
Using program transformations to add structure to a legacy data model

Mariano Ceccato(1), Thomas Roy Dean(2), Paolo Tonella(1)

(1) FBK-irst, Trento, Italy
(2) Queen’s University, Kingston, Canada

ceccato@fbk.eu, tom.dean@queensu.ca, tonella@fbk.eu

Abstract

An appropriate translation of the data model is central
to any language migration effort. Finding a mapping be-
tween original and target data models may be challenging
for legacy languages (e.g., Assembly) which lack a struc-
tured data model and rely instead on explicit programmer
control of the overlay of variables.

Before legacy applications written in languages with an
unstructured data model can be migrated to modern lan-
guages, a structured data model must be inferred. This pa-
per describes a set of source transformations used to create
such a model as part of a migration of eight million lines
of code to Java. The original application is written in a
proprietary language supporting variable layout by mem-
ory relocation.

1 Introduction

Adaptive maintenance is defined as a change to software
to enable it to work in a changed environment [18]. It may
be due to several reasons, such as the obsolescence of an
old technology or language. Domain specific, proprietary
programming languages represent a typical instance of this
problem. They may become a major impediment to fu-
ture developments and innovation, especially when they are
tied to a proprietary development, compilation and execu-
tion environment. In such cases, supporting the language
and the associated production and execution environment
may require even more resources than those dedicated to
the core business of the software company. Moreover, cus-
tomers may become more technology-aware, hence request-
ing details about the underlying technology and expressing
concerns about the usage of non-standard solutions, having
no consolidated support and limited user community. This
is becoming especially true in the days of the open source
software development. In such a context, migration to a
modern platform and to a modern programming language is
an appealing option.

Central to any migration effort is the translation of the
data model. Decisions made about the representation of
the data model will have strong implications for the rest of
the translation. While object oriented languages are cen-
tered around an object data model, which takes advantage
of constructs such as inheritance and composition, legacy
languages often enforce a functional decomposition of the
code, which is orthogonal to the underlying data model. The
latter is often based on the data organization offered by the
persistency layer, properly represented in the language con-
structs. This paper describes the use of source transforma-
tions to infer structure in the data definitions of a legacy,
proprietary language in preparation for an automated mi-
gration to a modern Object-Oriented language.

The language used by the legacy system is BAL, an
acronym for Business Application Language. BAL is a BA-
SIC like language that contains unstructured data elements
as well as unstructured control statements (e.g. GOTO).
Calls between programs are supported, and a preprocessor
provides the programmer with the ability to isolate common
code that may be included in more than one program. BAL
programs are complied to a byte code representation and run
on a virtual machine, providing a great deal of portability.
This portability is one of the main reasons for the choice of
Java as the target platform (a decision made by the client).

We bridged the gap between the BAL data model and
the Java data model by defining a set of source code trans-
formations that take advantage of idiomatic usages of the
BAL data model. Such uses have been discovered by code
inspections, in an iterative data structuring process, consist-
ing of: (1) definition of data structuring rules (heuristics);
(2) application of the rules to the code base; (3) inspection
and/or automated analysis of the cases not yet handled by
the structuring rules. The resulting set of transformations
allowed us to map the BAL data structures in the original
application (8 MLOC) into a set of Java classes.

The rest of the paper is presented in 5 sections. Section 2
gives a short introduction to the BAL data model. Section 3
discusses the transformations in more detail. Related work
is presented in Section 4, followed by conclusions.

2 Data model

An appropriate translation of the data model is central
to any migration effort, and our project is no exception.
This section gives a short overview of the BAL data model.
The data model is discussed in more depth in a separate re-
port [3].

While BAL contains some structured control flow state-
ments such as IF...ENDIF and WHILE...WEND, the
data model is very unstructured and similar to that found
in structured assembly languages (e.g., that of IBM main-
frames). The data model is byte oriented, and the lan-
guage only provides four basic data types: byte, short, bi-
nary coded decimal (BCD) and string. The first two are
the same as those available in most languages, representing
single and two byte signed integer values. Variables of the
BCD and string data types can be of various lengths, and
the developer must specify the length in bytes if she wants
some thing different than the default length (eight and six-
teen bytes respectively). Unlike languages such as C, there
is no dynamic allocation and the length of all variables is
known at compile time.

The BAL data model is based on the notion of memory
relocation. Each newly declared variable can be either al-
located on the next available region in memory, or it can
be a relocation of a previously defined variable. The relo-
cation data model allows for arbitrary aliasing among vari-
ables as well as for arbitrary definition of multiple views
(unions) insisting on the same underlying memory region
(i.e., sequence of bytes). Such views are not constrained
to be within the boundaries of the relocated region. On the
contrary, they can span multiple memory regions that were
previously regarded as separate data structures.

