
Distributing Trust Verification to Increase Application Performance∗

Mariano Ceccato1, Jasvir Nagra2, Paolo Tonella1

1 Fondazione Bruno Kessler—IRST, Trento, Italy
2 University of Trento, Italy

{ceccato, tonella}@fbk.eu, jas@dit.unitn.it

Abstract

The remote trust problem aims to address the issue of
verifying the execution of a program running on an un-
trusted host which communicates regularly with a trusted
server. One proposed solution to this problem relies on a
centralized scheme using assertions and replication to with-
hold usable services from a tampered client. We show how
to extend such a scheme to a distributed trusted hardware
such as tamper-resistant smartcards. We compared the per-
formance and security of the proposed distributed system to
the original centralized scheme on a case study. Our results
indicate that, compared to a centralized scheme, our dis-
tributed trust scheme has dramatically lower network traf-
fic, and smaller memory and computational requirements
on the trusted server.

1 Introduction

There are two key trust issues that arise in an open dis-
tributed computing setting. Firstly, a client that joins a dis-
tributed system may wish to be sure that the code it receives
to execute has not been tampered and when executed it is
not malicious. Secondly, a server would want to be sure that
any computation it requests from a client is performed ac-
cording to the conditions and rules prescribed by the server.
The server is not willing to provide its services to untrusted
clients, which may behave maliciously or unfairly with re-
spect to the other clients.

While cryptographic signature schemes and sandboxed
clients largely address the first of these concerns, the lat-
ter concern – that of software integrity – remains an open
problem. The Remote trusting problem is a particular in-
stance of the software integrity problem in which a trusted
host (server) wishes to verify that an untrusted host (client)
is executing according to its expectations at the point when
the client requests a service.

∗This work was supported by funds from the European Commission
(contract No 021186-2 for the RE-TRUST project)

A solution to the remote trusting problem is based on
moving the tamper-sensitive part of the client computation
to the server. Such a solution was investigated by Zhang
and Gupta [13], in the context of protection from illegal
software copying. Copy-sensitive parts of the clients are
sliced and moved to the server so as to make copying inef-
fective, if based on the client code only. Another solution,
investigated in [2], focuses on the notion of invalid state and
exploits the barrier slicing technique to move the invalid-
sensitive part of the client state to the server. Both solutions
are based on the assumption that the core of trust is in the
server and that every computation moved to the server be-
comes intrinsically safe.

The main problem of these two solutions based on slic-
ing is that the server, which is the only reliable source of
trust, is overloaded with computations that cannot be per-
formed safely on the client. When the server is accessed by
a high number of clients concurrently, it might be impossi-
ble to ensure an adequate quality of service.

In this paper, we propose a distributed trust architecture,
which takes advantage of trusted hardware, such as smart-
cards, residing on each client. The core of trust is split be-
tween central trusted server and local trusted hardware, so
as to delegate to the local trusted hardware everything that
does not need a centralized service. The server keeps only
its original services, which by design cannot be distributed,
so that its load is unchanged, compared to the original ap-
plication. Additional trust is achieved by means of the lo-
cal trusted computations performed by the smartcards. The
slices of trust-sensitive code are moved to the local trusted
hardware.

2 Background

In this section we summarize the remote entrusting prob-
lem and the centralized solution. More details are available
in the previous paper [2].



2.1 Remote trust verification

Remote trust verification involves a trusted host (server)
S, an untrusted host (client) C and a communication chan-
nel between the two. The integrity of the application P run-
ning on C has to be verified whenever a communication act
occurs between S and C.

We assume a scenario in which the application P re-
quires a service delivered by S. To receive this service a
communication channel is established between C and S and
some messages are exchanged:

C[s]
m
−→ S and S

v
−→ C[s]

where s is the current state of application P running on C

and m is a message that requests some service from S. Once
S receives the request m it replies by sending the message
(service) v.

The state s of the client application during a communica-
tion with S is a valid state when it satisfies certain validity
properties expressed through an assertion (A(s) = true). In
order for S to trust the application P upon the execution of a
communication act, P has to exhibit a valid state. The only
way in which S can verify the validity of the application P

is by analyzing the message m that C has sent. S trusts
P upon execution of the communication act C[s]

m
−→ S

if E(m) = true, where E is an assertion checked by the
server S.

