. Next
comes the description of the two case studies, followed by results
and discussion.

5.1 Clone based orthogonality
Orthogonality from the program comprehension point of viewis

hard to define and quantify, so we resort to a practical and com-
putable approximation, given by code similarity. In particular, we
rely on clone detection techniques to gain a list of potential clones.
Let Clone(White(Ci),White(Cj)) be the portions of code that
are recognized as clones betweenWhite(Ci) andWhite(Cj) ac-
cording to some given clone detection algorithm (intuitively the
fragment of code thatWhite(Ci) andWhite(Cj) have in com-
mon). In this setting the termcloned statements refers to the pairs
of matching statements inClone(White(Ci),White(Cj)). Cloned
statements(p, q) ∈ White(Ci) × White(Cj) can be easily ob-
tained once clones forWhite(Ci) andWhite(Cj) are known: they
are the corresponding statements in the cloned code portions. Let
ClonedSt(White(Ci),White(Cj)) be the set of cloned statements
in Clone(White(Ci),White(Cj)). Orthogonality between state-
ments of different clients can then be defined in terms of clones.

DEFINITION 3. A statement s of White(Ci) is c-orthogonal
with respect to a statement p of White(Cj), i.e., s ⊥c q, if the
following holds:

• (p, q) 6∈ ClonedSt(White(Ci),White(Cj))

This definition of c-orthogonality between statements leads to the
following notion of c-orthogonality between clients.

DEFINITION 4. Ci is c-orthogonal with respect to Cj , denoted
Ci ⊥c Cj , if ∀p ∈ White(Cj), ∀q ∈ White(Ci): p ⊥c q.

Of course, the criteria of the splitting function can also berestated
in terms of c-orthogonality.

5.2 Alias-based opaque predicates
For this work, we have implemented one particular type of potent

obfuscation based on the use ofopaque predicates. An opaque
predicate is a conditional expression whose value is known to the
obfuscator, but is difficult for an adversary to deduce statically. A
predicateΦ is defined to beopaque at a certain program pointp if
its outcome is only known at obfuscation time. Following Collberg
et al. [7], we writeΦF

p (ΦT
p) if predicateΦ always evaluates to False

(True) at program pointp for all runs of the same program. We
call such predicatesOpaquely True (False) at program pointp. The
notationΦ?

p is used to denote anOpaquely Unknown predicate, i.e.,
one whose value depends on a program input supplied externally
(by the user, by the operating system, etc.), such that it sometimes
evaluates to True and sometimes to False during different program
executions.

The opaque predicates used in our transformation tool use the
concept of pointer aliasing. The rationale behind using such predi-
cates is that precise inter-procedural static alias analysis is intractable.

Node g, h;

Method P(…,Node f)

{

g = g.Move();

h = h.Move();

h = h.Insert(new Node)

…

if (f==g)
?
…

if (g==h)
F
 …

…

f.Token = False;

g.Token = True;

if (f.Token)
?
…

…

g

f

g.Move()

G

h

H

Figure 3: Opaque predicates constructed from objects and
aliases (after [6])

Collberget al. [7] proposed a technique which takes advantage of
such intractability to construct resilient opaque constructs.

The basic idea is to construct a dynamic data structure and main-
tain a set of pointers on this structure. Opaque predicates can then
be designed using these pointers and their outcome can be stati-
cally determined only if precise inter-procedural alias analysis can
be performed on this complicated data structure. Figure 3 isan
adaptation of Collberget al. ’s technique. MethodP’s control flow
is obfuscated using alias-based opaque predicates. Some method
calls (e.g.,Move) are used to manipulate two global pointersg
andh which point to different connected components (G andH)
of a dynamic data structure such as a linked list. The statement
g=g.Move() will updateg to move to a different location within
G. The statementh=h.Insert(new Node) inserts a new node
into H and updatesh to point to some node withinH. MethodP
and other methods that call it are also given an extra pointerar-
gumentf which refers to objects withinG. Opaque predicates like
Φ : if (f == g)? may either be True or False sincef andg move
around within the same component.g==h must be False sinceg
andh alias to nodes within different components.

5.3 Program transformation tool
We used Txl [8] to realize the alias-based opaque predicatesob-

fuscation described above. Our tool relies on an external secure
random number generator (implemented in Java) and requiresthe
alias specification file as input. This file contains pairs of pointers
that are always (or never) aliases of each other and instructions to
be called to change the pointer-based data structure, whilekeeping
the invariant alias conditions known to the obfuscator.