The data relocation is accomplished with the
FIELD=M,VAR statement, which is analogous to the
.=variable address directive available in most
assembly languages. An example is shown in Figure 1.
Indentation is used in the example to indicate programmer
intention, but is not mandatory in the language. The
variable a is a string variable (indicated by a type specifier
of ’$’) and is nine bytes long. The following FIELD state-
ment resets the current variable position (i.e. the memory
location of the next declared variable) to the beginning of
the variable a. As a result, the variable b, a string variable
of length five, occupies the same five bytes as the first five
bytes of a. The variable c, also a string variable, takes
the next five bytes, going one byte beyond the memory
allocated for a. Thus all nine bytes of the variable a are
shared with other variables, but c as an extra byte of its
own. The variable b is further redefined by the variables d,
e, and f. The variables d and e are byte variables (the type
specifier ’#’) while f is another string variable. Since f is
four bytes long, its last byte overlaps with the first byte of c

as well as the sixth byte of a. Finally, g is declared starting
from the beginning of c. Being a short (’%’ type specifier),
it occupies two bytes. Variants of the declarations shown in
Figure 1 may include one or two dimensional arrays of any
of the four primitive types. The FIELD=M that concludes
these declarations refers to no variable. Its meaning is that
the next declared variable will be allocated starting from
the first free location in memory (i.e., immediately past the
end of c).

d e f

b

a

c

g

i f d e f A
DCL a$ = 9
FIELD=M, a

DCL b$ = 5
DCL c$ = 5
FIELD=M, b

DCL d#
DCL e#
DCL f$ = 4

FIELD=M, c
DCL g%

FIELD=M
e n d i f

Figure 1. Variable declarations in BAL

There are several consequences to the approach taken by
the BAL language. The first consequence is that records
do not introduce any additional lexical scope. The second
is that it is the developers’ responsibility to ensure that the
sizes of all of the variables are correct. For example, in
Figure 1, if the variable a is intended to be a reference to
the entire record, its size is wrong (it should be 10). The
third consequence is that there are many ways of expressing
the exact same layout of variables within memory. The last
two consequences make the recovery of a structured record
from a sequence of BAL declarations difficult.

In fact, there are several issues in the code in the fig-
ure. The variable a is in fact shorter than the subfields b, c.
When this happens in the real code, it may be unclear if it is
an error, or represents an alternate shorter view to the same
data. Similarly for b: if b is intended to be a container for
the subfields d, e, f, its size should be increased to 6. The
other issue is the location of the redefinition of b. In a lan-
guage such as COBOL or C, the variables d, e, and fwould
normally be declared as part of the aggregate field that they
form. In BAL they could be located anywhere within the
same scope of declarations (i.e. global or local).

The developers usually keep the definitions of complex
data structures in separate files which are included by the

preprocessor. One special case is that of the data structures
used to access persistent ISAM (Indexed Sequential Access
Method – a data file format common in legacy systems) ta-
bles. These record definitions are stored in a data dictio-
nary and contain full hierarchical storage information. In-
clude files containing BAL declarations are generated from
these dictionary entries, losing some of the hierarchical in-
formation in the process. Since the information exists in
the dictionary, these files are treated specially by our migra-
tion process as the Java classes can be generated from the
dictionary directly. One wrinkle is that the data dictionary
contains a few size mismatches [3] and as a result, so do the
generated include files. Such size mismatches are basically
similar to those shown in the example in Figure 1. While
not affecting the correctness of the final code, these prob-
lems complicate the process of recovering the data model
and sometimes require manual fixes.

The data structures for other temporary data files and in-
ternal storage do not have entries in a dictionary and the
structure of these records must be inferred solely from the
BAL code. However, when analyzing any structures that
are local to the program, we have considerably more flexi-
bility in how the fields can be reorganized in order to infer
reasonable data structures.

Given this unstructured legacy data model, the next sec-
tion presents a sequence of transforms which group the ap-
propriate fields together, moving variables as necessary.

3 Approach

The recovery of a structured model from a flat, unstruc-
tured data model is part of a larger project involving the
migration of the legacy code base from BAL to Java, a
somewhat complex process. At the core of data structure
recovery is one particular phase which we call bracketing
and which precedes the rest of the migration (e.g., transla-
tion of the statements). However, several other phases of
the migration process precede bracketing, providing several
generic transformations that are of use to the entire process
including bracketing. We present some of these transfor-
mations, although we limit the discussion to those elements
that are used by bracketing directly. These transformations
include a normalization of the code and the extraction of
information about the programs for use in later transforms.
TXL [5] is used for most of the transformations, including
bracketing itself.

3.1 Normalization

The normalization phase is the gateway to the entire mi-
gration process and performs several transformations de-
signed to make the rest of the process easier. The normal-
ization transforms related to bracketing are preprocessing,

unique naming and persistent file identification.
The BAL compiler produces a partially preprocessed file

during the compilation process. In producing this file, the
BAL compiler resolves all inclusion statements as well as
any conditional compilation. Each of the lines of the file end
with an annotation that gives the line number and name of
the original source file (e.g. the name of the include file that
contains the statement). Macro definitions and comments
have been removed, although the use of macros in the code
has not been expanded. Since the macros will be translated
separately to Java constants and methods, the presence of
the original names in the code will allow us to use them in
the final translation.

The first set of transformations is to uniquely name [8]
all of the identifiers in the programs. Unique identifiers
are strings, which contain the names of each of the parent
scopes of the identifier. So the global variable A in program
P has the unique identifier "P A", while the variable B in
the function C in the program P has the unique name "P
C B". Since program names are unique, and functions and
variables may not have the same name, this approach gives
a globally unique name to all identifiers in the system. We
use agile parsing [7] techniques to extend the grammar to
include the unique identifiers as annotations on all occur-
rences of the identifiers (definitions and uses). These anno-
tations take the form:

["UID" # identifier]

Since BAL has simpler naming rules than Java, the unique
naming process is also simpler, requiring only the resolution
of macro names from include files (since the instances of the
macros are not expanded) and the external functions defined
in libraries. For clarity and ease of reading, the examples in
this paper do not show the unique naming annotations.

