
Remote Entrusting by Run-Time Software

Authentication

Mariano Ceccato1, Yoram Ofek2, and Paolo Tonella1

1 Fondazione Bruno Kessler—IRST, Trento, Italy
{ceccato, tonella}@fbk.eu
2 University of Trento, Italy

ofek@dit.unitn.it

Abstract. The problem of software integrity is traditionally addressed
as the static verification of the code before the execution, often by check-
ing the code signature. However, there are no well-defined solutions to
the run-time verification of code integrity when the code is executed re-
motely, which is refer to as run-time remote entrusting. In this paper
we present the research challenges involved in run-time remote entrust-
ing and how we intend solve this problem. Specifically, we address the
problem of ensuring that a given piece of code executes on an remote
untrusted machine and that its functionalities have not been tampered
with both before execution and during run-time.

1 Introduction

When the software industry discusses software integrity, the main focus is on the
protection of static software modules (e.g., by verifying the signature of their
originator). On the other hand, dynamic software authentication in real-time
during execution is a known problem without a satisfactory solution. Specifically,
how to ensure that trusted code base (i.e., the software as was specified and
coded) is running on an untrusted machine at all times and that the original
code functionality was not modified prior to or during execution, is an open
research challenge. This issue of entrusting software components is crucial since
software, computers and networks are invading all aspects of modern life.

The issue of executing software in a trusted computing (TC) environment
has gained a great deal of attention recently, in particular, the TCG (Trusted
Computing Group) [22], Microsoft NGSCB (Next Generation Secure Comput-
ing Base) [23] and TrustZone developed by ARM [24] (see the next related work
subsection for more details). These activities are somewhat complementary and
orthogonal to the work presented in this paper. The previous approaches are
hardware-based, and consequently, will not be available on all existing machines.
Our research hypothesis is that a solution can be designed at any layer as a soft-
ware component enhancing the layer itself in a cost-effective fashion; in contrast,
TC is invasive, since it requires special hardware on the “motherboard”. The
proposed novel paradigm for remote entrusting of software will be available as
a general, platform-independent solution (i.e., it is non-monopolistic, thus more

2

competitive). The solution adds another line of defense to complement the cur-
rent hardware solutions; while Trusted Computing (TC) can help manage keys
and verify the system integrity during startup, it offers little protection against
an attacker that already has access to the machine.

The key research question in remote entrusting is: “How can the execution
of a software component be continuously entrusted by a remote machine, albeit
the software component is running inside an untrusted environment?” (This is
refer to as the “remote entrusting problem”).

The solution to the above research problem should be able to employ external
hardware, such as, smart cards, but not as a mandatory component. Further-
more, this work investigates a novel methodology for solving this problem by
employing a software-based trusted logic component on a remote untrusted ma-
chine that in turn authenticates its operation continuously during run-time (i.e.,
execution). The method should assure the entrusting component that if the
authentication is successful, then the original (i.e., unchanged) software func-
tionality is being executed.

The long-term objective of the proposed approach is to entrust selected func-
tionalities that are executed on untrusted machines and thereby ensure crucial
trust/security properties.

Examples of possible applications are:

1. Protecting network resources and servers from users employing untrusted
(i.e., unauthorized) software and protocols — specifically in the critical ap-
plications, such as, e-commerce, e-government.

2. Ensuring data privacy in Grid computing as well as digital right manage-
ment (DRM) adherence by assuring proper processing of untrusted (possibly
misbehaving) machines.

There are two fundamental differences between remote entrusting and other
related approaches. Those fundamental differences are clear manifestation of
some of the advancements beyond the state-of-the-art proposed by our approach.

1. Core of trust location — the basic working assumption when dealing with
trust is that “some system components can be trusted” called at times, “core
of trust”. In some current approaches, such as trusted computing (TC), the
“core of trust” is located locally on the “mother board”, while in RE-TRUST
the “core of trust” is placed in a remote trusted entity across the network.
In other words, our model intend to address the trust problem by using the
network under the assumption of continuous network connectivity, which is
almost a reality today.

2. Entrusting/validation method — our proposed validation method is a sig-
nificant departure from the-state-of the-art by introducing a novel protocol
that provides software trust (or authentication) that is continuous during
run-time — in other words, we introduce a proactive (avoidance) method.
The main current approach to trust, e.g., TC (trusted computing) is off-
line or reactive (after the fact); namely, it may be possible to detect trust
violations after some damage has been done. The objective of RE-TRUST
project is to avoid breach of SW trust damages all together.