In Figure 4, we can see the effect of the transformation. A ba-
sic block is split into a random number (2) of pieces (of random
length). Each piece is inserted into the True (or False) branch of an
if statement that uses an Opaquely True (or Opaquely False) pred-
icate as condition. The other branch of theif statement is filled
with randomly generated code which will be never executed.

The code we generate randomly consists of a sequence (of ran-
dom length) of assignments to local variables (tmp) and to class
fields (f1 andf2). The expressions used on the right hand side of
the assignments are formed by randomly selecting arithmetic oper-
ators and identifiers (of proper types) from a pool containing local
variables, visible class fields and constant values.

The alias-based data structure is frequently changed by proper
update instructions (invocations to methodupdateAlias()). When
to update it is also decided on a random basis.

When applying opaque predicate based obfuscation, the code

size increases (as apparent from the example in Figure 4). How-
ever, most of the newly inserted code is never executed, because
it is guarded by opaque predicates, so it is not expected to cause
major performance overhead (lowcost). On the other hand, the ob-
fuscation is expected to be quiteresilient, because of the additional
control and data dependencies between original and injected code.
Potency descends from the difficulty of precise static alias analysis.

A l i a s e s :
f == g
g != h

Update :
u p d a t e A l i a s ()

(Alias specifications)

c l a s s A {
i n t f1 ;
i n t f2 ;
vo id m () {

f1 = 1 ;
f2 = f1 ++;
i n t tmp = f1 ;
tmp = tmp−f1 ;
f1 = f1 + f2 ;

}
}

(Original)

c l a s s A {
i n t f1 ;
i n t f2 ;
vo id m () {

i n t tmp ;
i f (f ==g) {

f1 = 1 ;
u p d a t e A l i a s () ;
f2 = f1 ++;
}

e l s e {
u p d a t e A l i a s () ;
tmp = f1 + f2 / 5 ;
f1 = f2−tmp ;

}
i f (g != h){

u p d a t e A l i a s () ;
tmp = f1 ;
tmp = tmp−f1 ;
u p d a t e A l i a s () ;
f1 = f1 + f2 ;

}
e l s e {

f1 = tmp / f2 ;
tmp = f2%59+f2 ;
u p d a t e A l i a s () ;

}
}

}

(Obfuscated)

Figure 4: Effect of the obfuscation

5.4 Clone detection tool
For testing orthogonality, we rely on a source code clone de-

tection tool called CCFinder [11]. This tool has been extensively
evaluated in large scale empirical surveys and has been found to be
effective in detecting clones at the source code level [1, 10].

A clone relation in CCFinder is defined as an equivalence rela-
tion (reflexive, transitive, and symmetric) onfragments, where a
fragment is defined to be part of the source file and represented by
an ID, and the coordinates from where it starts and ends. A clone
relation exists between two fragments if and only if the token se-
quence included in them is identical. The first step of clone detec-
tion in CCFinder isLexical Analysis, where the lines of the source
files are transformed into a series of tokens based on the lexical
rules of that language. The token sequence is thentransformed
with the aim of regularizing the identifiers based on certaintrans-
formation rules. Apattern match is then performed on all the sub-
strings of the transformed token sequence. Here, equivalent pairs
are detected as clones. In the last step,formatting is performed to
reflect the clone pairs in the corresponding source files. CCFinder
produces also summary metrics about the discovered clones [10].

5.5 Case studies
We took two Java applications as our case studies. The first one is

a car race game and the second one a chat client. Both are network
based and have embedded message send/receive primitives used
by the clients and the server to communicate. The rationale for
choosing these two applications is that both reflect interesting real-

life scenarios of client-server computing and have secretswhich a
software developer would be interested in protecting.

The car race game, for example, has methods that change the
speed, direction, amount of fuel left, and distance covered. When
an instantiated car object executes on a client platform under the
control of an adversary, these parameters are left unprotected from
the adversary, who might in turn tweak the client code to gainunfair
advantage over other non-malicious competitors. Similarly, in case
of the chat application, an adversary might be interested inviolat-
ing the chatroom policies by illegally creating his/her ownroom,
joining a forbidden room, or accessing administrative privileges.

The critical part of the car race application (referred to asCPrace)
consists of about 220 LOC. For the chat client (referred to asCPchat)
it is 110 LOC. Since CCFinder strips out comments, whitespaces
and system calls from the source code, the number of tokens re-
ported by CCFinder for each ofCPrace andCPchat is less than
the number we would have obtained by applying a standard tok-
enizer to them. On average, the number of tokens per statement
(TPS) is 14 forCPrace, 12 forCPchat.

