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Abstract

Separation of concerns and modularization are the cor-
nerstones of software engineering. However, when a system
is decomposed into units, functionalities often emerge which
cannot be assigned to a single element of the decomposi-
tion. The implementation of interfaces1 represents a typical
instance of this problem. In fact, the code that defines the
interface methods is often scattered across several classes
in the system and tangled with the original code.

Aspect Oriented Programming provides mechanisms for
the dynamic and static composition of transversal function-
alities, that can be used to factor out the implementation of
interfaces. In this paper we describe a technique for the
identification of those interface implementations that are
most likely to represent crosscutting concerns. Moreover,
the code transformation (refactoring) to migrate such in-
terfaces to aspects is also presented. Experimental results
validate the approach.

1 Introduction

Similarly to other engineering artifacts, the complexity
of software systems is managed by applying the “divide
and conquer” principle. The overall functionality is com-
posed out of smaller units, with a well defined behavior and
a low level of mutual coupling. Such a decomposition be-
comes the basic architecture of the system, an all successive
changes are referred to it.

The weak point of this approach is that not all function-
alities in a software system can be mapped to a single unit in
the principal decomposition. Persistence is a typical exam-
ple [14]. Code fragments to handle persistent storage and
retrieval of data are often scattered across the modules in
a system. Externally, such crosscutting functionalities are
often viewed as interfaces implemented by classes.

1Not to be confused with graphical user interfaces.

Aspect Oriented Programming (AOP) [10] offers pro-
gramming constructs to handle the crosscutting function-
alities, which can be modularized in a similar way as the
units in the principal decomposition. Instead of distributing
the code that implements an interface across the classes in a
system, it becomes possible to locate it in a so called aspect,
the modularization unit for the crosscutting concerns. Un-
derstanding and changing such concerns is expected to be
simplified once they are explicitly represented in the sys-
tem’s organization.

In this paper a technique is proposed for the aspecti-
zation of interface implementations. Identification of the
interfaces that are most suitable for migration to aspects
is conducted during an aspect mining phase, in which the
source code is analyzed and candidate aspects are located.
Then, in the refactoring phase, the code is transformed, so
that interface implementations are realized by separate as-
pects instead of the original classes. We have implemented
a toolkit to support the aspectization of interface implemen-
tation and we have applied it to the source code of some of
the packages in the standard Java library. The aim of the
experimental work was to assess the feasibility of the trans-
formation and to evaluate the potential benefits.

Existing literature on AOP is mainly focused on lan-
guage issues [8, 10, 17]. It is only more recently that ex-
amples of useful code aspectizations have been distilled and
that the reorganization into aspects of existing systems has
been considered [1, 14, 16]. Among the involved problems,
aspect mining [7, 9, 12, 15] received a substantial attention.
Some work also considered refactoring issues [3, 18]. No
previous work (to the authors’ knowledge) deals with the
aspectization of interface implementation.

The paper is organized as follows: after a basic back-
ground on AOP, Section 3 motivates the migration of in-
terface implementations to aspects. The proposed methods
for aspect mining and refactoring are respectively described
in Sections 4 and 5. The toolkit we developed to support
the migration is presented in Section 6, while experimental



results are provided in Section 7.

2 Aspect Oriented Programming

Programs are typically designed with a principal decom-
position in mind. However, not all functionalities can be
assigned to a single unit within such a decomposition. For
example, persistence, concurrency and logging are func-
tionalities whose code is often spread across several differ-
ent units. Such kinds of functionalities are called crosscut-
ting concerns and their main characteristic is that they are
transversal with respect to the units in the principal decom-
position, i.e., their implementation consists of a set of code
fragments distributed over a number of units.

Crosscutting concerns are one of the main sources of
problems during software maintenance. In fact, it is diffi-
cult to evolve a crosscutting concern, because its modifica-
tion requires that:

• all code portions where such a functionality is imple-
mented be located (problem: scattering);

• all ripple effects associated with the changes be deter-
mined (problem: tangling).

