Data model reverse engineering in migrating a legacy system to Java

Mariano Ceccato!), Thomas Roy Dean(®, Paolo Tonella"), Davide Marchignoli®
(1) FBK-IRST, Trento, Italy
(2) Queen’s University, Kingston, Canada
(3) IBT, Trento, Italy
ceccato@fbk.eu, tom.dean @queensu.ca, tonella@tbk.eu, davide.marchignoli @ibttn.it

Abstract

Central to any legacy migration project is the translation
of the data model. Decisions made here will have strong
implications to the rest of the translation. Some legacy lan-
guages lack a structured data model, relying instead on ex-
plicit programmer control of the overlay of variables. In
this paper we present our experience inferring a structured
data model in such a language as part of a migration of
eight million lines of code to Java. We discuss the common
idioms of coding that were observed and give an overview
of our solution to this problem.

1 Introduction

An integral part of maintenance is the migration of exist-
ing systems to use new technology. There are many reasons
for the use of the new technology, one of which is the ob-
solescence of part or all of the current implementation plat-
form such as the implementation language. While some lan-
guages, such as COBOL, remain widely used within their
domains, others of more limited deployment may become a
liability to future maintenance. This paper describes part of
a project at FBK-IRST to migrate a terminal based legacy
banking system written in a proprietary language to a Java
based application server (a decision made by the customer).

The language used by the legacy system is BAL, an
acronym for Business Application Language. BAL is a BA-
SIC like language that contains unstructured data elements
(described in Section 2) as well as unstructured control
statements (e.g., GOTO). Programs are composed of mul-
tiple segments and may also contain user defined functions.
Calls between programs are supported, and a preprocessor
provides the programmer with the ability to isolate common
code in files that may be included in more than one program.

As with any large scale migration project, there are sev-
eral goals that are, in a sense, mutually contradictory. The
first of these is that we wish to preserve the familiarity that

the developers have with the existing code base. That is, the
relation between the original BAL source and results of the
translation should be visible, and a developer responsible
for maintaining the original BAL should be able to identify
the locations and implementations of concepts in the result-
ing Java code with little difficulty. The second goal is that
the code be high quality, idiomatic Java. That is, a naive
translation that implements the semantics of the BAL pro-
grams in Java syntax would be difficult to understand and to
maintain.

Central to any translation effort is the translation of the
data model. While applications coded in legacy languages
such as BAL are based on a functional decomposition ap-
proach, the object oriented design method focuses on the
data model. In this paper we describe an approach us-
ing program transformation to reverse engineer a structured
data model from the unstructured model provided by BAL.

The starting BAL data model allows programmers to
overlay variables in memory with (almost) arbitrary layouts.
Memory can be regarded as a byte array and the position of
each variable in this byte array can be specified relative to
other, previously declared variables. Such a data model is
quite close to that of Assembly, where memory addresses
can be directly used to specify the location of variables. All
modern programming languages, including Java, but also
Cobol and similar languages, restrict the admitted overlays
of variables in memory, so as to enforce some notion of con-
tainment. An object in Java may contain attributes, which
in turn may reference objects, but no two objects are ever
aliases of each other in Java or have different, partially over-
lapping displacements in memory. A record in Cobol con-
tains fields, which can be in turn records, but field contain-
ment cannot be broken by arbitrary, “unstructured” variable
declarations. Hence, in a migration effort to a modern lan-
guage, the first problem being faced with BAL is reverse
engineering of a structured data model starting from the cur-
rent, unstructured one. The next steps, out of the scope of
the present work, would be aggregating structured data and
operations into a “true” OO model and inferring fine grained

objects, such as dates, by aggregating individual variables
based on use.

The rest of the paper is organized as follows: In sec-
tion 2, we describe the basic cases that may occur in BAL
code and how we map them to Java. Unfortunately, the per-
missive data model of this language allows programmers to
deviate from such basic cases. Exceptions are described in
Section 3, where we explain how these cases are currently
managed. Section 4 provides empirical data on the occur-
rence of the various cases in the particular system we are
migrating. In Section 5, we describe some of the previous
work in the area and conclude in Section 6.

2 Base strategy rules: exact size match

In this section we give a short introduction to the data
model provided by the BAL language and provide some ex-
amples of the basic ways in which the conventional notion
of records and fields are expressed in the BAL language.

DCL a# // Byte Variable
DCL b% // Short Variable
DCL c&=5 // BCD Variable, 5 bytes long

DCL d$=100 // String Variable, 100 bytes long
DCL e$ // String Variable, 16 bytes long

Figure 1. Primitive types

While BAL contains some structured control flow state-
ments such as IF... ENDIF and WHILE.. WEND, the
data model is very unstructured and similar to that found
in structured assembly languages (e.g., that of IBM main-
frames). The data model is byte oriented and the language
only provides four basic data types: byte, short, binary
coded decimal (BCD) and string. The first two are the same
as those available in most languages, representing a single
byte and two contiguous bytes respectively. Variables of
the BCD and string data types can be of different lengths,
and the developer must specify the length (in bytes) if she
wants something different than the default length. Unlike
languages such as C, there is no dynamic allocation, and
the length of all variables is known at compile time.

