
Measuring the Effects of Software Aspectization

Mariano Ceccato and Paolo Tonella
ITC-irst

Centro per la Ricerca Scientifica e Tecnologica
38050 Povo (Trento), Italy

Abstract

The aim of Aspect Oriented Programming (AOP) is the
production of code that is easier to understand and evolve,
thanks to the separation of the crosscutting concerns from
the principal decomposition. However, AOP languages in-
troduce an implicit coupling between the aspects and the
modules in the principal decomposition, in that the latter
may be unaware of the presence of aspects that intercept
their execution and/or modify their structure. These invis-
ible connections represent the main drawback of AOP. A
measuring method is proposed to investigate the trade-off
between advantages and disadvantages obtained by using
the AOP approach. The method that we are currently study-
ing is based on a metrics suite that extends the metrics tra-
ditionally used with the OO paradigm.

1 Introduction

When existing software is migrated to Aspect Oriented
Programming (AOP), crosscutting concerns are separated
from the principal decomposition and are encapsulated in-
side dedicated modularization units (aspects). Maintenance
of the resulting code is expected to be easier, thanks to the
possibility of modifying locally the crosscutting behavior.
However, a novel kind of (implicit) coupling is introduced
by AOP languages. In fact, the code that belongs to the prin-
cipal decomposition might be unaware of the presence of
aspects that intercept its execution and/or modify its struc-
ture. This creates a twofold dependence: on one hand, the
aspect code works properly only under given assumptions
on the code in the principal decomposition. Such assump-
tions may become invalid during code evolution. On the
other hand, the overall behavior depends both on the code
in the principal decomposition and on the aspect code, so
that a change in the latter might affect the former. If not
controlled, such kind of coupling might reduce or cancel

at all the potential benefits coming from the separation of
crosscutting functionalities from the principal decomposi-
tion.

The position of the authors is that the trade-off between
the advantages obtained from the separation of concerns
and the disadvantages caused by the coupling introduced
by the aspects must be investigated in more detail, in or-
der for AOP to gain a wider acceptance. Empirical studies
should be conducted to evaluate costs and benefits offered
by the AOP solution with respect to the more traditional,
Object-Oriented (OO) one, in terms of code understand-
ability, evolvability, modularity and testability. Moreover,
alternative AOP solutions could be contrasted empirically,
in order to identify good/bad AOP practices, to be possibly
encoded into a catalog of AOP patterns/anti-patterns.

The first step in this direction is the definition of a set of
metrics to quantitatively assess the effects of the software
“aspectization”. Such metrics can be based on those widely
used with OO software. Although some extensions of OO
metrics to AOP are available in the literature [?, ?, ?, ?, ?, ?],
none seems to address explicitly all the different kinds of
coupling that aspects and objects can have between each
other.

In the remaining of this paper we discuss OO metrics
(Sec. 2) and consider their extension to AOP (Sec. 3). Then,
our AOP metrics tool is described (Sec. 4), followed by its
usage on an example (Sec. 5). Related works (Sec. 6) and
conclusions (Sec. 7) terminate the paper.

2 OO metrics

The inadequacy of the metrics in use with procedural
code (size, complexity, etc.), when applied to OO sys-
tems, led to the investigation and definition of several met-
rics suites accounting for the specific features of OO soft-
ware. However, among the available proposals, the one that
is most commonly adopted and referenced is that by Chi-
damber and Kemerer [2]. We argue that a shift similar to



the one leading to the Chidamber and Kemerer’s metrics is
necessary when moving from OO to AOP software.

Some notions used in the Chidamber and Kemerer’s suite
can be easily adapted to AOP software, by unifying classes
and aspects, as well as methods and advices. Aspect intro-
ductions and static crosscutting require minor adaptations.
However, novel kinds of coupling are introduced by AOP,
demanding for specific measurements. For example, the
possibility that a method execution is intercepted by an as-
pect pointcut, triggering the execution of an advice, makes
the intercepted method coupled with the advice, in that its
behavior is possibly altered by the advice. In the reverse
direction, the aspect is affecting the module containing the
intercepted operation, thus it depends on its internal prop-
erties (method names, control flow, etc.) in order to suc-
cessfully redirect the operation’s execution and produce the
desired effects.

In the following section, the Chidamber and Kemerer’s
metrics suite is revised. Some of the metrics are adapted
or extended, in order to make them applicable to the AOP
software.

3 AOP metrics

Since the proposed metrics apply both to classes and
aspects, in the following the term module will be used to
indicate either of the two modularization units. Similarly,
the term operation subsumes class methods and aspect ad-
vices/introductions.

WOM (Weighted Operations in Module): Number of
operations in a given module.