Aspect Oriented Programming (AOP) aims at solving the
two main problems of crosscutting concerns, namely scat-
tering and tangling, by providing a unique place where the
related functionalities are implemented. A new modular-
ization unit, called aspect, can be defined to factor out all
code fragments related to a common functionality, other-
wise spread all over the system. For example, an application
can be developed according to its main logical decomposi-
tion, while the possibility to serialize and de-serialize some
of its objects can be defined in a separate aspect.

Sometimes, the application being developed has a prin-
cipal decomposition that is completely decoupled from its
aspects. Such a property is called obliviousness. An appli-
cation is oblivious of an aspect if it can be developed inde-
pendently of it, and the aspect can be added (or removed)
later, by compiling (weaving) the application with/without
it. Obliviousness is not expected to hold for all aspects.
For example, when persistence is implemented as a separate
aspect, the application can be oblivious of this functional-
ity, except for the deletion and retrieval of objects, which
require two explicit invocations inside the modules in the
principal decomposition [14] (partial obliviousness).

A related issue is optionality. An aspect may either be
an optional or an integral part of an application. In the latter
case, the application cannot be compiled without the aspect.
However, it is not required that aspects be always optional
features. In some cases, an application may require some of
its aspects to work properly.

Among the programming languages and tools that have
been developed to support AOP, AspectJ [11], an extension
of Java with aspects, is one of the most popular and best
supported. The two main new programming constructs pro-
vided by AspectJ for the definition of the behavior of an
aspect are pointcuts and introductions.

2.1 Pointcuts

Pointcuts identify join points in a program, i.e., points in
the control flow where execution can be intercepted by an
aspect to alter the original behavior of the code. For exam-
ple, if a persistence aspect is defined to serialize all objects
of class Person as soon as they are created, an appropriate
pointcut can be used to intercept calls to any constructor of
class Person. In AspectJ, this looks like:
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2.2 Introductions

While pointcuts operate dynamically, introductions aim
at altering the static structure of an Object Oriented pro-
gram. Introductions can be used to change the inheri-
tance hierarchy, by modifying the super-class or the super-
interfaces of a given class. Moreover, they can be used to
insert new members (attributes or methods) into a class.

For example, it is possible to declare that a class imple-
ments a given interface inside an aspect, while the original
code does not do it. In such a case, the methods required by
the interface must be introduced as well.

With reference to the persistence aspect, it is possible
to declare that the interface Serializable is implemented by
class Person and to introduce the related methods, by means
of the following code fragment:
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3 Interface implementation as a crosscutting
concern

The principal decomposition of a program is typically
apparent from the hierarchy of its classes. In fact, the inher-
itance relationship usually models the refinement of abstract



into concrete entities, according to a model of the applica-
tion domain.

In addition to extending the super-class, classes may im-
plement interfaces. Interfaces provide alternative decom-
positions of the functionalities, according to a different,
possibly orthogonal view. For this reason, interfaces often
(though not always) do not belong to the principal decom-
position of a system.

Let us consider persistence (interface Serializable). The
code fragments implementing this interface are spread
across several classes (scattering). Moreover, this code re-
quires access to information about each entity to be stored
persistently (tangling). On the other side, if we consider
the persistence functionality from a logical point of view,
it clearly does not belong to the principal decomposition of
this application. Rather, it is a transversal computation that
has to be superimposed. In other words, it is an aspect of
this application.

The reasons for considering the Serializable interface as
an aspect hold for many of the interfaces that are usually
implemented by the classes in a Java application. Another
example is the interface Cloneable, which allows duplicat-
ing existing objects. When necessary, this functionality is
added. However, it typically does not take part in the main
decomposition of the system.

Interface implementation seems a good starting point for
the identification of candidate aspects in an existing system.
It involves the introduction of methods in a class – those re-
quired by the interface. Moreover, sometimes a proper (e.g.,
efficient) behavior of the interface methods require that ad-
ditional attributes (e.g., a cache) be inserted into the given
class and that inner classes be defined.

When an interface implementation is recognized as a
crosscutting concern, it can be migrated to an aspect. This
entails the extraction of the interface methods from the
given classes, as well as of all attributes and inner classes
that are functional to the implementation of the interface.

4 Aspect mining

The purpose of aspect mining is the identification of
those interfaces, implemented in a given class, which can
be regarded as crosscutting concerns and can be subjected
to refactoring in order to aspectize them.