Figure 1 shows a simple example of variable declara-
tions. The variables a and b are byte and short variables
(indicated by the type specifier '# and '%’). The variable
c is a BCD variable(type specifier *&’, optional) that takes
five bytes of storage. BAL stores the BCD value in its own,
proprietary format. The variable d is a string variable one
hundred bytes long. In the absence of an explicit length (i.e.
“= <expression>"), default lengths of eight bytes for BCD
variables and sixteen bytes for string variables are used.
Thus the variable e is a string variable that is sixteen bytes
long. Arrays of each of the types are also supported by the
language, with at most two indexes (i.e., either vectors or

matrices).

Even mapping the atomic BAL types to Java types is not
straightforward. Byte and short have a natural counter-
part in Java, even though using byte and short in Java
introduces downcasts, since intermediate computations may
get automatically promoted to int. BAL strings are dif-
ferent from Java strings in a few respects: they are repre-
sented as byte (8 bit) sequences, not as UNICODE charac-
ter (16 bit) sequences, they are mutable and they have fixed
length. The mapping with the closest semantics would be
the Java byte array. However, translation of BAL strings
into byte arrays would result in low quality, poorly main-
tainable Java code, in that it would deviate from the com-
mon Java programming practice and it would need ad hoc
support for manipulation of the translated strings. Instead of
resorting to an ad hoc data type based on a byte array rep-
resentation, we decided to use the Java type String any-
way, by providing proper translations and helper functions,
when needed. Modifications of BAL strings are translated
into reassignments and proper helper functions are provided
for string truncation or padding up to the length declared in
BAL. Such helper functions take advantage of annotations
that record the original BAL string size. BCD numbers can
be mapped to the BigDecimal type in Java, but again
some care must be taken. As with BAL strings, the size of
the BCD must be recorded in annotations. BigDecimals
are also immutable, hence reassignment is needed whenever
a BAL BCD is modified. Rounding rules should replicate
exactly the same semantics as in BAL, so the appropriate
mathematical context (MathContext object) should be
chosen for all generated BigDecimals, as well as for the
intermediate arithmetics.

2.1 Simple overlay

In BAL, variables are laid out sequentially in memory,
with global variables in the global space and local variables
on the data stack. Grouping of variables into records is done
by explicitly overlaying variables by giving them overlap-
ping positions in memory. This is accomplished with the
FIELD=M, VAR statement, as shown in Figure 2. The code
starts by declaring a string variable a of length nine. The
FIELD statement resets the current variable position (i.e.
the position of the next declared variable) in memory to the
beginning of the variable a, and as a result, the string vari-
able b has the same starting position as the a, but a shorter
length. The variable ¢ which follows b is assigned to the
next location in memory after b, which is also within the
boundaries of the variable a. In fact, both variables (total
length of nine bytes) are contained within variable a. Thus
an assignment to the variable a will also change both b and
c, while an assignment to b will only change the first five
bytes of the variable a.

aje] ¢ |
#ifdef A
DCL a$ = a DS CA9
FIELD = M, a b EQU a
DCL b$ =5 DS CAS
DCL c$ = 4 ¢ DS CA4
FIELD = M, b d EQU b
DCL d# DS Bl
DCL e# e DS Bl
DCL f$ =3 f DS CA3
#endif

Figure 2. Simple containment with exact size
match

The second FIELD statement resets the current variable
position to the beginning of b (which is also the beginning
of a), and the three variables, d, e and £ are all allocated
from that position. Figure 2 (top) shows the position of vari-
ables in memory diagrammatically. Using the FIELD=M
statement without a variable name resets the current vari-
able position to the first position free in memory. In our
example, if appended at the end of the declarations, such
a statement would move the next data position available in
memory immediately past the end of variable a, since all
of the other variables are located within the space allocated
to a. The right hand listing in Figure 2 shows an equiva-
lent data structure in mainframe assembly language (DS =
allocate data storage, CA=ASCII string, B1=binary byte).
The EQU directive is the equivalent of the FIELD=M, VAR
statement.

As can be seen in the figure, C style preprocessing
statements are available to the developer. Data structures
are kept in separate files (some of which automatically
generated from ISAM! tables) that are included using the
#include directive. Macro definitions are used to se-
lect (via #1ifdef) which data structures to instantiate (e.g.,
#ifdef A, in Figure2).