Thus, the remote trusting problem consists of finding a
protection scheme such that verifying E(m) is equivalent
to having a valid state (i.e., E(m) ⇔ A(s)).

A protection mechanism is not sound (attacker wins)
whenever the server is trusting the client, but the current
state of the client is not valid (E(m) = true ∧ A(s) =
false). A protection mechanism is not complete when the
server does not trust a client that should be trusted (E(m) =
false ∧ A(s) = true).

In the attempt to break a given protection mechanism,
we make the assumption that the attacker can: (1) reverse
engineer and modify the code of P ; (2) alter the running
environment of P , for example through emulators or de-
buggers, and dynamically change the state of P ; (3) pro-
duce static copies of P and execute multiple copies of P

in parallel, some of which are possibly modified; and, (4)
intercept and replace any network messages upon any com-
munication act.

2.2 Using barrier slicing for remote trust

When the server S delivers a service v, the client C can
make some use of v only if its state is consistent with the
state in which the service was requested. More specifically,
we can make the assumption that a (possibly empty) portion
of the state s of C must be valid in order for the service v to

be usable by the client. We call this substate of the client the
safe substate. Formally, such substate s|Safe

is the projection
of the state s on the safe variables of the client. Intuitively,
when the service v is received in an invalid substate s|Safe

,
the application cannot continue its execution, in that some-
thing bad is going to happen (e.g., the computation diverges
or blocks). The complement of the safe substate is called
unsafe substate and is formally the projection of the state
on the unsafe variables: s|Unsafe

.
The intuitive idea behind the usage of barrier slicing for

remote trusting is to move the portion (slice) of the applica-
tion P that maintains the variables in s|Unsafe

to the server,
in order to prevent the attacker from tampering with them.
To limit the portion of code that needs to be moved, barrier
slicing instead of regular slicing is used.

The regular, backward slice for a variable at a given pro-
gram point (slicing criterion) gives the subprogram which
computes the same value of that variable at the selected pro-
gram point as the original program. Hence, slicing on the
unsafe variables at the communication acts gives the por-
tion of client code that, once moved to the server, ensures
correct and reliable computation of s|Unsafe

. Since it is the
server which computes s|Unsafe

, by executing one slice per
client, no tampering can occur at all (the server is assumed
to be completely trusted).

We can notice that the computation of the moved slices
on the server is somehow redundant. In fact, such computa-
tion may involve values from s|Safe

which are ensured to be
valid and thus do not need be recomputed on the server. In
other words, whenever the computation carried out in a slice
moved to the server involves a safe variable, it is possible to
use the value obtained from the client (extracted from m),
without any need to recompute it. The technique to achieve
such a slice portion is called barrier slicing [4, 5], with the
barriers represented by the safe variables which do not need
to be recomputed. Technically, when including the depen-
dencies in the backward transitive closure, the computation
of the slice is stopped whenever a safe variable is reached.

3 Distributed trust verification

3.1 Centralized trust architecture

The barrier slicing solution to the remote trusting prob-
lem is based on a centralized architecture. The slice is
moved onto the server and instructions are added to the
client to cause the server execute the slice when needed.
Data required to execute the slice is sent to the server by
the client and required values are requested by the client
when they are needed. This involves additional communi-
cation and synchronization, and requires the execution of
a stateful computation (the moved slice) for each currently
running client.



The additional communication and synchronization mes-
sages required in this scheme add a lot of network overhead
to the application. Several optimizations were outlined in
the original proposal [2] to reduce the number of commu-
nication messages required. In spite of these optimizations,
in some applications the slowdown introduced by these ad-
ditional communication acts may result in a unacceptably
large slow down of the application.

The second performance penalty depends on the amount
of computation that must be performed by the server. If
the server is supposed to serve a high number of clients,
the centralized solution [2] may not scale, overloading the
trusted server with a large number of concurrent slice ex-
ecutions, which demand too much of computing power or
memory. In fact, slice execution must be instantiated on a
per-client basis and may involve substantial memory, since
it is by definition a stateful computation.