5.6 Results
We ran our experiment on a Pentium Centrino clocked at 2.0GHz

with 1GB of RAM. Both the Txl-based program transformation
tool and CCFinder were run on Windows XP.

In the first part of our experiment, we tested the degree of or-
thogonality of the clients generated by our program transforma-
tion tool, by applying the obfuscation step of the algorithmalone
(Step 2,RandomTransform). We measured the number of clones
detected by varying theminimum clone length (expressed as num-
ber of tokens) parameter of CCFinder. For this parameter we con-
sidered five consecutive multiples of the average number of tokens
per statementTPS for each of the two applications. For each of
the corresponding observations, the pool of clients generated was
kept constant to 10.

The minimum clone length of CCFinder is a critical parameter
for the algorithm in Figure 2. In fact, a too small value of this
parameter could make the algorithm iterate for a long time (possi-
bly, infinitely) because the c-orthogonality condition is never met,
due to the large number of reported clones and the impossibility
of moving to the server the performance-intensive statements. The
size of the code generated by the opaque predicate-based obfusca-
tor grows exponentially with the number of iterations (every new
opaque predicate doubles the size of the block to be nested inits
opaquely-true branch), hence convergence after a high number of
iterations means also generation of an exponentially big code size.
At the same time, most of the reported clones might be false pos-
itives when the minimum clone length is too small. What could
happen is that CCFinder reports them as clones because they in-
volve the same (short) token sequence, but any programmer would
gain no information about one from the other, since they do not
represent any meaningfully related computation. So, a too small
minimum clone length is detrimental to the algorithm performance
(up to making it unusable), while delivering no additional protec-
tion to the user (protecting false positives of clones is useless).

On the other hand, choosing a too large value for the minimum
clone length simplifies the job of the algorithm, but might result
in unacceptable false negatives, i.e., clients that are considered c-
orthogonal only because they contain small clones, but indeed con-
tain serious leaks of information an attacker might take advantage
of. Hence, we must choose a value for the minimum clone length
parameter which is: (1) big enough to allow convergence of the
algorithm in a reasonable number of iterations; (2) small enough
to prevent leak of information from clones with a length below the

chosen threshold.

Critical Part Min. clone length Clone Count
Statements Tokens

CPrace 1 14 123
CPrace 2 28 33
CPrace 3 42 6
CPrace 4 56 1
CPrace 5 70 0
CPchat 1 12 69
CPchat 2 24 27
CPchat 3 36 5
CPchat 4 48 1
CPchat 5 60 0

Table 1: Number of clones detected by CCFinder at increasing
minimum clone length

As shown in Table 1, CCFinder detects a large number of clones
involving approximately one or two duplicated statements (min.
clone length 14/12, 28/24 respectively). This number decreases
drastically as clones involving more statements are lookedfor. Al-
most no clone and no clone at all are detected when the clone size
reaches 4 and 5 statements respectively. This suggests a value for
the minimum clone length parameter between 3 and 4 statements,
i.e., where the number of residual clones, that will be handled by
means of code splitting, becomes low. At the same time, missing
clones of size 2-3 statements does not seem to hinder the level of
protection offered to the user. In fact, we expect that tracing as few
as 2-3 statements back to the code of previous clients does not rep-
resent a substantial help for the attacker. Based on such qualitative
considerations about the data shown in Table 1, we fixed the mini-
mum clone length parameter to 50. We are aware that more empiri-
cal work is required to actually show that this choice is meaningful
from the point of view of program understanding and (malicious)
reverse engineering.

Table 2 shows the performance of our tool. We generated up to
1000 clients for each ofCPrace andCPchat and detected clones
using CCFinder using a constant minimum clone length, equalto
50. As expected, when the number of previously generated clients
increases, so does the number of clones detected by CCFinder.
Hence, more iterations of the algorithm in Figure 2 are necessary
to converge to a new c-orthogonal client. For both applications the
target of generating at least 1000 c-orthogonal clients wasachieved
in a total computation time (including generation and detection)
which is less than one hour for the car race game and less than half
an hour for the chat client. Of course, we set this target, butwe do
not know if in practice it is a reasonable target. In fact, thenumber
of orthogonal clients that can be generated determines the time left
to the attackers to mount a successful attack. Given the expected
life time T of an application, the life time of a single orthogonal
client isT divided by the number of orthogonal clients we expect to
be able to generate within timeT . Knowing whether the resulting
orthogonal client’s lifetime is short enough to deliver thedesired
level of protection is hard in general and not in the scope of the
present work. In our two examples, assuming a total application’s
lifetime of 5 years, availability of 1000 orthogonal clients would
allow client replacement approximately every 2 days. However, as
apparent from Table 2, it is reasonable to assume that, if needed, in
a 5 year time substantially more than 1000 clients could be gener-
ated for these two applications. Correspondingly, the frequency of
client replacement could be made even higher.