There are several consequences to the approach taken by
the BAL language. The first consequence is that records do
not introduce any additional lexical scope: the name space
is flat and there is no equivalent of the dot notation (e.g.
a.b), common in languages such as C and Java. The sec-
ond consequence is that it is the developers’ responsibility
to ensure that the sizes of the variables are correct. For ex-
ample, in Figure 2 above, the variable a is intended to be
a reference to the entire record. If the size of c is changed
to five, then the size of a should also be changed. The last

I(ISAM, Indexed Sequential Access Method — a data file format com-
mon in legacy systems)

consequence is that there are many ways of expressing the
exact same layout of variables within memory. The last two
consequences make the recovery of a structured record from
a sequence of BAL declarations difficult.

public class A {
Aa a = new Aa();
class Aa {
Ab b = new Ab();
class Ab {
byte d;
byte e
@Field (size=3)
String f;

}
@Field (size=4)
String c;

Figure 3. Simple containment

For the record data type, which is obtained in BAL
through the FIELD=M construct, the mapping to Java is
straightforward in case of simple containment with exact
size match (as depicted in Figure 2). Figure 3 shows the
Java code produced for the example in Figure 2. Nested
FIELD=M instructions are mapped to inner classes in Java.
BAL strings used as record containers become Java ob-
jects, the type of which is the Java class corresponding to
the FIELD=M defined upon them. For example, the BAL
strings a and b in Figure 2 are turned into the two objects
a and b, declared as class attributes within class A and Aa,
and initialized with instances of class Aa and Ab respec-
tively.

The translation shown in Figure 3 makes the assump-
tion that records are either accessed through their fields (the
leaves of the containment tree) or, as a whole, through the
container itself, used as a reference to the record. For exam-
ple, if field b is read or written as a BAL string in the BAL
code, the generated Java object must resort to serialization
methods (e.g., readFrom and writeTo) to properly as-
sign values to its attributes.

2.2 Multiple overlay

As with many legacy applications, the developers some-
times use alternate views of the same memory. The root
cause of this descends from the persistence layer, in our
case ISAM tables, where multiple record types are often
hosted inside the same table for performance optimization
reasons or just because it is permitted by the language. In
the source code, this turns out to be similar to the union
construct, provided by languages such as C and C++. Fig-
ure 4 shows an example. Variable a, with length 9, has been
redefined twice. Once by two strings b and c. The other by
three variables, d, e and £. The variable d is a byte, while

the variable £ is a short. The variable e is a three element
array of strings, where each element has a length of two. An
assignment to the variable b will change the values of the
variable d and the first two elements of the array e.

d|::e:::|f:|

DCL d#
DCL e$ = 2(3)
DCL 1%

Figure 4. Union

A special case of the union data structure is characterized
by mutually exclusive overlays. In this case, one or more
bytes of the structure form a discriminator, which identi-
fies which overlay is intended to be used. One situation
in which this variant is used is when reading or writing a
table in which multiple record types are stored. Figure 5
shows an example of such a data structure. The two variants
of the storage are the variables b1, c and d on one hand,
and the variables b2, e, £ and g on the other. The two
data structures can be instantiated individually (either by
defining only the macro A1, or by defining only the macros
A2, A2_SKIP). In such cases the data structure has only
one view active (i.e., it is not a union). Union instantia-
tion is achieved by defining both A1 and A2, while leaving
A2_SKIP undefined, so that the second group of declara-
tions (on the right in Figure 5) overlays with the first one.

When a union is instantiated, the string variables b1 and
b2 align (i.e., reference the same memory position) and
comprise the discriminator of this record. One value, say
the value "T", will indicate that the first variant is to be
used, while another, say the value "D", will indicate that the
other variant is valid. The BAL language does not enforce
mutually exclusive access to the record variants. It is up
to the developer to code the related logic appropriately, by
making sure that every access according to one of the views
defined for the given union is guarded by some instruction
ensuring the discriminator holds the value corresponding to
the view being used.

Unions have no obvious counterpart in Java. The idea
behind unions is that an object is made accessible through
multiple views. In Java, one way to express such multiple
accessibility can be achieved by making the object imple-
ment multiple interfaces, each of which associated with one
of the multiple views. In order to avoid replication of data,

|::::a::::|

lot] ¢ | 4« |
e ¢]z |
Fifdel A2
ditdet Al #ifdef A2_SKIP
DCL a$ = 9
DCL a$ = #endif
FIELD = M, o | peoQf
DCL bl$ = 1
DCL b2$ = 1
DCL c$ =4
DCL d$ = 4 DCL c#
#endif DCL f$ =5
DCL g%
#endif

Figure 5. Mutually exclusive overlays

the union object may implement the copy-on-read/write
protocol, which allows lazy creation and update of the al-
ternative views available from the object.

Figure 6 shows the translation of the union in Figure 4.
Class UnionAa implements the two interfaces associated
with the two alternative views defined in Figure 4 for vari-
able a. The first view exposes the fields b and c, hence the
related interface (AalInt) has getter and setter methods
for the corresponding class attributes b and c. Similarly,
the second interface will expose getters and setters for d,
e and £ (not shown in Figure 6 for space reasons). Since
UnionAa implements both interfaces, it must expose get-
ters and setters for all fields in all alternative views (i.e., b,
c, d, e, f).

Lazy creation and update of the alternative views in a
union is achieved by initializing the union fields for the
variants to null. In Figure 6, inside class UnionAa both
attributes a1 and a2 are initialized to null. When a setter or
getter is invoked on the union object, a switchvVariant
operation is invoked if the current active variant of the union
is different from the requested one. Then, the set or get
operation can be delegated to the proper object (al or a2
in our example). The switchVariant operation has
responsibility for creating the requested variant, if the re-
lated attribute has null value, and for copying the field val-
ues from any other non-null variant, in case it exists. The
switchVariant operation ensures that at each point in
time only one union variant has non-null value, so it must
also take care of assigning null to the copied non-null vari-
ant, when it is there.

