
IEICE TRANS. INF. & SYST., VOL.Exx–??, NO.xx XXXX 200x
1

PAPER

Constraint-Based Multi-Completion Procedures for Term

Rewriting Systems

Haruhiko SATO†a), Student Member, Masahito KURIHARA†b), Member, Sarah WINKLER††c),
and Aart MIDDELDORP††d), Nonmembers

SUMMARY In equational theorem proving, convergent term
rewriting systems play a crucial role. In order to compute conver-
gent term rewriting systems, the standard completion procedure
(KB) was proposed by Knuth and Bendix and has been improved
in a various way. The multi-completion system MKB developed
by Kurihara and Kondo accepts as input a set of reduction or-
ders in addition to equations and efficiently simulates parallel
processes each of which executes the KB procedure with one of
the given orderings. Wehrman and Stump also developed a new
variant of completion procedure, constraint-based completion, in
which reduction orders need not be given by using automated
modern termination checker. As a result, the constraint-based
procedures simulate the execution of parallel KB processes in
a sequential way, but naive search algorithms sometimes cause
serious inefficiency when the number of the potential reduction
orders is large. In this paper, we present a new procedure, called
a constraint-based multi-completion procedure MKBcs, by aug-
menting the constraint-based completion with the framework of
the multi-completion for suppressing the combinatorial explosion
by sharing inferences among the processes. The new procedure is
clearly more efficient than the naive parallelization. The existing
constraint-based system Slothrop, which basically employs the
depth-first search, is more efficient when its built-in heuristics
for process selection are appropriate, but when they are not, our
system is more efficient. Therefore, both systems have their role
to play.
key words: equational theorem proving, term rewriting system,
Knuth-Bendix completion, Multi-completion

1. Introduction

Term rewriting systems [2], [12] play an important role
in various areas, such as automated theorem proving,
functional and logic programming languages, and al-
gebraic specification of abstract data types. In many
applications, termination and confluence are crucially
important properties of term rewriting systems. A term
rewriting system which has both of these properties is
said to be convergent.

In order to compute a convergent term rewriting
system, the standard completion procedure (KB) was
proposed by Knuth and Bendix [7] and has been im-

Manuscript received March 24, 2008.
†The author is with the Graduate School of Information

Science and Technology, Hokkaido University
††The author is with the Institute of Computer Science,

University of Innsbruck
a)E-mail: haru@complex.eng.hokudai.ac.jp
b)E-mail: kurihara@ist.hokudai.ac.jp
c) E-mail: Sarah.Winkler@uibk.ac.at
d)E-mail: Aart.Middeldorp@uibk.ac.at

proved in a various way [3]. Given a set of rewrite
rules R (or equations E) and a reduction order on a set
of terms, the procedure tries to generate a convergent
term rewriting system which is equationally equivalent
to R (or E) by adding or modifying rewrite rules. The
reduction orders are used for orienting the equations
(either from left to right or from right to left) in order
to ensure the termination of the resultant systems. The
success of the procedure heavily depends on the choice
of the reduction order to be supplied. Such a choise
is often difficult for general users to make unless they
have good insight in termination proof techniques. Un-
fortunately, one cannot try out potentially-appropriate
reduction orders one by one (sequentially), because one
of those runs may lead to indefinite, divergent com-
putation and inhibit the exploration of the remaining
possibilities.

Kurihara and Kondo [8] partially solved this prob-
lem by developing a completion procedure called MKB,
which, accepting as input a set of reduction orders as
well as equations, efficiently simulates (in a single pro-
cess) parallel execution of KB procedures each working
with one of those orders. The key idea is the develop-
ment of the data structure for storing a pair s : t of
terms associated with the information to show which
processes contain the rule s → t (or t → s) and which
processes contain the equation s ≈ t. This structure
makes it possible to define a meta-inference system for
MKB that effectively simulates a lot of closely-related
inferences made in different processes all in a simgle
operation. We call this type of procedure a multi-
completion procedure.

As another approach to this problem, Wehrman
and Stump [14] developed a new procedure in which no
orders need to be provided by the users. The idea is
that the procedure keeps constraints (a set of rewrite
rules) on reduction orders and checks the existence of
a reduction order satisfying those constraints by using
an external automated termination checker. Using the
state-of-the-art, modern termination checkers, the pro-
cedure can be virtually supplied with the richest fam-
ily of mechanically-checkable reduction orders and can
solve the widest variety of completion problems. This
is true at least theoretically, but in reality, there is an
inefficiency problem caused by the combinatorial explo-
sion. Unlike the standard completion, the constraint-

2
IEICE TRANS. INF. & SYST., VOL.Exx–??, NO.xx XXXX 200x

based procedures should orient the equations in both
directions (in a breadth-first-like manner) in order to
ensure the completeness of the search algorithm. This
often causes the exponential increase in the number of
reduction orders before creating the solution.

In this paper, we present a new procedure, called
a constraint-based multi-completion procedure MKBcs,
by augmenting the constraint-based completion with
the framework of the multi-completion for suppress-
ing the combinatorial explosion by sharing inferences
among the processes. The new procedure is clearly
more efficient than the naive parallelization. The ex-
isting constraint-based system Slothrop, which basi-
cally employs the depth-first search, is more efficient
when its built-in heuristics for process selection are ap-
propriate, but when they are not, our system is more
efficient. Therefore, both systems have their role to
play.

The paper is organized as follows. We review
the multi-completion in Section 2 and the constraint-
based completion in Section 3. In Section 4, we present
MKBcs and establish its soundness and completeness.
In Section 5, we present a variant of MKBcs suitable
for using the dependency-pair method for termination
checking. In Section 6, we discuss implementation, and
in Section 7, we report the results of the experiments
and discuss the effectiveness of the new procedure. Sec-
tion 8 contains the conclusion and possible future work.

2. Multi-Completion Procedures

Given a set E of equations and a reduction order ≻, the
standard completion procedure KB tries to compute a
convergent set R of rewrite rules that is contained in ≻
and that induces the same equational theory as E .

Starting from the initial state (E0, R0) = (E , ∅),
the procedure obeys the inference system defined in
Fig. 1 to generate a sequence (E0, R0) ⊢ (E1, R1) ⊢ . . .
of deduction, where B in the Collapse rule is an en-
compassment order. The sequence is said to succeed
when the set Eω of persisting equations

∪
i≥0

∩
j≥i Ej

is empty and the set Rω of persisting rewrite rules∪
i≥0

∩
j≥i Rj is convergent. The sequence fails iff Eω ̸=

∅. A completion procedure is correct iff every sequence
that does not fail succeeds. A sequence generated by
a completion procedure is fair iff CP (Rω) ⊆

∪
i≥0 Ei,

where CP (R) denotes the set of all critical pairs gen-
erated from every pair of rules of R.