As mentioned earlier, some of the include files are gen-
erated from the data dictionary. Since some extra structural
information is present in the data dictionary (and lost when
the BAL include files are generated), it makes sense to gen-
erate the Java classes from the dictionary. However, we
must still recognize where such data structures are used in
the code so that instances of classes may be generated dur-
ing migration. They also complicate the bracketing process
since they may also be included as a subrecord of a larger
record. Thus the last transform of the normalization process
is to use the annotations inserted by the compiler at the end
of each line to group all of the fields for a given persistent
file structure into a single unit. In this way, a single ob-
ject allocation can be generated in Java, replacing the entire
persistent data structure included.

3.2 Fact extraction

Facts in RSF format [23] are extracted from the source
code as part of the migration process. These include facts
about the type of variables, their size, the structure of the
BAL source and the names of externally visible entities.
Facts are triples of the form:

factName uid uid or value

The UIDs created by unique naming during normaliza-
tion form a link between the facts and the source code, and
allow the facts to be read and used by transforms later in
the migration process. The main set of facts relevant to the
bracketing process are the size facts. In fact, the layout of
variables in memory depends on where they are allocated
(i.e., whether they are relocations of other variables or not)
and on their size.

The size fact gives the size of each variable and con-
stant in the code. This is accomplished by first extracting
constant declarations from the code. The transform then
extracts all variables and their associated size expressions,
inserting default sizes were appropriate. Since named con-
stants may be used when specifying the size of variables,
a constant propagation algorithm is run on the size expres-
sions to determine the size of each variable.

3.3 Bracketing Process

Bracketing is the core transform used to add structure to
the legacy BAL data model. The bracketing algorithm con-
sists of finding out what is the full extent of a FIELD=M
and in enclosing it between square brackets. It starts at a
FIELD=M statements and it contains one or more declara-
tions (DCL), possibly with nested FIELD=M. In addition to
the square brackets for the FIELD=M instruction, we need
a second kind of brackets used to group together all the re-
definitions of the same declaration (DCL). We call this sec-
ond kind of brackets square-angle brackets (i.e. [< ... >]).
They start at a declaration and enclose all FIELD=M,var
statements that insist on the same declared variable. When a
DCL has no FIELD=M statement insisting on it, the square-
angular brackets contain an empty sequence. Hence they
are omitted.

During the translation to Java, square-brackets and
square-angular brackets play different roles. Square
brackets identify the boundaries of classes, with nested
FIELD=M representing cases of the composition relation-
ship between classes. Square-angular brackets discrimi-
nate between classes and unions. When more than one
FIELD=M insists on the same variable declaration, a union
must be generated instead of a class.

Since unions are not available in Java, we resort to an
equivalent code organization, which implements the copy

on read/write protocol. The generated class implements a
set of interfaces, associated with the different union vari-
ants, and declares a set of data members, each referencing
one union variant. At each point in time during execution,
at most one variant is active (i.e., at most one data mem-
ber is non-null). When the code switches from one view to
another one (e.g., it sets an attribute available in one view
and then it reads an attribute available in another view) the
active variant is changed and data are copied from the pre-
vious active variant to the new one.

1 D e l i m i t p e r s i s t e n t d a t a d e f i n i t i o n s
2 F ix s i z e misma tches in p e r s i s t e n t d a t a
3 F ix s i z e misma tches in f o r m a l p a r a m e t e r s
4 B r a c k e t a l l FIELD=M

4 . 1 I n i t i a l i z e s i z e
4 . 2 I n i t i a l i z e b r a c k e t s
4 . 3 Repeat

4 . 3 . 1 Repeat
4 . 3 . 1 . 1 Fold d e c l a r a t i o n s
4 . 3 . 1 . 2 Fold c o n s t a n t s
4 . 3 . 1 . 3 Fold r e d e f i n i t i o n s

U n t i l no f o l d r u l e a p p l i e s
4 . 3 . 2 Fold p e r s i s t e n t d a t a

U n t i l no f o l d r u l e a p p l i e s
5 Repor t e r r o r s
6 Move r e d e f i n i t i o n s

Figure 2. Bracketing algorithm

The algorithm used for bracketing is shown in Figure 2.
We discuss each element of the algorithms separately.

3.3.1 Persistent Data

The first step of the bracketing algorithm consists of the
identification of the persistent data definitions (coming from
the dictionary), which are delimited and separated from the
user data definitions, within the preprocessed files.

A single persistent data definition file corresponds to
the definition of an ISAM file which, in turn, can con-
tain more than one table. During normalization, each in-
cluded file is delimited as a whole by inserting proper
code annotations. However, the included file may con-
tain more than one persistent data structure each associ-
ated with one table declared in the file. In the original,
unpreprocessed BAL source files, each table definition is
delimited by its own preprocessor macro, giving the pro-
grammer fine grain control over the inclusion of table defi-
nitions in the code. In particular, each table definition is en-
closed between #ifdef table name and #endif pre-
processor lines. Figure 3 shows an example of these files.
The file a.bal (Figure 3(a)) includes the generated in-
clude file tabx.bal which in turn contains three tables

a.bal
1 DCL s t o r e $ = 2 7
2 FIELD=M, s t o r e
3 i n c l u d e ” t a b x ”
4 DCL b$ = 5