With reference to Figure 6, if setBis called and both a1
and a2 are null, the switchVariant method will create
an Aal object and assign it to al. If setB is called and
a2 is non-null, switchVariant will copy all fields of
a2 into fields of al. Since fields may be not aligned and of
different type, field copy from one variant to another one re-
sorts to the serialization operations readFrom(Reader)

andwriteTo(Writer) (notshown in Figure 6 for space
reasons), to be used whenever a switch from one union vari-
ant to another one occurs.

public class A {
UnionAa a = new UnionAa();
class UnionAa implements Aallnt, Aa2Int {
Aal al = null; // lazy creation
Aa2 a2 = null; // lazy creation
String getB () {... return al.getB();}
void setB(String b) {
if (al == null) switchVariant (...);
al.setB(b);

class Aal implements Aallnt {
@Field (size =5)
String b;
String getB(){...}
void setB(String b){...}
@Field(size=4)
String c;
String getC(){...}
void setC(String c¢){...}

class Aa2 implements Aa2Int {...}
interface Aallnt {

String getB (); void setB(String b);
String getC (); void setC(String c);

interface Aa2Int {...}

Figure 6. Union

When the different views of a data structure are mutu-
ally exclusive, we can take advantage of inheritance and we
can instantiate the appropriate subclass, instead of resort-
ing to unions. In Figure 5, the value of b1l (or equivalently
b2) determines the record type. Whenever b1=="T", the
first view is accessed, while b1=="D" selects the second
view. In Java, the discriminator is named b and is moved
to the common superclass A (see Figure 7). The value of
the discriminator in the code determines which subclass of
A to instantiate or which downcast to use on an object of
type A. For example, if a BAL code portion instantiates the
data structure in Figure 5 assigning the value "T" to b1,
we know the Java translation must instantiate class A1. If
an object has type A (e.g., because it is returned by a BAL
function), but all its uses are guarded by b1=="D", we can
downcast it to A2 and use the specific methods of A2 in the
translated code.

3 Exceptions to the basic rules

In this section, we examine variable declarations in BAL
that deviate from the basic cases described in the previ-
ous section. For each case, we describe how we manage
to reverse engineer a structured representation of the data.
Since cases have been discovered heuristically and do not
cover the entire set of possibilities offered by BAL, there

public class A {
@Field (size=1)
@Discriminator () public class A2
String b; // was: bl, b2 extends A {

byte e

public class Al extends A { @Field (size=5)
@Field (size=4) String f;
String c; short g;
@Field(size=4) }
String d;

}

Figure 7. Mutually exclusive overlays

is a chance that none of the cases presented in this section
applies, with the consequence that our reverse engineering
technique fails and manual intervention is required. Man-
ual intervention is also required when a known problem is
recognized automatically, but we have no automated solu-
tion for it (e.g., missing container described below). The
amount and cost of such manual interventions are assessed
empirically in the next section.

3.1 Inversion

Figure 8 represents a common alternative way of ex-
pressing the same top level structure as shown in Figure 2
(w.r.t. variables a, b, and c only). In this example, the de-
veloper has first specified the sequence of fields in the struc-
ture before overlaying the fields with a single larger variable
which is used to reference the fields as a whole. The overall
layout in memory, however, remains the same.

| b c |
| o |
DCL b& =5
DCL c¢$ =3
FIELD = M, b
DCL a$ =9

Figure 8. Inversion

The case of a FIELD=M with inversion (Figure 8) is
mapped to Java similarly to simple containment (see Fig-
ure 3), once the container has been recognized. The heuris-
tics to recognize an inversion is the following: a FIELD=M
instruction refers to a variable (e.g., b) smaller than the
first following declaration (a). Then, the exact size match
condition is verified assuming the redefiner (a) is the con-
tainer and the redefinees (b, c) are the record fields. If the
sum of the sizes of the redefinees is equal to the size of
the candidate container (redefiner), an inversion is detected
and mapped to the Java class described previously (see Fig-
ure 3).

3.2 Missing container

Existence of a container for the entire record is neither
enforced nor necessary in BAL. In fact, the first field of
the record can be used as a reference to the beginning of
the record and a FIELD=M instruction, followed by a list
of declarations that exceeds the field size, can be used to
access the the full record. An example of this programming
style is shown in Figure 9. This data structure is a union
for which no container variable is defined. The two views
available in this union (either a record with fields a, b, or
a record with ¢, d), are accessed through the first record
field (either a or c), even though its size is less than the
entire record size. Access to the next fields (e.g., b) is easily
achieved via FIELD=M, a followed by proper declarations
(e.g.,DCL aa$=5, DCL b$=4).

|c:|:::d:::|

FN V)

LS}

#endif

Figure 9. Missing container

Currently, we have no heuristics to manage this excep-
tion. The exact size match condition is clearly violated and
no inversion can be detected. As a consequence, our tool
reports a size mismatch error to be fixed manually. The
manual fix consists of adding a surrounding container to the
declarations shown in Figure 9, e.g., DCL aa$=9 before
the declaration of a, which is turned into a redefinition of
aa. Once the missing container has been added, mapping
to Java of this example can be achieved along the lines de-
scribed in the previous section for unions (see Figure 6).