5.7 Discussion
As shown in the case studies, the proposed protection technique

is able to generate a large number of orthogonal clients within a
reasonable computation time. In our instance of the orthogonal
client replacement strategy there is a trade-off between minimum
clone length and cost of client generation (hence, number ofgen-
erated clients). Reducing the minimum clone length is expected to
improve security, but below some level no additional protection is
delivered, at the price of a blowup of the algorithm’s execution cost,
which may possibly fail to generate any more client. We thinkthat
this trade-off deserves further investigation. As a proof of concept,
our case studies showed that it is feasible to generate a large number
of clients having a minimum clone length of around 4 statements.
This seems to correspond to a practically relevant configuration of
the proposed approach.

The usage of other available obfuscations in combination with
opaque predicates could make our approach much more resilient.
In particular, variable splitting and encoding could make similarity
detection (differential attack) much harder even when substantial
portions of the same computation are left on the client during code
splitting. Once more, we ran a proof of concept experiment, show-
ing that opaque predicates alone are powerful enough to makethe
approach viable in a reasonable setting. The more sophisticated
and diversified are the transformations in our catalog, the higher
the level of protection we are expected to deliver. Hence, having
reasonably good results with a transformation catalog consisting of
a single transform is very promising.

The obfuscatory strength of alias based opaque predicates relies
on the intractability of precise static analysis of aliasing. However,
predicates can be evaluated to hold True or False through debug-
ging when the application executes (dynamic analysis attack). So,
an attacker could try to remove the code in a branch that was never
executed in past runs. Of course, in doing this, relevant code could
be removed accidentally, because there is no way to distinguish be-
tween branches that are required by the original application, but
are executed infrequently, and branches introduced by obfuscation,
and never executed. One might try to increase the resiliencyof
the opaque predicates used in our protection scheme by deliber-
ately adding predicates that evaluate to True (False) infrequently,
but may cause dramatic application’s failures if removed. As with
any transform taken from the catalog employed by the proposed
algorithm, the intrinsic strength of the obfuscation determines the
target replacement frequency, but does not hinder the applicability
of the proposed method itself.

6. CONCLUSION
In this paper, we have addressed the issue of remote software

protection by proposing a novel approach which replaces thecopy
of an application running on a remote untrusted host with a new
orthogonal version of it, under the assumption that state-of-the art
obfuscation can be defeated if the attacker has enough time and
resources, but it can be used effectively if the attacker is time-
constrained due to replacement. We came up with a formal treat-
ment of orthogonality and carried out a proof of concept experi-
ment which deterred the reverse engineering efforts of an adversary
looking for code similarity in order to learn from past versions of
the client. We were successful in generating up to 1000 copies of
orthogonal clients. Assuming that an application has a lifetime of
5 years, this allows for a replacement of the client with a newor-
thogonal once every 2 days, thereby reducing the time left tothe
attackers considerably. Orthogonality ensures that old clients are
useless when mounting an attack against a new one.

Critical Part No. of clients No. of clones Generation time Detection time
CPrace 10 1 9” 9”
CPrace 50 9 44” 40”
CPrace 100 21 1’ 28” 1’ 21”
CPrace 500 160 16’ 30” 6’ 38”
CPrace 1000 347 35’ 20” 13’ 26”
CPchat 10 1 6” 2”
CPchat 50 7 26” 8”
CPchat 100 11 51” 15”
CPchat 500 97 5’ 11” 3’ 2”
CPchat 1000 218 17’ 51” 5’ 59”

Table 2: Average tool performance

In the future, we intend to incorporate a full-fledged obfuscation
catalog in our source code program transformation tool, so that the
obfuscation added by opaque predicates could be complemented by
potent data obfuscations. We also plan to investigate the trade off
issues between minimum clone length, level of protection achieved
and computational cost of the algorithm, so as to achieve an optimal
balance.