(a)

tabx.bal
1 # i f d e f x1
2 DCL head x1$ = 2
3 DCL d e t a i l x 1 $ = 8
4 # e n d i f
5 # i f d e f x2
6 DCL head x2$ = 2
7 DCL d e t a i l x 2 $ = 3
8 # e n d i f
9 # i f d e f x3

1 0 DCL head x3$ = 2
1 1 DCL d e t a i l x 3 $ = 1 0
1 2 # e n d i f

(b)

DCL s t o r e $ = 2 7 : : @line (a . ba l , 1)
FIELD=M, s t o r e : : @line (a . ba l , 2)

DCL head x1$ = 2 : : @line (t a b x . ba l , 2)
DCL d e t a i l x 1 $ = 8 : : @line (t a b x . ba l , 3)
DCL head x2$ = 2 : : @line (t a b x . ba l , 6)
DCL d e t a i l x 2 $ = 3 : : @line (t a b x . ba l , 7)
DCL head x3$ = 2 : : @line (t a b x . ba l , 1 0)
DCL d e t a i l x 3 $ = 1 0 : : @line (t a b x . ba l , 1 1)

DCL b$ = 5 : : @line (a . ba l , 3)
(c)

DCL s t o r e $ = 2 7 : : @line (a . ba l , 1)
FIELD=M, s t o r e : : @line (a . ba l , 2)
PERSISTENT SD ” t a b x ” [[

PERSISTENT SD ” t a b x ” ” x1 ” [[
DCL head x1$ = 2 : : @line (t a b x . ba l , 2)
DCL d e t a i l x 1 $ = 8 : : @line (t a b x . ba l , 3)

]]
PERSISTENT SD ” t a b x ” ” x2 ” [[

DCL head x2$ = 2 : : @line (t a b x . ba l , 6)
DCL d e t a i l x 2 $ = 3 : : @line (t a b x . ba l , 7)

]]
PERSISTENT SD ” t a b x ” ” x3 ” [[

DCL head x3$ = 2 : : @line (t a b x . ba l , 1 0)
DCL d e t a i l x 3 $ = 1 0 : : @line (t a b x . ba l , 1 1)

]]
]]
DCL b$ = 5 : : @line (a . ba l , 3)

(d)

Figure 3. Delimiting persistent data definitions: program (a) and include file (b), preprocessed file
with expanded include (c) and marked code (d)

(x1, x2 and x3 (Figure 3(b)). We use a program that an-
alyzes the files generated from the dictionary to determine
that the extents of these tables are (1:4), (5:8) and (9:12)
respectively. Figure 3(c) shows the preprocessed version
of a.bal, and in particular the annotations appended to
each line by the preprocessor. Figure 3(d) shows the re-
sults of both the identification of the persistent include file
(bracketed by PERSISTENT SD ”tabx” [[...]]),
and the identification of the tables within the file (bracketed
by PERSISTENT SD ”tabx” ”tablename” [[...
]]). The remaining figures in this paper will omit the in-
clusion annotations to simplify the presentation of the trans-
forms.

3.3.2 Persistent Data Size

As mentioned previously, persistent data structures contain
a few size mismatches. In fact, the BAL data model is quite
robust with respect to such mismatches, which usually have
no impact on the correctness of the program execution. In
fact, the pointer to the next free location in memory can be
easily reset to a legal position through FIELD=M with no
parameter. Moreover, container size mismatches are usu-
ally not an issue. Provided the container has all the infor-
mation needed by the computation based on it, its size can
be larger or shorter than the containees without any visi-
ble effect. However, from the point of view of recovering

a structured data model, size mismatches represent a major
impediment to proper bracketing.

In order to fix the known size mismatches, a table of fixes
is read in the next step (Step 2 in Figure 2) and then prop-
agated to the definitions of the variables bracketed by the
previous step. Examples of such corrections are changing
the size of a field (usually increasing it to include all con-
tained fields) or inserting a missing container for a sequence
of fields. The table of fixes was produced manually, ad-
dressing the warnings raised by a size checker developed as
part of the bracketing tool. The fixes have been validated by
the programmers.

3.3.3 Variable Parameter Size

The third step addresses the formal parameters of functions.
When a variable is passed by reference, the compiler does
not enforce that the type in the signature of the function
corresponds to the type of the actual argument, and often
the size and types do not match. The particular pattern we
have identified as occurring most often is that programmers
declare the formal parameter as a BCD without size infor-
mation, hence, it is 8 bytes long, by default. However, since
the parameter is passed by reference, its actual location in
memory starts exactly where the actual argument is located.
Just as global and local variables may be redefined, so may
parameters. In particular when a variable parameter is rede-

fined with a FIELD=M statement, all successive variables
are defined relative to the actual argument. The only way
to reset the storage to the memory space for local variables
is to use a FIELD=M statement that relocates another lo-
cal variable, or a FIELD=M statement without a variable,
which resets the allocation pointer to the next available lo-
cation in local variable memory. Thus the transform for
identifying the structure of a pass by reference parameter is
slightly different than that for global or local variables or
for pass by value parameters.

We use the information provided by the redefinitions to
correct the function signature and indicate the correct size
of each parameter that is passed by reference. On some oc-
casions, more than one redefinition on the same parameter
specify different sizes. In this case, the maximum among
the candidates is used for the correction. For example in
Figure 4 function f1 declares two parameters, the first (i.e.,
p1) is passed by value, while the second (i.e., buffer)
is passed by reference (using the keyword VAR). Even if
the size of buffer is the default (16 bytes), we see by in-
spection that it is redefined twice with two different lengths
(500 and 1000 bytes). Thus in this case, we assume the
maximum size (1000 bytes).