3.2 Distributed trust architecture

In a distributed trust scheme, each client has a tamper-
resistant computational device (e.g., smartcard) which is
trusted by the server. In this work, we investigate a dis-
tributed trust architecture, used in conjunction with barrier
slicing in order to achieve trusted computation of s|Unsafe

with minimal performance penalties. We make the as-
sumption that the client is connected to some trusted, pro-
grammable hardware, such as a smartcard, possibly at-
tached to the USB port. This hardware usually has limited
computing and memory power. Hence, it is not possible to
move the entire client application to it and solve the remote
trusting problem in this way. However, the computing capa-
bilities of such a device are probably sufficient to execute a
barrier slice of the client, thus ensuring trusted computation
of s|Unsafe

.
In the rest of the paper we will use the term smartcard to

generally refer to any tamper resistant hardware. The same
protection mechanism can be implemented using any secure
device, such as secure coprocessors, USB dongles or secure
mobile devices.

Intuitively, the barrier slices that ensure remote trusting
are moved and executed on the smartcard. The client con-
tinues to run the portion of application that is non-sensitive,
from the security point of view (e.g., the GUI), or that is
intrinsically secured (i.e., computation of s|Safe

). The client
continues to communicate with the server for any service v

necessary to continue its execution. A virtual, secure chan-
nel is established between the smartcard and the trusted
host, so that whenever the smartcard detects a deviation
from the valid states, the server is notified and stops de-
livering its services to that particular client.

The program on client C in a state s sends a message
m = f(s) to the smartcard. Depending on the power of the

smartcard, the smartcard either encrypts m using a key or
verifies the assertion and encrypts a message to indicate the
validity of m. The smartcard sends this encoded message
Enc(m) either directly or via the client to the server. These
encoded messages serve as a secure virtual channel between
the smartcard and the server. Based on this message, the
server sends the client a service v. The assertion E(m),
checked either on the server or on the smartcard, determines
whether the server should trust the client or not. The load on
less powerful smartcards can be further reduced by allowing
the client to send unencrypted messages m directly to the
server. Instead, the smartcard periodically sends a check-
sum of recent messages to the server allowing the server
to test the veracity of messages it has received since the
last checksum, allowing it to detect tampered messages and
withhold further service. In this scheme, there is a trade-
off between the power required in the tamper-resistant hard-
ware and length of time an attacker can successfully receive
a tampered service before being detected by the server.

The architecture described herein addresses the two main
performance penalties for the application running on the
client. The network overhead is restored to levels com-
parable to the initial application. All communication acts
necessary for the client to obtain the values of variables in
s|Unsafe

do not transit over the network any longer. They go
directly to the local smartcard. The computation and mem-
ory overhead are eliminated, since the barrier slices are not
executed on the server any more. It is the smartcard that
contains their code and runs them locally. Compared to the
initial, untrusted architecture, the client and server pay mi-
nor penalties related to the authentication messages that are
generated by the smartcard and transit over the network.

4 Program Transformation

As in the case of the centralized protection, the variables
that need to be protected must be manually chosen by the
user. Once these variables have been selected, the code to
be moved to the smartcard can be automatically computed
and the client code can be transformed. The transformed
code is eventually installed on the client. In this section
we cope only with code modifications that are required to
apply the distributed protection mechanism. Other changes,
required to make the code run on special hardware are out
of the scope in this paper. Appropriate cross compilers or
manufacturer proprietary tools should be used.

The transformation steps are described with reference to
the example in Figure 1. Let us consider the fragment of
code in Figure 1(a). If we consider the n-th communication,
the barrier Bn is given by instruction 1, while the slicing cri-
terion Cn is given by instructions 10 and 12. By computing



1 x = x * a;
2 a = a + x;

sendh(mh);
receiveh(kh);

3 a = x + a;
4 x = x + 1;
5 while (c) {
6 a = a + x;
7 x = x + a; }
8 x = x * a;
9 if (c)
10 then { a = 2 * x;
11 x = x + a;}
12 else { a = x * x;
13 x = x + 2*a; }
14 x = 2*a;

sendn(mn);
receiven(kn);

C1 x = x * a;
C2 sync();

sendh(mh);
receiveh(kh);