3.3 Wrong container size

Sometimes, the container for the whole record may exist
but it may have the wrong size. In fact, it is the program-
mer’s responsibility to indicate the size of all variables, in-
cluding those that act merely as containers. If, during soft-
ware maintenance, any field size changes, the change must
be propagated to all container variables for the changed
field. Such a propagation is manual in the source code,
while it is tool-supported for the code generated automati-
cally from ISAM tables. In both cases, the programmer is in
charge of performing the size update. In most cases, while
the compiler does not complain, if enough memory is al-
located for the data structure, no run-time error ever shows

up. So, from the point of view of BAL programming, it
is acceptable. However, recognizing a single data structure
with a container may become difficult in such a situation.

Figure 10 shows an example where the declared con-
tainer size is 7 instead of 9. Apparently, half of variable
c is declared inside the data structure, while half of it is
part of the next free memory positions. This is the typical
hint of a wrong container size. However, it may be hard to
determine how many declarations following b should be at-
tributed to the record a. Consistent declaration of fields for
a total size not exceeding 9 in the alternative views of this
union indicates that the correct container size is probably 9
in this example.

|::b::|:c::|

d |e: | o |

o]
=
m
c
|}
1}
W »Up

#endif

Figure 10. Wrong container size

The heuristics to recognize all cases of wrong container
size are detailed in the next subsection. In the example in
Figure 10, once we are able to recognize that the container
size should be incremented, we can apply the same transla-
tion used for the basic case shown in Figure 4, resulting in
a Java class similar to the one in Figure 6.

3.4 Other mismatching cases

Before producing the Java object model, we encode
the reverse engineered data model in the form of square
brackets surrounding all declarations in the scope of a
given FIELD=M. Moreover, multiple FIELD=M referring
to the same declarations are enclosed within square-angular
brackets. Figure 11 shows the output of this reverse engi-
neering step for the examples of BAL code in Figures 2 and
10.

The containment relationship represented by means of
square brackets is computed by comparing the size of the
original variable (i.e., a) with the sum of the sizes of the
variables in its overlay (i.e., variables after FIELD=M, a).

The problem with producing the correct declaration
bracketing is that the size of the different memory overlays
often does not match. In particular these cases may occur:

DCL a$ =9 [< DCL a$ =7 [<
FIELD =M, a [FIELD = M, a [
DCL b$ =5 ([< DCL b$ =5
FIELD = M, b [DCL c$ = 4

DCL d#]

DCL e# FIELD = M, a [

DCL f$ = 3 DCL d$ = 2
] >1 DCL e$ =2
DCL c$ = 4 DCL f$ =3
1 >]] >]

Figure 11. Containment relationship

Case 1 Exact size match.

Case 2 Redefinition uses less memory than the original
variable.

Case 3 Redefinition uses more memory than the original
variable.

The first case represents the ideal situation, perfect match
between a variable and its redefinitions. This is the case of
variable b and its redefinition as d, e and £ in Figure 2. In
this case we consider the redefinition finished when a vari-
able is appended that makes the size of the content match
the size of the container exactly.

In the second case, the sum of the size of variables within
a redefinition is smaller than the original variable size. For
instance, this would occur if ¢ had size 3 instead of 4 in
Figure 2. Technically, this requires to explicitly close the
redefinition (stopping condition):

Case 2.1 The redefinition is explicitly closed by a
FIELD=M statement, that resets the memory pointer
to the next free available position.

Case 2.2 Another redefinition of the same variable starts
before the full size is reached.

Case 2.3 A redefinition of another variable starts before the
full size is reached.

Case 2.4 Declarations in the code are not enough to fit the
size because the end of the variable declaration section
is reached.

Case 3 occurs when the redefinition does not reach ex-
actly the size of the original variable (case 1) and the redef-
inition is not terminated explicitly (case 2). In this case the
redefinition is considered closed when a variable is added
that crosses the boundary of the enclosing variable.

Since we do not know whether this structure corresponds
to the actual intent of the developers, an error is reported and
a manual fix intervention is requested. We recognize this
instance as an explicit intention of the developer when one
of the following stopping conditions appears immediately
after the last variable in the redefinition:

Case 3.1 The redefinition is followed by the FIELD=M
statement that resets the memory pointer.

Case 3.2 The redefinition is followed by another redefini-
tion of the same variable.

Case 3.3 The redefinition is followed by a redefinition of
another variable.

Case 3.4 There are no other declarations in the code be-
cause the end of the variable declaration section is
reached.