FUNCTION f1 (DCL p1$ = 1 , VAR b u f f e r)
FIELD=M, b u f f e r

DCL a$ = 5 0 0
FIELD=M
. . .
FIELD=M, b u f f e r

DCL b$ = 1 0 0 0
FIELD=M
. . .

ENDF

Figure 4. Formal parameter size

3.3.4 Bracketing

Once annotations and fixes are done, the actual bracketing
can start. The bracketing step is composed of four sub-
steps. First, size information is read from the fact base and
an in-memory data-base is initialized. As explained previ-
ously, the unique identifiers provide the link between the
size facts and the declarations they represent. We have ex-
tended the base grammar of the BAL language to include
our bracketing syntax as shown in Figure 5. The first defini-
tion adds the square bracketing syntax to the FIELD state-
ment. The grammar for the square bracketing includes a
number. This is where the transform stores the amount
of memory that is left in the redefinition (initially the size
of the variable that is being redefined). The second gram-
mar definition adds the optional redefinition (square-angle
bracketing) to variable declarations. A redefinition of the
bal declaration non-terminal adds both of these non-

terminals as possible definitions.

d e f i n e b r a c k e t f i e l d
[b a l f i e l d s t m] [opt ’ −] [number] ’ [

[repeat b a l d e c l a r a t i o n]
’]

end d e f i n e

d e f i n e u n i o n b a l d c l l i s t
[d c l o r p a r a m e t e r] [b a l v a r d e c l] ’ [’ <

[repeat b a l d e c l a r a t i o n]
’> ’]

end d e f i n e

Figure 5. Bracketing Grammar Extensions

The bracketing transform (Steps 4.1 and 4.2 in Figure 2)
starts by adding an empty extent to all FIELD redefinition.
The size field of the extent is initialized to the size of the
variable that is overlaid. Figure 6 shows the result of this
transformation. Empty square brackets have been added to
the redefinitions of a and b. The initial sizes for these ex-
tensions are 9 for a and 5 for b.

DCL a$ = 9
FIELD=M, a

DCL b$ = 5
FIELD=M, b

DCL d#
DCL e#
DCL f$ = 3

DCL c$ = 3

DCL a$ = 9
FIELD=M, a

9 [
]
DCL b$ = 5
FIELD=M, b

5 [
]
DCL d#
DCL e#
DCL f$ = 3

DCL c$ = 3
(Original) (Initialized)

Figure 6. Bracketing initialization

The transform proceeds by checking if the next entity
following a bracketed field can be moved inside the brack-
ets. This is achieved by comparing the size of the entity
with the available space left in the field. Depending on the
type of the entity that follows the bracketed extent, a dif-
ferent transformation applies. The possible transformations
are Steps 4.3.1.1, 4.3.1.2, 4.3.1.3, 4.3.2 from Figure 2.

Fold declaration (Step 4.3.1.1). In case the entity to fold
is a variable declaration (DCL), the transform folds in the
variable if there is space left in the container. Figure 7
shows the results of this transform. In Figure 7(a), the first
declaration following each of the square bracketed extents
from Figure 6 is folded. In particular, the variable b, whose
size is 5, is folded into the redefinition of a, reducing the
size of that redefinition from 9 to 4. The variable d, whose
size is 1, is folded into the redefinition of b reducing the
available space from 5 to 4.

This transformation is applied until no other variable
declarations can be folded into the appropriate overlay. Af-
ter folding declarations e and f into the redefinition of b,

no other declaration folding is possible, the result of which
is shown in (Figure 7(c)).

DCL a$ = 9
FIELD=M, a

4 [
DCL b$ = 5
]
FIELD=M, b

4 [
DCL d#
]
DCL e#
DCL f$ = 3

DCL c$ = 3

DCL a$ = 9
FIELD=M, a

4[
DCL b$ = 5
]
FIELD=M, b

3 [
DCL d#
DCL e#
]
DCL f$ = 3

DCL c$ = 3

DCL a$ = 9
FIELD=M, a

4 [
DCL b$ = 5
]
FIELD=M, b

0 [
DCL d#
DCL e#
DCL f$ = 3
]

DCL c$ = 3
(a) (b) (c)

Figure 7. Folding declarations

Fold constants (Step 4.3.1.2). This is a special case
of folding declarations which applies when the currently
bracketed extent is followed by the declaration of a con-
stant. Depending on the type of the constant, some space
can be required in the variable pool. Tests revealed that byte
and short constants do not require space and are substituted
into expressions by the compiler at compile time. However
BCD and string constants are allocated on the variable pool
and they interact with the other (non-constant) variables. As
an aside, this means that they are not really constants, and
the values can be changed by assigning to an alias created
by an overlay. Thus when folding a constant into a brack-
eted redefinition, the available space must be updated when
a BCD or string constant is folded. In Figure 8 only con-
stant strings x1 and x2 consume space when bracketed (3
bytes each), while x2 and x3 (byte and short constants) do
not impact the available space.