While a fully automated aspect identification process is
not feasible, because of the fuzzy notion of principal de-
composition and of the level of subjectivity involved, it is
possible to define a set of indicators that hint a high like-
lihood that a given interface implementation represents an
aspect. The result of computing such indicators must then
be interpreted by a human, making the final decision.

We have defined the following set of aspect mining indi-
cators specifically for the migration of interface implemen-

tations to aspects. The implementation of an interface is
marked as a candidate aspect when:

External package The interface implemented in a class
belongs to a package different from that of the given
class.

String matching The name of the interface implemented
in a class matches the pattern ".*able".

Clustering When methods are clustered according to the
call relationship, interface methods are not grouped to-
gether with other (non-interface) class methods.

Unpluggability The methods of the interface implemented
in a class can be unplugged from the given class, since
they are not invoked by other methods of the same
class.

The first criterion assumes that interfaces in the princi-
pal decomposition are declared in the same package as the
classes under analysis. The second criterion was derived
from the aspect mining methods based on string match-
ing [7]. The regular expression matched against each inter-
face name consists of an arbitrary prefix (".*") followed
by the suffix "able". Such a suffix typically indicates an
additional property of the given class, orthogonal to its main
properties (e.g., Serializable, Cloneable).

The rationale behind the last two aspect mining criteria
is that methods inserted into a class to implement an inter-
face which is not in the principal decomposition are loosely
coupled with the other methods of the class, since they do
not contribute to the main functionalities of the class. The
Unpluggability criterion makes the (strong) hypothesis that
no method calls any one of the interface methods, except
for the interface methods themselves. A weaker hypothesis,
made in the Clustering criterion, is that the call relationship
identifies subgroups of cohesive methods and that interface
methods are never in a group including also non-interface
methods. In other words, calls from non-interface methods
are admitted, as long as calling methods are not highly cou-
pled with the called interface methods.

The clustering method used to determine groups (clus-
ters) of highly connected methods has been defined along
the lines given in [13]. A metric of modularization quality,
accounting for the difference between cohesion and cou-
pling, is maximized by means of a proper combinatorial
optimization heuristics (we used hill climbing).

Once an interface is classified as a candidate aspect, not
only its methods are migrated to the new aspect, but also
all fields and inner classes functional to the interface im-
plementation. In order to identify which fields and inner
classes should be assigned to the aspect being migrated, the
following, simple criterion was adopted:



Fields and inner classes are migrated to the as-
pect associated with a given interface if they are
used inside, but not outside the interface methods.

5 Refactoring

Migration of an interface implementation to an aspect
can be achieved by applying a code transformation (refac-
toring [5]) that changes the system’s decomposition while
leaving the overall behavior unaffected. Interface methods
(plus associated inner classes and fields, if any) are removed
from the class being refactored and are inserted into a new
aspect. In this way, the remaining properties of the refac-
tored class reflect the principal decomposition of the sys-
tem, while the migrated properties reflect the crosscutting
view associated with the interface.

I
if1();
if2();
if3();

A
x: Tx
y: Ty
if1() { /* uses x */ }
if2() { /* uses AA */ }
if3() { /* uses x, AA */ }
f4() { /* uses y */ }
f5() { /* uses y */ }

AA

<<interface>>

AA

{IA}

{IA}

A
y: Ty

f4() { /* uses y */ }
f5() { /* uses y */ }

if3();
if2();
if1();

I

A.x: Tx

A.if1() { /* uses x */ }
A.if2() { /* uses AA */ }
A.if3() { /* uses x, AA */ }
A.AA { /* body of AA */ }

<<aspect>>
IA

<<interface>>

Figure 1. Refactoring: Move interface implementa-
tion to aspect.

Figure 1 shows the mechanics of this refactoring. The
overall transformation can be described in terms of three
simpler refactoring steps, applied repeatedly:

• Move method to aspect.

• Move field to aspect.

• Move inner class to aspect.

These three (atomic) refactorings consist of removing a
method (resp. field or inner class) from a given class and
adding it to an aspect, where it becomes an introduction.

In Figure 1, class A implements the interface I by defin-
ing the body of methods if1, if2, if3, the class field x is
used only inside if1, if3, and the inner class AA is used
only inside if2, if3. Moving the interface implementa-
tion to a new aspect IA consists of applying the three steps
above respectively to if1, if2, if3, to x, and to AA.

