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Abstract6

Maximal completion (Klein and Hirokawa 2011) is an elegantly simple yet powerful variant of7

Knuth-Bendix completion. This paper extends the approach to ordered completion and theorem8

proving as well as normalized completion. An implementation of the different procedures is described,9

and its practicality is demonstrated by various examples.10
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1 Introduction17

Knuth-Bendix completion [18] constitutes a milestone in the history of equational theorem18

proving and automated deduction in general. Given a set of input equalities E0, it can19

generate a presentation of the equational theory as a complete rewrite system R which may20

serve to decide the validity problem for the theory.21

I Example 1. In order to simplify proofs found by SMT solvers, Wehrman and Stump [32]
pursue an algebraic approach: proofs are represented by first-order terms, and the equivalences
usable for simplification are described by 20 equations like the following ones:

(x · y) · z ≈ x · (y · z) (refl · x) ≈ x (x · refl) ≈ x
or1(refl) ≈ refl and1(refl) ≈ refl not(refl) ≈ refl

or1(x) · orT
2 ≈ orT

2 and1(x) · andF
2 ≈ andF

2 or2(x) · orF
1 ≈ (orF

1 · x)
or1(x) · orF

2 ≈ (orF
2 · x) not(x) · not(y) ≈ not(x · y) or2(x) · orT

1 ≈ orT
1

Here · denotes concatenation, refl is the reflexivity proof, the symbols andi, ori and not are22

used for congruence, and constants like orT
1 stand for operations with boolean constants.23

A Knuth-Bendix completion procedure can transform this set of equations into a termin-
ating and confluent rewrite system R consisting of 45 rules, including the following:

(x · y) · z → x · (y · z) or1(x) · orT
2 → orT

2 (refl · x)→ x

(or2(x) · or1(y)) · orT
1 → or1(y) · orT

1 or2(x) · orT
1 → orT

1 or1(refl)→ refl
(x · and2(y)) · and2(z)→ x · and2(y · z) or2(refl)→ refl or2(x) · orT

1 → orT
1

This rewrite system can be used to simplify an arbitrary proof (represented by a term) into24

its unique normal form. Moreover, any two proofs can be tested for equivalence simply by25

checking whether their normal forms are the same.26
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3:2 Extending Maximal Completion

find
R ⊆ E±

R
complete for E0?

E := E ∪ CP(R)
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no
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SMT solver

Figure 1 Maximal completion.

Knuth and Bendix presented completion as a concrete algorithm. Pioneered by Bachmair,27

Dershowitz, and Hsiang [5], it is nowadays more common to describe completion by an28

inference system, thus abstracting from concrete implementations.29

More recently, Klein and Hirokawa [17] proposed a radically different approach: Maximal30

completion first approximates a complete presentation by extracting a terminating rewrite31

system from an equation pool. It then checks whether the candidate system is complete, and32

if a counterexample was found the procedure is repeated with an extended equation pool.33

Figure 1 illustrates the approach. Maximal completion has the advantage that the reduction34

order, a typically critical input parameter, need not be fixed in advance and can be changed35

at any point. The candidate rewrite systems are generated by means of SAT/SMT solvers;36

thus also advanced termination methods can be used in this setting and the search can be37

guided towards different objectives [25]. Despite the simple, declarative formulation of the38

procedure, the authors’ implementation resulted in a competitive tool [17, 25].39

Apart from these improvements of classical Knuth-Bendix completion, numerous variants40

have by now joined the family of completion calculi, aiming to make completion more versatile41

and powerful. One of the most prominent variants is ordered completion. It was developed42

by Bachmair, Dershowitz, and Plaisted to remedy the shortcoming that classical completion43

fails if unorientable equations like commutativity are encountered [6].44

Another line of research tackled the development of dedicated completion procedures45

for equational systems which incorporate common algebraic theories such as associativity46

and commutativity [23, 12]. The latest and most generally applicable method of this kind is47

normalized completion, developed by Marché [22].48

In this paper maximal completion is revisited (Section 3) and extended to ordered and49

normalized completion. More specifically, the contributions of this paper are as follows:50

Maximal ordered completion and an according equational theorem proving method are51

explained in detail. In particular a completeness proof is presented, showing that a ground52

complete system can always be found.53

The proofs for (ordered) completion require only prime critical pairs to be considered.54

For the case of linear input equalities, it is proven that even a complete system can be55

found if it exists (Section 4.2), and a bound on the number of iterations is derived.56

A maximal completion version of normalized completion (Section 5) is presented. This57

covers AC completion, as well as the computation of Gröbner bases [22].58

Section 6 is devoted to the implementation of these procedures in the tool MædMax. Some59

example use cases from different application areas are demonstrated along the way. Finally,60

Section 7 concludes.61
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2 Preliminaries62

In the sequel familiarity with the basics of term rewriting is assumed [2], but some key notions63

are recalled in this section. Let T (F ,V) denote the set of all terms over a signature F and64

an infinite set of variables V, and T (F) the set of all ground terms over F . A substitution65

σ is a mapping from variables to terms. As usual, tσ denotes the application of σ to the66

term t. A pair of terms (s, t) is sometimes considered an equation, which is expressed by67

writing s ≈ t, and sometimes a (rewrite) rule, denoted s→ t. An equational system (ES) is68

a set of equations, a term rewrite system (TRS) is a set of rewrite rules. Given an ES E ,69

we write E± to denote its symmetric closure E ∪ {t ≈ s | s ≈ t ∈ E}. A reduction order is a70

proper and well-founded order on terms which is closed under contexts and substitutions. It71

is ground total if it is total on T (F). In the remainder most examples use the Knuth-Bendix72

order (KBO), written >kbo, and the lexicographic path order (LPO), written >lpo.73