Similarly to the related OO metric, WOM captures the
internal complexity of a module in terms of the number of
implemented functions. A more refined version of this met-
ric can be obtained by giving different weights to operations
with different internal complexity.

DIT (Depth of Inheritance Tree): Length of the longest
path from a given module to the class/aspect hierarchy
root.

Similarly to the related OO metric, DIT measures the
scope of the properties. The deeper a class/aspect is in
the hierarchy, the greater the number of operations it might
inherit, thus making it more complex to understand and
change. Since aspects can alter the inheritance relationship
by means of static crosscutting, such effects of aspectization
must be taken into account when computing this metric.

NOC (Number Of Children): Number of immediate sub-
classes or sub-aspects of a given module.

Similarly to DIT, NOC measures the scope of the prop-
erties, but in the reverse direction with respect to DIT. The
number of children of a module indicates the proportion of
modules potentially dependent on properties inherited from
the given one.

CAE (Coupling on Advice Execution): Number of as-
pects containing advices possibly triggered by the exe-
cution of operations in a given module.

If the behavior of an operation can be altered by an as-
pect advice, due to a pointcut intercepting it, there is an (im-
plicit) dependence of the operation from the advice. Thus,
the given module is coupled with the aspect containing the
advice and a change of the latter might impact the former.
Such kind of coupling is absent in OO systems.

CIM (Coupling on Intercepted Modules): Number of
modules or interfaces explicitly named in the pointcuts
belonging to a given aspect.

This metric is the dual of CAE, being focused on the as-
pect that intercepts the operations of another module. How-
ever, CIM takes into account only those modules and inter-
faces an aspect is aware of – those that are explicitly men-
tioned in the pointcuts. Sub-modules, modules implement-
ing named interfaces or modules referenced through wild-
cards are not counted in this metric, while they are in the
metric CDA (see below), the rationale being that CIM (dif-
ferently from CDA) captures the direct knowledge an aspect
has of the rest of the system. High values of CIM indicate
high coupling of the aspect with the given application and
low generality/reusability.

CMC (Coupling on Method Call): Number of mod-
ules or interfaces declaring methods that are possibly
called by a given module.

This metric descends from the OO metric CBO (Cou-
pling Between Objects), which was split into two (CMC and
CFA) to distinguish coupling on operations from coupling
on attributes. Aspect introductions must be taken into ac-
count when the possibly invoked methods are determined.
Usage of a high number of methods from many different
modules indicates that the function of the given module can-
not be easily isolated from the others. High coupling is as-
sociated with a high dependence from the functions in other
modules.

CFA (Coupling on Field Access): Number of modules or
interfaces declaring fields that are accessed by a given
module.

Similarly to CMC, CFA measures the dependences of a
given module on other modules, but in terms of accessed



fields, instead of methods. In OO systems this metric is
usually close to zero, but in AOP, aspects might access class
fields to perform their function, so observing the new value
in aspectized software may be important to assess the cou-
pling of an aspect with other classes/aspects.

RFM (Response For a Module): Methods and advices
potentially executed in response to a message received
by a given module.

Similarly to the related OO metric, RFM measures the
potential communication between the given module and the
other ones. The main adaptation necessary to apply it to
AOP software is associated with the implicit responses that
are triggered whenever a pointcut intercepts an operation of
the given module.

LCO (Lack of Cohesion in Operations): Pairs of op-
erations working on different class fields minus pairs
of operations working on common fields (zero if nega-
tive).

Similarly to the LCOM (Lack of Cohesion in Methods)
OO metric, LCO is associated with the pairwise dissimilar-
ity between different operations belonging to the same mod-
ule. Operations working on separate subsets of the mod-
ule fields are considered dissimilar and contribute to the in-
crease of the metric’s value. LCO will be low if all opera-
tions in a class or an aspect share a common data structure
being manipulated or accessed.

CDA (Crosscutting Degree of an Aspect): Number of
modules affected by the pointcuts and by the introduc-
tions in a given aspect.

This is a brand new metric, specific to AOP software,
that must be introduced as a completion of the CIM met-
ric. While CIM considers only explicitly named modules,
CDA measures all modules possibly affected by an aspect.
This gives an idea of the overall impact an aspect has on
the other modules. Moreover, the difference between CDA
and CIM gives the number of modules that are affected by
an aspect without being referenced explicitly by the aspect,
which might indicate the degree of generality of an aspect,
in terms of its independence from specific classes/aspects.
High values of CDA and low values of CIM are usually de-
sirable.