The result (see Figure 1, right) is a thinner class A, with
only 1 field (y) and two methods (f4, f5), which depends

(dashed edge) on the aspect IA for the implementation of
the interface I (see tag over the realization relationship).
Inclusion of the inner class AA is also dependent on the new
aspect IA (tag over nesting relationship).

In presence of interface hierarchies, the methods de-
clared in the super-interfaces are also migrated to the aspect.

5.1 Abstracting aspects

When an interface migrated to an aspect is implemented
by several classes in the system under analysis, additional
advantages can be potentially obtained from the separation
of the crosscutting concern represented by the interface. In
fact, if the different implementations of the interface share
some computations, it becomes possible to factor them out
into a super-aspect.

<<aspect>>
IB

<<aspect>>
IC

<<aspect>>

T.af1() {...}
T.af2() {...}
T.af3() {...}

<<aspect>>
IA

B.if1() { /* calls af1 */ }
B.if2() { /* calls af2 */ }
B.if3() { /* calls af3 */ }

C.if1() { /* calls af1 */ }
C.if2() { /* calls af2 */ }
C.if3() { /* calls af3 */ }

A.if1() { /* calls af1 */ }
A.if2() { /* calls af2 */ }
A.if3() { /* calls af3 */ }

II

<<bind>>(A) <<bind>>(C)
<<bind>>(B)

T

Figure 2. Abstraction of aspect computations into a
super-aspect.

Let us consider three classes A, B, C, implementing the
interface I with interface methods if1, if2, if3. Af-
ter applying the refactoring in Figure 1, three new as-
pects IA, IB, IC are created to separate the concern of
interface implementation from the original classes. If the
method introductions in the three aspects perform a same
sub-computation, it is possible to separate it from the class-
specific computations and move it to a new method (af1 for
the common sub-computation in A.if1, B.if1, C.if1,
and similarly af2 and af3). It should be noted that com-
mon sub-computations are quite likely to occur in practice
in different implementations of the same interface meth-
ods, because (without the aspects) such implementations are
spread across different classes, where factorization of the
common sub-computations in a unique modular unit may
be difficult to realize.

The common computations af1, af2, af3 can be in-
serted into the classes A, B, C by a super-aspect II, ex-
tended by the three aspects IA, IB, IC (see Figure 2). In
this super-aspect, a generic introduction is performed, us-
ing the type variable T . Sub-aspects bind the type variable



T to the classes they modify, so as to obtain the necessary
introductions.

Identification and factorization of common computations
into super-aspect introductions is a human-intensive activ-
ity, in that it involves lots of domain and application knowl-
edge, and non trivial decision making. However, partial
automation can be achieved by exploiting clone detection
techniques [2]. The presence of a cloned code fragment
inside interface methods introduced in different classes in-
dicates the possibility of abstracting the related aspects and
factoring out the cloned computation.

When common computations are identified in different
aspects and abstracted into a super-aspect, the modulariza-
tion power of AOP becomes even more evident. In fact,
while initially a same interface is implemented in different
classes by means of replicated code fragments, in the refac-
tored system the commonalities among the different imple-
mentations are localized in a single module (no more scat-
tering). In other words, the presence of a same crosscutting
sub-computation is represented explicitly in the new modu-
lar unit being created, the super-aspect.

6 Tool

Automated support to aspect mining requires the execu-
tion of some code analyses on the input program. Infor-
mation on the interface names and packages, and on the
call relationships between methods has to be recovered, in
order for the proposed aspect mining techniques to work.
The static analyzer that performs this job was written in the
source code transformation and analysis tool TXL [4]. A
few small Java programs have been developed to implement
the aspect mining checks described in Section 4, based upon
the output produced by the TXL analyzer.

I.java
interface

src
A.java

yes/no
src

A.java

I.java
interface

I.java
interface

src
A.java

I.java
interface

src
A.java

UnpluggableFields {fld1, fld2, ...}

UnpluggableInnerClasses

UNPLUG src’
A’.java

IA.java
aspect

InterfaceIsUnpluggable

{icl1, icl2, ...} 

Figure 3. Refactoring toolkit.