C3 sync();
C4 x = x + 1;
C5 while (c) {
C6 sync();
C7 x = x + ask("a"); }
C8 x = x * ask("a");
C9 if (c)
C10 then { sync();
C11 x = x + ask("a");}
C12 else { sync();
C13 x = x + 2*ask("a"); }
C14 x = 2*ask("a");

sendn(mn);
receiven(kn);

S1 a = a + x;
S2 sync();

receiveh(mh);
S3 x = m ;
S4 if A(x, a) then

sendAuthenticityTag(mh);
S5 else
S6 sendTamperedTag();
S7 a = x + a;
S8 sync();
S9 x = x + 1;
S10 while (c) {
S11 a = a + x;
S12 sync();
S13 x = x + a; }
S14 x = x * a;
S15 if (c)
S16 then { a = 2 * x;
S17 sync(); }
S18 else { a = x * x;
S19 sync(); }

receiven(mn);
S20 x = m ;
S21 if A(x, a) then

sendAuthenticityTag(mn);
S22 else
S23 sendTamperedTag();

(a) (b) (c)

Figure 1. An example of the proposed protection scheme: (a) original client, (b) modified client and
(c) corresponding smartcard.

the barrier slice, we obtain:

Slice](Cn, Bn) = {12, 10, 9, 8, 7, 6, 5, 4, 3, 2}

4.1 Client code

The transformation of the client consists of removing
some of the statements in the barrier slice and introducing
some extra communication with the smartcard, to retrieve
the needed values. The transformation is composed of the
following steps:

• Every message m sent to the server is also sent to the
smartcard.

• Every unsafe variable definition in the slice (Fig-
ure 1(a) statements 2, 3, 6, 10 and 12) is replaced by
the instruction sync() (Figure 1(b) statements C2,
C3, C6, C10 and C12). This message corresponds to
a synchronous blocking communication, which means
that the client has to wait for the answer from the
smartcard. The smartcard sends an ack only when
its execution reaches the corresponding sync() (Fig-
ure 1(c) statements S2, S8, S12, S17 and S19).

• Every use of variable a ∈ Unsafen on the client is
replaced by an ask("a") that requests the current
value of a from the smartcard (Figure 1(b) statements
7, 8, 11, 13 and 14).

• The last change involves input values (i.e., user input,
file read), which must be forwarded to the smartcard as
soon as they are collected by the client application.

• On the client a new process is added (not shown in Fig-
ure 1(b)), that just waits for encrypted messages com-
ing from the smartcard and forwards them as they are
to the sever. In this way a virtual secure channel is
established between the smartcard and the server.

4.2 Smartcard code

The code to be uploaded onto the smartcard aims at:
(1) making the smartcard able to run the slice computing
the Unsafe variables; (2) keeping it synchronized with the
client; and, (3) verifying the validity of the Safe variables.
The transformation of the client is composed of these steps:

• The very first change to apply is to copy the barrier
slice Slice](Cn, Bn) to the smartcard. The smartcard
has to boot strap the slice as the original client does
(e.g., data structures must be initialized).

• The slice is fed with any input coming from the client.

• As soon as the smartcard receives a message m from
the client, the validity of the client’s state is verified
(statements S4-S6, S21-S23), after extracting the
values for the Safe variables (statements S3, S20). If
the state is considered valid an authenticity tag is sent



to the server through the virtual secure channel. Other-
wise, the server is notified about the identified attack,
through a tampered tag. Tags are encrypted and signed
using a secret key hidden in the smartcard, thus they
are not visible to the attacker. They include the mes-
sage m received from the client.

• Whenever a sync() statement is reached, the current
values of the Unsafe variables are saved, after synchro-
nizing with the client.

• A smartcard process (not shown in Figure 1(c)) replies
to each client’s ask() by sending the currently saved
value for the requested variable.