The proposed metric suite has no completeness claim
and needs to be adapted for specific measurement goals
(e.g., following the GQM approach [1]). While all the pro-
posed metrics can be used to compare alternative AOP im-
plementations, not all of them can be applied when an OOP
program is migrated to AOP. CAE and CIM do not make
sense in OOP, thus an overall TC (Total Coupling) metric

OO Structure Analysis

Intertype Declarations Resolution

Method-calls & Field-accesses Resolution

Pointcuts Resolution

Metrics computation

Figure 1. Metrics tool.

should be used instead, counting the total number of cou-
pling relationships between modules (either of type CAE,
CIM, CMC or CFA). Of course, this is not the sum of the
four metrics. Individual coupling metrics are still of inter-
est to understand where a given TC value originates from.
Similarly to CAE and CIM, CDA does not apply to OOP.
However, its value for the migrated AOP program is inter-
esting when compared to CIM, as explained above.

4 Metrics tool

To assess the proposed metrics suite, we developed an
AOP metrics tool that computes all the proposed measures
for code written in the AspectJ [5] language. The tool ex-
ploits a static analyzer developed in TXL [3]. Figure 1
shows the internal organization of the tool, focusing on the
modules required to compute the AOP metric values.

The first module of the tool takes as input all the source
classes, interfaces and aspects and performs some standard
static OO code analysis, to detect the structure of the mod-
ules, in terms of their fields, operations and inheritance re-
lationships. Such information is stored in a data base.

After the first module, the second one can be run, per-
forming more accurate analysis. Each aspect is processed
for a second time in order to detect the inter-type decla-
rations, in terms of field introductions, method introduc-
tions and changes of class/interface inheritance relation-
ships. The resulting data are stored in the same data base,
being associated to the target class as if the information
came from the analysis of the class itself. The name of
the aspect responsible for such introductions is however
recorded. In this way the first step of the weaving algorithm
is realized.



The next module of the tool detects the method-call re-
lationship. Moreover, it discovers the field-access relation-
ship between operations and fields (both belonging to the
same module or to other modules). For such an analysis a
symbol table, mapping the variables to the respective type,
is maintained and pushed onto the stack whenever a new
scope is opened. The symbol table is required to know the
type of each method invocation target, return value and ac-
cessed field. Such type information is stored in the database
under construction. Polymorphic calls are resolved conser-
vatively with all methods that possibly override the invoked
one.

The fourth step is the most complex one. It completes
weaving by resolving all the pointcuts in the aspect code,
thus producing the corresponding join points in the inter-
cepted code. The algorithm for this phase starts coping with
the primitive pointcuts, which are resolved using the inher-
itance, invocation and access information collected so far.
Then, it composes the join points according to the union, in-
tersection and negation operators used in the pointcut spec-
ifications. When all the pointcuts are resolved, the advices
can be associated to the advised methods, storing this rela-
tionship in the available data base

The final step concerns the computation of the metrics.
The value of a metric for a given module is obtained just
by running a query on the database. The overall value of a
metric for the whole system is computed as the median of
the values computed for all the modules in the system.

5 Example

The proposed metrics have been computed for a small
example, taken from the implementation of some design
patterns [4] provided by Jan Hannemann1 both in Java and
in AspectJ.

Our test is the implementation of the Observer design
pattern [4], in which there are two distinct roles, the Subject
and the Observer. The Subject is an entity that can be in
several different states. Some of the state changes are of
interest to the Observer, which may take some actions in
response to the change.

The Observer pattern requires that the Observer registers
itself on those Subjects it intends to observe. The Subject
maintains a list of the Observers registered so far. When
the Subject changes its state, it notifies the Observers of the
change, so that the Observers can take the appropriate ac-
tions.

In the OO implementation by Jan Hannemann, this de-
sign pattern consists of two interfaces, ChangeSubject
and ChangeObserver, with the abstract definitions of
the Subject and Observer roles. Moreover, the implementa-
tion contains the Point and the Screen classes, the first

1http://www.cs.ubc.ca/˜jan/AODPs

playing the role of Subject whereas the second plays both
roles in two different instances of the pattern. The Main
class contains the code to set up the two different pattern
instances and run them. In the first pattern instance Point
acts as the Subject and Screen as the Observer. In the sec-
ond case, an instance of the class Screen is the Subject,
while other instances of the same class are its Observers.

The AOP implementation contains a different version of
the classes Point and Screen, with no code regarding
the Subject/Observer roles. ObserverProtocol is an
abstract aspect defining the general structure of the aspects
that implement the Observer pattern. This abstract aspect is
extended by ScreenObserver, ColorObserver and
CoordinateObserver. These concrete aspects contain
the actual implementation of the protocol. By means of
inter-type declarations, they impose roles onto the involved
classes and by means of appropriate pointcuts they spec-
ify the Subject actions to be observed. Moreover, these as-
pects contain the mapping that connects a Subject to its Ob-
servers. The class Main runs the code for the initialization
of the patterns an for their execution.

version WOM DIT NOC TC RFM LCO CDA
java 3 1 0 2 7 1-12 N.A.

aspectj 1 2 0 3 2 0 3

Table 1. Metrics for the Observer design pattern.

version CAE CIM CMC CFA TC
java 0 0 2 0 2

aspectj 0 2 1 0 3

Table 2. Coupling Metrics for the Observer design
pattern.