A multi-completion procedure accepts as input a
finite set O = {≻1, . . . ,≻m} of reduction orders as well
as a set E of equations. The mission of the procedure
is basically the same as KB: it tries to compute a con-
vergent set R of rewrite rules that is contained in some
≻i and that induces the same equational theory as E .

The multi-completion procedure MKB developed
in [8] exploits the data structure called nodes. Let I =
{1, 2, . . . ,m} be the set of indexes for orders in O. A

Delete: (E ∪ {s ≈ s}, R) ⊢ (E, R)
Orient: (E ∪ {s ≈ t}, R) ⊢ (E, R ∪ {s → t})

if s ≻ t
Simplify: (E ∪ {s ≈ t}, R) ⊢ (E ∪ {s ≈ u}, R)

if t →R u
Compose: (E, R ∪ {s → t}) ⊢ (E, R ∪ {s → u})

if t →R u
Collapse: (E, R ∪ {s → t}) ⊢ (E ∪ {u ≈ t}, R)

if l → r ∈ R, s →{l→r} u, and s B l
Deduce: (E, R) ⊢ (E ∪ {s ≈ t}, R)

if u →R s and u →R t

Fig. 1 Inference rules of KB

node is a tuple ⟨s : t, R1, R2, E⟩, where s : t (called a
datum) is an ordered pair of terms, and R1, R2 and E
(called labels) are subsets of I satisfying the following
condition (called label condition):

• R1 ∩ R2 = R2 ∩ E = E ∩ R1 = ∅ and
• i ∈ R1 implies s ≻i t, and i ∈ R2 implies t ≻i s.

In [8], labels are denoted by L1, L2 and L3, but in
this paper, we slightly abuse the notation when there
is no confusion.

The MKB procedure is defined by the inference
system working on a set N of nodes, as given in Fig.2.
Among those rules, Gc and Subsume are called op-
tional rules: they do not necessarily simulate KB, but
can affect the efficiency of the procedure. Starting from
the initial set of nodes,

N0 = {⟨s : t, ∅, ∅, I⟩|s ≈ t ∈ E},

the procedure generates a sequence N0 ⊢ N1 ⊢ · · · .
The procedure simulates the execution of the parallel
processes {P1, . . . , Pm}, with Pi executing KB for the
reduction order ≻i and the common input E . In the
semantics of MKB, the following definition of projec-
tions relates the information on nodes to the states of
processes.

Definition 2.1: Let n = ⟨s : t, R1, R2, E⟩ be a node
and i ∈ I be an index. The E-projection E[n, i] of n
onto i is a (singleton or empty) set of equations defined
by

E[n, i] =
{

{s ≈ t}, if i ∈ E,
∅, otherwise.

Similarly, the R-projection R[n, i] of n onto i is a set of
rules defined by

R[n, i] =

 {s → t}, if i ∈ R1,
{t → s}, if i ∈ R2,

∅, otherwise.

The definitions above are extended for a set N of nodes,
as follows:

E[N, i] =
∪

n∈N

E[n, i], R[N, i] =
∪

n∈N

R[n, i]

SATO et al.: CONSTRAINT-BASED MULTI-COMPLETION PROCEDURES FOR TERM REWRITING SYSTEMS
3

From a successful sequence, the convergent set of
rewrite rules can be extracted by projecting N∞ onto
a successful index i.

Delete: N ∪ {⟨s : s, ∅, ∅, E⟩} ⊢ N if E ̸= ∅

Orient: N ∪ {⟨s : t, R1, R2, E ∪ E′⟩} ⊢
N ∪ {⟨s : t, R1 ∪ E′, R2, E⟩}
if E′ ̸= ∅, E ∩ E′ = ∅,
and s ≻i t for all i ∈ E′

Rewrite-1: N ∪ {⟨s : t, R1, R2, E⟩} ⊢

N ∪
{

⟨s : t, R1 \ R, R2, E \ R⟩
⟨s : u, R1 ∩ R, ∅, E ∩ R⟩

}
if ⟨l : r, R, . . . , . . . ⟩ ∈ N, t →{l→r} u,

t
.
= l, and (R1 ∪ E) ∩ R ̸= ∅

Rewrite-2: N ∪ {⟨s : t, R1, R2, E⟩} ⊢ N∪{
⟨s : t, R1 \ R, R2 \ R, E \ R⟩
⟨s : u, R1 ∩ R, ∅, (R2 ∪ E) ∩ R⟩

}
if ⟨l : r, R, . . . , . . . ⟩ ∈ N, t →{l→r} u,
t B l, and (R1 ∪ R2 ∪ E) ∩ R ̸= ∅

Deduce: N ⊢ N ∪ {⟨s : t, ∅, ∅, R ∩ R′⟩}
if ⟨l : r, R, . . . , . . . ⟩ ∈ N,
⟨l′ : r′, R′, . . . , . . . ⟩ ∈ N, R ∩ R′ ̸= ∅,
u →{l→r} s, and u →{l′→r′} t

Gc: N ∪ {⟨s : t, ∅, ∅, ∅⟩} ⊢ N

Subsume: N ∪
{

⟨s : t, R1, R2, E⟩,
⟨s′ : t′, R′

1, R′
2, E′⟩

}
⊢

N ∪ {⟨s : t, R1 ∪ R′
1, R2 ∪ R′

2, E′′⟩}
if s : t and s′ : t′ are variants and
E′′ = (E \ (R′

1 ∪ R′
2)) ∪ (E′ \ (R1 ∪ R2))

Fig. 2 Inference rules of MKB

3. Completion Procedures with Constraint
Systems

Wehrman and Stump proposed a new completion pro-
cedure which requires no reduction orders for input [14].
We call this procedure KBcs. KBcs ensures the termi-
nation of the generated systems using a termination
checker instead of the given reduction order. In order
to check the existence of a reduction order for ensur-
ing the termination, the procedure keeps a constraint
system, represented by a set of rewrite rules consisting
of all previously added rewrite rules, because checking
the termination of only the current R results in an un-
sound system [10]. Suppose an equation is orientable
in both directions. Such a situation never arises in KB,
but in KBcs, the system can orient the equation in ei-
ther direction. This choice is nondeterministic, but in
practical implementations, the system should eventu-
ally orient the equation in both directions in order to
ensure the completeness of the search algorithm.

KBcs is defined by the inference system in Fig. 3

working on a triple (E,R,C), where E is a set of equa-
tions, and R and C are sets of rewrite rules. We write
(E,R,C) ⊢KBcs (E′, R′, C ′) if the latter is obtained
from the former by one application of an inference rule
of KBcs. The constraint system C accumulates rewrite
rules each time an equation is oriented, but unlike R,
it never removes any rewrite rules if a rule is removed
from R in Compose or Collapse. If C is terminating,
the transitive closure of the reduction relation →+

C is a
reduction order compatible with R.