3

In the rests of the paper describes how we intend to address the remote en-
trusting problem. In Section 2 the basic remote entrusting approach is described
and in Section 3 more details are given regarding the general architecture, pure-
software and the hardware assisted solutions, then Section 4 introduces some
possible attacks and discusses some possible protection mechanisms. The dis-
cussion in Section 5 concludes the paper.

1.1 Related works

The initial work concerning the remote entrusting was developed by some con-
sortium members in the TrustedFlow research activities [1,2]. The initial work
introduced the ideas on how to generate a continuous stream of signatures us-
ing software only. The remote entrusting methodology is novel and challenging,
and presents a major advancement beyond the state of the art. However, some
specific aspects of the proposed research activities have been dealt with in differ-
ent contexts. Therefore, the following state of the art discussion is divided into
several subsections corresponding to various research aspects that are related to
our approach.

Software dependability state of the art Software dependability is a ma-
ture and well-established research area that seeks solutions to the problem of
software errors that can corrupt the integrity of an application. To this aim,
several techniques have been developed and the most prominent are control-flow
checking and data duplication. Control-flow checking techniques are meant to
supplement the original program code with additional controls verifying that
the application is transitioning through expected valid “traces” [3,4,5]. In data
duplication techniques, program variables are paired with a backup copy [6,7,8].
Write operations in the program are instrumented to update both copies. Dur-
ing each read access, the two copies are compared for consistency. There is one
main difference regarding the “attack model”, between software dependability
and the current project. Software dependability assumes that modifications are
accidental (random) errors (say bit flips), while remote entrusting deals with
intentional and malicious software modifications.

Software tamper resistance state of the art Among the several possible
attacks, the focus is on the problem of authenticity, i.e., attacks aiming at tam-
pering with application code/data for malicious purposes, like bypassing licens-
ing, or forcing a modified (thus unauthorized) execution. Different solutions have
been proposed in the literature to protect software from the above-mentioned
rogue behaviors. Such solutions are surveyed in details in [9,10] and briefly de-
scribed in the following. Obfuscation is used to make application code obscure
so that it is complex to understand by a potential attacker who wants to reverse
engineer the application. Obfuscation techniques, change source code structure
without changing its functional behavior through different kinds of code trans-
formations [11,12]. Theoretical studies about complexity of reverse engineering

4

and de-obfuscation are in early stage. It is well-known that for binaries that
mix code and data disassembly and de-compilation are undecidable in the worst
case [13]. On the other hand, some work reported that de-obfuscation (under
specific and restrictive conditions) is an NP-easy problem [14]. Further, it was
proven that a large number of functions cannot be obfuscated [15].

Replacement background state of the art Dynamic replacement strategy
relies on the assumption that tampering attempts can be made more complex if
the attackers have to face newer versions continuously. This approach has some
similarities with software aging [16], where new updates of a program are fre-
quently distributed. This limits the spread of software “cracks” and it allows
renewal of software protection techniques embedded in the application. Another
relevant area of related work is represented by techniques for protection of mobile
agents [16,17]. For instance, previous work proposed a scheme to protect mobile
code using a ring-homomorphic encryption scheme based on CEF (computa-
tion with encrypted functions) with a non-interactive protocol [18,19]. However
the existence of such homomorphic encryption function (also known as a privacy
homomorphism) is still an open problem. Furthermore, some approaches mix ob-
fuscation and mobility. For instance, in [20] agents are periodically re-obfuscated
to ensure that the receiving host cannot access the agent state.

Hardware-based entrusting state of the art Solution proposed by Trusted
Computing initiatives [21,22,23,24] rely both on a trusted hardware component
on the motherboard (co-processor) and on a common architecture that enable
a trusted server-side management application to attest the integrity of a ma-
chine and to establishing its “level of trust”. This non run-time approach has
been applied to assess integrity of a remote machine enhanced with a trusted
coprocessor and a modified Linux kernel [25]. In that work a chain of trust is
created. First BIOS and coprocessor measure integrity of the operating system
at start-up, then the operating system measure integrity of applications, and
so on. Other non run-time approaches rely on additional hardware to allow a
remote authority to verify software and hardware originality of a system [26].
Beside Trusted Computing, another interesting approach is presented in [27].
This approach has some similarities to our hardware assisted method, as it is
based on commodity hardware tokens (e.g., smart cards) and remote execution
of selected software components.