Figure 1(c) shows the code running on on the smartcard
after the transformation. Instruction 2 of the original appli-
cation contains a definition of variable a ∈ Unsafe . In the
client, this instruction is replaced by a sync() (instruction
C2), corresponding to the smartcard’s sync() S2. Upon
synchronization, when the client’s execution is at C2 and
the smartcard’s execution is at S2, the current value of the
unsafe variable a is saved on the smartcard. The smartcard
can then proceed until the next sync() (instruction S8),
and any ask() issued by the client is replied by a paral-
lel smartcard process sending the stored value of a (i.e., the
value produced at S1). We can observe that instructions 11
and 13 are not duplicated on the smartcard, since they do
not belong to the considered barrier slice.

4.3 Server code

In contrast to the centralized solution, the code of the
server (not shown in Figure 1) is affected by only minor
changes. A new process is added that establishes the virtual
secure channel with the smartcard and waits for authentic-
ity tags. In case they are not received at the expected rate,
an invalid or a tampered tag is received, or the message
m brought by the tag does not correspond to the message
m received from the client, this process notifies the origi-
nal server to stop delivering the service to the correspond-
ing client. In alternate implementations where the assertion
E(m) is computationally expensive and the resources on
the smartcard are meager, code to test the assertion is added
to the server.

5 Experimental results

Both the distributed and centralized protection architec-
tures have been applied on the same case study, a net-
work application, and a scalability assessment has been per-
formed on them.

5.1 Case Study

CarRace is a network game, the client of which consists
of around 900 lines of Java code. The application allows
players to connect to a central game server and race cars
against each other. During the race, each player periodi-
cally sends data about the car position and direction to the
server, which then broadcasts the data to the other clients
allowing them to render the game on their screen. The fuel
is constantly consumed, and a player must periodically stop
the car and spend time refueling.

There are many ways a malicious user (the attacker) can
tamper with this application and gain an unfair advantage
over his competitors. For example, he can increase the
speed over the permitted threshold, change the number of
performed laps or avoid refueling by manipulating the fuel
level. Unfortunately not all the variables that must be pro-
tected against attack are in Safe. The attacker cannot tamper
with the position (variables x and y), because the displayed
participants’ positions are those broadcast by the server, not
those available locally. The server can check the confor-
mance of the position updates with the game rules (e.g.,
maximum speed). The other sensitive variables of the game
(e.g., gas) are Unsafe and must be protected by some ex-
tra mechanism, such as barrier slicing. A barrier slice has
been computed using the Unsafe variables as criteria and
Safe variables as barrier. The barrier slice is quite small,
just 120 lines of code (14% of the entire application) so it
can fit low cost, commercially available, secure hardware,
such as smartcards.

5.2 Scalability Analysis

The two different protection mechanisms (centralized
and distributed architecture) have been applied to the case
study application. In order to analyze how they scale when
the number of connected clients increases, the server perfor-
mance has been recorded in terms of memory consumption,
number of threads and network traffic (i.e., exchanged mes-
sages). The server has been run respectively with 2, 4, 6,
8, 10 and 12 clients (the race is played pairwise). From the
trend of the plotted data, the scalability of the system was
assessed. In order to make the measurement objective and
repeatable, a “softbot” was developed, able to play the race
by driving the car through a sequence of check points.

Figure 2 shows the amount of memory (bytes) allocated
on the heap of the Java Virtual Machine that runs the server.
In the case of two clients, the memory required by the cen-
tralized solution is about the double of the distributed solu-
tion memory size (988 Vs 524 bytes). The slope of the line
that connects the experimental points suggests the scalabil-
ity of the two solutions. By linear fit, we can determine that
while the centralized protection requires to allocate about



0

500

1000

1500

2000

2500

3000

3500

0 2 4 6 8 10 12 14

Centralized

Dis tributed

Figure 2. Memory consumption on the server.

220 bytes per each new client, the distributed one requires
just 32 bytes per client (15%).

Results indicate that in the CarRace application, the slice
executing on the smartcard consumed 820 bytes of heap
memory compared to 2325 bytes on the original client. In
other words, less than 40% of the memory in use in the orig-
inal client ends up being required on the smartcard. Further-
more, the slice required less than 25% of the CPU cycles of
the original application. While these are significant com-
putational resources, they are a considerable improvement
over using tamper-resistant hardware to protect the entire
client application. The resources required to execute the
smartcard slice vary greatly from application to applica-
tion, so we expect higher or lower benefits depending on
the given case. Optimizations are also possible for specific
applications (see previous sections).