KBcs has two advantages over KB. First, KBcs
need not force the users to input any reduction orders.
Instead of using reduction orders explicitly, KBcs im-
plicitly constructs the reduction order →+

C by checking
the termination of C. KBcs can benefit from various
fully-automated termination checkers for checking the
termination. Second, KBcs can exploit modern termi-
nation proving methods such as the dependency-pair
method. Classical termination proving methods are
based on the local orientation check for each rewrite
rule with the given reduction order. This simplifies the
Orient inference rule in the classical completion pro-
cedures. Some modern termination proving methods,
on the other hand, have an ability of global termination
analysis that considers structural relationship among
rewrite rules. This often makes modern methods more
powerful than classical methods in terms of termina-
tion proving abilities. In terms of the computation cost,
however, modern methods tend to take more time than
classical methods.

For finite execution, KBcs is sound, but for infinite
execution, KBcs may be unsound because termination
of each intermediate constraint system Ci does not im-
ply termination of their union

∪
i≥0 Ci. However, KBcs

is complete in the sense that if a successful KB sequence
exists, KBcs can simulate it.

Delete: (E ∪ {s ≈ s}, R, C) ⊢ (E, R, C)
Orient: (E ∪ {s ≈ t}, R, C) ⊢

(E, R ∪ {s → t}, C ∪ {s → t})
if C ∪ {s → t} terminates

Simplify: (E ∪ {s ≈ t}, R, C) ⊢
(E ∪ {s ≈ u}, R, C) if t →R u

Compose: (E, R ∪ {s → t}, C) ⊢
(E, R ∪ {s → u}, C) if t →R u

Collapse: (E, R ∪ {s → t}, C) ⊢
(E ∪ {u ≈ t}, R, C)
if l → r∈R, s →{l→r} u and s B l

Deduce: (E, R, C) ⊢ (E ∪ {s ≈ t}, R, C)
if u →R s and u →R t

Fig. 3 Inference rules of KBcs

4. Constraint-Based Multi-Completion Proce-
dures

In this section we present a new procedure MKBcs

4
IEICE TRANS. INF. & SYST., VOL.Exx–??, NO.xx XXXX 200x

which simulates multiple execution of KBcs in the
framework of MKB.

4.1 Bit string representation for processes

In order to define MKBcs in a formal setting, we first
introduce a new representation of processes. Let p be a
process in the semantic domain and suppose p is about
to make a decision on the orientation of an equation
s ≈ t which can be oriented in both directions. In this
situation, we split p into two processes p0 and p1. In
process p0 (p1), the equation is oriented from left to
right (from right to left) and add the resultant rewrite
rule to the current set of the constraints. Similar sit-
uations may be arising in other processes dealing with
s ≈ t. The new procedure maintains all such processes
and inferences in an effective way in a new node struc-
ture. As a process may be identified with a sequence of
choices on the directions for the orientation, we encode
the processes as bit strings b1b2...bn (n ≥ 0), where bj

is 0 (1) if the j-th choice has oriented the equation from
left to right (from right to left). One may imagine a bi-
nary tree to intuitively understand the encoding. Each
process corresponds to a leaf of the tree, and each leaf is
associated with a bit string showing how one can reach
there from the root by following the bits on outgoing
edges one by one at each non-terminal node (go left if
the bit is 0 and go right otherwise). We denote the set
of all bit strings by P.

When p = b1b2 . . . bn is a bit string, the strings
b1b2 . . . bj(j = 0, 1, . . . , n) are called the prefixes of p. In
particular, the empty bit string ϵ (for j = 0) is a prefix
of p. The prefixes other than p are proper prefixes.

The concatenation of a bit string p and a bit b is
denoted by pb. Conversely, we define the cut function
by cut(pb) = p and cut(ϵ) = ϵ.

This idea of encoding processes by bit strings is
formally described in terms of well-encoding defined as
follows.

Definition 4.1 (well-encoding): A set of bit strings Q
is well-encoded if for every p ∈ Q, Q contains no proper
prefixes of p.

For example, Q = {0, 10, 11} is a well-encoded set.
The following proposition shows two basic properties of
well-encoding. The easy proofs are omitted.

Proposition 1: Let Q be a well-encoded set. Then:

(1) Every subset of Q is well-encoded.
(2) If p ∈ Q, then p0 ̸∈ Q and p1 ̸∈ Q.

The second clause of this proposition ensures that
we can create a fresh bit string (for representing an
identifier for a dynamically-created new process) by the
concatenation of p ∈ Q and a bit. By using this prop-
erty, we can introduce an operation for splitting a pro-
cess as follows.

Definition 4.2 (splitting): Let Q be a well-encoded
set and p be a bit string. Then we define the function
splitp(Q) as follows.

splitp(Q) =
{

Q \ {p} ∪ {p0, p1}, if p ∈ Q
Q otherwise

Note that two sets Q\{p} and {p0, p1} are disjoint,
by Proposition 1 (2).

Let P be a well-encoded set. Then the definition
above is extended to the function splitP (Q) defined as
follows.

splitP (Q) = Q \ P ∪ {p0, p1 | p ∈ P ∩ Q}

Note that only the bit strings contained in both
P and Q are removed from Q and split into two fresh
strings. The remaining strings of Q are still contained
in splitP (Q). For example, if P = {0, 10, 111} and Q =
{0, 10, 110}, then splitP (Q) = {00, 01, 100, 101, 110}.

In the binary tree interpretation, splitting corre-
sponds to the operation of attaching two children p0
and p1 to the leaf p of the tree associated with Q (if
p ∈ Q). The following lemma ensures that splitting
preserves the well-encoding property.

Lemma 1: If Q is well-encoded, then splitp(Q) is
well-encoded.

Proof. The case p ̸∈ Q is trivial. Consider the case
p ∈ Q and suppose Q is well-encoded. Then Q contains
no proper prefixes of p. By the definition, splitp(Q)
does not contain p. Therefore, splitp(Q) contains no
proper prefixes of p0 and p1. Thus if splitp(Q) were not
well-encoded, splitp(Q) would contain a proper prefix
q of some q′ ∈ Q \ {p}. Since Q \ {p} is well-encoded,
q must be either p0 or p1. However, this implies that
p is a proper prefix of q′ ∈ Q. This contradicts our
assumption that Q is well-encoded. ¤

This lemma can be easily lifted to the general case
as follows.

Lemma 2: Let P be a set of bit strings. If Q is well-
encoded, then splitP (Q) is well-encoded.