2 Basic approach

Detection of software changes on a 1st machine by a 2nd machine across the
network is difficult since the 2nd machine cannot directly observe the software
executed on the 1st machine. As shown in Figure 1, in order to solve the problem,
the 2nd machine should receive some “proofs” regarding the authenticity of the
software that is running on the 1st machine. Such “proofs” are hard to obtain

5

since the 2nd machine often receives only data from the 1st machine, while what
is actually needed by the 2nd machine is to receive signatures (or attestations)
continuously from selected parts of the software running on the 1st machine,
i.e., selected applications and protocols that are executed on the 1st machine.
The signatures (or attestations) will thereby authenticate the respective selected
software parts executed on the 1st machine. In other words, the signatures that
are continuously emanated from selected parts of the software on the 1st ma-
chine provide the “identity” of the running software and thereby enabling the
2nd machine, after validation, to entrust the software running on the 1st ma-
chine. However, today selected applications and protocols that are developed
and deployed on such 1st machines are not designed to emanate signatures (or
attestations) continuously. In essence this is a paradigm shift and one of the
main scientific/technical challenges introduced in the RE-TRUST project [29].

Secur e T ags

2 nd Ent r ust ing
M achine

1 st U nt r ust ed
M achineEnt r ust ing

T he Global
I nt er net

¬ 1 st U nt r ust ed machine emanat es S ecur e T ags
f r om a code/ sof t war e dur ing ex ecut ion

¬ 2 nd Ent r ust ing M achine is EN T RU S T I N G t he
1 st U nt r ust ed machine by ver if ying t he S ecur e T ags

Core of Trust

Fig. 1. Entrusting by remote software authentication during execution.

As stated before, networking and computing are converging into one system,
consequently, various security and trust problems are emerging. The core of the
remote entrusting principle (or entrusting, for short), presented in this research
project, is: “To utilize trusted entities in the system/network (firewall, interface,
server, protocol client, etc.) in order to entrust selected software components in
otherwise untrusted machines across the network, assuring their on-line/run-
time functionality”. Namely, entrusting is based on the assumption that there
are trusted entities in the converged system of networking and computing (ob-
viously, if nothing can be trusted, building any trust relationship is not feasi-
ble). The term “untrusted machine” implies that a malicious user has access
to system resources (e.g., memory, disks, etc.) and tools (e.g., debuggers, dis-
assemblers, etc.) on the 1st untrusted machine, and consequently, is capable of
tampering/modifying the authentic (i.e., original) code prior to or during ex-
ecution. In other words, the objective is that a 2nd entrusting machine (e.g.,
“Core of Trust”, see Figure 1) will entrust the 1st untrusted machine by “au-
thenticating its execution” (i.e., in real-time). Indeed, the execution of software

6

(code/protocol) is authentic/trusted if and only if its functionality has not been
altered/tampered by an untrusted/unauthorized entity, both prior to execution
and, more importantly, during run-time. Finally, note that the basic remote
entrusting scheme depicted in Figure 1, can be extended to contemplate:

– Mutual remote entrusting: where the 1st and 2nd machines are entrusting
one another.

– Transitive remote entrusting: where a 1st machine is entrusting a 2nd ma-
chine and a 2nd machine is entrusting a 3rd machine.

3 General architecture

The scientific and technical challenges involved in the present approach follows
three orthogonal dimensions represented in Figure 2. Two dimensions represent
two main software only approaches(code tamper resistance and code replace-
ment), while the third represents the hardware assisted approach (tamper resis-
tance (TR) using combined hardware (e.g., smart cards) and software).

The first software based dimension is the tamper resistance quality, it mea-
sures how difficult is to apply malicious modifications to the running program.
Several techniques could be applied to increase the protection along this dimen-
sion, such as obfuscation, to increase the reverse engineering effort required to
apply any attack.

 SW −based
Dynamic Replacement
(increased frequency)

SW −based
Tamper−resistance (TR) Quality

(increased reverse engineering complexityincreased reverse engineering complexity)

Im proved SW Originality TrustImproved SW Originality Trust
is Measured by Increased
Distance from the Origin
Using 2Using 2−−type of Metrics: type of Metrics:
Time and TR ComplexityTime and TR Complexity

HW /SW −based [e.g., USB Smart Card]
Tamper−resistance (TR) and Encryption Quality
(increased reverse engineering and decryption complexityincreased reverse engineering and decryption complexity)

Fig. 2. Quality of remote entrusting.