Fold redefinitions (Step 4.3.1.3). The last case is where
the item following a redefinition is another redefinition (i.e.
another FIELD statement). A redefinition may only be
folded, or nested, when:

1. The redefinition is fully bracketed. That is, the remain-
ing space is zero; and,

2. The redefinition applies to a field already present in the
bracketed extent.

In Figure 9(a), the redefinition of b can be folded into
the redefinition of a. When redefinitions are folded, the
available space is not updated, since they apply to space
that has already been accounted for. Thus in the figure, the
available space of a is not updated, because the redefinition
of b does not actually consume space within a. In fact, the
redefinition of b takes exactly the amount of space already
reserved for field b (i.e., 5 bytes). After this transformation,
the fist rule (Fold declarations, Step 4.3.1.1) re-applies and
the last declaration is finally folded into a and the available
space is reduced to 1 (Figure9(b)).

DCL a$ = 9
FIELD=M, a

4 [
DCL b$ = 5
FIELD=M, b

0 [
DCL d#
DCL e#
DCL f$ = 3
]

]
DCL c$ = 3

DCL a$ = 9
FIELD=M, a

1 [
DCL b$ = 5
FIELD=M, b

0 [
DCL d#
DCL e#
DCL f$ = 3
]

DCL c$ = 3
]

(a) (b)

Figure 9. Folding redefinitions

The last case (Fold persistent structure, Step 4.3.2) ap-
plies when the current redefinition is followed by a persis-
tent data definition. In this case, the persistent data defini-
tion can not be broken into parts, because it describes the
structure of an entire ISAM table. Either it is moved en-
tirely in the extent of the redefinition or it is left outside of
it. The size of a table definition is computed as the sum
of the fields contained in its definition. In order to get this
calculation right, overlay extents must have been already
computed for the whole table, otherwise the same variable
space could be counted multiple times (redefinitions do not
require new memory space). This is the reason for apply-
ing this transformation only after all the others have been
successfully applied.

After folding the persistent data structures, repeated it-
erations of folding declarations, constants and redefinitions
may be required to complete the transformation.

In the ideal situation, a perfect match should be found
between the size of the container field and the size of its
overlay. In such a case, the folding procedure stops when
the available space of the overlaid variable reaches zero.
However, since the BAL compiler does not enforce any size
control among overlays, size mismatches could happen, so
mismatches must be handled by the bracketing algorithm.

The first case of mismatch occurs when the size of the
redefinition is smaller than the available space. Usually, in
this case an explicit stopping condition is inserted by the
developer. Stopping conditions can be:

• The redefinition is explicitly closed by a FIELD=M
statement, that resets the memory pointer to the next
free available position.

• Another redefinition of the same field starts before the
full size is reached.

• A redefinition of another field starts before the full size
is reached.

• Declarations in the code are not enough to fit the
size because the end of the field declaration section is
reached.

DCL s t o r e $ = 6
FIELD=M, s t o r e

6 [
]

CONST x1$ = ” abc ”
CONST x2 # = 7
CONST x3 % = 3
CONST x4$ = ” d e f ”

DCL s t o r e $ = 6
FIELD=M, s t o r e

3 [
CONST x1$ = ” abc ”
]

CONST x2 # = 7
CONST x3 % = 3
CONST x4$ = ” d e f ”

DCL s t o r e $ = 6
FIELD=M, s t o r e

3 [
CONST x1$ = ” abc ”
CONST x2 # = 7
CONST x3 % = 3
]

CONST x4$ = ” d e f ”

DCL s t o r e $ = 6
FIELD=M, s t o r e

0 [
CONST x1$ = ” abc ”
CONST x2 # = 7
CONST x3 % = 3
CONST x4$ = ” d e f ”
]

(a) (b) (c) (d)

Figure 8. Folding constants

DCL a$ = 9
FIELD=M, a
1 [

DCL b$ = 5
FIELD=M, b
0 [

DCL d#
DCL e #
DCL f$ = 3

]
DCL c$ = 3

]
FIELD=M, a
0 [

DCL g$ = 2
DCL h$ = 2
DCL i $ = 5

]

DCL a$ = 9
[<
>]

FIELD=M, a
1 [

DCL b$ = 5
[<
>]
DCL c$ = 3

]
FIELD=M, a
0 [

DCL g$ = 2
DCL h$ = 2
DCL i $ = 5

]
FIELD=M, b
0 [

DCL d#
DCL e#
DCL f$ = 3

]

DCL a$ = 9
[<

FIELD=M, a
0 [

DCL g$ = 2
DCL h$ = 2
DCL i $ = 5

]
FIELD=M, a
1 [

DCL b$ = 5
[<
FIELD=M, b

0 [
DCL d#
DCL e#
DCL f$ = 3

]
>]
DCL c$ = 3

]
>]

(a) (b) (c)

Figure 10. Moving transformation: (a) result of bracketing, (b) initialization, (c) move redefinitions

If neither a stopping condition is found nor an exact size
match is reached, the second case of mismatch occurs: the
redefinition is greater than the available space. In this case,
the last entity to fold in the redefinition extent is the one that
causes the extent to exceed the available space. We consid-
ered this a deliberate intention of the developer when the
entity that crosses the boundary is followed by one of the
previous stopping conditions. If no stopping condition oc-
curs, an error is raised and manual intervention is required
(Step 5, Report errors) to fix the size mismatch instance.

3.3.5 Move Definitions
Assuming that the bracketing steps have been completed
and that any size mismatch has been manually fixed, the
algorithm ends by moving redefinitions next to the declara-
tions of the variables for which they apply (Step 6 in Fig-
ure 2, Move redefinitions). This is done in three steps.