An example of Case 3 is shown in Figure 10, where the
declaration of c crosses the boundary of a. Since the decla-
ration of c is immediately followed by a stopping condition
(case 3.2), bracketing of the redefinition of a can be com-
pleted automatically, without requiring any user interven-
tion. The declarations of b and c are put inside the square
brackets for the FIELD=M, a instruction. For d, e and £
in the example shown in Figure 10 the stopping condition
that applies is number 3.4 (end of declaration section). The
resulting bracketing is shown in Figure 11, right.

4 Experimental data

In this section, we first describe migration process and
tools, as well as the system being migrated. Then, we report
on some data that we collected when applying the proposed
data model structuring techniques.

4.1 Migration process and tools

The legacy system contains two different kinds of data
structures that deal respectively with persistent and tran-
sient data. Persistent data are stored on ISAM files, each
containing one or more ISAM tables. The structure of most
of the ISAM tables is described in a particular ISAM ta-
ble (indeed, a meta-table) called the dictionary. This is a
detailed description of the table meta-data, that includes not
only type and size of table fields, but also supplementary in-
formation such as the fields used as discriminators as well as
the discriminator values. Declarations for data coming from
these ISAM tables are inside include-files that are periodi-
cally generated from the dictionary. When moving to Java,
the dictionary must be translated as well, since its declara-
tions have to be turned into class definitions that allow in-
stantiating Java bean objects whenever a record is retrieved
from the persistent storage.

A few remaining ISAM tables are described in developer
maintained data structures, but not in the dictionary. All the
other data structures contain transient data: they are used
in the front-end interaction, they store intermediate results.
The BAL code for transient data structure is manually main-
tained by the developers.

4.1.1 Dictionary

Considering the valuable information available in the dictio-
nary, the analysis of persistent data structures is performed
directly on it, instead of the generated include-files. The
dictionary is converted by a pre-existing custom tool into
an XMI representation that can be inspected with any XML
library. We used XOM? (an XML manipulation library for
Java) to analyze the dictionary representation and to gener-
ate the Java classes to access ISAM tables. The same cases,
described in the previous section, apply both to data struc-
tures found in the user code and data structures documented
in the dictionary. Hence, the same bracketing algorithm was
used, but the implementation of the algorithm for the dictio-
nary is based on Java/XOM.

4.1.2 User code
Analysis of the user code is performed in three main steps:

o Code normalization, the code is normalized in order
to make the subsequent analysis and transformation
simpler;

e Fact extraction, a number of facts is extracted from
the code and used in final step;

e Data structure inference, the containment relation-
ship is identified and all the possible overlays are
grouped together.

In the first step the code is normalized and code ambi-
guities are resolved. We use agile parsing [6], modifying
grammar and language to distinguish between ambiguous
cases. For example, in BAL the same syntax (i.e., brack-
ets) is used for array access and for function invocation. In
the code normalization step, we change the declarations and
all uses of arrays so as to comply with the C/Java syntax
(square brackets). Unique naming [7] is used to generate
identifiers that are unique within the system, regardless of
their scope. Unique naming is required because segments
can have local variables and global named constants can be
used as sizes in segment local variables. Moreover, in case
of reused variable names, local names hide global names.

In the first step we also identify and mark the portions
of code originated from the expansion of include-files that
are generated from the dictionary. The data structures in
these portions of code are not analyzed in step 3, since their
analysis is carried out directly on the dictionary where they
come from.

In the second step (fact extraction) the code is analyzed
and information about it is stored in a data base. The most
important facts produced in this phase deal with type and

Zhttp://www.xom.nu/

length of all variables and constants. In this step, the com-
bination of information from multiple files into a single data
base allows us to resolve external information. An example
is when the length of a variable is given by a constant or
macro from another file.

The third step is the application of a source level trans-
formation that searches for each of the cases described in
the previous sections and inserts appropriate brackets to in-
dicate the full extent of the boundaries of field redefinitions.
In this step, size information is used to understand when dif-
ferent fields overlay in memory. Redefinitions of the same
field are grouped together and moved next to the field dec-
laration (square-angular bracketing), so that unions are im-
mediately recognizable.

All three analysis steps for the user code have been im-
plemented using the TxI language [4].

4.2 The legacy system

The system that we are migrating is a production bank-
ing application which supports all functionalities necessary
to operate a bank, including account management, finan-
cial products management, front-desk operations, commu-
nications to central bank and other authorities, inter-bank
communications, statistics and report generation. The user
interface is character-oriented and the overall architecture
is client-server, with the client operating mostly as a char-
acter terminal. The execution environment is a proprietary
platform called B2U.

Lines of code (user code) 8,673,250
Lines of code (after expansion) 14,099,436
Number of source code files 2,701
Number of ISAM files 1,339
Number of ISAM tables 5,893
Number of unique ISAM tables 3,950

Table 1. Features of the system being mi-
grated

Table 1 shows some indicators of the characteristics of
the system being migrated. The application is quite large
(around 8 MLOC). Since the BAL language admits prepro-
cessor directives, the actual input to our analysis and trans-
formation tools is the preprocessed (expanded) source code,
with an approximate growth factor of 1.63. The persistent
storage is also pretty large in terms of ISAM files and ta-
bles. For the latter, the correct number to consider is the
number of unique ISAM tables. Some tables are just du-
plicates of other tables, having exactly the same structure.
In such a case, only one table, representative of the entire
equivalence class, is actually translated to Java.

