
Multi-Completion with Termination Tools
(System Description)?

Haruhiko Sato1 and Sarah Winkler2 and
Masahito Kurihara1 and Aart Middeldorp2

1 Graduate School of Information Science and Technology
Hokkaido University, Japan

2 Institute of Computer Science
University of Innsbruck, Austria

Abstract. In this paper we describe a new tool for performing Knuth-
Bendix completion with automatic termination tools. It is based on two
ingredients: (1) the inference system for completion with multiple reduc-
tion orderings introduced by Kurihara and Kondo (1999) and (2) the
inference system for completion with external termination provers pro-
posed by Wehrman, Stump and Westbrook (2006) and implemented in
the Slothrop system. Our tool can be used with any termination tool
that satisfies certain minimal requirements. Preliminary experimental
results show the potential of our tool.

1 Introduction

Knuth and Bendix [2] introduced in a landmark paper the completion procedure
which aims to transform a given set of equations into a confluent and termi-
nating rewrite system, which can then be used to decide validity problems. The
procedure takes as input a reduction order which is used to orient rules. The
success of the procedure depends very much on the choice of the reduction order.

Kurihara and Kondo [3] introduced a variant that works for multiple reduc-
tion orders. It simulates the parallel execution of completion processes with the
individual orders. The common features of the different processes are captured
in a special data structure and corresponding inference rules. The resulting pro-
cedure is more efficient than a parallel execution of completion procedures.

Wehrman, Stump and Westbrook [7] take a different approach. Instead of
relying on a reduction order supplied by the user, they call an external termina-
tion prover to orient rules. Since modern termination provers typically combine
a number of different powerful techniques, this opens the way to complete sys-
tems that cannot be handled by traditional implementations of the completion
procedure. One such system is CGE2, the theory of two commuting group en-
domorphisms, that is completed by the Slothrop tool described in [7] without
user interaction.
? This research is partially supported by FWF (Austrian Science Fund) project P18763

and JSPS Grant-in-Aid for Scientific Research (C), No. 19500020.

orient
(E ∪ {s ≈ t}, R, C)

(E, R ∪ {s→ t}, C ∪ {s→ t}) if C ∪ {s→ t} terminates

Fig. 1. Inference rule orient of KBtt.

We combine the two approaches sketched above in a single procedure. The
underlying inference system is described in the next section. In Section 3 we
present implementation details and in Section 4 we present the interface of our
tool. Preliminary experimental results given in Section 5 show the advantage of
our approach.

2 Inference System

Figure 1 shows the orient inference rule of KBtt (A in [7]), the inference system
underlying Slothrop. KBtt operates on triples (E,R, C) consisting of unori-
ented equations in E and rewrite rules in R and C.

In the orient rule, termination is checked of the combination of the new rewrite
rule s → t and all previously added rewrite rules, which are stored in the third
component C. (The other inference rules do not modify C.) Checking termination
of the combination of s → t and the present rules in R would be unsound [4].
When both C ∪ {s → t} and C ∪ {t → s} can be proved terminating, in an
implementation one faces the question which branch to explore. Slothrop uses
a best-first search strategy in connection with a cost function that determines
which branch to advance [7, Section 4].

The advantage of our approach is that both branches are explored simulta-
neously by incorporating the ideas of Kurihara and Kondo [3]. The completion
procedure described in their paper simulates the execution of multiple comple-
tion processes in parallel. Whenever a process encounters an equation that can
be oriented in either direction, the process is split into two child processes. As
a process corresponds to a sequence of decisions on how to orient equations,
processes will in the following be considered as bit strings. The set of all pro-
cesses will be denoted by P and the initial process is naturally represented by
the empty string ε.

Definition 1. The inference system MKBtt operates on sets of nodes. A node
〈s : t, R1, R2, E, C1, C2〉 consists of an ordered pair of terms s : t and sets of
processes R1, R2, E, C1, C2 ⊆ P such that R1, R2, and E are mutually disjoint. A
node 〈s : t, R1, R2, E, C1, C2〉 is identified with 〈t : s,R2, R1, E, C2, C1〉. Given a
set of equations F , the initial node set consists of all nodes 〈s : t, ∅, ∅, {ε}, ∅, ∅〉
such that s ≈ t occurs in F . The inference rules of MKBtt are displayed in
Figure 2.