A TRS R is terminating if →R is well-founded. It is (ground) confluent if s ∗R← · →∗R t74

implies s→∗R · ∗R← t for all (ground) terms s and t. It is (ground) complete if it is terminating75

and (ground) confluent. We say that R is a complete presentation of an ES E if R is complete76

and ↔∗R =↔∗E . Similarly, R is a ground complete presentation of an ES E if R is ground77

complete and the equivalence ↔∗R =↔∗E holds on ground terms. For a TRS R and terms78

s and t, the notation s ↓R t expresses existence of a joining sequence s →∗R · ∗R← t. If R79

is terminating then t↓R denotes some fixed normal form of t, and NF(R) denotes the set80

of all normal forms of R. This notation is extended to ESs E by writing E↓R for the ES81

{s↓R ≈ t↓R | s ≈ t ∈ E and s↓R 6= t↓R}.82

Completion procedures are based on critical pair analysis. To that end, an overlap of83

a TRS R is a triple 〈`1 → r1, p, `2 → r2〉 such that `1 → r1 and `2 → r2 are variants of84

rules in R without common variables, p ∈ PosF (`2), `1 and `2|p are unifiable, and if p = ε85

then `1 → r1 and `2 → r2 are not variants of each other. Suppose 〈`1 → r1, p, `2 → r2〉 is86

an overlap of a TRS R and σ is a most general unifier of `1 and `2|p. Then the equation87

`2[r1]pσ ≈ r2σ is a critical pair of R. The set of all critical pairs of R is denoted by CP(R).88

A critical pair is prime if no proper subterm of `1σ is reducible in R. The set of all prime89

critical pairs of R is denoted by PCP(R). It is known that only prime critical pairs need to90

be considered for confluence of terminating TRSs:91

I Lemma 2 ([14]). A terminating TRS R is confluent if and only if PCP(R) ⊆ ↓R. J92

Further preliminaries will be introduced in later sections as necessary.93

3 Maximal Completion94

This section recapitulates the maximal completion approach by Klein and Hirokawa [17]. A95

TRS R is said to be over an ES E if R ⊆ E±. The set of all terminating TRSs R over E is96

denoted T(E). We assume two functions R and Ext such that R(E) ⊆ T(E) returns a set of97

terminating TRSs over E , and the extension function Ext satisfies Ext(E) ⊆ ↔∗E for all ESs98

E . We define maximal completion by means of the following transformation.99

I Definition 3. Given a set of input equalities E0 and an ES E, let100

ϕ(E) =
{
R if R ∈ R(E) such that PCP(R) ∪ E0 ⊆ ↓R
ϕ(E ∪ Ext(E)) otherwise.

101

102

Note that this definition differs from [17, Definition 2] by the use of prime critical pairs.103

In general ϕ does not need to be defined, nor is it necessarily unique. But if ϕ(E0) is104

FSCD 2019



3:4 Extending Maximal Completion

defined then we can assume a sequence of ESs E1, . . . , Ek called maximal completion sequence105

such that Ei+1 = Ei ∪ Ext(Ei) for all 0 6 i < k, and there is some R ∈ R(Ek) such that106

PCP(R) ∪ E0 ⊆ ↓R. The following theorem expresses correctness of maximal completion [17,107

Theorem 3]:108

I Lemma 4. If ϕ(E0) is defined then it is a complete presentation of E0.109

Proof. Let ϕ(E0) = R and E1, . . . , Ek be an according maximal completion sequence. The110

TRS R must be terminating since it was returned by R. Because of PCP(R) ⊆ ↓R it is111

confluent by Lemma 2, and hence complete.112

A simple induction argument using the global assumption Ext(E) ⊆ ↔∗E for all ESs E113

shows that Ei ⊆ ↔∗E0
for all i > 0. Since R is over Ek, also ↔∗R ⊆ ↔∗E0

holds. Conversely,114

E0 ⊆ ↓R ensures ↔∗E0
⊆ ↔∗R. So R is a complete presentation of E0. J115

Note that maximal completion is based on just three ingredients: (1) completeness is116

overapproximated by termination using the function R, (2) a success check determines117

whether some TRS R ∈ R(E) is complete, and (3) the current set of equations E is extended118

by means of a theory-preserving function Ext.119

It is natural to choose Ext(E) such that Ext(E) ⊆
⋃
R∈R(E) CP(R)↓R. Klein and Hirokawa120

moreover proposed R(E) to return elements of T(E) with maximal cardinality, hence the121

name. The rationale for this choice is that adding rules to a complete presentation R of E0122

does not hurt this property, as long as termination and the equational theory are preserved.123

This is formally expressed by the following lemma.124

I Lemma 5 ([17, Lemma 4]). Let R be a complete presentation of E0 and R′ a terminating125

TRS such that R ⊆ R′ ⊆ ↔∗E0
. Then also R′ is a complete presentation of E0. J126

Nevertheless a maximal terminating TRS may constitute an unfortunate choice in maximal127

completion, as illustrated by the next example.128

I Example 6. Let E0 consist of the following four equations:

x+ 0 ≈ x s(x+ y) ≈ x+ s(y) z(x) ≈ 0 z(s(x+ y)) ≈ z(x+ s(0))

Let R1 be the TRS obtained by orienting all equations from left to right:

x+ 0→ x s(x+ y)→ x+ s(y) z(x)→ 0 z(s(x+ y))→ z(x+ s(0))

Termination of R1 can e.g. be verified using a KBO with s > + and w0 = w(f) = 1 for all129

function symbols f . Thus R(E0) = {R1} is a valid choice for maximal completion. Now the130

first two rules admit the overlap s(x) ← s(x + 0) → x + s(0) which creates an irreducible131

critical pair s(x) ≈ x+ s(0). There are also three critical pairs involving the last rule, but132

they are all joinable. Let thus E1 be E0 ∪ {s(x) ≈ x+ s(0)}. Using the same reduction order,133

all equations can be oriented into the TRS R2 = R1 ∪ {x+ s(0)→ s(x)}. Suppose R(E1) is134