0

10

20

30

40

50

60

0 2 4 6 8 10 12 14

Centralized

Dis tributed

Figure 3. Number of threads on the server.

If we consider the threads running on the server, we can
see on Figure 3 that the distributed solution is less demand-
ing when the number of clients increases. In fact, while
the centralized solution requires 4 new threads per served
client, the distributed approach requires just one thread per
client (25%). In fact, all the threads in the barrier slice must
be replicated on the centralized server, for each connected
client, while in the distributed solution just one more thread
is necessary, to handle the encrypted network communica-
tion.

Figure 4 shows how network traffic (number of ex-
changed messages) changes on the server when the number

0

5000

10000

15000

20000

25000

0 2 4 6 8 10 12 14

Centralized

Dis tributed

Figure 4. Number of exchanged messages.

of clients increases. In the distributed solution the num-
ber of messages exchanged by the server is the same as the
original (i.e., non-protected) application, because only the
original messages go through the server (145 messages per
client). In fact, all the messages that keep the unsafe state
updated go through the secure hardware (e.g., smartcard).
In the centralized solution the server has to handle either the
original messages and the security-related messages, caus-
ing the network traffic to increase faster (1743 messages per
client, according to a linear fit). In the distributed solution,
the server network traffic growth is about 8% of the central-
ized solution.

6 Related works

The problem of remote attestation of software has a col-
orful and long history. The key idea of a “trusted com-
puting base”(TCB) can be traced to the Orange Book [7]
and Lampson [6]. Lampson defines the TCB as a “small
amount of software and hardware that security depends on”.
In this context, security was assured by the TCB because
the operating system and hardware were assumed to be
known, trusted and inviolable. More recently, trusted hard-
ware schemes for remote attestation have been proposed.
The Trusted Computing Group [8] and Microsoft’s Palla-
dium [1] have proposed several schemes based on a secured
co-processor. These devices use physical defenses against
tampering. The co-processor stores integrity measurement
values that are later checked externally. The increased cost
of manufacture and prohibitive loss of processing power
due to the required cryptography has largely limited the
mainstream adoption of these solutions.

Alternatives to custom trusted hardware are represented
by software-only solutions that rely on known hardware.
Swatt [10] and Pioneer [9] apply respectively to embedded
devices and desktop computer. At run-time they compute a
checksum of the in-memory program image to verify that no
malicious modifications has occurred. They take advantage
of an accurate knowledge of the client hardware and mem-
ory layout to precisely predict how long the checksum com-
putation should take. Detection of tampering is based on an



observed execution time that exceeds the upper bound, un-
der the assumption that any attack introduces some levels of
indirection, which increases the execution time.

Detailed client hardware knowledge is a reasonable as-
sumption when a collaborative user is interested in protect-
ing her/himself against malware. It does not apply to ma-
licious users who are willing to tamper with the hardware
and software configuration or provide incorrect information
about it.

If checksum computation time can not be accurately pre-
dicted, the memory copy attack [12] can be implemented to
circumvent verifications. A copy of the original program
is kept by the malicious user. Authenticity verification re-
trieves the code to be checked in data mode, i.e., by means
of proper procedures (get code) that return the program’s
code as if it were a program’s datum. In any case, the ac-
cesses to the code in execution mode (i.e., control transfers
to a given code segment, such as method calls) are easily
distinguished from the accesses in data mode. Hence, the
attacker can easily redirect every access in execution mode
to the tampered code and every access in data mode to the
original code, paying just a very small performance over-
head.

Kennell and Jamieson [3] propose a scheme called Gen-
uinity which addresses this shortcoming of checksum-based
protections by integrating the test for the “genuineness” of
the hardware of the remote machine with the test for the in-
tegrity of the software that is being executed. Their scheme
addresses the redirection problem outlined above by incor-
porating the side-effects of the instructions executed dur-
ing the checksum procedure itself into computed checksum.
The authors suggest that the attackers only remaining op-
tion, simulation, cannot be carried out sufficiently quickly
to remain undetected. Shankar et al. [11] propose two sub-
stitution attacks against Genuinity which exploit the ability
of an attacker to add code to an unused portion of a code
page without any additional irreversible side-effects.