The refactoring toolkit consists of the modules depicted

in Figure 3, which are also written in TXL. The main mod-
ule, shown at the top, implements the actual code transfor-
mation. Given an input source (e.g., A.java) and an inter-
face to be migrated to an aspect (e.g., I.java), the TXL
module UNPLUG produces a new source file (A’.java),
in which the interface implementation is absent, and an as-
pect (file IA.java), which introduces the interface imple-
mentation into the original class. The aspect is also respon-
sible for declaring that the class implements the interface
(declare parents construct, see Section 2).

The other modules in Figure 3 are accessory mod-
ules that give specific information about interface aspec-
tization. Module UnpluggableFields produces the list of
fields that are accessed only from interface methods. Sim-
ilarly, UnpluggableInnerClasses gives the inner classes not
accessed outside the aspect being constructed. Finally,
InterfaceIsUnpluggable gives information about
the role of the aspect under construction. In case this mod-
ule produces an output yes, the aspect will be regarded as
an optional class feature, to be weaved with the class only
upon request from the client. Otherwise, the aspect has to
be considered an essential feature, because the methods it
introduces are used also by other class methods.

In the development of the toolkit described above, some
limitations of the current version of AspectJ have been iden-
tified. They prevented us from obtaining an implementation
completely consistent with the approach presented in the
previous sections. This is the list of the main problems en-
countered and of the workarounds we have adopted:

1. Private methods cannot be invoked (while private fields
can be accessed) from methods introduced by an as-
pect.

2. Inner classes cannot be introduced by an aspect.

3. Genericity is currently not supported.

The workaround used for (1) was changing the visibility
of methods where required. Problem (2) was resolved by
bringing the inner class at top level with package-protected
visibility. For (3), when possible, shared sub-computations
introduced by super-aspects were introduced in a common
super-class. Otherwise, aspect methods instead of introduc-
tions have been used.

7 Experimental results

In the following, we present the results obtained in the
analysis and aspectization of some of the packages belong-
ing to the Java standard library.



7.1 Data set

The possibility to identify and migrate interface imple-
mentations, that can be regarded as crosscutting concerns,
has been tested on the java source code of three packages
from the standard library of the Java 2 Runtime Environ-
ment, Standard Edition (build 1.4.0-b92). As shown in Ta-
ble 1, the three analyzed packages contain 131 classes, for
a total of 44 199 Line Of Code (LOC), comments excluded.
The 52 interfaces implemented by these classes (179 imple-
mentations in total) have been subjected to aspect mining.
Then, those representing actual crosscutting concerns have
been migrated to aspects.

Package Classes LOC Int. Unique
impl. interfaces

java.util 41 13,993 61 13
java.awt 76 24,425 97 35

java.awt.geom 14 5,781 21 4
Total 131 44,199 179 52

Table 1. Data set under analysis.

The first package (java.util) provides general purpose
data structures, such as lists, sets, trees and hash tables.
They offer a very popular programming framework, used
by several software developers, who do not have to re-write
their own implementation of these common data structures.
They are used by classes in other library packages as well.

Because of the general purpose, all the classes in this
package implement many functionalities that could be use-
ful in software development (for example serialization,
cloneability, etc.), although these may not be required in
all uses. Moreover, they are typically not essential in defin-
ing the meaning of each class, while being useful to enrich
it. Thus, we expect that several of them can be regarded as
crosscutting concerns.

The java.awt package contains classes for creating
graphic user interfaces and for painting graphics and im-
ages. The implementations of some layout managers and
default event handlers are also included. Its sub-package
java.awt.geom provides classes for defining and performing
operations on two-dimensional objects. All these classes
provide the general, basic behavior needed by advanced
window-based environments (such as the swing environ-
ment), or by users who define their own one. Thus, similarly
to the package java.util, these classes implement function-
alities that are possibly required in a generic usage context.

Given the features of the analyzed packages, a better
modularization of the code could be reached by separating
the principal behavior of each class from the crosscutting
functionalities added to increase generality and reuse. Such

features are expected to be found in several other real-world
Object Oriented systems, that support some degree of reuse.
In this kind of systems, interface implementations are typ-
ically included to define a set of multiple access points for
the external, user classes.

