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Abstract
In this note we study weakly monotone interpretations for direct proofs of termination which is
sound if the interpretation functions are “simple”. This is e.g. the case for standard addition and
multiplication of ordinal numbers. We compare the power of such interpretations to polynomial
interpretations over the natural numbers and report on preliminary experimental results.

1 Introduction

Polynomial interpretations [9] are a well-established termination technique. By now powerful
techniques are known for their automation [1, 5]. Recently it has been shown that allowing
different domains, (e.g., N, Q, R) results in incomparable termination criteria [11,14]. Matrix
interpretations consider linear interpretations over vectors or matrices of numbers (in N, Q,
R) and have been shown to be powerful in theory and practice [2,4,6,18]. However, for other
extensions (e.g., elementary functions [10, 12] or interpretations into ordinal numbers [16])
practical implementations remain an open problem.

In this note we revisit polynomial interpretations using ordinals as carrier [16]. Based on
recent results [17], we present an implementation for string rewrite systems (with interpreta-
tion functions of a special shape), which is the first one to our knowledge. Our efforts could
be seen as a first step towards automatically proving the battle of Hercules and Hydra [16]
terminating. However—for the encoding of the battle from [3]—Moser [13, Section 7] antic-
ipates that an extension of polynomial interpretations into ordinal domains is not sufficient.
In the remainder of this introductory section we recall preliminaries.

Ordinals: We assume basic knowledge of ordinals [8]. By O we denote the set of ordinal
numbers strictly less than ε0. Every ordinal α ∈ O has a unique representation in Cantor
Normal Form (CNF): α =

∑
16i6n ω

αi · ai, where a1, . . . , an ∈ N \ {0} and α1, . . . , αn ∈ O
are also in CNF, with α > α1 > · · · > αn. We denote standard addition and multiplication
on O (and hence also on N) by + and ·. We furthermore drop · whenever convenient.

Term Rewriting: We assume familiarity with term rewriting and termination [15]. Let >
be a relation and > its reflexive closure. A function f is monotone if a > b implies
f(. . . , a, . . .) > f(. . . , b, . . .) and weakly monotone if a > b implies f(. . . , a, . . .) > f(. . . , b, . . .).
A function f is simple if f(. . . , a, . . .) > a.

An F-algebra A consists of a carrier set A and an interpretation function fA : Ak → A

for each k-ary function symbol f ∈ F . By [α]A(·) we denote the usual evaluation function of
A according to an assignment α which maps variables to values in A. An F-algebra together
with a well-founded order > on A is called a (well-founded) F-algebra (A, >). Often we
denote (A, >) by A if > is clear from the context. The order > induces a well-founded order
on terms: s >A t if and only if [α]A(s) > [α]A(t) for all assignments α. A TRS R and
an algebra A are compatible if ` >A r for all ` → r ∈ R. A well-founded algebra (A, >)
is a monotone (weakly monotone / simple) algebra if for every function symbol f ∈ F the
interpretation function fA is monotone (weakly monotone / simple) in all arguments. By O
(N ) we denote well-founded algebras with the carrier O (N) and the standard order >.
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2 Ordinal Interpretations

For (direct) termination proofs one typically exploits the following theorem.

I Theorem 1.1. A TRS is terminating if and only if it is compatible with a well-founded
monotone algebra. J

However, monotonicity can be replaced by weak monotonicity, provided the interpreta-
tion functions are simple. This result is less known.

I Theorem 1.2 ([19, Proposition 12]). A TRS is terminating if it is compatible with a
well-founded weakly monotone simple algebra. J

2 Ordinal Interpretations

Although standard addition, multiplication and exponentiation on ordinals are in general
only weakly monotone, Theorem 1.2 nevertheless constitutes a way to use interpretations
into the ordinals with these operations in termination proofs.

The next example shows that (fairly small) ordinals add power to linear interpretations.

