
Automatic Support for the Migration Towards Aspects

Mariano Ceccato
Fondazione Bruno Kessler—IRST, Trento, Italy

ceccato@fbk.eu

Abstract

Aspect Oriented Programming (AOP) has been proposed
as a new programming paradigm. The originality in AOP is
the aspect, a single modularization unit for all those func-
tionalities that were originally spread across several mod-
ules and tangled with each other (called crosscutting con-
cerns). Using an aspect, a crosscutting concern can be fac-
tored out into a single, separate unit.

This paper summarizes a PhD thesis that presents an ap-
proach to automatize the migration of existing Object Ori-
ented systems towards AOP. Different techniques are pro-
posed to cope with the migration and assessed on a large
software basis.

1 Introduction

One of the main drawbacks in adopting any modulariza-
tion strategy in software development is that there are sys-
tem functionalities that can not be assigned to a single mod-
ule in the chosen decomposition. Examples of functionali-
ties that suffer this problem are persistence, error manage-
ment and logging. Since the code fragments that implement
these concerns are spread across many units, they are called
Crosscutting Concerns.

Crosscutting concerns violate the modularization goal
that a system is decomposed into small independent parts.
Crosscutting concerns are transversal with respect to the
units in the principal decomposition, because their imple-
mentation consists of a set of code fragments distributed
over a number of units. The maintenance of such a scat-
tered concern could pose understandability problems.

Aspect Oriented Programming [7] (AOP) has been pro-
posed to solve the main problems of crosscutting concerns
(namely scattering and tangling), by providing a unique
place where the related functionalities are implemented. A
new modularization unit, called aspect, can be defined to
factor out all code fragments related to a common function-
ality, otherwise spread all over the system. For example,
an application can be developed according to its main logi-

cal decomposition, while the possibility to serialize and de-
serialize some of its objects can be defined in a separate
aspect.

In order to extend the benefits of AOP to already exist-
ing systems, a significant reverse and re–engineering effort
is required. The effort consists, first of all, in analysing the
existing application source code looking for those portions
that implement the crosscutting functionality. The second
part of the work is the transformation of the existing pro-
gram into an aspect-oriented reformulation.

This paper presents a summary of the PhD thesis [1, 2].
Aspect mining and refactoring are presented in Section 2
and Section 3. Then, the assessment of the whole process is
summarized in Section 4 and, eventually, Section 5 closes
the paper.

2 Aspect Mining

2.1 Aspectizable interfaces

When a program is designed according to the OOP
paradigm, the hierarchy of the classes reflects the (prin-
cipal) decomposition of data structures and functions into
smaller, composable units. In such a decomposition, the
interfaces play a twofold role:

1. An interface may collect abstract properties of the
principal decomposition, shared by the classes imple-
menting it.

2. An interface may collect transversal properties, that
crosscut the principal decomposition. Such properties
recur across multiple unrelated classes, instead of be-
ing confined within a single, cohesive group of classes.

We call the latter an aspectizable interface.
Let us consider persistence (e.g., interface

Serializable in the Java standard library). The
code fragments implementing this interface are spread
across several classes (scattering). Moreover, this code
requires access to information about each entity to be stored
persistently (tangling). On the other side, if we consider



the persistence functionality from a logical point of view, it
clearly does not belong to the principal decomposition of
the application. Rather, it is a transversal computation that
has to be superimposed. In other words, it is an aspect of
this application.

We have defined the following set of aspect mining indi-
cators specifically for the migration of interface implemen-
tations to aspects. The implementation of an interface is
marked as a candidate aspect when:

• External package: The interface implemented in a
class belongs to a package different from that of the
given class.

• String matching: The name of the interface imple-
mented in a class matches a user defined pattern (e.g.,
".*able").

• Clustering: When methods are clustered according to
the call relationship, interface methods are not grouped
together with other (non-interface) class methods.

• Unpluggability: The methods of the interface imple-
mented in a class can be unplugged from the given
class, since they are not invoked by other methods of
the same class.

