
Electronic Communications of the EASST
Volume X (2007)

Proceedings of the
Third International ERCIM Symposium on

Software Evolution
(Software Evolution 2007)

The Use of Executable FIT Tables to support Maintenance and Evolution
Tasks

Filippo Ricca, Marco Torchiano, Massimiliano Di Penta, Mariano Ceccato and Paolo Tonella

10 pages

Guest Editors: Tom Mens, Maja D’Hondt, Kim Mens
Managing Editors: Tiziana Margaria, Julia Padberg, Gabriele Taentzer
ECEASST Home Page: http://www.easst.org/eceasst/ ISSN 1863-2122

http://www.easst.org/eceasst/


ECEASST

The Use of Executable FIT Tables to support Maintenance and
Evolution Tasks

Filippo Ricca1, Marco Torchiano2, Massimiliano Di Penta3, Mariano Ceccato4

and Paolo Tonella5

1 filippo.ricca@disi.unige.it
Unit CINI at DISI, Genova, Italy

2 torchiano@polito.it
Politecnico di Torino, Italy

3 dipenta@unisannio.it
University of Sannio, Benevento, Italy

4 ceccato@itc.it
5 tonella@itc.it

Fondazione Bruno Kessler—IRST, Trento, Italy

Abstract: Acceptance testing is a kind of testing performed prior to software de-
livery. In the agile approach, acceptance test cases can be specifiedby analysts and
customers during the requirement elicitation phase and used to support the develop-
ment/maintenance activities.

This paper reports a pilot experiment that investigates on the usefulness of exe-
cutable acceptance test cases, developed by using FIT (Framework for Integrated
Test), during software maintenance and evolution activities. The preliminaryre-
sults indicates that FIT tables help developers to correctly perform the mainte-
nance/evolution tasks without affecting the productivity.

Keywords: Empirical studies, acceptance testing, FIT tables.

1 Introduction

FIT (Framework for Integrated Test) is an open source framework used to express executable
acceptance test cases in a simple way. FIT lets analysts write acceptance tests (FIT tables)
using simple HTML tables. Programmers write code (Fixtures) to link the test cases with the
System to verify. Then, in a test-driven development scenario, they perform their development
or maintenance task being supported by the execution of these test cases.

In this paper we describe a controlled experiment aimed at assessing whether FIT tables are
helpful in maintenance tasks. We asked some master students to execute some corrective mainte-
nance and evolution interventions, providing them the Systems to be maintained with and without
the FIT Tables. The research questions that we are interested in answering are:

RQ1: Does the presence of FIT tables help programmers to execute maintenance tasks?

1 / 10 Volume X (2007)

mailto:filippo.ricca@disi.unige.it
mailto:torchiano@polito.it
mailto:dipenta@unisannio.it
mailto:ceccato@itc.it
mailto:tonella@itc.it


The Use of Executable FIT Tables to support Maintenance and Evolution Tasks

RQ2: Does the presence of FIT tables improve theproductivityin the execution of maintenance
interventions?

The dependent variable “correctness” was measured by exercising an alternative JUnit1 accep-
tance test suite, the variable “productivity” using time sheets where studentsannotated start and
stop time expressed in minutes. Preliminary results of our experiment shows that FIT tables help
developers to correctly perform the four maintenance/evolution tasks given without affecting the
productivity (the difference between the two groups considering the time to complete the tasks
was not significant).

Although there are several papers [Aar06, RMM05] and books [MC05] describing acceptance
testing with FIT tables, only a few works report empirical studies about FIT. The most related
work is the paper by Melniket al. [MRM04]. It is a study focused on the use of FIT user ac-
ceptance tests for specifying functional requirements. It has been conducted at the University
of Calgary and at the Southern Alberta Institute of Technology. In this experiment, the authors
showed that the use of FIT tables and the possibility to execute them improve thecomprehension
of requirements. In another preliminary study [TRP07] some of the authors of the present paper
found a statistically significant evidence that the availability of FIT tables allowsthe program-
mers to complete more maintenance tasks. However, they did not measure, as we did in the
present study, whether completed maintenance tasks were correct.

The paper is organized as follows: section2 briefly presents the Framework for Integrated
Test (FIT). Section3 describes the design of the empirical study that we conducted. Results are
presented in Section4 while conclusions and future works are given in Section5.