1. Redefinitions are removed from the code and put in a
separate data structure.

2. From the redefinitions, a list is created with the names
of all the variables for which an overlay has been

found. The declarations of variables in this list are ini-
tialized with an empty square-angle brackets.

3. Redefinitions are moved into the square-angular brack-
ets of the variable for which they provide an overlay.

When this step is over, every field declaration is followed
(in square-angular brackets) by all its possible alternative
overlays. If there are more than one overlay, a union is rec-
ognized.

Figure 10 shows an example of results produced by the
moving step. Figure 10(a) shows the output of the bracket-
ing transformation for fields a and b. In Figure 10(b) the
three redefinitions are removed and the declarations of a
and b are initialized with empty square-angle brackets. Fi-
nally, redefinitions are moved under the proper declaration
(see Figure 10(c)). It can be noticed that variable b has
only one overlay, so it would be naturally translated into
a normal Java class, while variable a has two alternatives
redefinitions, thus it corresponds to a union.

The algorithm described in Figure 2 has been suc-
cessfully applied to the legacy system being migrated (8
MLOC). Specifically, we have been able to add structure to

510,108 variable declarations for which one or more over-
lays were defined in the original code. Correspondingly,
510,108 Java classes have been generated. Among them,
29,394 are unions (i.e., contain multiple variants, deriving
from multiple alternative overlays). The stopping condi-
tions used to automatically handle the occurrence of size
mismatches were pretty effective. They allowed us to solve
automatically 81,900 cases, leaving only a few size mis-
matches to be fixed manually. The effort involved in such
manual intervention accounted for less than a working week
of a person.

3.4 Optimizations

Our first simplistic implementation of the square brack-
eting transform took almost 7 days to execute over the entire
BAL codebase (8 MLOC). Two simple optimizations were
applied. The first of these was an application of agile pars-
ing. The non-terminal that represents a declaration was split
into two non-terminals, one for foldable declarations (vari-
able declarations, constant declarations and field statements
with variable redefinitions) and one for declarations that are
not foldable (field statements without variable declarations).
This allows the parser to provide the first categorization and
allows a simple pattern match in TXL to guard the rule.

The second optimization was to stratify the bracketing
rules to a one pass rule that identifies potential folding lo-
cations using the grammar change described above, checks
that space remains in the extent and then invokes a subrule
which uses the TXL skipping statement to limit the rule to
folding only at that location. A grand parent rule applies the
one pass rule until no further changes are made. The result
of these two optimizations reduced the transformation time
of the entire BAL code base to less than six hours (from 7
days), a significant improvement.

4 Related work

The problem of migrating a legacy software system to a
novel technology has been widely addressed in the litera-
ture by different approaches. The different strategies have
been classified by [1] into (1) redevelopment from scratch;
(2) wrapping; and, (3) migration. In their view, even the
migration strategy requires substantial redevelopment. Our
contribution belongs to the third class and consists of a set
of automatic transformations.

Migration to object oriented programming and extrac-
tion of an object oriented data model from procedural code
are the topics of several works (e.g., [2, 6, 17, 19, 20]).
Class fields originate from persistent data, user interface,
files, records and function parameters, while class opera-
tions come from the segmentation of the program according
to branch labels, in the migration of legacy procedural code

to an object-oriented design described by Sneed et al. [17].
For similar purposes, data flow analysis and the classifica-
tion of data elements into constants, user inputs/outputs and
database records are used in the augmented object model by
Tan et al. [19]. Sneed [16] migrated Cobol code to Object-
Oriented Cobol.

Other works on object identification rely on the analysis
of global data and of the code accessing them [2, 12, 14].
Since a record is too large and often contains unrelated
data, cluster analysis was used [20] to identify groups of
related fields within a record. Concept analysis is then ap-
plied to group together data and functionalities into can-
didate classes. In order to decide which data and which
routines should be grouped together into classes, object-
oriented design metrics (Chidamber and Kemerer) are also
used to guide the migration [4, 6], so as to avoid a poor de-
sign quality in the resulting system that would pose main-
tenance problems. Classes are still based on persistent data
stores and routines are assigned to classes, such that the fi-
nal result minimizes the object coupling metric.

Type inference was used to acquire information about
variables in legacy applications that goes beyond that con-
veyed by the declared type, so as to simplify migration to-
ward a programming language with a richer and stronger
type system [13, 15]. For instance, type inference was ap-
plied to Cobol [21, 22] to determine subtypes of existing
types and to check for type equivalence. Static analysis
and model checking have been used on Cobol to determine
when a scalar type should be better regarded as a record
type [11] and to determine unions the variants of which are
consistently accessed through discriminators [9, 10].

The work presented in this paper differs from the existing
literature in that it deals with a starting data model permit-
ting arbitrary overlays in memory. This requires a specific
inference technique, that takes into account size and offest
information explicitly. This paper is the companion of a
Technical Report [3], where the target data model and the
migration path from the legacy to the new data model are
described in detail. On the contrary, in the present paper,
we do not provide details about the target data model or
the migration process. We focus instead on the automated
program transformations that have been defined to actually
implement the migration strategy described in the compan-
ion Technical Report [3]. The interested reader can refer to
the Technical Report to get the full picture of the data model
migration process being followed.