The ancestor function defined below is needed for
rewinding the splitting operation.

Definition 4.3 (ancestor function): Let q be a bit
string and P be a set of bit strings. The direct ancestor
of q with respect to P is defined by

ancP (q) =
{

cut(q) if cut(q) ∈ P
q otherwise

The following two lemmas are just technical and
used in some proofs later (often implicitly).

Lemma 3: Let Q be well-encoded and P ⊆ Q. Then
q ∈ Q ⇒ ancP (q) = q.

SATO et al.: CONSTRAINT-BASED MULTI-COMPLETION PROCEDURES FOR TERM REWRITING SYSTEMS
5

Proof. Since Q is well-encoded, if q ∈ Q, then
cut(Q) ̸∈ Q, thus cut(Q) ̸∈ P . Therefore, ancP (q) = q.

¤
Lemma 4: Let Q be well-encoded and P ⊆ Q. Then

(1) q ∈ splitP (Q) ⇒ ancP (q) ∈ Q for all bit strings q.
(2) ancP (q) ∈ Q ⇒ q ∈ splitP (Q) for all q ̸∈ P .

Proof. (1) If ∃p ∈ P such that q ∈ {p0, p1}, then
cut(q) = p ∈ P , thus ancP (q) = p ∈ Q. Otherwise, we
have q ∈ Q and ancP (q) = q ∈ Q by Lemma 3.

(2) If ∃p ∈ P such that q ∈ {p0, p1}, then
ancP (q) = p and splitP (Q) contains both p0 and p1,
so q ∈ splitP (Q). Otherwise, we have ancP (q) = q
and q ∈ Q. From the assumption q ̸∈ P , we have
q ∈ splitP (Q). ¤

4.2 MKBcs

In order to develop MKBcs from MKB, we extend the
node structure by adding two labels C1, C2 for keeping
constraint systems. A node n in MKBcs is a 6-tuple
⟨s : t, R1, R2, E,C1, C2⟩, where the labels R1, R2, E,C1

and C2 are well-encoded sets of bit strings satisfying
the following label condition:

• (R1 ∪ C1) ∩ (R2 ∪ C2) = ∅
• E ∩ (R1 ∪ R2 ∪ C1 ∪ C2) = ∅

We denote a node by n and a set of nodes by N , and
assume n = ⟨s : t, R1, R2, E,C1, C2⟩ unless explicitly
specified. The node n is considered to be identical with
the node ⟨t : s,R2, R1, E,C2, C1⟩. We denote the set of
bit strings (representing processes) R1 ∪R2 ∪E ∪C1 ∪
C2 occurring in a node n by P(n) and define P(N) =∪

n∈N P(n).
The C-projection C[N, p] of the set of nodes N

onto process p computes the constraint system main-
tained in process p.

C[N, p] =
∪

n∈N

C[n, p],

C[n, p] =

 {s → t}, if p ∈ C1,
{t → s}, if p ∈ C2,

∅, otherwise.

We say that a process p satisfies the constraints in
N if C[N, p] is terminating. A set of nodes N satisfies
the constraints if every process in P(N) satisfies the
constraints in N .

The definition of the split function is extended for
a node n and a set of nodes N as follows.

splitP (n) = ⟨s : t, splitP (R1), splitP (R2),
splitP (E), splitP (C1), splitP (C2)⟩

splitP (N) = {splitP (n) | n ∈ N}
Based on this notation, the inference rules of MK-

Bcs are given in Fig. 4. (As usual, the set union in

the left-hand side of the inference rules should be inter-
preted as the disjoint union in practice.) MKBcs works
on a set of extended nodes, keeping constraint systems
in the fourth and fifth labels in an obvious way. The
general idea is almost the same as MKB. However, the
key change lies in the Orient rule. This rule works as
follows. The system focuses on a node n and for each
process p in the E label of n, it tries to orient the equa-
tion s ≈ t (stored in n as a datum) while satisfying
the constraints. More precisely, if C[N, p] ∪ {s → t}
is terminating, p is collected in a set Elr. Similarly, if
C[N, p] ∪ {t → s} is terminating, p is collected in Erl.
Then P = Elr ∩ Erl denotes the set of processes in
which the equation is orientable in both directions. All
of such processes p are split into p0 and p1 for orienting
from left to right and vice versa. Finally, a new node n′

is created by modifying the labels of n. The processes
Elr ∪ Erl are removed from the E label, and the pro-
cesses Rlr (Rrl) in which the equation is oriented from
left to right (from right to left) are added to the R1 and
C1 (R2 and C2) labels.

Given a set E of equations, MKBcs starts from the
initial set of nodes N0 = {⟨s : t, ∅, ∅, {ϵ}, ∅, ∅ | s ≈ t ∈
E} and generates a sequence N0 ⊢MKBcs N1 ⊢MKBcs

· · · . Let N be a state of the generation process (i.e.,
N = Ni for some i). MKBcs keeps the following condi-
tions invariant.

• P(N) is a well-encoded set.
• Every node of N satisfies the label condition.
• N satisfies the constraints.

The proofs are straightforward by using the fol-
lowing lemmas and induction. (The easy proofs are
omitted.)

Lemma 5: If N ⊢MKBcs N ′ and P(N) is well-
encoded, then P(N ′) is also well-encoded.

Lemma 6: If N ⊢MKBcs N ′ and every node of N
satisfies the label condition, then every node of N ′ also
satisfies the label condition.

Lemma 7: If N ⊢MKBcs N ′ and N satisfies the con-
straints, then N ′ also satisfies the constraints.

We can verify the correctness and completeness
for MKBcs by relating MKBcs to KBcs. The proofs
are almost straightforward, and we only present a brief
sketch of the proof of the soundness of Orient rule.
The soundness means that the Orient rule of MKBcs
correctly simulates the Orient rule of KBcs in some
processes q and has no effect in other processes. This
situation is described in the following lemma by intro-
ducing the symbol ⊢=

MKBcs for denoting the reflexive
closure of ⊢MKBcs.