The second software pure-software dimension involves dynamic replacement.
A portion of the application is periodically replaced at runtime, in order to give

7

an attacker a limited time to complete an attack. Ideally a solution for remote
entrusting should take advantage of both these two dimensions, because the more
resilient is a tamper proof technique, the longer an attack would take to break
it, the lower replacement frequency is required.

In the third dimension, tamper resistant methods involve co-design of ap-
plication with software and hardware components, analyzing trade off between
hardware and software. Pure software-based techniques may be extended to take
advantage of the hardware dimension to increase the level of protection.

3.1 Pure software approach

The pure software dimensions investigate software-only methodologies for real-
izing the above-mentioned principle. In particular two objectives are addressed:
(1) the secure software monitor should be combined (interlocked) in a secure
way with the original application, and (2) the combined monitor must be robust
against tampering (i.e., tamper resistance - TR). The first challenge will be dealt
with by means of SW dependability techniques (e.g., for software faults detec-
tion). Tampering attacks are similar to random faults with the major difference
that they are intentional (not accidental). Consequently, software dependability
techniques are applicable to the trust domain as defined in Section 2. Finally,
note that software dependability techniques are traditionally applied to a com-
piled code (e.g., C and C++). An additional challenge in this task will be to
extend the above-mentioned techniques to an interpreted code (e.g., C# and
Java). The second above objective will be addressed with two complimentary
techniques: tamper resistance through software-based techniques, like source and
binary obfuscation, and tamper avoidance, by dynamically replacing (parts of)
secure software monitor, hence limiting the monitor lifetime (thus, also the tam-
pering duration).

3.2 Hardware assisted approach

The hardware assisted dimension investigates tamper resistance methodologies
combining hardware and software. With this approach, relatively inexpensive
and widely available hardware monitors, such as smart cards or Trusted Plat-
form Modules (TPMs) can be used to strengthen and improve the software-only
protection method. A wide spectrum of possible solutions will be investigated
ranging from low to high trust protection. This ranges from the hardware per-
forming only some central operations (e.g., public key cryptography) to directly
controlling the execution of major parts of the application, where the (untrusted)
computer only stores encrypted code and data.

To investigate the combination of hardware- and software based software
protection. The idea is twofold. On one hand, it is desired to utilize cheap and
available hardware that alone may not be able to provide enough functionality.
For example, trusted platform monitors, to strengthen the software protection.
At the other extreme, the hardware itself may control most of the program flow,
delivering maximum security at the price of a performance penalty. Finally, it is

8

desired to investigate solutions in between the two extremes, to allow developers
to freely choose the trade off between hardware cost, performance and security.
Along the above lines, two major issues need to be investigated:

1. Regarding the low trust protection mode, execution of the code must be
split between hard- and software, in a way that maximizes protection and
minimizes the performance penalty.

2. Regarding the full trust protection, methods must be developed that allow
an attacker to observe the entire communication between the computing
engine (the secure hardware) and the memory (in the PC), without learning
any useful information.

Novel methods should be developed to scale the protection level, i.e., to discreetly
adapt the trust and security level of specific scenarios.

3.3 Monitor

The secure software monitor and the original application must be correlated in
such a way that any attempt to corrupt the authenticity of the application will
be detected by the monitor, and that any attempt to harm the integrity of the
monitor itself will stop the generation of valid signatures. This constitutes a
major and open challenge in a pure software methodology. The initial approach
will investigate techniques borrowed from the software dependability discipline,
as in the area of software fault tolerance.

Innovative methods will be investigated to exploit the “time dimension” to
increase overall tamper resistance of the secure software monitor. Namely, to
bound the time available for attackers by means of dynamic software updates,
where (parts of) the secure software monitor can be replaced at any instant dur-
ing run-time. This approach improves tamper avoidance by making the life-time
of each secure software monitor to a short defined time interval. To achieve this
goal two major issues must be investigated, i.e., replacement strategies for inter-
preted (e.g., C# and Java) and compiled (e.g., C and C++) code the automated
and non-predictable generation of secure software.

In pure software methods, the secure software monitor has to be protected
from tampering. In particular, this requires solutions to two different problems:
(1) the monitor behavior must be hidden to avoid trivial reverse engineering, and
(2) secret data inside the monitor (e.g., encryption keys) must be hidden in order
to be not easily spotted. It is envisioned that the obfuscation and white-box cryp-
tography are the means to address the above-mentioned problems, respectively.
This problem is articulated in the following ones: source-to-source obfuscation,
obfuscation of (Java) byte code and protection of embedded keys with white-box
cryptography techniques.