{R2}. There is only one new non-joinable overlap: s(s(x))← s(x+ s(0))→ x+ s(s(0)), so135

let E2 = E1 ∪ {s(s(x)) ≈ x + s(s(0))}. Repeating this strategy will fail to produce a finite136

complete system, as it gives rise to infinitely many equations sn(x) ≈ x+ sn(0).137

So this reduction order does not lead to a finite complete presentation of E0. But in138

fact R1 is the only terminating TRS over E0 which has four rules: This is because the last139

equation can only be oriented from left to right, and the second cannot be oriented from140

right to left in combination with the last without violating termination.141
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Suppose that R(E0) contains instead the following TRS R′1 which has only three rules:

x+ 0→ x x+ s(y)→ s(x+ y) z(x)→ 0

Termination of R′1 can be shown by changing the precedence in the above KBO to + > s.142

There are no critical pairs, and R′1 joins the input equalities E0. So maximal completion can143

succeed immediately by returning R′1.144

In the implementation in the tool MædMax the function R chooses rewrite systems R145

over E which can reduce rather than orient a maximal number of equations in E . Note that146

the TRS R′1 in Example 6 is optimal in this sense, since it reduces all equations in E0.147

I Example 7. In nine iterations of maximal completion, that is within nine recursive calls148

of the procedure ϕ, the proof reduction system described in Example 1 can be transformed149

into a complete rewrite system R. The maximal completion run produces 150 equations and150

takes about 10 seconds. It is worth noting that to complete this system, LPO or KBO alone151

do not suffice; advanced termination techniques like dependency pairs are required, see [25].152

4 Ordered Completion and Theorem Proving153

This section is devoted to the extension of maximal completion to ordered completion and154

equational theorem proving. The basic procedure was already outlined in [36].155

First some concepts specific to this setting are introduced. In this section a ground total156

reduction order > is considered, unless stated otherwise. Given a reduction order > and an157

ES E , the ordered rewrite system E> consists of all rules sσ → tσ such that s ≈ t ∈ E and158

sσ > tσ. A triple (R, E , >) of a TRS R, an ES E , and a reduction order > is called ground159

complete if the (possibly infinite) TRS R∪ E> is. An equation s ≈ t is ground joinable over160

a TRS R if sσ ↓R tσ for all grounding substitutions σ. Ordered completion uses a relaxed161

definition of critical pairs. Given a reduction order > and an ES E , an extended overlap162

consists of two variable-disjoint variants `1 ≈ r1 and `2 ≈ r2 of equations in E± such that163

p ∈ PosF (`2) and `1 and `2|p are unifiable with most general unifier σ. An extended overlap164

which satisfies r1σ 6> `1σ and r2σ 6> `2σ gives rise to the extended critical pair `2[r1]pσ ≈ r2σ.165

The set CP>(E) consists of all extended critical pairs between equations in E . An extended166

critical pair is prime if all proper subterms of `1σ are E>-normal forms. The set of prime167

extended critical pairs among equations in E is denoted by PCP>(E).168

Next, an ordered version of maximal completion gets defined. Let Ro be a function such169

that Ro(E) ⊆ T(E) returns a set of totally terminating TRSs over E , that is TRSs R which170

are contained in a ground total reduction order >. Moreover, the extension function Exto is171

supposed to satisfy Exto(E) ⊆ ↔∗E for all ESs E .172

I Definition 8. Given a set of input equalities E0 and an ES E, let173

ϕo(E) =


(R, E↓R, >) if R ∈ Ro(E) and all equations in E0 ∪ PCP>(E↓R ∪R)

are ground joinable in R∪ (E↓R)>
ϕo(E ∪ Exto(E)) otherwise.

174

175

In order to show correctness of this procedure, the following auxiliary result is useful:176

I Lemma 9. Suppose R ⊆ >, R ∪ E ⊆ ↔∗E0
and all equations in E0 ∪ PCP>(E ∪ R) are177

ground joinable in R∪ E>. Then (R, E , >) is a ground complete presentation of E0.178
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3:6 Extending Maximal Completion

Proof. Let S denote the TRS R∪ E>, which terminates because it is contained in >. We179

can thus show ground confluence of S via local ground confluence. The inclusion180

←−−−−→
PCP(S)

⊆ ←−−−−−−−→
PCP>(R∪E)

∪↓S (1)181

holds on ground terms according to [11, Lemma 26]. By assumption we have S-ground182

joinability of PCP>(R∪ E), and hence ↔PCP(S) ⊆ ↓S on ground terms. So by Lemma 2 the183

TRS S is confluent on ground terms.184

Since R∪E ⊆ ↔∗E0
was assumed, also↔∗S ⊆ ↔∗E0

holds. Moreover E0 is S-ground joinable185

by assumption. Hence the equivalence ↔∗S = ↔∗E0
is satisfied on ground terms, so S is a186

ground complete presentation of E0. J187

Now correctness of the transformation ϕo is obvious:188

I Lemma 10. If ϕo(E0) is defined then it is a ground complete presentation of E0. J189

Note that Definition 8 uses the idea of Definition 3 in the setting of ground completeness190

but suffers the major drawback of an undecidable success check since ground joinability191

of ordered rewriting is undecidable [20]. An implementation thus has to rely on sufficient192

ground joinability criteria, an example of which is stated next. Its correctness follows from193

the more sophisticated test presented in [33].194

I Lemma 11. An equation s ≈ t is ground joinable in R∪E> if s ↓R t or s↓R ≈ t↓R ∈ E. J195

In our implementation Exto(E) is chosen as a subset of
⋃
R∈Ro(E) PCP>(R∪ E↓R)↓R.196