5 Conclusions and future work

We have described a set of transformations, based on
the notion of declaration folding, that can be used to add
structure to an unstructured data model which supports ar-
bitrary variable overlays in memory. Such transformations

are complemented by a set of heuristics (stopping condi-
tions) used to decide how to manage automatically cases of
size mismatches for which a reasonable structure can be su-
perimposed automatically. We believe this approach to be
quite general and applicable to any programming language
supporting memory relocation and arbitrary variable layout.
This is the case, for instance, of Structured Assembly, a pro-
gramming language still in use with applications running on
mainframes.

The proposed algorithm allowed us to structure auto-
matically approximately half million variables with over-
lays and to determine which of them correspond to unions
(around 30 thousands). The manual intervention required
to fix the size mismatch cases falling outside the proposed
heuristics was quite limited (a few person days in total). The
machine time for the transformation was optimized, thanks
to careful crafting of the transformations in TXL.

In our future work, we will complete the migration from
BAL to Java, addressing the problems associated with the
translation of the program structure and of the statements
(which involves also GOTO elimination). With regards to
the migration of the data model, we will investigate the pos-
sibility of inferring inheritance relationships among classes,
based on the identification of memory overlays that redefine
with specialization (e.g., adding more variable declarations)
existing data structures.

References

[1] J. Bisbal, D. Lawless, B. Wu, and J. Grimson. Legacy in-
formation systems: issues and directions. Software, IEEE,
16(5):103–111, Sep/Oct 1999.

[2] G. Canfora, A. Cimitile, and M. Munro. An improved al-
gorithm for identifying objects in code. Software: Practice
and Experience, 26:25–48, January 1996.

[3] M. Ceccato, T. R. Dean, P. Tonella, and D. Marchignoli. In-
ference of a structured data model in migrating a legacy sys-
tem to Java. Technical report, FBK-irst, Trento, Italy, April
2008.

[4] A. Cimitile, A. De Lucia, G. A. Di Lucca, and A. R. Fa-
solino. Identifying objects in legacy systems using design
metrics. Journal of Systems and Software, 44:199–211, Jan-
uary 1999.

[5] J. Cordy. The TXL source transformation language. Science
of Computer Programming, 61(3):190–210, August 2006.

[6] A. De Lucia, G. Di Lucca, A. Fasolino, P. Guerra, and
S. Petruzzelli. Migrating legacy systems towards object-
oriented platforms. Software Maintenance, 1997. Proceed-
ings., International Conference on, pages 122–129, 1-3 Oct
1997.

[7] T. Dean, J. Cordy, A. Malton, and K. Schneider. Agile pars-
ing in TXL. Journal of Automated Software Engineering,
10(4):311–336, October 2003.

[8] X. Guo, J. R. Cordy, , and T. R. Dean. Unique renaming of
java using source transformation. In Proc. of the 3rd IEEE

International Workshop on Source Code Analysis and Ma-
nipulation (SCAM), Amsterdam, The Netherlands, Septem-
ber 2003. IEEE Computer Society.

[9] R. Jhala, R. Majumdar, and R.-G. Xu. State of the union:
Type inference via craig interpolation. In TACAS, pages
553–567, 2007.

[10] R. Komondoor and G. Ramalingam. Recovering data mod-
els via guarded dependences. In WCRE, pages 110–119,
2007.

[11] R. Komondoor, G. Ramalingam, S. Chandra, and J. Field.
Dependent types for program understanding. In TACAS,
pages 157–173, 2005.

[12] S.-S. Liu and N. Wilde. Identifying objects in a conventional
procedural language: an example of data design recovery.
Software Maintenance, 1990., Proceedings., Conference on,
pages 266–271, 26-29 Nov 1990.

[13] R. O’Callahan and D. Jackson. Lackwit: A program un-
derstanding tool based on type inference. In ICSE, pages
338–348, 1997.

[14] S. Pidaparthi and G. Cysewski. Case study in migration
to object-oriented system structure using design transforma-
tion methods. Software Maintenance and Reengineering,
1997. EUROMICRO 97., First Euromicro Conference on,
pages 128–135, 17-19 Mar 1997.

[15] G. Ramalingam, R. Komondoor, J. Field, and S. Sinha.
Semantics-based reverse engineering of object-oriented data
models. In ICSE, pages 192–201, 2006.

[16] H. Sneed. Migration of procedurally oriented cobol pro-
grams in an object-oriented architecture. Software Mainte-
nance, 1992. Proceerdings., Conference on, pages 105–116,
9-12 Nov 1992.

[17] H. Sneed and E. Nyary. Extracting object-oriented specifi-
cation from procedurally oriented programs. Reverse Engi-
neering, 1995., Proceedings of 2nd Working Conference on,
pages 217–226, 14-16 Jul 1995.

[18] E. B. Swanson. The dimensions of maintenance. In ICSE,
pages 492–497, 1976.

[19] H. B. K. Tan and T. W. Ling. Recovery of object-oriented
design from existing data-intensive business programs. In-
formation and Software Technology, 37:67–77, 1995.

[20] A. van Deursen and T. Kuipers. Identifying objects using
cluster and concept analysis. Software Engineering, 1999.
Proceedings of the 1999 International Conference on, pages
246–255, 1999.

[21] A. van Deursen and L. Moonen. Understanding cobol sys-
tems using inferred types. In IWPC, pages 74–, 1999.

[22] A. van Deursen and L. Moonen. Exploring legacy systems
using types. In WCRE, pages 32–41, 2000.

[23] K. Wong. The Rigi User’s Manual – Version 5.4.4. June
1998.