The term pair s : t is also referred to as the node’s datum, the remaining
components as its labels. Intuitively, the sets R1 and C1 consist of processes where

2

orient
N ∪ {〈s : t, R1, R2, E, C1, C2〉}

splitP (N) ∪ {〈s : t, R1 ∪Rlr, R2 ∪Rrl, E′, C1 ∪Rlr, C2 ∪Rrl〉}

with Elr, Erl ⊆ E such that Elr ∪ Erl 6= ∅, P = Elr ∩ Erl, E′ =
E \ (Elr ∪ Erl), C[N, p] ∪ {s→ t} terminates for all p ∈ Elr, C[N, p] ∪
{t → s} terminates for all p ∈ Erl, Rlr = (Elr \ Erl) ∪ {p0 | p ∈ P},
Rrl = (Erl \ Elr) ∪ {p1 | p ∈ P} and where splitP (N) replaces every
p ∈ P in any label of any node in N by p0 and p1

delete
N ∪ {〈s : s, ∅, ∅, E, ∅, ∅〉}

N

deduce
N

N ∪ {〈s : t, ∅, ∅, R ∩R′, ∅, ∅〉}

if there exist nodes 〈l : r, R, . . . 〉, 〈l′ : r′, R′, . . . 〉 ∈ N and a term u such
that s←l→r u→l′→r′ t and R ∩R′ 6= ∅

rewrite1
N ∪ {〈s : t, R1, R2, E, C1, C2〉}

N ∪ {〈s : t, R1 \R, R2, E \R, C1, C2〉}
∪ {〈s : u, R1 ∩R, ∅, E ∩R, C1, C2〉}

if 〈l : r, R, . . . 〉 ∈ N , t→l→r u, t
.
= l, and R ∩ (R1 ∪ E) 6= ∅ a

rewrite2
N ∪ {〈s : t, R1, R2, E, C1, C2〉}

N ∪ {〈s : t, R1 \R, R2 \R, E \R, C1, C2〉}
∪ {〈s : u, R1 ∩R, ∅, (R2 ∪ E) ∩R, ∅, ∅〉}

if 〈l : r, R, . . . 〉 ∈ N , t→l→r u, t ·B l, and R ∩ (R1 ∪R2 ∪ E) 6= ∅ b

gc
N ∪ {〈s : t, ∅, ∅, ∅, ∅, ∅〉}

N

subsume
N ∪ {〈s : t, R1, R2, E, C1, C2〉} ∪ {〈s′ : t′, R′

1, R
′
2, E

′, C′
1, C

′
2〉}

N ∪ {〈s : t, R1 ∪R′
1, R2 ∪R′

2, E
′′, C1 ∪ C′

1, C2 ∪ C′
2〉}

if s : t and s′ : t′ are variants and E′′ = (E \ (R′
1 ∪ R′

2 ∪ C′
1 ∪ C′

2)) ∪
(E′ \ (R1 ∪R2 ∪ C1 ∪ C2))

a t
.
= l specifies that t and l are variants

b ·B denotes the encompassment relation

Fig. 2. Inference rules of MKBtt.

s → t is contained in the current set of rules and the current set of constraints
for this process, respectively. The sets R2 and C2 play the analogous role with
respect to the rule t → s. The set E contains processes where s ≈ t is in the
current set of equations. In the following we make some clarifying remarks on
some of the inference rules.

3

– Unlike its KB counterpart, the orient rule does not orient an equation in
just one direction. Instead, for the chosen node n = 〈s : t, R1, R2, E, C1, C2〉
one checks for every process p occurring in the node’s equation label E if
the constraint system for p remains terminating if either s → t or t → s is
added. Formally

C[N, p] =
⋃

n∈N

C[n, p] with C[n, p] =

{s′ → t′} if p ∈ C ′

1

{t′ → s′} if p ∈ C ′
2

∅ otherwise

denotes the set of constraints for process p, where for every p ∈ E it is
determined whether C[N, p] terminates in combination with s→ t or t→ s.
If only one orientation is possible, p is moved to the respective rule label in
the node. If both orientations are possible, we have to keep track of both
alternatives. Thus the process splits into two child processes p0 and p1. Each
of them is put into the corresponding rule label. Moreover, splitP (N) replaces
p by its derivatives p0 and p1 in all non-selected nodes.

– If l → r and l′ → r′ allow for a peak s ←l→r u →l′→r′ t, deduce adds the
equation s ≈ t to those processes that have both rules present in their rule
set. In our implementation, only critical pairs are considered.