7. REFERENCES
[1] B. S. Baker. Finding clones with dup: Analysis of an

experiment.IEEE Transactions on Software Engineering,
33(9):608–621, 2007.

[2] B. Barak, O. Goldreich, R. Impagliazzo, S. Rudich, A. Sahai,
S. Vadhan, and K. Yang. On the (im) possibility of
obfuscating programs.Lecture Notes in Computer Science,
2139:19–23, 2001.

[3] I. D. Baxter, A. Yahin, L. Moura, M. Sant’Anna, and L. Bier.
Clone detection using abstract syntax trees. InICSM ’98:
Proceedings of the International Conference on Software
Maintenance, pages 368–377, Washington, DC, USA, 1998.
IEEE Computer Society.

[4] M. Ceccato, M. Dalla Preda, J. Nagra, C. Collberg, and
P. Tonella. Barrier slicing for remote software trusting. In
Seventh IEEE International Working Conference on Source
Code Analysis and Manipulation (SCAM 2007), pages 1–10,
Paris, France, 2007. IEEE Computer Society.

[5] M. Ceccato, M. Dalla Preda, J. Nagra, C. Collberg, and
P. Tonella. Trading-off security and performance in barrier
slicing for remote software trusting. Technical report,
Fondazione Bruno Kessler-IRST, http://se.fbk.eu, 2008.

[6] C. Collberg, C. Thomborson, and D. Low. A taxonomy of
obduscating transformations. Technical Report 148, Dept.of
Computer Science, The Univ. of Auckland, 1997.

[7] C. Collberg, C. Thomborson, and D. Low. Manufacturing
cheap, resilient, and stealthy opaque constructs. In
Proceedings of the 25th ACM SIGPLAN-SIGACT Symposium
on Principles of programming languages (POPL ’98), pages
184–196. ACM Press, 1998.

[8] J. Cordy. The TXL source transformation language.Science
of Computer Programming, 61(3):190–210, August 2006.

[9] K. Heffner and C. Collberg. The obfuscation executive. In
Proceedings of the 7th International Conference on
Information Security, ISC’04, volume 3255 ofLNCS, pages
428–440, 2004.

[10] Y. Higo, T. Kamiya, S. Kusumoto, and K. Inoue. Method and
implementation for investigating code clones in a software
system.Inf. Softw. Technol., 49(9-10):985–998, 2007.

[11] T. Kamiya, S. Kusumoto, and K. Inoue. CCFinder: A
multilinguistic token-based code clone detection system for
large scale source code.IEEE Transactions on Software
Engineering, 28(7):654–670, 2002.

[12] R. Kennell and L. H. Jamieson. Establishing the genuinity of
remote computer systems. InProceedings of 12th USENIX
Security Symposium, 2003.

[13] R. Komondoor and susan Horwitz. Using slicing to identify
duplication in source code. InProceedings of the Static
Analysis Symposiu, SAS’01, volume 2126 ofLNCS, pages
40–56, 2001.

[14] G. Myles and C. Collberg. K-gram based software
birthmarks. InProceedings of the 2005 ACM symposium on
Applied computing, SAC’05, pages 314–318, New York, NY,
USA, 2005. ACM.

[15] A. Seshadri, M. Luk, E. Shi, A. Perrig, L. van Doorn, and
P. K. Khosla. Pioneer: verifying code integrity and enforcing
untampered code execution on legacy systems. In
Proceedings of the 20th ACM Symposium on Operating
Systems Principles (SOSP), Brighton, UK, October 23-2-6,
pages 1–16, 2005.

[16] A. Seshadri, A. Perrig, L. van Doorn, and P. K. Khosla.
Swatt: Software-based attestation for embedded devices. In
IEEE Symposium on Security and Privacy, pages 272–283,
2004.

[17] M. C. Umesh Shankar and J. D. Tygar. Side effects are not
sufficient to authenticate software. Technical Report
UCB/CSD-04-1363, EECS Department, University of
California, Berkeley, 2004.

[18] P. van Oorschot, A. Somayaji, and G. Wurster.
Hardware-assisted circumvention of self-hashing software
tamper resistance.IEEE Transactions on Dependable and
Secure Computing, 2(2):82–92, April-June 2005.

[19] X. Zhang and R. Gupta. Hiding program slices for software
security. InCGO ’03: Proceedings of the international
symposium on Code generation and optimization, pages
325–336, Washington, DC, USA, 2003. IEEE Computer
Society.