2 FIT tables, Fixtures and Test Runner

The FIT tables serve as the input and expected output for the tests. Figure1 shows an example of
Column FIT tables, a particular kind of table (see [MC05] for the other types such asaction, row,
etc.) where each row represents a test case. The first five columns areinput values (Name, Sur-
name, Address, Date of birthandCredit/Debit) and the last column represents the corresponding
expected output value (Member number()).

Developers write the Fixtures to link the test cases with the System to verify. A component in
the framework, the Test Runner, compares FIT table data with actual values obtained from the
System. The Test Runner highlights the results with colors (green = correct, red = wrong). See
the relationships among FIT tables, Fixtures, Test Runner and System under test in Figure2.

3 Experiment definition, design and settings

We conceived and designed the experiment following the guidelines by Wohlin et al.[WRH+00].
Thegoalof the study is twofold: to analyze the use of FIT tables with thepurposeof evaluating
their usefulness during maintenance tasks and to measure the effort (if any). Theperspectiveis
both ofResearchers, evaluating how effective are the FIT tables during the maintenance activ-
ities, and ofProject managers, evaluating the possibility of adopting the FIT tables in her/his

1 http://www.junit.org/

Proc. Software Evolution 2007 2 / 10



ECEASST

Figure 1: Example of Column FIT table. FIT table column’s names without parenthesis represent
input; parenthesis indicate output.

organization. Thecontextof the experiment consists of twoobjects– two Java systems – and of
subjects, 13 students from a master course. All the material of the experiment (sources, docu-
ments, questionnaire, etc. ) will be available for replications on a Website soon.

3.1 Hypotheses

The null hypotheses for the study are the following:

• H0a The availability of FIT test cases does not significantly improve the correctness of the
maintained source code.

• H0b The availability of FIT test cases does not significantly affect the effortin the mainte-
nance task.

The context in which we investigate the above question has the following characteristics: (1)
system requirements have been written in detail, (2) automated acceptance tests have been pro-
duced in the form of FIT Tables and (3) some change requirements are expressed only in textual
form while other include also an automated FIT test case.

3.2 Treatments

The treatments for the main factor (availability of test cases) are:

• (+) textual change requirements enhanced with FIT tables and fixtures, thus enabling test
case execution;

• (-) only textual change requirements.

3 / 10 Volume X (2007)



The Use of Executable FIT Tables to support Maintenance and Evolution Tasks

Figure 2: The complete picture

Other independent variables (not accounted in this paper) to be considered could be: the ob-
jects, the labs and the subjects’ ability, if available.

3.3 Objects

The objects of the study are two simple Java programs realized by students:LaTazza andAve-
Calc.

LaTazza is a coffee maker management support application. LaTazza helps a secretary to
manage the sale and the supply of small-bags of beverages (Coffee, Tea, Lemon-tea, etc.) for the
Coffee-maker. The application supports two kinds of clients: visitors or employees (university
employees and professors). Employees can purchase beverage cash or on credit, visitors only
cash. The secretary can: sell small-bags to clients, buy boxes of beverages (a box contains 50
beverage of the same kind), manage credit and debt of the employees, check the inventory and
check the cash account. The system consists of 18 Java classes for a total of 1121 LOCs. Its
requirement document comprises 9 requirements (see table1 for the first four requirements)
complemented with a total of 16 FIT tables.

AveCalc is a simple “desktop application” that manages an electronic register (recordbook)
for master students. A student can add a new exam to the register, remove an existing exam and
remove all exams. An exam has a name, a CFU (a positive number that represent the university
credits) and a (optional) vote. An exam without vote is an exam not taken. The vote must be
included between 0 and 30 (or equal). If the vote is>= 18 then the vote is positive, otherwise
it is negative. It is possible to save the register and to load it (all data or onlypositive exams).
AveCalc computes some statistics: average of the exams passed, total numberof CFU, number
of exams passed, (hypothetical) degree vote and whether the student has passed a number of
exams sufficient to defend his/her thesis. The system consists of 8 Java classes for a total of

Proc. Software Evolution 2007 4 / 10



ECEASST

Table 1: Some Requirements for LaTazza.