Lemma 8 (Soundness of Orient rule):
If N ⊢MKBcs N ′ by Orient rule, then there exists
P ∈ P(N) such that

6
IEICE TRANS. INF. & SYST., VOL.Exx–??, NO.xx XXXX 200x

Delete: N ∪ {⟨s : s, ∅, ∅, E, ∅, ∅⟩} ⊢ N if E ̸= ∅

Orient: N ∪ {n} ⊢ splitP (N) ∪ {n′}
if n = ⟨s : t, R1, R2, E, C1, C2⟩,
n′ = ⟨s : t, R1 ∪ Rlr, R2 ∪ Rrl,
E′, C1 ∪ Rlr, C2 ∪ Rrl⟩,
Elr, Erl ⊆ E, Elr ∪ Erl ̸= ∅,
P = Elr ∩ Erl, E

′ = E \ (Elr ∪ Erl),
C[N, p]∪{s→ t} terminates for all p∈Elr,
C[N, p]∪{t→s} terminates for all p∈Erl,
Rlr = (Elr \ Erl) ∪ {p0 | p ∈ P},
and Rrl = (Erl \ Elr) ∪ {p1 | p ∈ P}

Rewrite-1: N ∪ {⟨s : t, R1, R2, E, C1, C2⟩} ⊢

N ∪

⟨s : t, R1 \ R, R2,
E \ R, C1, C2⟩
⟨s : u, R1 ∩ R, ∅,
E ∩ R, ∅, ∅⟩

if ⟨l : r, R, . . . , . . . , . . . , . . . ⟩ ∈ N,
t →{l→r} u, t

.
= l,

and (R1 ∪ E) ∩ R ̸= ∅

Rewrite-2: N ∪ {⟨s : t, R1, R2, E, C1, C2⟩} ⊢

N ∪

⟨s : t, R1\R, R2\R,
E \ R, C1, C2⟩
⟨s : u, R1 ∩ R, ∅,
(R2∪E) ∩ R, ∅, ∅⟩

if ⟨l : r, R, . . . , . . . , . . . , . . . ⟩ ∈ N,
t →{l→r} u, t B l,
and (R1 ∪ R2 ∪ E) ∩ R ̸= ∅

Deduce: N ⊢ N ∪ {⟨s : t, ∅, ∅, R ∩ R′, ∅, ∅⟩}
if ⟨l : r, R, . . . , . . . , . . . , . . . ⟩ ∈ N,
⟨l′ : r′, R′, . . . , . . . , . . . , . . . ⟩ ∈ N,
R ∩ R′ ̸= ∅, u →{l→r} s
and u →{l′→r′} t

Gc: N ∪ {⟨s : t, ∅, ∅, ∅, ∅, ∅⟩} ⊢ N

Subsume: N ∪
{

⟨s : t, R1, R2, E, C1, C2⟩,
⟨s′ : t′, R′

1, R′
2, E′, C′

1, C′
2⟩

}
⊢ N ∪ {⟨s : t, R1 ∪ R′

1, R2 ∪ R′
2,

E′′, C1 ∪ C′
1, C2 ∪ C′

2⟩}
if s : t and s′ : t′ are variants and
E′′ = (E \ (R′

1 ∪ R′
2 ∪ C′

1 ∪ C′
2))∪

(E′ \ (R1 ∪ R2 ∪ C1 ∪ C2)).

Fig. 4 Inference rules of MKBcs

(E[N, q], R[N, q], C[N, q]) ⊢=
KBcs

(E[N ′, q′], R[N ′, q′], C[N ′, q′])

for all q′ ∈ P(N ′), where q = ancP (q′).

Proof. In this proof, we use the symbol Ni for re-
ferring to N in the Orient rule. Taking Elr, Erl,
P , Rlr, Rrl and E′ as specified in the Orient rule,
we let N = Ni ∪ {n}, N ′ = splitP (Ni) ∪ {n′}, n =
⟨s : t, R1, R2, E,C1, C2⟩ and n′ = ⟨s : t, R1 ∪ Rlr, R2 ∪
Rrl, E

′, C1 ∪ Rlr, C2 ∪ Rrl⟩. By the definition of E-
projection,

E[N, q] = E[Ni, q] ∪ E[n, q]

and

E[N ′, q′] = E[splitP (Ni), q′] ∪ E[n′, q′].

Since equations other than s ≈ t (stored as a datum of
n) are untouched, they are preserved in all processes,
thus formally we have

E[Ni, q] = E[splitP (Ni), q′].

(By the way, this is true if Ni contains another node
with datum s : t.) We denote this set by E . Like-
wise, R[Ni, q] = R[splitP (Ni), q′] and C[Ni, q] =
C[splitP (Ni), q′] and we denote them by R and C, re-
spectively. Then the inference we should verify for this
lemma is written as

(E ∪ E[n, q],R∪ R[n, q], C ∪ C[n, q]) ⊢=
KBcs

(E ∪ E[n′, q′],R∪ R[n′, q′], C ∪ C[n′, q′]).

We consider three cases:
(Case 1) We assume q′ ∈ Rlr. This implies that

R[n′, q′] = C[n′, q′] = {s → t} and E[n′, q′] = ∅. We
will show that q = ancP (q′) ∈ E. By q′ ∈ Rlr, either
q′ ∈ Elr \ Erl or q′ ∈ {p0, p1 | p ∈ P} must hold. If
q′ ∈ Elr \ Erl then ancP (q′) = q′, thus we have q = q′

and q ∈ Elr ⊆ E. On the other hand, if q′ = pb for some
p ∈ P and a bit b, then q = ancP (q′) = p ∈ P ⊆ E.
Therefore, in either case, we have q ∈ E, and thus
E[n, q] = {s ≈ t}, R[n, q] = C[n, q] = ∅. It follows that
MKBcs has simulated the KBcs inference

(E ∪ {s ≈ t},R, C) ⊢KBcs

(E ,R ∪ {s → t}, C ∪ {s → t}),

and C ∪ {s → t} is terminating since q′ ∈ Rlr.
(Case 2) We assume q′ ∈ Rrl. In this case, we can

follow the arguments similar to Case 1 to verify that
(E ∪ {s ≈ t},R, C) ⊢KBcs (E ,R∪ {t → s}, C ∪ {t → s})
and C ∪ {t → s} is terminating.

(Case 3) We assume q′ ̸∈ (Rlr ∪ Rrl). This is
combined with q′ ̸∈ P to get q′ ̸∈ (Elr ∪ Erl) and
q′ ̸∈ {p0, p1 | p ∈ P}. From the last condition, we
see that ancP (q′) = q′ and thus q = q′. Therefore,
E[n, q] = E[n′, q′], R[n, q] = R[n′, q′] and C[n, q] =
C[n′, q′]. It follows that (E[N, q], R[N, q], C[N, q]) =
(E[N ′, q′], R[N ′, q′], C[N ′, q′]). ¤

We have implicitly used the ancestor function
ancP (q) for relating the processes before and after the
application of the Orient rule so far. Note, however,
that it may be also associated with other rules without
the splitting operation, because by setting P = ∅, we
have ancP (q) = q. Actually, before and after the ap-
plication of those rules, the identifiers of the processes
should be unchanged. The following two theorems ex-
ploit this extension to make the descriptions concise.