7.2 Aspect mining

In order to assess the results obtained with the proposed
methods for aspect mining, a solution of trusted accuracy is
necessary. An expert was involved in defining such a solu-
tion. He examined the class diagram, the source code and
the Javadoc documentation in order to understand the role
of each interface in each implementing class.

The output of the expert’s analysis consists, for each
package, of its principal decomposition, in which classes
are grouped together with the implemented interfaces, when
these are devoted to its main functionalities. Such interfaces
are mandatory in defining the classes’ predominant respon-
sibilities. Interface implementations outside the principal
decomposition are regarded as the expert’s aspects.

Each of the four aspect mining methods has been applied
to all the classes under analysis, giving a response about
which interface implementations to change into an aspect.
All the solutions have been compared with the (complement
of the) expert’s decomposition. They have been ranked in
terms of precision and recall, where the former measures
the proportion of correctly identified aspects over all the
candidates produced by a given method, while the latter
measures the proportion of correctly identified aspects over
all those to be retrieved (i.e., those specified by the expert).

External Package String Matching
precision recall precision recall

java.util 0.88 1.00 0.93 0.98
java.awt 0.91 0.91 0.89 0.87
java.awt.geom 0.50 1.00 0.82 0.93
Average 0.86 0.95 0.86 0.94

Clustering Unpluggability
precision recall precision recall

java.util 0.73 0.95 0.82 0.90
java.awt 0.82 0.89 0.93 0.85
java.awt.geom 0.64 0.93 0.89 0.93
Average 0.76 0.94 0.89 0.90

Table 2. Precision and recall of the four aspect min-
ing methods.

Table 2 shows the mean value of precision and recall
computed for the classes contained in each package under
analysis. The average values at the bottom are weighted by
the number of classes in each package, since the considered
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Figure 4. Class diagram for the package java.util. Interfaces migrated to aspects are in bold boxes.

packages belong to a same system, instead of being sepa-
rate applications. In this way, the impact of small packages
(such as java.awt.geom) on the final result is reduced.

The three methods External Package, String Matching
and Unpluggability are fundamentally equivalent, having
very similar values of precision and recall. The last one
has the highest precision, but a slightly lower recall. The
remaining method, Clustering, has a similar performance
in terms of recall, but a much lower precision, making it
substantially worse than the others.

A further investigation of unpluggability was obtained
by running the modules UnpluggableFields and Unplug-
gableInnerClasses. Fields used only by interface methods
have been detected by the module UnpluggableFields in 4
classes, for a total of 16 unpluggable fields. All of them
are related to the implementation of the serialization con-
cern (Serializable interface). Looking at the source code,
we discovered that the purpose of these unpluggable data
structures is to save specific state information, useful in a
situation where complicated objects are restored from the
serialized data.

The module UnpluggableInnerClasses detected 16 un-
pluggable inner classes. All of them are related to the acces-
sibility concern (Accessible interface). In all these cases, we
found a same pattern: an inner class specializes the abstract
class javax.accessibility.AccessibleContext, used as return
type by the accessibility interface method.

No field or inner class that the expert considered as a part
of an interface implementation to be migrated was missed
by our unpluggability modules (i.e., recall, as well as preci-
sion, is 100% for fields and inner classes to be aspectized).

7.3 Refactoring

Analyzing the whole data set, the expert tagged 106
interface implementations in 61 classes as best expressed
through aspects. This means that about half of the classes
can be subjected to aspectization of a part of the code.

Package Classes Int. implem.
with aspects aspectized

java.util 16/41 28/61
java.awt 37/76 68/97
java.awt.geom 8/14 10/21
Total 61/131 106/179
(percentage) (47%) (60%)

Table 3. Refactored classes and interface implemen-
tations.

Table 3 shows also the number of interface implementa-
tions that have been aspectized by means of our refactoring
toolkit (in total 106/179, that is 60%). Classes that just in-
herit (without redefining) an interface implementation have
not been counted.