7 Conclusions

In this paper we address the remote trusting problem,
verifying the healthy execution of a given application that
runs on a untrusted host. Our solution consists of a dis-
tributed architecture. The application to protect is divided
into two segments using barrier slicing. The portion that
keeps sensitive variables up to date is moved to local, se-
cure hardware, in order to protect it against tampering.

This solution represents an improvement of the previous
centralized solution, proposed in [2], where the sensitive
application part is moved to the server. On a small case
study, we observed that the centralized architecture causes
unacceptable server overhead, when many clients are con-

nected. The distributed solution has better scalability. It
requires considerable less server resources in terms of al-
located memory (15%), threads (25%) and network traffic
(8%), while providing the same level of protection. On the
other hand, the portion of code to move onto the local, se-
cure hardware (14% of the total application) is small enough
to fit a smartcard.

References

[1] A. Carroll, M. Juarez, J. Polk, and T. Leininger. Microsoft
“Palladium”: A Business Overview. Microsoft Content Se-
curity Business Unit, August, 2002.

[2] M. Ceccato, M. D. Preda, J. Nagra, C. Collberg, and
P. Tonella. Barrier slicing for remote software trusting. In
Proc. of the Seventh IEEE International Working Confer-
ence on Source Code Analysis and Manipulation (SCAM
2007), pages 27–36. IEEE Computer Society, Sept. 30 2007-
Oct. 1 2007.

[3] R. Kennell and L. H. Jamieson. Establishing the genuinity of
remote computer systems. In Proceedings of 12th USENIX
Security Symposium, 2003.

[4] J. Krinke. Barrier slicing and chopping. In Proceedings
Third IEEE International Workshop on Source Code Analy-
sis and Manipulation, pages 81–87, 2003.

[5] J. Krinke. Slicing, chopping, and path conditions with bar-
riers. Software Quality Journal, 12(4):339–360, dec 2004.

[6] B. Lampson, M. Abadi, M. Burrows, and E. Wobber. Au-
thentication in distributed systems: theory and practice.
ACM Trans. Comput. Syst., 10(4):265–310, 1992.

[7] D. of Defense. Trusted computer security evaluation criteria,
dod 5200.28-std. Washington D.C., December 1985. DOD
5200.28-STD.

[8] R. Sailer, X. Zhang, T. Jaeger, and L. van Doorn. Design
and Implementation of a TCG-based Integrity Measurement
Architecture. In Proceedings of the 13th USENIX Security
Symposium, pages 223–238, 2004.

[9] A. Seshadri, M. Luk, E. Shi, A. Perrig, L. van Doorn, and
P. K. Khosla. Pioneer: verifying code integrity and enforc-
ing untampered code execution on legacy systems. In Pro-
ceedings of the 20th ACM Symposium on Operating Systems
Principles (SOSP), Brighton, UK, October 23-2-6, pages 1–
16, 2005.

[10] A. Seshadri, A. Perrig, L. van Doorn, and P. K. Khosla.
Swatt: Software-based attestation for embedded devices. In
IEEE Symposium on Security and Privacy, pages 272–283,
2004.

[11] M. C. Umesh Shankar and J. D. Tygar. Side effects are
not sufficient to authenticate software. Technical Report
UCB/CSD-04-1363, EECS Department, University of Cali-
fornia, Berkeley, 2004.

[12] P. van Oorschot, A. Somayaji, and G. Wurster. Hardware-
assisted circumvention of self-hashing software tamper re-
sistance. IEEE Transactions on Dependable and Secure
Computing, 2(2):82–92, April-June 2005.

[13] X. Zhang and R. Gupta. Hiding program slices for software
security. In CGO ’03: Proceedings of the international sym-
posium on Code generation and optimization, pages 325–
336, Washington, DC, USA, 2003. IEEE Computer Society.


	Introduction
	Background
	Remote trust verification
	Using barrier slicing for remote trust

	Distributed trust verification
	Centralized trust architecture
	Distributed trust architecture

	Program Transformation
	Client code
	Smartcard code
	Server code

	Experimental results
	Case Study
	Scalability Analysis

	Related works
	Conclusions