Theorem 1 (Soundness of MKBcs):
If N ⊢MKBcs N ′, then there exists a set P ⊆ P(N)
such that

SATO et al.: CONSTRAINT-BASED MULTI-COMPLETION PROCEDURES FOR TERM REWRITING SYSTEMS
7

(E[N, p], R[N, p], C[N, p]) ⊢=
KBcs

(E[N ′, p′], R[N ′, p′], C[N ′, p′])

for all p′ ∈ P(N ′), where p = ancP (p′). The strict part,
⊢KBcs, holds for at least one p′ if the employed rule is
not optional.

Theorem 2 (Completeness of MKBcs):
If (E[N, p], R[N, p], C[N, p]) ⊢KBcs (E′, R′, C ′), then
there exists a set N ′ of nodes, P ⊆ P(N) and p′ ∈
P(N ′) such that p = ancP (p′), E′ = E[N ′, p′], R′ =
R[N ′, p′], C ′ = C[N ′, p′] and N ⊢MKBcs N ′.

Finally, we note the fairness of MKBcs. The in-
finite execution of MKBcs may be unsound because
KBcs may be unsound. Thus we consider only finite
sequences for MKBcs. For finite sequences, the fairness
of MKBcs can be defined in the same way as MKB.

5. Constraint-Based Multi-Completion Proce-
dures with Dependency-Pair Method

In this section, we present a more efficient variant
(referred to as MKBdp) of MKBcs when we use the
dependency-pair method [1], [9] for termination check-
ing. The emphasis is on how we can take advantage of
yet another node structure to improve the efficiency of
MKBcs.

We begin by reviewing some basic notions on the
dependency-pair method. Let R be a set of rewrite rules
over the function symbol Σ, and let Σ# = Σ∪{f# | f ∈
Σ}. If s = f(s1, . . . , sn), then s# = f#(s1, . . . , sn).
We denote the root symbol of a term s by root(s).
The set of all defined symbols of R is defined by
D(R) = {root(l) | l → r ∈ R}. Let Sub(t) be the set of
all subterms of t and PSub(t) be the set of all proper
subterms of t. We define Subs(t) = Sub(t) \ PSub(s)
and SP (R) = {s → u | s → t ∈ R, u ∈ Subs(t)}.
Then the set of dependency-pair of R is defined by
DP (R) = {s# → u# | s → u ∈ SP (R), root(s) ∈
D(R), root(u) ∈ D(R)}.

Definition 5.1 (subterm-pair node): A subterm-pair
node is a pair ⟨s → u,Q⟩ of a rewrite rule s → u and a
subset Q of P.

Definition 5.2 (defined-symbol node):
A defined-symbol node is a pair ⟨f,Q⟩ of a function sym-
bol f and a subset Q of P.

Intuitively, the subterm-pair node claims that the
rewrite rule s → u is contained in SP (R) of all pro-
cesses of Q, and the defined-symbol node claims that f
is a defined symbol in all processes of Q.

We define MKBdp inference rules working on the
tuple ⟨N,SP,D⟩, where N is a set of nodes, SP is a set
of subterm-pair nodes and D is a set of defined-symbol
nodes. When MKBcs derives N ′ from N , MKBdp de-
rives ⟨N ′, SP ′, D′⟩ from ⟨N,SP,D⟩ and in almost all

cases we have SP ′ = SP and D′ = D. The excep-
tional case is when the Orient rule has been applied
in MKBcs. In that case, we have:

SP ′ = {⟨l → r, splitP (Q)⟩ | ⟨l → r,Q⟩ ∈ SP}
∪ {⟨s → u, Rlr⟩ | u ∈ Subs(t)}
∪ {⟨t → u,Rrl⟩ | u ∈ Subt(s)}

D′ = {⟨f, splitP (Q) ∪ Df (s,Rlr) ∪ Df (t, Rrl)⟩
| ⟨f,Q⟩ ∈ D}

where

Df (s,Q) =
{

Q if f = root(s)
∅ otherwise

and other symbols s, t, Rlr, Rrl, and P denote those
symbols defined in the Orient rule.

MKBdp starts from the initial tuple ⟨N0, SP0, D0⟩
where N0 is the initial set of nodes of MKBcs, SP0 = ∅,
and D0 = {⟨f, ∅⟩ | f ∈ Σ}.

We define a new projection for relating the state
of MKBdp to the set of dependency-pairs maintained
in a process. The projection DP [SP,D, p] is defined as
follows:

DP [SP,D, p] = {s# → u# | ⟨s → u, P ⟩ ∈ SP,

⟨root(s), Q⟩ ∈ D, ⟨root(u), Q′⟩ ∈ D,

p ∈ P ∩ Q ∩ Q′}

Theorem 3:
Let ⟨N0, SP0, D0⟩ ⊢MKBdp ⟨N1, SP1, D1⟩ ⊢MKBdp . . .
be a sequence of MKBdp inferences. For every i ≥ 0
and q ∈ P(Ni), DP (C[Ni, q]) = DP [SPi, Di, q].

This theorem ensures that we can obtain all
dependency-pairs of all processes by maintaining SP
and D, instead of calculating DP (C[N, p]) from
scratch.

6. Implementation

In this section, we briefly describe our implementation
of MKBcs and caching techniques for efficient termina-
tion checking with the dependency-pair method.

6.1 Pseude code for MKBcs

A possible MKBcs completion procedure as an imper-
ative program is given in Fig. 5. There is not much
difference from the implementation of MKB in [8]. The
main difference is the orient function, which accepts a
node n = ⟨s : t, R1, R2, E,C1, C2⟩ together with a set
of nodes N (partitioned into the open set No and the
closed set Nc) and tries to orient the equation s ≈ t for
each process p contained in E.

Our implementation of orient is given in Fig. 6,

8
IEICE TRANS. INF. & SYST., VOL.Exx–??, NO.xx XXXX 200x

where we assume all arguments of orient are mutable.
The line marked by (*) should be skipped in order to
share inferences among the processes as much as pos-
sible. The line is executed only when we simulate a
naive execution of parallel processes, where each pro-
cess is executed independently.

procedure mkbcs(E) {
No := {⟨s : t, ∅, ∅, {ϵ}, ∅, ∅⟩|s ≈ t ∈ E}
Nc := ∅
while success(No, Nc) = false {

if No = ∅ { return(fail) }
n := choose(No)
No := No \ {n}
if n ̸= ⟨. . . , ∅, ∅, ∅, . . . , . . . ⟩ {

while orient(n, No, Nc) = true {
No := No ∪ rewrite(Nc, {n})
No := No ∪ deduce(n, Nc)
N ′

o := rewrite(No, Nc ∪ {n})
No := No ∪ N ′

o

}
Nc := Nc ∪ {n}

}
}
return (R[Nc, p]) where p = success(No, Nc)