We applied our metric suite to the two implementations
of the Observer pattern. The median values produced by
the tool are shown in Table 1. The value of LCO for the
OO code is indicated as 1-12, since these two values are
adjacent to the median point. The TC column contains the
value for total coupling. Detailed values for all different
coupling kinds are shown in Table 2.

We can notice a general improvement of some met-
rics (WOM, LCO, and RFM), no change a metric (NOC)
and a worse value of DIT (due to the super-aspect
ObserverProtocol) and of TC. While in general the
values change only a little bit, for RFM the change is rel-
atively high, passing from 7 to 2. LCO is also affected
positively, going from 1-12 to 0. The cost to be paid for



such improvements is an increase of the coupling metric
TC as expected. Looking at Table 2, we can have a detailed
insight on the reasons for the coupling increase. Even if
there is a decrease of the method coupling (CMC) there is
a much bigger increasing of the coupling regarding the as-
pects which intercept method executions (CIM). However,
the fact that the value of CAE is higher than that of CIM
indicates that the aspects have only a partial knowledge of
the classes they are affecting and contain quite generic, in-
dependent pointcut definitions.

6 Related work

The cohesion measure called Module-Attribute Cohesion
in [?] is based on the same dependences between opera-
tions and fields that we consider in our LCO metric, but,
differently from our metric, it is not an extension of the
LCOM metric proposed in [2]. As regards the proposed
coupling metrics, while CIM, CMC and CAE correspond
to the Pointcut-class, Method-method and Pointcut-method
dependence measures presented in [?], CDA has no coun-
terpart in [?].

Similarly to us, the authors of [?, ?] considered the Chi-
damber and Kemerer’s metric suite, properly adapted to
AOP. However, they do not recognize the different nature
of the various kinds of coupling introduced by the aspects.
The authors of [?] added a few metrics to capture the level
of scattering of the application concerns. However, the defi-
nition of such metrics (SoC metrics) is not operational, thus
making it difficult to compute them automatically. The ex-
pected effects of AOP on the Chidamber and Kemerer’s
metrics are analyzed in [?].

The indications in [?, ?] on the definition of cohesion and
coupling metrics for OO systems will be considered in our
future work, in order to possibly refine the proposed AOP
metrics for such attributes.

7 Conclusions

Most research in AOP is focused on new design pro-
cesses, languages and frameworks to support the new
paradigm. However, no strong empirical evaluation was
conducted to assess the effects of AOP adoption. The first
step in this direction consists of defining a metrics suite
for AOP software, designed so as to capture the novel fea-
tures introduced by this programming style. We contributed
to the ongoing discussion on such metrics by distinguish-
ing among the different kinds of coupling relationships that
may exist between modules and by proposing a new metric
for the crosscutting degree of an aspect (CDA). Moreover,
we conducted a small case study to evaluate the informa-
tion carried by the proposed metrics when applied to an OO

system and to the same system migrated to AOP. Results in-
dicate that meaningful properties, such as the proportion of
the system impacted by an aspect and the amount of knowl-
edge an aspect has of the modules it crosscuts, are captured
by the proposed metrics (CDA and CIM repsectively). We
envisage the definition of a common set of AOP metrics,
to be adopted by the AOP community, in order to simplify
the comparison of the results obtained by different research
teams and to have a standard evaluation method.

References

[1] V. Basili, G. Caldiera, and D. H. Rombach. The Goal Ques-
tion Metric Paradigm, Encyclopedia of Software Engineering.
John Wiley and Sons, 1994.

[2] S. R. Chidamber and C. F. Kemerer. A metrics suite for object
oriented design. IEEE Transactions on Software Engineering,
20(6):476–493, June 1994.

[3] J. Cordy, T. Dean, A. Malton, and K. Schneider. Source
transformation in software engineering using the TXL trans-
formation system. Information and Software Technology,
44(13):827–837, 2002.

[4] E. Gamma, R. Helm, R.Johnson, and J. Vlissides. Design
Patterns: Elements of Reusable Object Oriented Software.
Addison-Wesley Publishing Company, Reading, MA, 1995.

[5] I. Kiselev. Aspect-Oriented Programming with AspectJ. Sams
Publishing, Indianapolis, Indiana, USA, 2002.