– Given a term pair s : t and a rewrite step t →R u, the inference rules
compose, simplify, and collapse of KBtt create an equation or rule with terms
s and u. The effect of these rules is simulated by rewrite1 and rewrite2, as
explained in [3].

It is not difficult to state and prove (partial) correctness and completeness
criteria for MKBtt by relating MKBtt to KBtt, akin to [3, Section 2.2].

3 Implementation

In our implementation of MKBtt the inference rules of Figure 2 are employed
according to the strategy described in Figure 3, closely resembling the algorithm
proposed in [3]. The mkbTT procedure maintains two node sets, No contain-
ing open and Nc containing closed nodes. The union No ∪ Nc represents all
nodes present in the completion process. Intuitively, every node in Nc has been
completely exploited with respect to the inference rules orient, delete, and gc.
Moreover, every pair of nodes in Nc has been fully exploited with respect to
the inference rules that involve two nodes: deduce, rewrite1,2 and subsume. Ini-
tially, No contains all nodes and Nc is empty. Below we shortly comment on the
functions involved in mkbTT and their implementation.

– At the start of every recursive call of mkbTT, it is checked whether some
process p was successful. This is the case if every equation was oriented and
every rule was fully considered with respect to the inferences involving two
nodes, i.e., if all of E[Nc, p], R[No, p], and E[No, p] are empty.

– If no successful process was found, choose selects an open node. The measure
applied in this selection has considerable impact on the overall performance.

4

procedure mkbTT (No, Nc)
if success then return successful p
else if No = ∅ then fail
else n := choose(No);

No = add(delete(rewrite({n},Nc)),No \ {n});
if n 6= 〈. . . , ∅, ∅, ∅, ∅, ∅〉 then

(n,No,Nc) := orient(n,No,Nc);
if n 6= 〈. . . , ∅, ∅, . . . , . . . , . . .〉 then

No := add(delete(rewrite(Nc, {n})),No); Nc := gc(Nc);
No := add(delete(deduce(n,Nc)),No);
No := gc(add(rewrite(No,Nc),No)); Nc := add({n},Nc);

mkbTT(No,Nc);

Fig. 3. Procedure implementing MKBtt.

In our implementation we first choose a process p for which |E[Nc∪No, p]|+
|R[Nc ∪ No, p]| is minimal and then a node for this process by considering
the term size and timestamp, the latter to ensure fairness of the derivation.

– rewrite(N,N ′) applies rewrite1,2 to nodes in N by using rules in N ′. Nodes
are considered as mutable structures. Thus the node objects in N are mod-
ified and only newly created nodes are returned.

– Immediately after rewriting, delete is called, applying the corresponding in-
ference rule to avoid creating nodes with equal terms.

– orient(n,No,Nc) applies the inference rule orient to n and, if required, splits
processes occurring in labels of No and Nc. The modified node n and the
node sets No and Nc are returned.

– gc(N) removes nodes from N where all labels are empty.
– deduce(n, N) returns nodes derived from the respective inference such that

at least one rule comes from n.
– add(N,N ′) merges the nodes in N into N ′ such that subsume is fully ex-

ploited. Only inferences where at least one node comes from N have to be
considered.

4 Interface

The mkbTT procedure is implemented in OCaml. A binary compiled for Linux is
available from http://cl-informatik.uibk.ac.at/mkbtt. The tool is equipped
with a simple command-line interface. The termination prover is given as argu-
ment to the -tp option. Any termination prover that adheres to the format of
the International Competitions of Termination Tools3 can be used: an executable
that takes as argument the name of a file describing the termination problem in
the TPDB4 format and prints YES on the first line of the output if termination

3 http://www.lri.fr/~marche/termination-competition/
4 Termination Problem Data Base, http://www.lri.fr/~marche/tpdb/

5

SUCCESS

246.64 (total time)

STATISTICS

number of inference steps: 77

orient: 218.09 rewrite: 19.25

deduce: 2.89 termination: 209.64

external termination prover: ttt2fast

calls to termination prover: 1072 (yes: 933, timeouts: 0)

time limit per call: 1.0

Fig. 4. Sample output (slightly reformatted).

could be established. Our tool accepts two time limits: for the overall procedure
(specified with -t) and for each call to the termination prover (-T). Further
options are -ct to print the completed system and -st to obtain some useful
statistics. Figure 4 shows the output for the call

mkbtt -t 3600 -T 1 -st -tp ttt2fast WSW06_CGE2.trs

5 Experimental Results

In Table 1 we present some experimental data.5 All tests were performed on
a workstation equipped with an Intel R© PentiumTM M processor running at a
CPU rate of 2 GHz on 1 GB of system memory and with a time limit of 1 hour.
Column (1) shows the total time in seconds, column (2) the percentage spent on
termination, column (3) the number of calls to the external termination prover,
and column (4) the number of inference steps. A timeout is indicated by ∞.