}
Fig. 5 Implementation of MKBcs

procedure orient(n, No, Nc) {
assume n = ⟨s : t, R1, R2, E, C1, C2⟩
Elr, Erl := ∅
for each p ∈ E {

if C[No∪Nc, p] ∪ {s → t} terminates Elr := Elr ∪ {p}
if C[No∪Nc, p] ∪ {t → s} terminates Erl := Erl ∪ {p}
(*) if Elr ∪ Erl ̸= ∅ break

}
E := E \ (Elr ∪ Erl)
P := Elr ∩ Erl

Rlr := (Elr \ Erl) ∪ {q0 | q ∈ P}
Rrl := (Erl \ Elr) ∪ {q1 | q ∈ P}
R1 := R1 ∪ Rlr

R2 := R2 ∪ Rrl

C1 := C1 ∪ Rlr

C2 := C2 ∪ Rrl

No := splitP (No)
Nc := splitP (Nc)
if Elr ∪ Erl ̸= ∅ return true else return false

}
Fig. 6 Implementation of orient function

6.2 Caching conditions for reduction orders

In order to efficiently find a reduction order compati-
ble with dependency pairs, it is effective to associate
an appropriate condition [[s ≽ t]] equivalent to s ≽ t
with the node ⟨s : t, . . . ⟩ and the subterm-pair node
⟨s : t, P ⟩. Such a condition might be more suitable for
automated proof of termination. For example, when
we consider the lexicographic path orders (LPO) as a

class of reduction orders, such a condition might be a
Boolean formula for representing strict orders on func-
tion symbols. As another example, when we consider
polynomial orders, the condition might be a diophan-
tine constraint generated by interpreting terms. The
reason the caching technique is promising is that the
constraint system grows incrementally and the condi-
tion once generated for termination of C can be reused
later for termination of another system containing C.
In addition, the cached condition can be shared among
the processes. Therefore, the caching technique is effec-
tive for difficult problems, which require long deduction
sequences and many processes.

7. Experimental Results

We have experimented with our implementation of MK-
Bcs on a set of the standard benchmark problems
[11] and some difficult problems experimented in [13],
[14]. Our built-in termination checker is based on the
dependency-pair method [1]. Moreover, in order to find
reduction orders for ensuring termination, we have used
the combination of polynomial interpretation and SAT
solving proposed in [5]. We have considered the class
of linear polynomial orderings with coefficients in {0, 1}
as the search space for the reduction orders. We refer
to our implementation with this termination checker as
MKBcs/POL. All experiments have been performed on
a workstation equipped with Intel Xeon 2.13GHz CPU
and 1GB system memory.

7.1 Comparison with naive parallelization

We have compared MKBcs with the naive paralleliza-
tion approach, in which all processes are executed inde-
pendently. In order to simulate the naive parallelization
in the framework of MKBcs, we have applied the Ori-
ent rule only for a single process in the way described
in 6.1. The results are summarized in Table 1, where
”naive” columns show the results when the line marked
by (*) in Fig. 6 is executed, and ”MKB” columns show
the results when the line is skipped. The ”all” columns
show the total time (in seconds) and ”re/de” columns
show the time consumed by Rewrite-1,2 and Deduce
rules for each problem. Hyphens indicate that we could
not get the results within 24 hours. We can see that the
node-based rewriting and deducing is very effective, es-
pecially for the problems requiring a long computation
time.

7.2 Comparison of MKBcs/AProVE with Slothrop

We have compared our approach with Slothrop, the
first constraint-based completion tool described in [14].
Slothrop uses AProVE [6], one of the most powerful
termination checkers known in the literature. In order

SATO et al.: CONSTRAINT-BASED MULTI-COMPLETION PROCEDURES FOR TERM REWRITING SYSTEMS
9

Table 1 Comparison with naive parallelization

Problem naive MKB
all re/de all re/de

SK90 3.01 1.0 0.7 0.6 0.3
SK90 3.03 0.6 0.5 0.3 0.2
SK90 3.04 190.3 150.1 55.9 30.2
SK90 3.05 1.7 1.3 0.8 0.5
SK90 3.06 3.6 2.1 2.0 0.6
SK90 3.07 4.1 2.3 2.3 0.6
SK90 3.09 146.6 115.1 29.4 7.2
SK90 3.27 21.1 3.2 19.1 1.7
SK90 3.28 410.5 133.4 207.9 2.1
SK90 3.29 1.0 0.4 0.5 0.0
WSW07 GE1 1.4 0.7 0.8 0.2
WSW07 CGE2 435.9 272.4 126.4 10.7
WSW07 CGE3 - - 32867.6 568.8
WS06 PR 28074.7 14690.5 10752.1 25.7

to compare MKBcs and Slothrop in the same envi-
ronment, we have developed MKBcs/AProVE, which
is MKBcs using AProVE instead of our built-in termi-
nation checker, and compared it with Slothrop. The
results are summarized in Table 2, where ”all” columns
show the total time and ”tc” columns show the num-
ber of termination checking. The results show that the
two systems are incomparable in their performance: for
some problems, MKBcs is faster, but for other prob-
lems, Slothrop is faster. This is because they are
based on totally different ideas. Slothrop works in
a depth-first manner in the search space. When an
equation can be oriented in both directions, Slothrop
chooses one of them, based on some heuristics, and ba-
sically sticks to that decision until that choice turns
out to be wrong. On the other hand, MKBcs works
in a breadth-first manner. When an equation can be
oriented in both directions, MKBcs splits processes and
tries both directions in parallel. Therefore, in principle,
Slothrop is more efficient when its heuristics are ap-
propriate. However, such heuristics are often difficult
to design. When the heuristics are inappropriate, there
is a chance for MKBcs to be more efficient. Apart from
the performance, the convergent rewrite systems gen-
erated by the two systems are sometimes different from
each other, because of the difference in their process
selection. These observations mean that both systems
have a role to play in efficient completion with auto-
mated, modern termination checking.