R1 The secretary can sell small-bags of Coffee, Arabic Coffee, Tea, Lemon-tea and Camomile-tea.
The cost of each small-bag is 0.62 euro. The secretary can select the kind of beverage and
the number of small-bags and select the buttonSell. If there are enough small-bags then
the sale is done, otherwise the sale can not be done.

R2 The secretary can register a payment. She/He has to select theemployee that perform the payment.
This payment can extinguish a debt of the employee or it can usedin future as advance fee.
The payment must be> 0.

R3 The secretary can buy boxes of beverages. A box contain 50 small-bags of beverages all of the
same kind (i.e, 50 coffee or 50 Arabic coffee, etc.). Each box cost 31 euro.

R4 The secretary can request the list of debtors with their debts.

1827 LOCs. Its requirement document comprises 10 requirements complemented with a total of
19 FIT tables.

3.4 Population

The subjects were 13 students from the course of Laboratory of Software Analysis, in their
last year of the master degree in computer science at the University of Trento. The students
had a good knowledge about programming, in particular Java, and an average knowledge about
software engineering topics (e.g. design, testing, software evolution). Subjects have been trained
in meaning and usage of FIT tables and Fitnesse2, i.e., the tool that implement the FIT table
approach used in the experiment.

3.5 Variables and experiment design

The dependent variables to be measured in the experiment are thecode correctnessand theeffort
required to perform the maintenance task. The code correctness is assessed by executing a JUnit
acceptance test suite — developed by someone different from who developed the FIT tables —
and measuring the percentage of test cases passed and failed. The effort was measured by means
of time sheets (students marked start and stop time for each change requirements implemented).
Time is expressed in minutes.

We adopt a balanced experiment design (see [WRH+00]) intended to fit two lab session (2-
hours each). Subjects were split into four groups, each one working inLab 1 on all task of a
system with a treatment and working on Lab 2 on the other system with a different treatment
(see Table2).

3.6 Material and Procedure

As already mentioned, the test cases are written in the form of FIT tables andthe supporting
environment is a FitNesse wiki. The development environment is based on theEclipse IDE with
the FitNesse plugin3. For each group we prepared an Eclipse project containing the software

2 http://www.fitnesse.org
3 http://www.bandxi.com/fitnesse/

5 / 10 Volume X (2007)



The Use of Executable FIT Tables to support Maintenance and Evolution Tasks

Table 2: Experimental design (S1 = LaTazza, S2 = AveCalc; + = with FIT tables, - = without
FIT tables).

Group A Group B Group C Group D

Lab 1 S1+ S1- S2- S2+
Lab 2 S2- S2+ S1+ S1-

Table 3: Change requirements for LaTazza.

CR1 There is an error in show debtors. Only employees with negative
balance must be visualized. Fix the error.

CR2 There is an error in update employees. Not all the
fields are updated. Fix the error.

CR3 The vendor of boxes of beverages changed his selling policy.
Each five bought boxes one is added as a gift.

CR4 Change price of small-bags. Now the total price of the beverages that
an employee would like to buy depends on (i) the number of small bugs bought
(ii) if the beverage is seasonal or not. If a employee buys a number of small
bags minor than 5 no discount is applied. If a employee buys a number of small
bags included between 5 and 10 of a seasonal beverage, no discount is applied;
but if the beverages are not seasonal a 1 euro discount is applied.

and a FitNesse wiki with both requirements and change requirements. The projects were zipped
and made available on a Web server. The experiment was introduced as a lab assignment about
FitNesse.

Every subject received:

• summary description of the application

• instructions to set-up the assignment (download the zipped Eclipse project, import it, and
start the embedded Fitnesse server)

• A post experiment questionnaire

For each Lab the subjects had two hours available to complete the four maintenance tasks:
CR1 - CR4 (see table3) . The first two change requirements (corrective maintenance) are very
easy to implement, while the third and fourth require more work to locate the code tobe changed
and implementing the change (evolution). The maintenance/evolution tasks, forthe two different
systems, are very similar and of comparable difficulty.

The post experiment questionnaire aimed at both gaining insights about the students’ behavior
during the experiment and finding justifications for the quantitative results. It included questions
about the task and systems complexity, the adequacy of the time allowed to completethe task
and the perceived usefulness of the provided FIT tables.