Bachmair, Dershowitz, and Plaisted showed that their ordered completion procedures197

always succeed in producing a ground complete system (though possibly in the limit) [6].198

Next, we derive a similar property for maximal ordered completion, under the assumption199

that all prime critical pairs are considered. To this end, we consider an infinite maximal200

ordered completion sequence E0, E1, E2, . . . such that Ei+1 = Ei ∪ Exto(Ei) for all i > 0. Let201

moreover E∞ denote the limit
⋃
i Ei. The following statement holds by the global assumption202

on Exto.203

I Lemma 12. The conversion equivalence ↔∗E0
=↔∗Ei

holds for all i > 0. J204

It is known that ground complete systems remain ground complete when they get205

(moderately) reduced, the following result follows from Lemma 5 and [11, Theorem 43].206

I Lemma 13. If R∪ E> is ground complete then so is R∪ (E↓R)>. J207

Next we show the main completeness result for maximal ordered completion:208

I Theorem 14. Suppose Exto(E) ⊇
⋃
R∈Ro(E) PCP>(R ∪ E)↓R for all ESs E. For any209

R ∈ Ro(E∞) the system R∪ (E∞↓R)> is a ground complete presentation of E0.210

Proof. Let R ∈ Ro(E∞). The following arguments show that S = R ∪ (E∞)> is ground211

complete. The claim then follows from Lemma 13.212

The TRS S is terminating because S ⊆ >. In order to show that S considered as a TRS213

on ground terms is also confluent, according to Lemma 2 applied to S it suffices to show that214

all prime critical pairs of S are joinable. So consider an equation s ≈ t ∈ PCP(S). Like in215

the proof of Lemma 9, we can use [11, Lemma 26] to obtain inclusion (1). So we have s ↓S t,216

or there is some equation u ≈ v ∈ PCP>(R∪ E∞) such that s↔u≈v t. In the former case,217

there is nothing to show. Otherwise, we have u↓R ≈ v↓R ∈ Exto(E∞) ⊆ E∞ by assumption.218

But then u↓R ≈ v↓R is S-ground joinable by Lemma 11, and hence s ≈ t is joinable.219
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By Lemma 12 and the definition of E∞, the inclusion E∞ ⊆ ↔∗E0
holds. The equivalence220

↔∗E∞ =↔∗E0
thus follows from E0 ⊆ E∞. Because > is ground complete, ↔S =↔E∞ holds221

on ground terms, which implies ↔∗S =↔∗E0
. J222

I Example 15. Consider the following ES E0 axiomatizing a Boolean ring, where multiplica-
tion is denoted by concatenation.

(1) (x+ y) + z ≈ x+ (y + z) (2) x+ y ≈ y + x (3) 0 + x ≈ x
(4) x(y + z) ≈ xy + xz (5) (xy)z ≈ x(yz) (6) xy ≈ yx
(7) (x+ y)z ≈ xz + yz (8) xx ≈ x (9) x+ x ≈ 0
(10) 1x ≈ x

Let (i) denote equation (i) oriented from left to right, and (i) the reverse orientation. Suppose
R1 is the TRS {(1), (3), (4), (5), (7), (8), (9), (10)}, and Ro(E0) = {R1}. Now the set Exto(E0)
may consist of the following extended critical pairs of rules among R1 and the unorientable
commutativity equation:

(11) x+ (y + z) ≈ y + (x+ z) (12) x(yz) ≈ y(xz) (13) x+ 0 ≈ x
(14) y + (x+ y) ≈ x (15) x(yx) ≈ xy (16) x1 ≈ x
(17) y + (y + x) ≈ x (18) x(xy) ≈ xy (19) 0x ≈ 0

(where all R1-joinable critical pairs, like x + (x + 0) ≈ 0 or x0 ≈ y0, are omitted). We223

obtain E1 = E0 ∪ Exto(E0). Now Ro(E1) may contain the TRS R2 consisting of the rules224

(1), (3), (4), (5), (7), . . . , (10), (13), . . . , (19). This TRS is LPO-terminating, so there is a225

ground-total reduction order > that contains →R2 . We have E1↓R2 = {(2), (6), (11), (12)},226

and it can be shown that for E = E1↓R2 the system R2 ∪ E> is ground complete. Despite its227

simplicity, neither WM [1] nor E [28] or Vampire [19] succeed on this example.228

4.1 Theorem Proving229

Next the approach is extended to purely equational theorem proving: Given a set of equations230

E0 and a goal equation s ≈ t as input, the aim is to decide whether s↔∗E0
t holds. Let Extg231

be a binary function on ESs such that Extg(G, E) ⊆ ↔∗E∪G \↔∗E for all ESs E and G. In our232

implementation, Extg(G, E) consists of extended critical pairs between an equation in G and233

an equation in E . The following relation ϕg maps a pair of ESs E and G to YES or NO.234

I Definition 16. Given an ES E0, an initial ground goal s0 ≈ t0 and ESs E and G, let235

ϕg(E ,G) =


YES if s ↓R∪E>

t for some s ≈ t ∈ G and R ∈ Ro(E),
NO if R∪ (E↓R)> is a ground complete presentation of E0

but s0 6↓R∪E>
t0, for some R ∈ Ro(E), and

ϕg(E ∪ E ′,G ∪ G′) for G′ = Extg(G,R∪ E) and E ′ = Exto(E).