4.3 Migration results

Case User code | Dictionary
Case 1 425,988 8,279
Case 2 27,100 65
Case 3 13,850 4
Case 2.1 1,371 0
Case 2.2 13,121 36
Case 2.3 11,642 11
Case 2.4 966 18
Case 3.1 5,207 0
Case 3.2 1,645 1
Case 3.3 4,508 3
Case 3.4 2,490 0
Case err 5,286 45

Table 2. Occurrences of structuring cases

Table 2 shows the frequency of the cases considered dur-
ing the inference of an object model from the existing flat
memory model. The table is split into two columns, associ-
ated with data model inference for user code vs. dictionary.
Case err occurs whenever none of the case-based heuristics
applies and manual intervention is required. Manual fixes
will be performed by the engineers who developed the orig-
inal legacy system, they are BAL expert.

As apparent from Table 2, most of the cases, both in user
code and dictionary, can be handled by the simplest of the
cases in our case analysis: exact size match (Case 1). Case
2 (redefinition of less memory than declared) seems to pre-
vail on Case 3 (redefinition of more memory than declared),
both in user code and dictionary. Whenever a size mismatch
occurs, the presence of a successive redefinition of the same
or another variable can be exploited to infer the data struc-
ture boundaries in most situations (see Cases 2.2, 2.3, and
3.2,3.3).

The 45 error cases remaining in the dictionary have been
fixed by means of a tool that allows the user to specify the
dictionary transformations required to fix the problems. The
tool accepts instructions such as “change field length” or
“insert container field before a given field”. By manually
providing such instructions to the tool, we have been able
to produce a version of the dictionary that can be processed
completely automatically and from which it is possible to
generate all Java classes required to represent the persistent
data. This manual intervention required 5 working days (in-
clusive of dictionary fixing tool development). A similar
code fixing tool is under development for the 5,286 error
cases remaining in the user code. Even if the cases to solve
are quite a lot, a further investigation showed that they are
not independent, they all refer to just 442 recurring vari-
ables. In all other cases (466,938), Java classes have been
automatically generated for the user code.

Table 3 shows the number of classes, interfaces and
unions (counted also as classes) generated for user code and
dictionary. Interfaces are generated only to support proper

User code | Dictionary
Classes 510,108 12,402
Interfaces 148,621 753
Unions 29,394 263

Table 3. Generated Java code

definition of unions in Java. Numbers indicate that in most
of the cases, unions are not necessary, in that the given data
structure is accessible through a single view. In the dictio-
nary, the total number of unions is relatively small (263),
so that it is reasonable to plan their complete manual elim-
ination from the generated Java code. Among the classes
generated from the dictionary, 88 satisfy the pattern shown
in Figure 5 (mutually exclusive overlay). For these cases
it is possible to take advantage of inheritance and to use
a discriminator to decide which subclass to instantiate or
downcast to.

Current BAL developers will maintain the translated
code (after intensive Java training). Maintainability issues
have been discussed with the customer. Decisions about the
final system design and translation have been taken in con-
cert with him.

5 Related work

The problem of migrating a legacy software system to a
novel technology has been widely addressed in the litera-
ture by different approaches. The different strategies have
been classified by [1] into (1) redevelopment from scratch;
(2) wrapping; and, (3) migration. In their view, even the
migration strategy requires substantial redevelopment. Our
contribution belongs to the third class and consists of a set
of automatic transformations.

Migration to object oriented programming and extraction
of an OO data model from procedural code are the topics of
several works [2, 5, 15, 16, 17]. Class fields originate from
persistent data, user interface, files, records and function pa-
rameters, while class operations come from the segmenta-
tion of the program according to branch labels in the work
by Sneed et al. [15]. Other works on object identification
rely on the analysis of global data and of the code access-
ing them [2, 11, 13]. Since a record is too large and often
contains unrelated data, cluster analysis was used [17] to
identify groups of related fields within a record. In order
to decide which data and which routines should be grouped
together into classes, object-oriented design metrics (Chi-
damber and Kemerer) have been used to guide the migra-
tion [3, 5].

Type inference was used to acquire information about
variables in legacy applications that goes beyond that con-
veyed by the declared type, so as to simplify migration to-
ward a programming language with a richer and stronger

type system [12, 14]. For instance, type inference was ap-
plied to Cobol [18, 19] to determine subtypes of existing
types and to check for type equivalence. Static analysis
and model checking have been used on Cobol to determine
when a scalar type should be better regarded as a record
type [10] and to determine unions the variants of which are
consistently accessed through discriminators [8, 9].

The work presented in this paper differs from the exist-
ing literature in that it deals with a starting data model per-
mitting arbitrary overlays in memory. Our work represents
the first step — reverse engineering a structured data model
— toward an OO model of the data.