4 Attacks and analysis

This sections introduces some possible attacks and then discusses some possible
protection mechanisms.

9

4.1 Possible attacks

A number of attacks may be applied to the remote entrusting software/hardware
protection schemes. The attacker objective is to prevent the trusted machine
from detecting tampering, and consequently, (remote) entrusting an untrusted
machine. The rest of the section uses P to denote the program running on the
untrusted machine that must be protected. The secure monitor will be called M.

Reverse engineering attacks Reverse engineering attacks aim at locating
important functionalities and data both in P and M. Once located, functionalities
and data are altered maliciously. Key functionalities and data that can be the
target of a reverse engineering attack in the remote entrusting scheme are:

– Secure tag (sequence) generator.
– Authenticity checking functions.
– Secret keys (e.g., used for secure tag generation).
– Input data (e.g., passed to checking functions).
– Output data (e.g., produced by checking functions).

The attacker may attempt to locate the function of M that generates the
authenticity secure tag sequence and any secret key used for it. Once located, this
functionality could be tampered with in order to produce correct authenticity
tags even when P should not be trusted.

The attacker may attempt to locate and tamper with the functions that are
devoted to checking the authenticity of P and of the underlying software and
hardware. They could be modified so as to return a positive test result even when
the actual result is negative. Moreover, they could be analyzed to understand
which parts of the whole system are subjected to frequent checks and which
ones are verified more rarely, in order to discover weak points where to apply a
malicious modification that would be revealed with low probability.

The attacker may attempt to locate and change the input and output values
involved in function calls, so as to change the behavior of the called function.
This could be used to alter the result of a check performed by the monitor M
or to tamper with the expected behavior of the program P. One way to change
inputs or outputs is by directly modifying the code. Another possibility, which
requires a combined execution environment attack (see next section), consists of
intercepting the function call and changing input or output values dynamically.
This second approach is stealthier than the former, because it cannot be detected
by a code analysis on P. In fact, the running code is the original one.

Execution environment attacks The attacker can tamper with the under-
lying execution environment, thus altering the behavior of P without modifying
its code. Instead of deploying P on the actual processor, the attacker could run
it on a simulated processor, which implements the same functionalities of the
actual processor in software. It provides registers, interrupts and I/O devices. It
can interpret and execute binary code. The simulated processor can be stopped

10

when specific events occur. The current context (i.e., memory, call stack, param-
eters) can be analyzed and modified. Then, execution is resumed. The attacker
can take advantage of this infrastructure to intercept calls to libraries, to oper-
ating system and I/O facilities in order to dynamically modify parameters and
memory locations and, thus, maliciously change the behavior of the program.

A similar attack consists of executing program P inside a debugger, which
traces all the executed instructions, memory accesses and memory content. The
debugger can interrupt the execution when selected instructions or conditions
are met and the user can perform dynamic modifications.

Another attack to the execution environment may be directed toward the
dynamic libraries. By altering them, it could be possible to trace and modify
any operation that the program delegates to them, such as I/O, memory man-
agement, file system storage and network communication.

Cloning attack In a cloning attack two copies of P are installed. The first copy
is the original, unadulterated one. The monitor M is correctly installed with it
and it is periodically updated. The execution environment, operating system and
hardware are genuine. Such a program sends the server the expected authenticity
secure tag sequence and, thus, is entrusted. The attacker maliciously modifies
the second copy of P. The tampered copy runs in parallel with the first one,
but not necessarily on the same client. The output of its monitor M is simply
discarded.

All the network traffic coming from the server is sent both to the original
and to the tampered applications (e.g. using a modified network device), so they
can be executed in parallel on the same input values. The original application
provides the authenticity tags required to be trusted by the server, whereas the
tampered copy provides the modified behavior required by the malicious user.

The effectiveness of this attack depends on the possibility to decouple the gen-
eration of the tag sequence from the communication occurring between client and
server. In fact, if the secure tag sequence originated from P includes data used by
the server to carry out the computation required by the client (as prescribed by
some variants of the remote entrusting scheme), a consistent computation must
be performed on original and tampered copy, so as to keep unchanged the com-
munication with the server. There are several classes of network applications for
which the preservation of the communication between client and server entails
that no malicious tampering is actually taking place (e.g., no unfair behavior
can take place, no incorrect billing can be originated, etc.). One important class
of applications for which preservation of the communication is not enough to
ensure that no malicious tampering is taking place is Digital Right Management
(DRM). In fact, DRM applications should prevent the client from creating illegal
copies. However, creating an illegal copy does not involve any communication
between client and server.