Table 4 shows data related just to classes for which at
least one crosscutting concern was detected. It shows the
impact of the refactoring in terms of LOC reduction pro-
duced by the aspectization. Since interface implementa-
tions are moved from classes to aspects, in the principal de-
composition, where aspects are excluded, a reduction of the
code size can be observed. The mean value of such a reduc-
tion is around 10%. Moreover, data seem to indicate that
larger reductions are obtained at increasing package size.
A possible explanation is that crosscutting concerns play an



Lines Of Code
Package Original Refactored ∆

java.util 8,693 6,416 -6,9%
java.awt 16,744 14,773 -11,8%

java.awt.geom 4,098 3,902 -4,8%
Total 27,735 25,091 -9,5%

Table 4. LOC change in the principal decomposition.
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Figure 5. Class diagram for the package java.util,
restricted to the principal decomposition.

important role in the increase of the size of a package. Pack-
ages are often enlarged with the addition of functionalities
that crosscut the existing ones.

In the following, the effect of the refactoring on the
understandabilty of the class diagrams is examined. Fig-
ures 4, 5 and 6 show how the class diagram changes due to
our refactoring. Figure 4 represents the class diagram for
the java.util package. It was built using a reverse engineer-
ing tool written in TXL. The layout was computed by the
tool DOT [6]. Understanding the organization of the pack-
age from this diagram is a challenging task, mainly due to
the high number of overlapping edges in the top region.

Figure 5 shows the principal decomposition for the pack-
age java.util (limited to the classes at the top in Figure 4),
obtained by removing all interface implementations that
represent a crosscutting concern and have been migrated to
an aspect (see interfaces in bold boxes in Figure 4). The
structure of this graph is much more understandable, thanks
to a reduced number of edges. Its simplified layout reflects
the way classes are organized, according to the main de-
composition. The hierarchy of the classes implementing

the Collection interface, as well as that related to the Map
interface, can be immediately identified in the new view.
The diagram is no longer cluttered by crosscutting concerns,
which previously obscured the core hierarchies.
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Figure 6. Aspect diagram for the package java.util,
representing the serialization concern.

Figure 6 shows one of the crosscutting concerns (seri-
alization) in the package java.util, as implemented by the
aspects introduced by the proposed refactoring. The real-
ization relationships that connect each implementing class
to the interface Serializable are dependent on the corre-
sponding aspect that introduces the interface methods into
the class (dependency relationship in Figure 6). This means
that interface implementation is conditional to the inclusion
of the respective aspect in the compiled code.

In the new code organization, the serialization concern
is handled separately, thanks to AOP. In the design reverse
engineered from the code, serialization, as well as all the
other crosscutting concerns, are represented in a distinct
view, dedicated to a single concern only. This results in an
increased modularization of the design and simplifies the
comprehension of each crosscutting concern. For example,
if we consider the serialization concern, Figure 6 gives a
clear representation of the affected classes and of the in-
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HashSet.writeObject(out: ObjectOutputStream) 
{/* calls writeMap */} 

 HashSet.readObject(in: ObjectInputStream) {...}

<<aspect>>
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TreeSet.writeObject(out: ObjectOutputStream) 
{/* calls writeMap */} 

 TreeSet.readObject(in: ObjectInputStream) {...}

<<aspect>>
 AbstractSerializable_Map

T.writeMap(out: ObjectOutputStream, map: Map)

<<bind>>(HashSet) <<bind>>(TreeSet)

inheritance

Legend

T

Figure 7. Example of abstract, generic aspect intro-
duced for the serialization concern.

volved aspects.
A further advantage of the separation of the crosscut-

ting concerns is that common code can be factored out
into super-aspects. As shown in Figure 6, for the serial-
ization concern this happened in two cases. The two as-
pects Serializable HashSet and Serializable TreeSet share
a method, writeMap, implemented exactly in the same way
in the two introductions. Consequently, this method can
be moved to a common super-aspect, named AbstractSe-
rializable Map. A similar situation occurs with the as-
pects Serializable HashMap, Serializable Hashtable, Seri-
alizable IdentityHashMap and Serializable TreeMap, con-
taining a same introduction, writeEntry, moved to the super-
aspect AbstractSerializable Entry.