236

237

For a set of input equations E0 and an initial goal s0 ≈ t0, a maximal ordered completion238

procedure can then be run on the tuple (E0, {s0 ≈ t0}). Note that the parameter G of ϕg239

denotes a disjunction of goals, not a conjunction. Due to the declarative nature of ϕg the240

following correctness result is straightforward.241

I Lemma 17. Let E0 be an ES and s0 ≈ t0 be a ground goal. If ϕg(E0, {s0 ≈ t0}) is defined242

then ϕg(E0, {s0 ≈ t0}) = YES if and only if s0 ↔∗E0
t0. J243
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3:8 Extending Maximal Completion

I Example 18. The conditional confluence tool ConCon [29] interfaces equational theorem
provers like MædMax to show infeasibility of conditional critical pairs, which can be used
to prove confluence of conditional TRSs. Here a conditional critical pair is called infeasible
if the involved conditions s1 ≈ t1, . . . , sn ≈ tn do not admit a substitution σ such that
siσ ↔∗E0

tiσ for all i. For example, ConCon encounters for Cops #340 the axioms E0:

f(x1, y1) ≈ g(z1) f(x1, h(y1)) ≈ g(z1)

and the conditions x1 ≈ y1, h(x2) ≈ y1, x1 ≈ y2, x2 ≈ y2. Let s ≈ t be the goal equation
conds(x1, h(x2), x1, x2) ≈ conds(y1, y1, y2, y2), using a fresh symbol conds. In order to decide
whether there is a substitution σ such that sσ ↔∗E0

tσ holds, a common trick is used [6]:
existence of such a σ can be refuted if the (ground) goal true ≈ false is not entailed by E0
extended with the following two equations:

eq(x, x) ≈ true (1) eq(conds(x1, h(x2), x1, x2), conds(y1, y1, y2, y2)) ≈ false (2)

For this extended ES E ′0 a maximal ordered procedure call ϕg(E ′0, {true ≈ false}) can result
in the answer NO immediately because a ground complete system exists, consisting of the
two rewrite rules obtained when orienting (1) and (2) from left to right plus the following
(unoriented) equations:

f(x1, y1) ≈ g(z1) f(x1, y1) ≈ f(x2, y2) g(x1) ≈ g(y1)

Both true and false are in normal form with respect to this system, so no suitable σ exists.244

4.2 Completeness for Linear Systems245

We conclude this section with a completeness result. A natural question in the context of246

completion is whether a complete system can be found by a completion procedure whenever it247

exists. For standard completion, it is well known that this is not the case: for example, the ES248

consisting of the equations f(x) ≈ f(a) and f(b) ≈ b cannot be completed by Knuth-Bendix249

completion, or (standard) maximal completion if Ext(E) ⊆
⋃
R∈R(E) CP(R). Nevertheless a250

complete presentation is given by the TRS {f(x)→ b} [16].251

For ordered completion, two sufficient conditions are known to answer this question252

in the positive: Bachmair, Dershowitz, and Plaisted showed that a complete system can253

always be found if the reduction order is ground total [6], and Devie proved that complete254

representations are invariably found for linear systems, irrespective of the order’s totality [8].255

Next, a completeness result for linear systems in the spirit of the result by Devie [8] is256

presented. To that end, the reduction order > does not need to be ground total. In order257

to express that the reduction order leading to the presupposed completion system must be258

considered by the procedure, the function R is said to support a reduction order > if R(E)259

contains a maximal TRS R such that R ⊆ >, for all ESs E .260

Devie’s notion of linear overlaps refers to extended overlaps which satisfy `1 > r1 and261

r2 6> `2, or `2 > r2 and r1 6> `1. Critical pairs originating from such overlaps are called linear262

critical pairs, and the set of all linear critical pairs formed using equations in E is denoted263

by LCP>(E). A TRS R is called reduced if for all rules ` → r in R both r ∈ NF(R) and264

` ∈ NF(R \ {`→ r}) hold.265

I Theorem 19. Let E0 be a linear ES which admits a complete and reduced presentation266

as the TRS C such that C ⊆ >. Suppose moreover that R supports >, Exto(E) is linear267

whenever E is linear, and Exto(E) ⊇
⋃
R∈R(E) LCP>(R∪ E) for all ESs E.268

Then ϕo(E0) is defined and constitutes a complete TRS.269

http://cops.uibk.ac.at/?q=340
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Proof. Let E0, E1, E2, . . . be a maximal ordered completion sequence, and Si denote the270

TRS Ei>. It can be assumed that Ei is linear for all i > 0, because E0 is linear and Exto is271

supposed to preserve linearity.272

Consider a cost function c defined on equation steps as follows: for ` ≈ r ∈ Ei, let273

c(s = C[`σ] ↔`≈r C[rσ] = t) be {t} if `σ > rσ, {s} if rσ > `σ, and {s, t} otherwise. This274

measure is extended to conversions P : t0 ↔ t1 ↔ . . .↔ tn by defining c(P ) as the multiset275

union
⋃

06i<n c(ti ↔ ti+1). In the sequel P � Q is written to abbreviate c(P ) >mul c(Q).276

Consider a rule `→ r in C. As C is assumed to be a complete presentation of E0, there is277

a conversion `↔∗E0
r. According to Lemma 12, also `↔∗Ei

r holds for all i > 0. Let P i`→r be278

fixed conversions `↔∗Ei
r which are minimal with respect to �, for all i > 0.279

We show that for every i, if P i`→r is not of the form `→∗Si
r then there is a conversion280

P i+1
`→r which has fewer steps and satisfies P i`→r � P i+1

`→r. Note that all conversions `↔∗Ei
r281

must have at least one step: otherwise, we would have ` = r, which contradicts C ⊆ >282

because > is well-founded.283

Let P i`→r be a minimal conversion `↔∗Ei
r. Since it has at least one step, we can assume284

some term r′ such that P i`→r has the form ` ↔∗Ei
r′ ↔Ei

r, and r′ 6= r. Note that the last285

step r′ ↔Ei r must satisfy r′ > r: By conversion equivalence, we must have r′ ↔∗C r. Since C286

is complete, r′ ↓C r holds. Because C is also reduced, the term r is irreducible, so we have287

r′ →∗C r. By the above assumption that r′ 6= r this means that r′ →+
C r, which implies r′ > r288

because C ⊆ >. So the equation step r′ ↔Ei
r is an ordered rewrite step r′ →Si

r.289

If ` ↔∗Ei
r is not of the form ` →∗Si

r then it must therefore contain a peak involving290

non-Si step followed by an Si step, that is, a peak of the form291

Q : s←−−−−→
`1≈r1,σ

u −−−−−→
`2≈r2,σ

t292

for some terms s, t, and u, equations `1 ≈ r1, `2 ≈ r2 ∈ Ei, and a substitution σ such that293