6 Conclusions and future work

We have presented an algorithm for the reverse engineer-
ing of a structured data model from a data model based
on arbitrary memory layouts. Although described in the
context of a real, ongoing migration project, the proposed
approach is quite general and applies to a number of pro-
gramming languages that support arbitrary data layout in
memory. For example, it would be relatively easy to ap-
ply the same technique to the structured assembly language
of mainframes, in migration projects targeting a language
with a structured data model (e.g., Cobol). Often, portions
of IT systems on mainframes are written in assembly, and
we are aware of at least one major system written entirely
in assembly.

Our future work will be focused on the remaining issues
that affect the migration of the data model. In particular, one
important improvement of the migrated data model can be
achieved if union discriminators are recognized even when
not explicitly documented in the dictionary. We are devel-
oping a technique for this problem, along the lines of the
existing literature on this topic [8, 9].

References

[1] J. Bisbal, D. Lawless, B. Wu, and J. Grimson. Legacy in-
formation systems: issues and directions. Software, IEEE,

16(5):103-111, September/October 1999.
[2] G. Canfora, A. Cimitile, and M. Munro. An improved al-

gorithm for identifying objects in code. Software: Practice

and Experience, 26:25-48, January 1996.
[3] A. Cimitile, A. D. Lucia, G. A. D. Lucca, and A. R. Fa-

solino. Identifying objects in legacy systems using design
metrics. Journal of Systems and Software, 44:199-211, Jan-

uary 1999.
[4] J. Cordy. The txl source transformation language. Science

of Computer Programming, 61(3):190-210, August 2006.
[5] A. De Lucia, G. Di Lucca, A. Fasolino, P. Guerra, and

S. Petruzzelli. Migrating legacy systems towards object-
oriented platforms. Software Maintenance, 1997. Proc. of
International Conference on, pages 122-129, 1-3 October
1997.

(6]

(7]

(8]

(9]

[10]

[11]

[12]

(13]

(14]

(15]

(16]

(17]

(18]

(19]

T. Dean, J. Cordy, A. Malton, and K. Schneider. Agile
parsing in txl. Journal of Automated Software Engineering,
10(4):311-336, October 2003.

X. Guo, J. R. Cordy, , and T. R. Dean. Unique renaming
of java using source transformation. In Source Code Analy-
sis and Manipulation 2007, Proc. of the 3rd IEEE Interna-
tional Workshop on, Amsterdam, The Netherlands, Septem-
ber 2003. IEEE Computer Society.

R. Jhala, R. Majumdar, and R.-G. Xu. State of the union:
Type inference via craig interpolation. In Tools and Algo-
rithms for the Construction and Analysis of Systems, 2007.
Proc. of the 13th International Conference on, pages 553—
567, 2007.

R. Komondoor and G. Ramalingam. Recovering data mod-
els via guarded dependences. Reverse Engineering, 2007.
Proc. of the 14th Working Conference on, pages 110-119,
28-31 October 2007.

R. Komondoor, G. Ramalingam, S. Chandra, and J. Field.
Dependent types for program understanding. In Tools and
Algorithms for the Construction and Analysis of Systems
2005. Proc. of the International Conference on, pages 157—
173, 2005.

S.-S. Liu and N. Wilde. Identifying objects in a conven-
tional procedural language: an example of data design re-
covery. Software Maintenance, 1990. Proc. of the Inter-
national Conference on, pages 266-271, 26-29 November
1990.

R. O’Callahan and D. Jackson. Lackwit: A program under-
standing tool based on type inference. Software Engineer-
ing, 1997. Proc. of the 19th International Conference on,
pages 338-348, 17-23 May 1997.

S. Pidaparthi and G. Cysewski. Case study in migration
to object-oriented system structure using design transfor-
mation methods. Software Maintenance and Reengineer-
ing, 1997. Proc. of the first Euromicro Conference on, pages
128-135, 17-19 March 1997.

G. Ramalingam, R. Komondoor, J. Field, and S. Sinha.
Semantics-based reverse engineering of object-oriented data
models. In Software engineering, 2006. Proc. of Interna-
tional Conference on, pages 192-201, 2006.

H. Sneed and E. Nyary. Extracting object-oriented speci-
fication from procedurally oriented programs. Reverse En-
gineering, 1995. Proc. of the 2nd Working Conference on,
pages 217-226, 14-16 July 1995.

H. B. K. Tan and T. W. Ling. Recovery of object-oriented
design from existing data-intensive business programs. In-
Sformation and Software Technology, 37:67-77, 1995.

A. van Deursen and T. Kuipers. Identifying objects using
cluster and concept analysis. Software Engineering, 1999.
Proc. of International Conference on, pages 246255, 1999.
A. van Deursen and L. Moonen. Understanding cobol sys-
tems using inferred types. Program Comprehension, 1999.
Proc. of the Seventh International Workshop on, pages 74—
81, 1999.

A. van Deursen and L. Moonen. Exploring legacy systems
using types. In Reverse Engineering. Proc. of the seventh
Working Conference on, pages 32—41. IEEE Computer So-
ciety Press, 2000.