Since the target class of the introduction performed
in the super-aspect depends on the specific derived as-
pect, a generic introduction with type parameter T is per-
formed (see also Figure 7 for AbstractSerializable Map).
Each sub-aspect binds this parameter to the specific class
where method writeMap has to be introduced. Thus, Se-
rializable HashSet binds T to HashSet, while Serializ-
able TreeSet binds T to TreeSet. A similar binding occurs
for the aspects descending from AbstractSerializable Entry.

As indicated in Figure 7, the introduction writeMap in-
herited from AbstractSerializable Map is used inside one
of the two methods required by the interface Serializable,
namley writeObject, which performs an invocation to such
common method.

Modularization of common aspect code into abstract,
generic aspects is an advantage offered by AOP that can be
hardly achieved in standard Object-Oriented programming,
when the shared code belong to a crosscutting concern. Ac-
tually, in the original code the methods abstracted into a
super-aspect (such as writeMap and writeEntry) were du-
plicated, with all the well-known problems that the practice
of code cloning poses.

In total, in our experimental data-set we found 5 abstract
aspects for 26 aspects containing code clones that are easily
factored out once aspects are introduced.

A possible measure of the effects that migration to AOP
has on the class diagram is given by the reduction in the
number of edges. As described above with reference to
Figures 4, 5, a reduction in the number of edges is often
associated with a more understandable diagram, where the
main hierarchies in the packages, previously obscured by
the interface implementations, come to light.

Number of edges
Package Before After ∆

java.util 81 55 -31%
java.awt 126 79 -37%

java.awt.geom 21 11 -48%
Total 228 145 -36%

Table 5. Impact of refactoring on the complexity of
the class diagram for the principal decomposition.

Table 5 gives such a measure for the packages under
analysis. On average, the new principal decomposition con-
tains 36% edges less. The related visual cluttering is corre-
spondingly reduced.

Lines Of Code
Interface Before After ∆

LayoutManager2 67 46 -31,3%
LayoutManager 198 199 +0,5%

Shape 152 148 -2,6%
Cloneable 77 80 +3,9%

Serializable 532 501 -5,9%
Total 1,026 974 -5,1%

Table 6. Impact of the introduction of super-aspects
on the size of the aspect code.

Table 6 gives the LOC of the aspects containing repli-
cated computations, before and after introduction of super-
aspects. For the concerns LayoutManager and Cloneable,
the amount of code removed is smaller than the overhead
of the abstract aspects due to the headers, so size actually
increases instead of shrinking. In the general case, factor-
ization has a positive effect on the code size, with an aver-
age reduction of around 5%. The overall effects on under-
standability and maintainability of the clone-free code are
expected to be even more relevant.

8 Conclusions and future work

Experimental results indicate that the problem of iden-
tifying which interface implementations are suited for mi-



gration to aspects can be approached with simple methods
(such as string matching), which are able to produce a very
good starting point. Successive manual refinement is how-
ever still necessary.

The introduction of aspects for interface implementa-
tions impacted a large number of classes and interfaces. It
produced a moderate reduction in the LOC (around 10%),
which, however, resulted in a major simplification of the
class diagrams (around 36% edges less). Visual inspection
of such diagrams confirmed a reduction of their complex-
ity. In the refactored code, interface implementations are no
longer scattered and a better modularization is reached.

Code duplications that are otherwise difficult to factor
out have been identified and moved to super-aspects. This
has potentially a tremendous impact on the maintainability
of the code (changes are located easily, just one code entity
is modified, code updates are not missed due to a spread im-
plementation of a same functionality) and on its testability
(coverage testing is simplified, test cases can be modular-
ized according to principal decomposition and crosscutting
concerns, code portions to re-test are easily located).

The AOP language AspectJ has been chosen as the target
of our refactoring. While working with AspectJ, we iden-
tified some improvement areas that we suggest for consid-
eration in the development of the next versions of the lan-
guage. Genericity should be supported in a similar way as in
the new version (1.5) of Java. Introduction of inner classes
should be allowed and access to private methods should be
granted to introductions.

In our future work, we will consider crosscutting con-
cerns that are not necessarily interface implementations.
Clone detection techniques could be employed for their
identification. We are also interested in conducting stud-
ies focused on specific interfaces that are known in advance
to be good candidates for aspectization. Another interesting
future direction consists of an empirical assessment of the
impact of aspectization on maintainability.
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