`1σ 6> r1σ but `2σ > r2σ, so `2σ → r2σ ∈ Si. Note that c(Q) = {s, u, t}.294

(a) If `1 ≈ r1 and `2 ≈ r2 form a proper overlap then s↔LCP>(Ei) t because `1σ 6> r1σ and295

`2σ > r2σ. By assumption LCP>(Ei) ⊆ Ei+1. Hence there is a conversion P i+1
`→r : `↔∗Ei+1

r296

where Q is replaced by Q′ : s ↔Ei+1 t and c(Q) >mul {s, t} >mul c(Q′). Moreover, P i+1
`→r297

has fewer steps than P i`→r.298

(b) Suppose `1 ≈ r1 and `2 ≈ r2 occur in parallel. Then the two steps can be swapped, so299

there is a term v which allows for the conversion Q′ : s →`2σ→r2σ v ↔`1σ≈r1σ t. This300

contradicts the assumption that P i`→r was minimal: we have c(Q) >mul {v, v, t} = c(Q′)301

because s > v.302

(c) Similarly, if `1 ≈ r1 and `2 ≈ r2 form a variable overlap then because Ei is linear there303

is a term v such that there is a conversion Q : s→=
`2σ→r2σ

v ↔=
`1σ≈r1σ

t. But this again304

contradicts minimality of P i`→r because C(Q) >mul {v, v, t} >mul c(Q′) due to s > v.305

Let k be the maximal number of steps of P 0
`→r, for `→ r ∈ C. The above argument shows306

that `→∗Sk
r holds for all `→ r ∈ C. Hence we have NF(Sk) ⊆ NF(C).307

Let S be the TRS R∪ (Ek↓R)>. Any term reducible by Sk must also be reducible in S,308

which implies NF(S) ⊆ NF(Sk) and hence NF(S) ⊆ NF(C). Since moreover R∪ Ek ⊆ ↔∗C309

implies →Sk
⊆ ↔∗C and S is terminating because S ⊆ >, the TRS S is complete according310

to [11, Lemma 31]. J311

Note that the above proof implies a bound on the number of iterations needed to derive312

a complete system, namely the number of E0-steps required for conversions of the rules in313

the complete system C. Naturally, due to incompleteness of implementations, this bound314

cannot be kept up in practice.315
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I Example 20. Consider the linear ES E consisting of the following three equations:

f(a, i(x)) ≈ f(b, b) g(b, x) ≈ g(a, a) f(a, x) ≈ f(a, y)

The TRS R = {f(a, x)→ f(b, b), g(b, x)→ g(a, a)} is terminating and confluent, as is easily316

checked by state-of the art tools. We also have E0 ⊆ ↓R, and from the conversion317

f(a, x)↔ f(a, i(x))↔ f(b, b) (2)318

we can conclude↔∗E0
=↔∗R, so R is a complete presentation of E0. By Theorem 19, maximal319

ordered completion supporting > =→+
R will succeed with a complete system, and according320

to the bound derived in the proof, this takes at most two iterations since (2) has two steps.321

5 Normalized Completion322

Many algebraic theories like groups and rings feature associative and commutative operators.323

However, since the commutativity equation cannot be oriented into a terminating rewrite324

rule, such theories cannot be handled by standard Knuth-Bendix completion. This triggered325

the development of dedicated completion calculi that can deal with such cases [23, 12].326

Various generalizations have been proposed to extend completion to different algebraic327

theories, apart from plain AC. A version for general theories T has been proposed in [12, 4],328

provided that T admits finitary unification and the subterm ordering modulo T is well-329

founded. Constrained completion [13] constitutes an attempt to overcome these restrictions330

on the theory, it admits for instance completion modulo AC with a unit element (ACU).331

However, it excludes other theories such as Abelian groups.332

Normalized completion [21, 22, 34] can be seen as the last result in this line of research.333

It has three advantages over earlier methods. (1) It allows completion modulo any theory T334

that can be represented as an AC-complete rewrite system S. (2) Critical pairs need not be335

computed for the theory T , which may not be finitary or even have a decidable unification336

problem. Instead, any theory between AC and T can be used. (3) The AC-compatible337

reduction order used to establish termination need not be compatible with T . This is338

beneficial for theories like ACU where no T -compatible simplification order exists.339

I Example 21. Consider an Abelian group with AC operator · and an endomorphism f as
described by the following three equations:

e · x ≈ x i(x) · x ≈ e f(x · y) ≈ f(x) · f(y)

together with ACRPO [24] with precedence f > i > · > e. Using AC completion, or
equivalently normalized completion with respect to S = ∅, one obtains the following AC
complete TRS RAC:

e · x→ x i(x) · x→ e i(e)→ e
i(i(x))→ x i(x · y)→ i(x) · i(y) f(x · y)→ f(x) · f(y)

f(e)→ e f(i(x))→ i(f(x))

Alternatively, one can perform normalized completion with respect to an AC complete
representation of Abelian groups, like for example the following TRS SG [3]:

e · x→ x i(x) · x→ e i(e)→ e i(i(x))→ x i(x · y)→ i(x) · i(y)

Note that SG ⊆ >. Normalized completion with respect to SG results in the TRS RG:

f(x · y)→ f(x) · f(y) f(e)→ e f(i(x))→ i(f(x))
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Before proposing a maximal normalized completion procedure, we recall some concepts340

and notations related to AC rewriting and normalized rewriting.341

AC Rewriting and Unification. A TRS R terminates modulo AC whenever the relation342