Before the experiment, subject were trained by means of introductory lectures (2 lessons 2
hours each) and laboratories (4 hours) on FIT. After subject were randomly assigned to the four
groups, the experiment execution followed the steps reported below:

1. We delivered a sheet containing the description of the system.

Proc. Software Evolution 2007 6 / 10



ECEASST

2. Subjects had 10 minutes to read the description of the system and understand it.

3. Subjects had to write their name and start time on the delivered sheet.

4. Subjects had to download at the given URL the eclipse project and importit.

5. Subjects had to launch the Fitnesse wiki of the application.

6. Subjects had to write the stop time for installing the application.

7. For each change requirement (CR1-CR4):

(a) Subjects had to fix the application code (LaTazza or AveCalc) in orderto make the
test cases pass (treatment +) or to satisfy the change requirement (treatment -).

(b) Subjects had to record the time they use to apply change task (start/stop time).

8. Subjects were asked to compile the Post Experiment Questionnaire.

4 Experimental results

There were 13 subjects divided into three groups of three and one group of four. They took an
median of 5 minutes to set up the environment and they worked for a median of 73 minutes on
the tasks. The subjects deemed as complete an average of 2.75 tasks over four tasks assigned.
The subjects worked on each task for a time ranging from 11 to 39 minutes with an average of 21.
The distributions of passed tests and time required to complete tasks are not normal (Shapiro-
Wilk test p=0.026 and p=6.9 ·10−6 respectively) therefore we will use the Mann-Whitney test
for both hypotheses.

4.1 Data analysis

To test the first hypothesis (H0a) we compared the number of acceptance tests passed by the pro-
gram whose change requirements included FIT tables or not. The boxplotsummarizing the per-
centage (expressed as fraction) of passed test cases is presented inFigure3. By applying a one-
tailed Mann-Whitney test, we found the difference to be statistically significant(p-value=0.03),
therefore we can reject the null hypothesis.

The second hypothesis can be tested by looking at the time required to completethe tasks.
Since not all students completed all the tasks and since the tasks’s difficulty varied both among
tasks and systems, we analyzed the time for each task. Figure4 shows the boxplot of times used
by subjects to complete each task; filled boxes correspond to the presenceof FIT tables. To
test the second hypothesis we used a Mann-Whitney test. Table4 reports the p-values of Mann-
Whitney tests for each task. Overall in 5 cases out of 8 (see Figure4) we observe a reduction
of time (considering the median) when FIT tables are present but the only significant difference
(highlighted in boldface in4) is found for the first task on system AveCalc. With only this data
we cannot reject the null hypothesisH0b. Further experiments are necessary to answer our second
research question.

7 / 10 Volume X (2007)



The Use of Executable FIT Tables to support Maintenance and Evolution Tasks

no yes

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Fit tables present

F
ra

ct
io

n 
of

 te
st

s 
pa

ss
ed

Figure 3: Boxplot of fraction of passed tests.

System
AveCalc LaTazza

Task p-value medianyes medianno p-value medianyes medianno

1 0.01 8 18 0.83 12 15.5
2 0.33 6 12 0.57 15 9
3 1.00 40 43 0.53 39 29
4 0.63 28 17 0.45 10 26

Table 4: Analysis results on times to complete tasks.

4.2 Analysis of Survey Questionnaires

The analysis of the survey questionnaires that the subjects filled-in after each experiment can
be useful to better understand the experimental results. In this paper the analyses are supported
only by descriptive statistics. Answers are on a Likert scale [Opp92] from 1 (strongly agree) to
5 (strongly disagree).

Overall, all subjects agreed they had enough time to perform the tasks (I had enough time to
perform the lab tasks, overall mean = 2.35) and the objectives were clear enough (The objectives
of the lab were perfectly clear to me, overall mean = 1.73). The description of the systems were
clear (overall mean = 2.08) as the change requirements (overall mean = 2.35).

Similarly to Melnik et al. [MRM04], we can observe that the students deemed the FIT tables
and the capability of running tests automatically useful enough. The possibility of executing FIT
tables as tests was perceived useful for performing the change (Running FIT tables are useful in
maintenance/evolution tasks, mean = 1.69). Moreover, FIT tables were also considered useful
“per-se” to clarify change requirements (FIT tables are useful to clarify change requirements,
mean = 1.92). See [RTCT07] for another experiment with students treating the research question:
“FIT tables are able to clarify (change) requirements?”.