2.2 Dynamic aspect mining

We propose to use feature location [3] for aspect min-
ing according to the following procedure. Execution traces
are obtained by running an instrumented version of the pro-
gram under analysis for a set of scenarios (use cases). The
relationship between execution traces and executed com-
putational units is subjected to formal concept analysis
(FCA [5]). The execution traces associated with the use
cases are the objects1 of the concept analysis context, while
the executed class methods are the attributes.

Based on the resulting concept lattice (with sparse label-
ing), the notion of use-case specific concepts and generic
concepts are defined.

Both use-case specific concepts and generic concepts
carry information potentially useful for aspect mining, since
they group specific methods that are always executed under
the same scenarios. When the methods that label one such
concept crosscut the principal decomposition, a candidate
aspect is determined.

A concept is a reported as crosscutting concern if these
two symptoms are identified:

• scattering: more than one class contributes to the func-
tionality associated with the given concept;

• tangling: the class itself addresses more than one con-
cern.

1Not to be confused with objects in Object-Oriented programming.

2.3 Mining combination

Dynamic aspect mining revealed some limitations. A
limitation is the ability to report only portions (seeds) of
actual crosscutting concerns, due to the fact that dynamic
aspect mining relies on a limited set of execution scenarios.
In order to overcome its limitations, we combine dynamic
aspect mining with relevant mining techniques taken from
the literature, they are fan-in analysis [8] and identifier anal-
ysis [10].

Fan-in analysis is based on the assumption that a method
called from many different places (i.e., with a high fan-
in) represents a seed for a crosscutting concern, in that the
call sites are spread throughout the system. Only methods
whose fan-in is above a given threshold are reported as po-
tential crosscutting concerns.

Fan-in analysis and dynamic aspect mining are quite
complementary. In fact, while fan-in analysis focuses on
identifying those methods that are called at multiple places,
dynamic aspect mining discards them, because such meth-
ods are likely to occur in many execution traces. A method
with a high fan-in is not specific to any use-case. A com-
bination of fan-in analysis and dynamic aspect mining con-
sists in applying each technique individually and taking the
union of the results.

In identifier analysis [10], naming convention is used
to identify crosscutting concerns. Identifiers are split into
words according to the contained capital characters (camel
casing). For instance, the class name QuotedCodeConstant
generates the substrings quoted, code and constant. For-
mal Concept Analysis is then applied to this word list to
group together source code entities, when they share sim-
ilar names. Groups correspond to the aspectual views that
should guide developers in the crosscutting concern identi-
fication.

Identifier analysis produces very interesting results, be-
cause it focuses on complete concerns and not just on seeds.
However, many false positives are reported and a quite time-
consuming manual intervention is required to filter them
out. Consequently, better results could be achieved if iden-
tifier analysis is used as seed expansion technique for the
seeds identified either by fan-in analysis or by dynamic as-
pect mining (or by their combination). In this way, the
search space for identifier analysis can be significantly re-
duced and less false positives are expected.

Considering respective strengths and limitations, we pro-
pose to combine the mentioned techniques according to the
subsequent algorithm:

1. Identify interesting candidate seeds by applying fan-in
analysis, dynamic aspect mining or both;

2. For each method in the candidate seed, find its enclos-
ing class, and compute the identifiers occurring in the



method and the class name, according to camel casing;

3. Apply identifier analysis to the application, and search
for the concept, among the concepts it reports, that is
“nearest”. The nearest concept is the concept that con-
tains most of the identifiers generated in the previous
step. If more than one nearest concept exists, take the
union of all their elements.

4. Add the methods contained in the nearest concept(s) to
the candidate seed (seed completion).

5. Revise the expanded list of candidate seeds manually
to remove false positives and add missing seeds (false
negatives).