Differential analysis attack Differential analysis consists of gathering infor-
mation about the monitors by comparing the sequence of monitors produced

11

and delivered by the monitor factory over time. Previously released monitors
may be successfully broken when new ones are delivered, since the attacker has
more time to reverse engineer them. If their analysis reveals, to some extent, the
strategy implemented by the monitor factory, the attacker could take advantage
of this knowledge to reduce the time necessary to break the current monitor,
eventually compromising it before its expiration time.

Dependencies among attacks The attacks described above are not inde-
pendent of each other. In particular, the execution environment, cloning and
differential analysis attacks all depend on the reverse engineering attack and
cannot be performed without it.

With regards to the execution environment attack, deciding when to intercept
the execution and how to alter it depends on the goal of the attacker. In turn,
this requires some level of understanding of the program being tampered with.
Potentially, a huge amount of information can be gathered and modified at run
time. Focusing on the relevant functions, data and events requires a deep level of
knowledge about the running code, hence the dominant problem becomes reverse
engineering. Thus, modification of the execution environment is just a way to
implement the reverse engineering attack.

A similar argument holds for cloning and differential analysis attacks. In
the cloning attack, substantial reverse engineering effort must be devoted to
locating the functions to be tampered in the program and to ensure the correct
authentication secure tag sequence is sent to the server. Comparison between
successive versions of the monitor aims at simplifying its reverse engineering,
which is at the core of the possibility to modify it maliciously.

Overall, the attack model consists of a specific technique to gather and alter
information (either adulteration of execution environment, cloning or differential
analysis) combined with the understanding of the program and the monitor, to
be achieved through reverse engineering.

4.2 Analysis of attack resistance

The trust model, and its variants, currently defined in the remote entrusting
scheme address in various ways the attacks described in the previous section.
In this section each source of trust in the trust model is related to the attacks
it provides some defense against. The strength of such a defense is also briefly
discussed.

Table 1 relates sources of trust to attacks. The meaning of a cell marked X

is that the corresponding source of trust contributes to some extent to defend
against the attack in this cell column. This does not mean that the source of trust
provides full or proved protection against an attack. The given defense makes
the attack harder, by addressing the vulnerabilities exploited by the attack, but
it may still be only a partial defense.

For example, code obfuscation provides a limited defense against reverse
engineering. In fact, an obfuscated code is expected to be harder to understand

12

and analyze than a clear text. However, given enough time, a determined attacker
can always reverse engineer a program, despite its code obscurity. Combined with
monitor replacement, code obfuscation becomes a stronger defense, since only a
limited time is available to the attacker to de-obfuscate the code.

Verification of the integrity of P (first row of Table 1) is a protection against
malicious modifications that do not involve the monitor M. It must be combined
with the verification of the verifier (M) itself to become effective against attacks
that involve modifications of the monitor (columns 2, 3, 4, 6). Verification of
the libraries (row 3) is an important defense line against execution environment
attacks. However, more checks are needed to verify that HW/OS are genuine and
that execution is not in debug mode. Direct implementation of this defense might
be problematic and hard to achieve, since the monitor has limited capabilities
of testing the HW/OS and the execution mode when running on the client.
However, further lines of defense can be put in place. Firstly, the verification of
the output of computations that depend on HW/OS and execution mode can
be exploited for this purpose (see row 6). Moreover, since modification of the
execution environment must be necessarily combined with a reverse engineering
attack, reverse engineering resistance mechanisms, such as code obfuscation,
provide a defense against execution environment attacks as well, in an indirect
way.

The verification of the results of selected computations is also effective against
modifications of P, M, as well as modifications of data passed to or returned from
genuine functions of P and M. Hiding a secret key into the monitor is essential to
protect the secure tag sequence generator (row 7). Monitor replacement (row 8) is
an important countermeasure against tampering with the monitor (columns 2-7).
Combined with the capability of producing new monitors that are independent
from the previous ones, monitor replacement gives also some protection against
the differential analysis attack.