I Example 2.1. Consider the SRS R consisting of the rule a(b(x))→ b(a(a(x))). The linear
ordinal interpretation

aO(x) = x+ 1 bO(x) = x+ ω

is simple and proves termination of R since x + ω + 1 >O x + 1 + 1 + ω = x + ω. Linear
interpretations with coefficients in N are not sufficient. Assuming abstract interpretations
aN (x) = a1x+ a0 and bN (x) = b1x+ b0, we obtain the constraints

a1b1 > b1a1a1 a1b0 + a0 > b1a1a0 + b1a0 + b0

Since aN and bN must be simple (or monotone) a1, b1 > 1. From the first constraint we
conclude a1 = 1, which makes the second one unsatisfiable.

In the rest of this note we consider ordinal interpretations (for SRSs) of the following
shape

fO(x) = x · f ′ + ωd · fd + · · ·+ ω1 · f1 + f0 (1)

where f ′, fd, . . . , f0 ∈ N. Interpretations of the shape (1) will be called linear ordinal in-
terpretations (of degree d). Note that interpretations of the shape (1) are weakly monotone
and simple if f ′ > 1. To show the power of linear ordinal interpretations (with respect to
the derivational complexity) we define the parametrized SRS Rm.

I Definition 2.2. For any m ∈ N the SRS Rm consists of the rules

ai(ai+1(x))→ ai+1(ai(ai(x))) ai+1(x)→ x

for each 0 6 i < m.

Note that R0 is empty. We have the following properties.

I Lemma 2.3. For any Rm and i 6 m we have ai(ani+1(x))→2n−1 ani+1(a2n

i (x)).

Proof. By induction on n. In the base case n = 0 and ai(x)→0 ai(x). In the step case

ai(an+1
i+1 (x))→ ai+1(ai(ai(ani+1(x))))→2n−1 ai+1(ai(ani+1(a2n

i (x))))

→2n−1 ai+1(ani+1(a2n

i (a2n

i (x)))) = an+1
i+1 (a2n+1

i (x))

J
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shape yes time (avg.) timeout (60s)
linear interpretations 19 0.8 1
linear ordinal interpretations (degree 1) 40 2.5 1
linear ordinal interpretations (degree 2) 40 3.8 6
linear ordinal interpretations (degree 3) 38 2.1 21∑

40 – –

Table 1 Evaluation on 720 SRSs of TPDB 7.0.2

I Lemma 2.4. We have a0(a1(· · · (am−1(anm(x)))))→∗Rm
a0

22 · · ·2n

(x) where the tower of 2’s
has height m.

Proof. By induction on m. In the base case m = 0 and the claim trivially holds. In the
step case we have

a0(· · · (am(anm+1(x))))→2n−1 a0(· · · (anm+1(a2n

m (x))))→n a0(· · · (a2n

m (x)))→∗ a0
22 · · ·2n

(x)

where Lemma 2.3 is applied in the first step and the induction hypothesis in the last step. J

As a consequence of Lemma 2.4 we get that dcRm
(n) = Ω(22 · · ·2n

) where the tower of
2’s has height m.

I Lemma 2.5. For every Rm with m ∈ N there exists a compatible linear ordinal interpre-
tation of degree m but not of degree m− 1.

Proof. To show the first item we take (ai)O(x) = x+ωi. Then ai(ai+1(x)) >O ai+1(ai(ai(x)))
because of x + ωi+1 + ωi > x + ωi + ωi + ωi+1 = x + ωi+1 and ai+1(x) >O x because of
x + ωi+1 > x for all x ∈ O. The second item follows from the claim that for any linear
ordinal interpretation compatible with Rm we have that at least ωi occurs in (ai)O(x). The
claim is proved by induction on m. J

From Lemma 2.5 we infer that allowing larger degrees increases the power of linear ordinal
interpretations and in connection with Lemma 2.4 it shows that linear ordinal interpretations
can prove SRSs terminating whose derivational complexity is multiple exponential.