7.3 Evaluation of MKBdp and Caching

We show the results when we have considered (1) the
node-based calculation of dependency-pairs described
as MKBdp in Section 5 and (2) the cache-based condi-
tion checking described in Section 6.2. The total CPU
time (in seconds) is shown in Table 3, where the ”no
soup” column shows the results when no node-based
techniques have been applied, the ”no cache” column
shows the results when node-based calculation has been
applied with no conditions cached, and the ”cache” col-

Table 2 Comparison of MKBcs with Slothrop

Problem MKBcs/AProVE Slothrop
all tc all tc

SK90 3.01 2.9 89 20.6 326
SK90 3.03 2.3 59 3.3 86
SK90 3.04 464.8 931 2275.1 1466
SK90 3.05 25.5 103 347.4 577
SK90 3.06 63.4 246 993.8 898
SK90 3.07 43.7 218 2722.5 1811
SK90 3.12 1.6 21 3.5 24
SK90 3.18 2.7 35 2.6 24
SK90 3.19 1.7 45 1.6 21
SK90 3.20 3.7 99 2.4 33
SK90 3.21 1.6 35 50.8 141
SK90 3.23 4.2 63 2.5 35
SK90 3.27 428.2 213 253.8 90
SK90 3.28 12962.8 10757 374.4 807
SK90 3.29 10.8 330 2.4 80
WSW07 GE1 3.9 113 5.8 105
WSW07 CGE2 10488.0 12984 457.6 1381

Table 3 Evaluation of MKBdp and caching

Problem no soup no cache cache procs

SK90 3.01 0.61 0.59 0.55 13
SK90 3.03 0.31 0.31 0.30 5
SK90 3.04 63.90 60.67 55.71 14
SK90 3.05 0.89 0.86 0.81 8
SK90 3.06 2.14 2.16 1.97 21
SK90 3.07 2.51 2.43 2.26 21
SK90 3.12 0.12 0.11 0.11 3
SK90 3.18 0.20 0.17 0.14 11
SK90 3.19 0.10 0.10 0.08 20
SK90 3.20 0.13 0.12 0.11 32
SK90 3.23 0.19 0.16 0.15 17
SK90 3.27 20.85 20.09 19.08 9
SK90 3.28 353.51 253.25 207.94 791
SK90 3.29 0.61 0.54 0.50 166
WSW07 GE1 0.98 0.93 0.82 15
WSW07 CGE2 199.13 157.73 126.36 167
WSW07 CGE3 53885.42 41256.02 32867.56 2862
WS06 PR 16041.13 13210.79 10752.13 4872

umn shows the results when all conditions have been
cached during the node-based calculation. The ”procs”
column shows the number of all processes. From the re-
sults, we can see that all described techniques are effec-
tive for improving the performance of MKBcs/POL, es-
pecially for the problems that require a long CPU time
and a large number of processes such as WSW07 CGE3

and WS06 PR.

8. Conclusion and Future work

We have presented a new multi-completion procedure
MKBcs which efficiently simulates parallel execution
of constraint-based procedures. The novel techniques
involved are (1) the development of the well-encoded
bit string systems for representing and maintaining dy-
namic processes and (2) the new Orient rule defined
on the extended definition of the node structure. The
idea has been further extended for incorporating the
dependency-pair method as the associated termination

10
IEICE TRANS. INF. & SYST., VOL.Exx–??, NO.xx XXXX 200x

checker. The experiments show that MKBcs is clearly
more efficient than the simulation of naive paralleliza-
tion. Superiority of MKBcs/AProVE (our implemen-
tation of MKBcs) to Slothrop (the well-known imple-
mentation of KBcs) depends on the problems. In gen-
eral, Slothrop is more efficient when its heuristics for
process selection in the orientation are correct. How-
ever, this is not always the case. When the heuristics
are inappropriate, MKBcs plays its role in node-based
efficient completion with automated, modern termina-
tion checking.

As future work, we are planning to incorporate the
ideas of AC-completion and unfailing completion into
MKBcs.

Acknowledgments

This work was partially supported by JSPS Grant-in-
Aid for Scientific Research (C), No. 19500020.

References

[1] T. Arts and J. Giesl, ”Termination of term rewriting using
dependency pairs”, Theoretical Computer Science, vol. 236,
pp. 133-178, 2000.

[2] F. Baader and T. Nipkow, Term Rewriting and All That,
Cambridge University Press, 1998.

[3] L. Bachmair, Canonical Equational Proofs, Birkhäuser,
1991.

[4] N. Dershowitz, ”Termination of rewriting”, Journal of Sym-
bolic Computation, vol. 3, issue 1-2, pp. 69-116, 1987.

[5] C. Fuhs, J. Giesl, A. Middeldorp, P. Schneider-Kamp, R.
Thiemann, and H. Zankl, ”SAT solving for termination
analysis with polynomial interpretations”, Proc. 10th In-
ternational Conference on Theory and Applications of Sat-
isfiability Testing (SAT 2007), vol. 4501 of Lecture Notes
in Computer Science, pp. 340-354, 2007.

[6] J. Giesl, P. Schneider-Kamp, and R. Thiemann, ”AProVE
1.2: automatic termination proofs in the dependency pair
framework”, Proc. 3rd International Joint Conference on
Automated Reasoning, vol. 4130 of Lecture Notes in Arti-
ficial Intelligence, pp. 281-286, 2006.

[7] D. E. Knuth and P. B. Bendix, ”Simple word problems in
universal algebras”, in J. Leech(ed.), Computational Prob-
lems in Abstract Algebra, pp. 263-297, Pergamon Press,
1970.

[8] M. Kurihara and H. Kondo, ”Completion for multiple
reduction orderings”, Journal of Automated Reasoning,
vol.23, no.1, pp. 25-42, 1999.

[9] N. Hirokawa and A. Middeldorp, ”Dependency pairs re-
visited”, Proc. 15th International Conference on Rewriting
Techniques and Applications, vol. 3091 of Lecture Notes in
Computer Science, pp. 249-268, 2004.

[10] A. Sattler-Klein, ”About changing the ordering during
Knuth-Bendix completion”, Proc. 11th Annual Symposium
on Theoretical Aspects of Computer Science, vol. 775 of
Lecture Notes in Computer Science, pp. 175-186, 1994.

[11] J. Steinbach and U. Kühler, ”Check your ordering - termi-
nation proofs and problems”, Technical Report SR-90-25,
Universität Kaiserslautern, 1990.

[12] Terese, Term Rewriting Systems, Cambridge University
Press, 2003.

[13] I. Wehrman and A. Stump, ”Mining propositional simplifi-
cation proofs for small validating clauses”, Electronic Notes

in Theoretical Computer Science, vol. 144, no. 2, pp. 79-91,
2006.

[14] I. Wehrman, A. Stump, and E. Westbrook, ”Slothrop:
Knuth-Bendix completion with a modern termination
checker”, Proc. 17th International Conference on Rewriting
Techniques and Applications, vol. 4098 of Lecture Notes in
Computer Science, pp. 287-296, 2006.

[15] H. Zankl and A. Middeldorp, ”Satisfying KBO constraints”,
Proc. 18th International Conference on Rewriting Tech-
niques and Applications, vol. 4533 of Lecture Notes in Com-
puter Science, pp. 389-403, 2007.

Haruhiko Sato

Masahito Kurihara

Sarah Winkler

Aart Middeldorp