→R/AC is well-founded. To establish AC termination we will consider AC-compatible343

reduction orders >, i.e., reduction orders that satisfy ↔∗AC ·> · ↔∗AC ⊆ >. The TRS R is344

complete modulo AC if it terminates modulo AC and the relation ↔∗AC∪R coincides with345

→∗R/AC · ↔
∗
AC · ←∗R/AC. It is an AC-complete presentation of an ES E if R is AC complete346

and ↔∗E∪AC =↔∗R∪AC.347

Let L be a theory with finitary and decidable unification problem. A substitution σ348

constitutes an L-unifier of two terms s and t if sσ ↔∗L tσ holds. An L-overlap is a quadruple349

〈`1 → r1, p, `2 → r2〉Σ consisting of rewrite rules `1 → r1, `2 → r2, a position p ∈ PosF (`2),350

and a complete set Σ of L-unifiers of `2|p and `1. Then `2[r1]pσ ≈ r2σ constitutes an L-critical351

pair for every σ ∈ Σ. For two sets of rewrite rules R1 and R2, we also write CPL(R1,R2) for352

the set of all L-critical pairs emerging from an overlap where `1 → r1 ∈ R1 and `2 → r2 ∈ R2,353

and CPL(R1) for the set of all L-critical pairs such that `1 → r1, `2 → r2 ∈ R1.354

We assume there is a fixed set of AC symbols FAC ⊆ F . For a rewrite rule `→ r with355

+ ∈ FAC the notation (` → r)e refers to the extended rule ` + x → r + x, where x ∈ V is356

fresh. The TRS Re contains all rules in R plus all extended rules `+ x→ r + x such that357

`→ r ∈ R [3].358

Normalized Rewriting. We define normalized rewriting as in [22] but use a different359

notation to distinguish it from the common notation for rewriting modulo. Let T be a theory360

which has an AC-complete presentation as a TRS S.361

Two terms s and t admit an S-normalized R-rewrite step if362

s
!−−−−→

S/AC
· ∗←−→

AC
· p−−−→
`→r

· ∗←−→
AC

t (3)363

for some rule ` → r in R and position p. We abbreviate (3) by s →p
`→r\S t and write364

s→R\S t if s→p
`→r\S t for a rule `→ r in R and position p. Let > be an AC-compatible365

reduction order such that S ⊆ >. For any set of rewrite rules R satisfying R ⊆ > the366

normalized rewrite relation →R\S is well-founded [21, 22], so we can consider equational367

proofs of the form s→!
R\S · ↔

∗
T · ←!

R\S t. These normal form proofs play a special role and368

are called normalized rewrite proofs. Because S is AC-complete for T , any such proof can be369

transformed into a proof s ⇓R\S t, where ⇓R\S abbreviates the relation370

!−−−→
R\S

· !−−−−→
S/AC

· ∗←−→
AC
· !←−−−−
S/AC

· !←−−−
R\S

371

A TRS R is an S-complete presentation of a set of equations E if →R\S is terminating and372

the relations ↔∗E ∪T and →!
R\S · ↔

∗
T · ←!

R\S , hence ⇓R\S , coincide.373

In the remainder of this section we assume that RS(E) is a finite set of rewrite systems374

R such that R∪ S is AC terminating, for all ESs E . Moreover, let the function ExtS satisfy375

ExtS(E) ⊆ ↔∗AC∪S ∪E for all ESs E . We write CPS(R) for the set of critical pairs376

CPL(Re) ∪ CPAC(Se,Re) ∪ CPAC(Re,Se)377

I Definition 22. Given a set of input equalities E0 and an ES E, let378

ϕS(E) =
{
R if R ∈ RS(E) such that CPS(R) ∪ E0 ⊆ ⇓R\S
ϕS(E ∪ ExtS(E)) otherwise.

379

380
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The proof of the following correctness statement is a straightforward adaptation of the381

respective result for standard completion (Lemma 4).382

I Lemma 23. If ϕS(E) is defined then it is an S-complete presentation of E0.383

Proof. Suppose ϕS(E0) = R, soR∪S is AC terminating since it was returned byRS . Because384

of CPS(R) ⊆ ⇓R\S the TRS R is S-complete according to the results by Marché [22].385

Let E1, . . . , Ek be a sequence of normalized maximal completion, that is Ei+1 = Ei ∪386

ExtS(Ei) for all 1 6 i < k and there is some R ∈ RS(Ek) such that CPS(R) ∪ E0 ⊆ ⇓R\S .387

A simple induction argument using the global assumption that ExtS(E) ⊆ ↔∗AC∪S ∪E for388

all ESs E shows that Ek ⊆ ↔∗AC∪S ∪E0
. Since R is over Ek, also ↔∗R ⊆ ↔∗AC∪S ∪E0

holds.389

Conversely, E0 ⊆ ⇓R\S is assumed. So R is an S-complete presentation of E0. J390

The maximal normalized completion implementation in MædMax can for instance complete391

the ES in Example 21 with respect to both AC (so S = ∅) or group theory (using SG).392

6 Implementation393

In this section we briefly summarize an implementation of the discussed variants of maximal394

completion in the tool MædMax [36]. MædMax is implemented in OCaml and available as a395

command-line tool as well as via a web interface, on the accompanying website also example396

input can be found.1 Input problems can be submitted in the TPTP [31] as well as the trs397

format.2 The tool supports standard maximal completion, maximal ordered completion and398

theorem proving, as well as normalized completion. However, many modules are used for all399

of these modes. For the former, MædMax incorporates the extended Maxcomp version [25]400

which supports advanced termination techniques like dependency pairs.401

In the following paragraphs we comment on the implementation of the three components402

corresponding to the main steps in maximal completion: (1) finding (AC) terminating TRSs,403