Reverse engineering resistance, of which code obfuscation is one possible in-
stance, is potentially effective against any attack, either directly or indirectly,
because any attack must be necessarily combined with reverse engineering and
program understanding, in order to alter the program behavior in a meaningful
way, according to the attacker’s goals.

The network of trust (row 10) increases the protection of the monitor’s code
(columns 2, 3, 4, 6). Inclusion of output data into the secure tags makes replace-
ment of the checking function harder, as well as tampering with the output data
produced by functions. Making the communication with the server bi-directional
makes any change to the monitor harder (columns 2-7), since such changes might
affect the verification triggered by the challenge, invalidating the result. If the
verification is coupled with the ongoing computation, because the secure tags
include a portion of the output (row 11), the cloning attack can be effective only
if the communication with the server is preserved in the clone, which means that
for many classes of applications no malicious tampering can actually take place
at all.

13

5 Discussion

In this paper we presented the problem of remote entrusting as a novel paradigm,
which give rise to multiple interdisciplinary problems encompassing many as-
pects of computing and networking. The central issue is how to entrust a piece
of software executing on an untrusted and remote machine. We proposed a gen-
eral architectural framework for remote entrusting with three problems: (i) how
to combine two programs (the original code with the secure tags generation code)
into one combined program, (ii) how to make it hard separate using reverse engi-
neering techniques the combined program, and (iii) how to dynamically replace
parts of the combined program during run-time in order to limit the time avail-
able for an attacker to reverse engineer the combined program. The previous
three problems are investigated and solved along three main research dimen-
sions, which require comprehensive solution. Specifically, dynamic replacement,
tamper resistance with and without hardware assistance. A number of attacks
have been identified on the proposed architectural framework, they have been
analyzed and discussed.

Effective solutions of the remote entrusting problem will impact many appli-
cation areas. Two main categories of applications have been identified,depending
on the direction of the flow of data. The first category contains all the ap-
plications where the untrusted client sends data to the trusted machine (e.g.,
server) and the latter reacts by delivering a certain service (e.g., e-commerce,
e-government). For these applications, a viable solution is based in hiding secure
or authenticity tags in the outgoing data, in such a way that it would be diffi-
cult to tamper with them without affecting the data. Applications in the second
category are those ones that receive private or protected data from the trusted
party (e.g., grid computing, digital right management). In this case the solution
is more challenging because, once delivered, protected data can not be longer
protected, even if a tampering is detected.

Acknowledgments. This work was supported by funds from the European
Commission (contract No 021186-2 for the RE-TRUST project, see [29])

References

1. M. Baldi, Y. Ofek, M. Young: Idiosyncratic Signatures for Authenticated Execu-
tion of Management Code. 14th IFIP/IEEE International Workshop on Distributed
Systems: Operations and Management (DSOM 2003), Heidelberg, Germany, Oct.
2003.

2. M. Baldi, Y. Ofek, M. Young: The TrustedFlow(TM) Protocol - Idiosyncratic Signa-
tures for Authenticated Execution. 4th Annual IEEE Information Assurance Work-
shop, West Point, NY, USA, June 2003.

3. N. Oh, P.P. Shirvani, E.J. McCluskey: Control-flow checking by software signatures.
IEEE Transactions on Reliability, Vol. 51(1), Mar. 2002

4. J. Ohlsson, M. Rimen: Implicit signature checking. Proceedings of 25th International
Symposium on Fault-Tolerant Computing, Jun. 1995

14

5. A. Benso, S. Di Carlo, G. Di Natale, P. Prinetto, L. Tagliaferri: Control-flow checking
via regular expressions. Proceedings of 10th Asian Test Symposium, Nov. 2001

6. N. Oh, S. Mitra, E.J. McCluskey: ED4 I: error detection by diverse data and dupli-
cated instructions. IEEE Transactions on Computers, Vol. 51(2), Feb. 2002

7. N. Oh, P.P. Shirvani, E.J. McCluskey: Error detection by duplicated instructions in
super-scalar processors. IEEE Transactions on Reliability Vol. 51(1), Mar. 2002

8. A. Benso, S. Chiusano, P. Prinetto, L. Tagliaferri: A C/C++ source-to-source com-
piler for dependable applications. Proceedings of International Conference on De-
pendable Systems and Networks (DSN), Jun. 2000.