3 Refactoring

3.1 Aspectization of the aspectizable in-
terfaces

The refactoring of an aspectizable interface consists of
modifying all the classes that realize such interface, where
all the interface methods are moved from the classes to an
aspect. Migration of an aspectizable interface to an aspect
involves two main, high-level code transformations (refac-
torings, [4]):

1. Move properties to aspect: properties (attributes,
methods, inner classes) are modularized in the aspect,
that introduces them into the affected classes.

2. Remove references to properties: execution points ref-
erencing aspectized properties are moved into the as-
pect code (called advice code) triggered by pointcuts.

In the case of the aspectizable interfaces, the first trans-
formation is the most important one, since the methods
in the interface implementations are seldom referenced by
methods in the principal decomposition.

The overall transformation can be described in terms of
three simpler refactoring steps, applied repeatedly. They
are:

• Move method to aspect.

• Move field to aspect.

• Move inner class to aspect.

These three (atomic) refactorings consist of removing a
method (resp. field or inner class) from a given class and
adding it to an aspect, where it becomes an introduction.

3.2 Pointcut extraction

The identification of aspect candidates (aspect mining)
and the mark-up of the code regions that represent instances
of these candidates to be refactored are assumed to have
been completed before the extraction begins.

The pointcut extraction process consists of a loop over all
the marked portions of code. In turn, each marked segment
of code is analyzed in isolation and, with the involvement
of the user, moved to an aspect. The iteration goes on until
no more marked statements remain in the base code.

Among the high number of refactorings for migration
from objects to aspects that have been proposed (e.g.,
in [6, 9, 11]), we focuses on a small subset, selected us-
ing a mix of a bottom-up and of a top-down approach. A-
priori knowledge about the constructs provided by most as-
pect languages/frameworks (including AspectJ) and about
the kinds of crosscutting concerns that are amenable for im-
plementation through aspects guided us. Furthermore, we
considered only refactorings whose mechanics can be fully
automated. In fact, one of our objectives is to assess the
ability of this small list of refactorings to cover most of the
cases encountered in practice. The following six refactor-
ings from objects to aspects have been included:

• Extract Beginning/End of Method/Handler: The
marked code is at the beginning/end of the enclosing
method body or of one of the method’s exception han-
dling blocks.

• Extract Before/After Call: The marked code is al-
ways before or after a method call.

• Extract Conditional: A conditional statement con-
trols the execution of the marked code.

• Pre Return: The marked code is just before the return
statement.

• Extract Wrapper: The marked code is part of a wrap-
per pattern, in which the wrapper code is to be aspec-
tized.

• Extract Exception Handling: The marked code is a
whole exception handling block.

When none of the refactorings above apply to a marked
code fragment, OO transformation is resorted to (also called
OO refactorings [4]) in order to make one or more of the
refactorings above applicable. Among the possible OO
transformations, the following are regarded as the two most
important ones: Statement Reordering and Extract Method.
Both can be fully automated (the latter is available in most
transformation environments, while the former requires non
trivial dependency analysis to ensure semantics preserva-
tion).



Program Size (LoC) Techniques
JDK classes 382,533 Aspectizable interfaces
JHotDraw 40,022 Dynamic aspect mining,

Mining combination,
Aspectizable interfaces,

Pointcut extraction
FreeTTS 31,009 Aspectizable interfaces
JGraph 18,373 Aspectizable interfaces
PetStore 17,032 Pointcut extraction
JSpider 13,979 Pointcut extraction
JAccounting 11,676 Pointcut extraction
Total 514,624

Table 1. Java programs used as case studies.

4 Assessment

All the proposed approaches for aspect mining and as-
pect refactoring have been applied to existing software sys-
tems. Source code used in the assessment comes from se-
lected open source Java projects, accounting for more that
half a million lines of code (see Table 1). They range from
component oriented classes to full applications with inter-
mediate cases.