Proc. Software Evolution 2007 8 / 10



ECEASST

no yes no yes no yes no yes no yes no yes no yes no yes

10
20

30
40

50
60

70

T
im

e 
to

 c
om

pl
et

e 
ta

sk
 [m

in
]

1 2 3 4 1 2 3 4
AveCalc LaTazza

|
|
|

Fit present:
Task:

System:

Figure 4: Boxplot of time required to complete task.

4.3 Threats to Validity

Threats toconclusion validitycan be due to the sample size (only 13 subjects) that may limit the
capability of statistical tests to reveal any effect. Threats toexternal validitycan be related to (i)
the simple Java system chosen and (ii) to the use of students as experimental subjects. Another
threat to external validity is that (iii) the results are limited to FIT-based acceptance test suites,
which may be rather different from other approaches to acceptance testing. Further studies with
larger systems and more experienced developers are needed to confirmor contrast the obtained
results.

5 Conclusion and Future Works

This paper reported a controlled experiment aimed at assessing the use ofFIT executable accep-
tance test suites in the context of maintenance and evolution tasks. The obtained results indicates
that FIT tables significantly help developers to correctly perform the maintenance tasks. Other
than looking at requirements, developers continuously execute FIT test cases to (i) ensure that
FIT tables related to the change requirements passed and (ii) use applicationrequirements FIT
table to regression test the existing pieces of functionality.

Regarding productivity, FIT table may or may not help: on the one hand, they provide a
guideline to perform the maintenance task; on the other hand, they require timeto be understood

9 / 10 Volume X (2007)



The Use of Executable FIT Tables to support Maintenance and Evolution Tasks

and executed. Further investigation is anyway necessary to answer oursecond research question.
Future work will aim at replicating this study with a larger population of students, with pro-

fessionals and by using larger and more realistic experimental objects. Also, other metrics (e.g.,
number of change requirements completed) and other factors such as subjects’ ability and expe-
rience will be taken into account.

Bibliography

[Aar06] J. Aarniala. Acceptance testing. In whitepaper.
www.cs.helsinki.fi/u/jaarnial/jaarnial-testing.pdf. October 30 2006.

[MC05] R. Mugridge, W. Cunningham.Fit for Developing Software: Framework for Inte-
grated Tests. Prentice Hall, 2005.

[MRM04] G. Melnik, K. Read, F. Maurer. Suitability of FIT user acceptance tests for specify-
ing functional requirements: Developer perspective. InExtreme programming and
agile methods - XP/Agile Universe 2004. Pp. 60–72. August 2004.

[Opp92] A. N. Oppenheim.Questionnaire Design, Interviewing and Attitude Measurement.
Pinter, London, 1992.

[RMM05] K. Read, G. Melnik, F. Maurer. Examining Usage Patters of the FIT Acceptance
Testing Framework. InProc. 6th International Conference on eXtreme Program-
ming and Agile Processes in Software Engineering (XP2005). Pp. Lecture Notes in
Computer Science, Vol. 3556, Springer Verlag: 127–136 2005. June 18-23 2005.

[RTCT07] F. Ricca, M. Torchiano, M. Ceccato, P. Tonella. Talking Tests: an Empirical Assess-
ment of the Role of Fit Acceptance Tests in Clarifying Requirements. In9th Inter-
national Workshop On Principles of Software Evolution (IWPSE 2007). Pp. 51–58.
IEEE, September 2007.

[TRD07] M. Torchiano, F. Ricca, M. Di Penta. ”Talking tests”: a Preliminary Experimental
Study on Fit User Acceptance Tests. InIEEE International Symposium on Empirical
Software Engineering and Measurement. (to appear) 2007.

[WRH+00] C. Wohlin, P. Runeson, M. Ḧost, M. Ohlsson, B. Regnell, A. Wesslén.Experimenta-
tion in Software Engineering - An Introduction. Kluwer Academic Publishers, 2000.

Proc. Software Evolution 2007 10 / 10


	Introduction
	FIT tables, Fixtures and Test Runner
	Experiment definition, design and settings
	Hypotheses
	Treatments
	Objects
	Population
	Variables and experiment design
	Material and Procedure

	Experimental results
	Data analysis
	Analysis of Survey Questionnaires
	Threats to Validity

	Conclusion and Future Works