(2) success checks, and (3) selection of new equations and goals.404

Finding rewrite systems. In order to find (AC) terminating rewrite systems that play the405

role of R(E) and RS(E), respectively, MædMax adheres to the basic approach of Maxcomp [17]406

in that it solves optimization problems by means of a maxSAT/maxSMT solver. The objective407

of this optimization can be to (a) maximize the number of oriented equations as done in408

Maxcomp, or (b) the equations in E that are reducible, or to (c) minimize the number of rules409

or (d) the number of critical pairs. These optimization targets can also be combined, and410

completeness requirements as described in [25] can be added. Strategy (b) in combination411

with (c) has proved to be particularly useful, because it prefers small TRSs which can simplify412

many equations. This is especially beneficial in presence of AC symbols, where many rewrite413

rules and hence many critical pairs can drastically impact performance.414

In order to guarantee termination of the resulting system, SMT encodings of termination415

techniques are used. These are LPO, KBO, and linear polynomials for ordered completion,416

where a ground-total reduction order is desired. For standard completion, MædMax addition-417

ally supports dependency pairs, a dependency graph approximation, and argument filterings418

for LPO and KBO, as described earlier [25]. These techniques can also be combined in a419

strategy involving sequential composition and choice. As a means to ensure AC termination,420

ACRPO is encoded [24]. The supported SMT solvers are Yices 1.0 [10] and Z3 [7].421

1 http://cl-informatik.uibk.ac.at/software/maedmax/
2 https://www.lri.fr/~marche/tpdb/format.html

http://cl-informatik.uibk.ac.at/software/maedmax/
https://www.lri.fr/~marche/tpdb/format.html
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Success checks. For standard and normalized completion, it is straightforward to check422

whether all critical pairs are joinable. In the latter case, MædMax only supports AC critical423

pairs. To conclude ground confluence, our tool supports the criterion of [33].424

Selection. The extension functions Ext, Extg, and ExtS are implemented to add a subset425

of (extended, AC) critical pairs among rules in R, and equations/goal for the case of ordered426

completion. In any case the selected equations get reduced to R-normal form before they are427

added. MædMax severely limits the number of critical pairs that are added in every iteration428

to confine the exponential blowup. The selection heuristic prefers small equations and old,429

but not yet reducible equations.430

Furthermore, MædMax can output equational (dis)proofs and ground completion proofs431

in a format that can be validated by the proof checker CeTA [30]. Further implementation432

details and evaluations on standard benchmark sets can be found in [36, 25].433

We conclude with a final example illustrating a practical application. The tool AQL3434

performs functorial data integration by means of a category-theoretic approach [27], taking435

advantage of (ground) completion. The following problem was communicated by the authors.436

I Example 24. Consider two database tables yIsAL and yIsAW relating amphibians to land
and water animals, respectively. The relationship between their entries are described by 400
ground equations over symbols yIsAL, yIsALL, yIsAW, yIsAWW (which correspond to fields in
the schemas) and 449 constants of the form ai,wi, li representing data items. The following
six example equations may convey an impression:

yIsAW(a1) ≈ w29 yIsAW(a78) ≈ w16 yIsAW(a61) ≈ w30

yIsAL(a37) ≈ l80 yIsAL(a84) ≈ l6 yIsAL(a29) ≈ l47

In addition, the equation yIsALL(yIsAL(x)) ≈ yIsAWW(yIsAW(x)) describes a mapping to437

a second database schema. A ground complete presentation of the entire system thus438

constitutes a representation of the data, translated to the second schema. MædMax discovers439

a complete presentation of 889 rules in less then 20 seconds, while AQL’s internal completion440

prover fails. MædMax’ automatic mode switches to linear polynomials for such systems with441

many symbols, which turned out to be faster than LPO or KBO in this situation.442

7 Conclusion443

This paper explored variants of maximal completion, corresponding to ordered and normalized444

completion. These methods have multiple advantages over earlier approaches:445

The reduction order, a notoriously critical parameter, need not be fixed in advance. This446

also holds for tools with an automatic mode such as RRL [15], but there it is unsound to447

change the order once it was fixed [26]. In contrast, no such problem occurs in maximal448

completion.449

Using maxSMT encodings, the choice of an ordering can be “steered” towards beneficial450

properties of the resulting system (e.g. to orient a maximal number of equations, to451

reduce a maximal number of equations, or to stimulate complete systems [25]).452

Maximal completion exploits the advantage of parallelization in that multiple reduction453

orders can be considered (by choosing multiple rewrite systems in every iteration).454

Theorem 19 shows that in the linear case any complete system for a supported ordering455

3 http://categoricaldata.net/aql.html
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will be found. But at the same time rewriting and critical pair computation are shared456

among the processes corresponding to the different choices of an ordering.457

Efficiency is gained by orienting multiple equations at the same time. Theorem 19 shows458

that this also admits a (theoretical) bound on the number of required iterations.459

Finally, the definitions and the corresponding proofs are concise and simple: neither proof460

orders [5] nor notions like peak or source decreasingness [11] are required.461

Several directions for future work arise. First, we believe that also the completeness462

result for ground-total reduction orders carries over to maximal ordered completion [6].463

The general case of completeness is still an open problem. Another interesting because464

practically relevant variant of completion operates on logically constrained rewrite systems465

(LCTRSs) [35]. Supporting maximal completion procedure for this setting might thus be466

a useful addition to MædMax. Maximal completion can be considered an approximation-467

and conflict-based approach: complete TRSs are overapproximated by terminating TRSs,468

and if a conflict (that is a non-joinable critical pair) is encountered, the approximation is469

refined. It would be interesting to investigate connections to other conflict-driven learning470

approaches such as lazy SMT solving or DPLL [9].471
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