The migration toward AOP is expected to be beneficial
for external quality attributes such as understandability and
maintainability, as well as for internal quality attributes,
such as modularity. In fact, the possibility to encapsulate
separate concerns should result in a localized comprehen-
sion and modification effort, and an improved code struc-
ture. So, we designed an empirical study (controlled exper-
iment) to measure how these qualities improve during the
migration. We asked some software developers to work in a
controlled environment and perform selected maintenance
tasks either on an OOP system or on its AOP version (after
aspectizable interfaces extraction).

For reason of space, we do not report here data about the
assessment of mining and refactoring. More details can be
found in the thesis [1]. Instead, we briefly summarize here
our findings about the controlled experiment.

Overall, the study indicates that the migration of the as-
pectizable interfaces has a limited impact on the principal
decomposition size, but at the same time it produces an im-
provement of the code modularity. From the point of view
of the external quality attributes, modularization of the im-
plementation of the crosscutting interfaces clearly simpli-
fies the comprehension of the source code. We hypothesize
that further benefits in the overall maintainability would be
achieved if a larger fraction of the code was affected by the
migration to AOP. However, further experiments are neces-
sary to validate this hypothesis.

5 Conclusion

This paper summarizes the main contribution of the PhD
thesis on the migration of existing source code toward AOP.
Several techniques have been proposed and assessed both
for the identification of candidate aspects and for their trans-
formation into actual aspect code. All the proposed tech-
niques have been implemented into prototypes and applied
to some case study software systems. Moreover, a con-
trolled experiment has been conducted to evaluate the ben-
efits achieved after the migration in terms of source code
understandability and maintainability.

References

[1] M. Ceccato. Migrating Object Oriented code to Aspect Ori-
ented Programming. PhD thesis, University of Trento, Italy,
December 2006.

[2] M. Ceccato. Migrating object oriented code to aspect ori-
ented programming. In Proceedings of the 23rd IEEE Inter-
national Conference on Software Maintenance, 2007 (ICSM
2007), pages 497–498. IEEE, Computer Society, October
2007.

[3] T. Eisenbarth, R. Koschke, and D. Simon. Locating features
in source code. IEEE Transactions on Software Engineering,
29(3):195–209, March 2003.

[4] M. Fowler. Refactoring: Improving the design of existing
code. Addison-Wesley Publishing Company, Reading, MA,
1999.

[5] B. Ganter and R. Wille. Formal Concept Analysis. Springer-
Verlag, Berlin, Heidelberg, New York, 1996.

[6] J. Hannemann, G. C. Murphy, and G. Kiczales. Role-
based refactoring of crosscutting concerns. In AOSD ’05:
Proceedings of the 4th international conference on Aspect-
oriented software development, pages 135–146, New York,
NY, USA, 2005. ACM Press.

[7] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda,
C. Lopes, J.-M. Loingtier, and J. Irwin. Aspect oriented
programming. In Proc. of the 11th European Conference
on Object Oriented Programming (ECOOP), vol. 1241 of
LNCS, pages 220–242. Springer-Verlag, 1997.

[8] M. Marin, A. van Deursen, and L. Moonen. Identifying
aspects using fan-in analysis. In Proc. of the 11th IEEE
Working Conference on Reverse Engineering (WCRE 2004),
pages 132–141, Delft, The Netherlands, November 2004.
IEEE Computer Society.

[9] M. P. Monteiro and J. M. Fernandes. Towards a catalog
of aspect-oriented refactorings. In Proc. of the 4th Inter-
national Conference on Aspect-Oriented Software Develop-
ment (AOSD), pages 111–122. ACM Press, March 2005.

[10] T. Tourwe and K. Mens. Mining aspectual views using for-
mal concept analysis. In Proc. of SCAM 2004, pages 97–
106, Chicago, Illinois, USA. IEEE Computer Society.

[11] A. van Deursen, M. Marin, and L. Moonen. Aspect min-
ing and refactoring. In Proceedings of the 1st International
Workshop on Refactoring: Achievements, Challenges, Ef-
fects (REFACE), with WCRE, Waterloo, Canada, November
2003.