9. C. Collberg, C. Thomborson, D. Low, Watermarking: Tamper-Proofing, and Obfus-
cation - Tools for Software Protection. IEEE Transactions on Software Engineering,
vol. 28, 2002

10. G, Naumovich, N. Memon: Preventing piracy, reverse engineering, and tampering.
IEEE Computer, vol. 36(7), pp. 64 ?71, July 2003

11. C. Wang, J. Davidson, J. Hill, and J. Knight: Protection of software-based surviv-
ability mechanisms. Proceeding of International Conference on Dependable Systems
and Networks (DSN), Goteborg, Sweden, July 2001

12. E. Valdez and M. Yung, Software DisEngineering: Program Hiding Architecture
and Experiments. Information Hiding, 1999

13. C. Linn, S. Debray: Obfuscation of Executable Code to Improve Resistance to
Static Disassembly. Proceedings of the 10th ACM Conference on Computer and
Communications Security (CCS), Oct. 2003

14. A. W. Appel: Deobfuscation is in NP. www.cs.princeton.edu/ ap-
pel/papers/deobfus.pdf

15. B. Barak, O. Goldreich, R. Impagliazzo, S. Rudich, A. Sahai, S. P. Vadhan, K.
Yang: On the (Im)possibility of Obfuscating Programs. Proceedings of CRYPTO,
2001

16. G. McGraw, E.W. Felten: Mobile Code and Security. IEEE Internet computing,
1998 (Vol. 2, No. 6)

17. Oscar Esparza, Miguel Soriano, Jose L. Munoz, Jordi Forne: Detecting and Proving
Manipulation Attacks in Mobile Agent Systems. Lecture Notes in Computer Science,
Volume 3284, Jan 2004, Pages 224-233

18. T. Sander and Christian F. Tschudin: Towards Mobile Cryptography. IEEE Sym-
posium on Security and Privacy, May 1998

19. T. Sander, C. F. Tschudin: Protecting mobile agents against malicious hosts. Lec-
ture Notes in Computer Science, 1998

20. L. Badger et al.: Self-protecting mobile agents obfuscation tech-
niques evaluation report. NAI Labs Report, Nov. 2001, online at
www.isso.sparta.com/research/documents/spma.pdf

21. S. Pearson: Trusted computing platforms, the next security solution. Technical
Report HPL-2002-221, HP Laboratories, 2002

22. The Trusted Computing Group: On-line at https://www.trustedcomputinggroup.org
23. Next Generation Secure Computing Base, http://www.microsoft.com/resources/ngscb
24. R. York: A New Foundation for CPU Systems Security. ARM Limited,

http://www.arm.com
25. R. Sailer, X. Zhang, T. Jaeger, L. van Doorn: Design and Implementation of a

TCG-based Integrity Measurement Architecture. Proceedings of the 13th USENIX
Security Symposium San Diego, CA, USA, Aug. 2004

26. Rick Kennell, Leah H. Jamieson: Establishing the Genuinity of Remote Computer
Systems. Proceedings of the 12th USENIX Security Symposium, 2003

15

27. A. Mana, J.Lopez, J. Ortega, E. Pimentel, J.M. Troya: A Framework for Secure
Execution of Software. International Journal of Information Security, Vol. 3(2), 2004

28. A. Seshadri, M. Luk, E. Shi, A. Perrig, L. van Doorn, and P. K. Khosla: Pio-
neer: verifying code integrity and enforcing untampered code execution on legacy
systems. In Proceedings of the 20th ACM Symposium on Operating Systems Prin-
ciples (SOSP), Brighton, UK, October 23-2-6, pages 1–16, 2005.

29. http://re-trust.org/

1
6

Attacks

Reverse engineering attacks Execution environment attacks
Sources of P is Replace Replace tag Modify input Modify output Replace Replace Tampered Cloning Differential

trust tampered checking sequence before call on before return on HW/OS dynamic execution attack analysis
with function generator M/P env. M/P env. libraries (debug mode)
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

(1) M checks P text X
and data segment
(2) M self checks X X X X

itself before
checking P

(3) M checks X
libraries

used by P
(4) M checks X X X

execution
environment

(5) M checks the X
OS and the HW

(6) M checks results X X X X X X X X
of computation
(7) Secret key X

used to generate
the tag sequence

(8) Monitor X X X X X X X
replacement
(9) Rev-eng X X X X X X X X X X X X
resistance

(code obfuscation)
(10) Network of X X X X

trust (self-checking
implementation)
(11) Tags include X X X X

(portion of)
output

(12) Bi-directional X X X X X X
communication
(challenge from

the server)

Table 1. Sources of trust related to specific attacks