3 Implementation and Evaluation

We implemented linear ordinal interpretations for SRSs of the shape (1). As illustration, we
abstractly encode the rule a(b(x))→ b(a(a(x))) with d = 1. For the left-hand side we get

x · b′ · a′ + ω1 · b1 · a′ + b0 · a′ + ω1 · a1 + a0

which can be written in the canonical form

x · b′ · a′ + ω1 · (b1 · a′ + a1) + (a1 > 0 ? 0 : b0 · a′) + a0

where the (· ? · : ·) operator implements if-then-else, i.e., if a1 is greater than zero then the
summand b0 · a′ vanishes. To determine whether

x · l′ + ω1 · l1 + l0 > x · r′ + ω1 · r1 + r0
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for all values of x, we use the criterion l′ > r′ ∧ (l1 > r1 ∨ (l1 = r1 ∧ l0 > r0)). Finally,
f ′ > 1 ensures that the interpretation fO is simple while the interpretation functions are
then weakly monotone for free. Hence the search for suitable coefficients can be encoded in
non-linear integer arithmetic.

The results1 are given in Table 1 where 4 bits are used to represent the coefficients
f0, . . . , fn, f

′ and 8 bits are allowed for intermediate calculations. The column labeled “yes”
indicates how many systems the given method could show terminating. Times are given in
seconds.

4 Conclusion

We conclude this note with a short discussion on the relationship of linear ordinal inter-
pretations with matrix interpretations [4]. In contrast to the latter the induced ordering
is still total which makes it valuable for ordered completion. Secondly as Lemmata 2.4
and 2.5 show interpretations of the shape (1) allow to prove termination of SRSs whose
derivational complexity is beyond exponential while matrix interpretations are restricted to
an exponential upper bound.

Concerning future work we want to investigate if and how Theorem 1.2 could make
automated termination and complexity tools more powerful.

For matrix interpretations over N (as defined in [4]) the answer is that Theorem 1.2 does
not increase the power of the method. The reason is that the condition for a function to be
simple (Mii > 1 for all 1 6 i 6 d where d is the dimension of the matrices) is a stronger
requirement than monotonicity demanding M11 > 1.

However, if one considers matrix interpretations over O then additional termination
proofs can be obtained (note that any linear ordinal interpretation corresponds to a matrix
interpretation over O).

Another natural question is whether Theorem 1.2 helps arctic interpretations. Because
of monotonicity requirements, direct proofs with arctic matrices are currently limited to
dummy systems (SRSs augmented with constants).

Finally we recall that Theorem 1.2 allows direct proofs with polynomial interpretations
augmented with “max”. This has already been observed in [19, example on p. 13] but seems
to have been forgotten. A similar statement holds for quasi-periodic functions [20].

As future work we want to consider linear ordinal interpretations for TRSs. The problem
for TRSs is that for comparisons of polynomials the absolute positiveness approach [7] might
not apply. To see this note that f1 > g1 and f2 > g2 does not imply x·f1+y ·f2 > y ·g2+x·g1
for all values of x and y if f1, f2, g1, g2 ∈ N and x, y ∈ O. To also cope with such cases we
propose a combination of standard and natural operations on ordinals, as illustrated in the
following example, where ⊕ denotes natural addition on O.

I Example 4.1 (Adapted from [17, Example 17]). Consider the TRS R consisting of the
single rule s(f(x, y)) → f(s(y), s(s(x))). The weakly monotone interpretation fO(x, y) =
(x ⊕ y) + ω and sO(x) = x + 1 is simple and induces a strict decrease between left- and
right-hand side:

(x⊕ y) + ω + 1 >O ((y + 1)⊕ (x+ 2)) + ω = (x⊕ y) + 3 + ω = (x⊕ y) + ω

1 Details are available from http://colo6-c703.uibk.ac.at/ttt2/tpoly/.

http://colo6-c703.uibk.ac.at/ttt2/tpoly/
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Hence R can be oriented by a linear ordinal interpretation. Again, linear interpretations
with coefficients in N are not sufficient. Assuming abstract interpretations fN (x, y) = f1x+
f2y + f0 and sN (x) = s1x+ s0, we get the constraints

s1f1 > f2s1s1 s1f2 > f1s1 s1f0 + s0 > f1s0 + f2(s0 + s1s0) + f0

Since sN and fN must be simple (or monotone) s1, f1, f2 > 1. From the first two constraints
we conclude s1 = 1, such that the third simplifies to f0 + s0 > f0 + (f1 + 2f2)s0. This
contradicts f1 and f2 being positive.
Acknowledgments: We thank Bertram Felgenhauer and the reviewers for useful comments.
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