In the first Slothrop and MKBtt blocks, AProVE [1] is used as termination
prover with a time limit of 5 seconds per call. (We modified the function for
termination checks in the Slothrop source6 such that the same back-end can
be used with both approaches.) In the second Slothrop and MKBtt blocks we
use a special version of TTT2

7 with a time limit of 1 second per call. This version
of TTT2, which uses dependency pairs and the recursive SCC algorithm together
with the subterm criterion and some simple strategies like counting function
symbols and linear polynomials, is considerably weaker than AProVE when it
comes to termination proving power, but also considerably faster. We anticipate
that further savings can be achieved by more tightly coupling the termination
prover and the MKBtt code.

As can be seen from line SL-cge2 in Table 1, completing the theory of two
communicating group endomorphism (CGE2), which is termed Slothrop’s
5 Further details can be obtained from http://cl-informatik.uibk.ac.at/mkbtt.
6 http://www.cs.utexas.edu/~iwehrman/slothrop-1.1.0-src.tar.gz
7 http://colo6-c703.uibk.ac.at/ttt2

6

Table 1. Experimental Results

Slothrop MKBtt Slothrop MKBtt

TRS (1) (2) (3) (1) (2) (3) (4) (1) (2) (3) (1) (2) (3) (4)

SK90 3.01 800.37 97 326 85.30 99 51 29 71.52 67 304 4.45 79 51 29

SK90 3.03 163.51 98 86 90.97 98 53 29 9.97 65 86 6.19 63 53 29

SK90 3.04 ∞ ∞ ∞ 508.24 55 658 140

SK90 3.05 ∞ 913.77 98 225 94 78.48 32 258 46.45 43 220 92

SK90 3.06 ∞ ∞ ∞ 44.22 74 290 75

SK90 3.07 ∞ 513.27 99 242 67 ∞ 46.03 68 282 77

SK90 3.19 84.25 99 43 112.65 99 65 11 3.39 90 43 5.01 96 65 11

SK90 3.22 ∞ ∞ ∞ 617.33 33 1406 141

SK90 3.27 ∞ ∞ 73.61 95 70 118.56 65 143 37

SL-ack 12.08 99 8 13.26 99 10 5 0.24 96 8 0.33 91 10 5

SL-cge2 ∞ 2793.21 99 1220 77 665.29 36 1384 246.64 85 1072 77

SL-cge3 ∞ ∞ ∞ ∞
SL-endo 246.56 95 101 218.96 99 135 45 12.64 39 105 7.87 74 135 45

SL-ep ∞ ∞ 54.47 82 266 230.06 92 1101 26

SL-groups 46.71 97 30 96.94 99 49 35 2.10 46 30 2.28 71 49 35

defining achievement in [6], takes about 246 seconds using MKBtt with the
fast variant of TTT2. We also managed to complete CGE3, which has not been
achieved with Slothrop, although it takes nearly 2 hours. (The completed sys-
tem is slightly different from the one described in [5], which was obtained by
hand.)

References

1. J. Giesl, P. Schneider-Kamp, and R. Thiemann. AProVE 1.2: Automatic termina-
tion proofs in the dependency pair framework. In Proc. 3rd IJCAR, volume 4130
of LNAI, pages 281–286, 2006.

2. D.E. Knuth and P. Bendix. Simple word problems in universal algebras. In
J. Leech, editor, Computational Problems in Abstract Algebra, pages 263–297. Perg-
amon Press, 1970.

3. M. Kurihara and H. Kondo. Completion for multiple reduction orderings. Journal
of Automated Reasoning, 23(1):25–42, 1999.

4. A. Sattler-Klein. About changing the ordering during Knuth-Bendix completion.
In Proc. 11th STACS, volume 775 of LNCS, pages 175–186, 1994.

5. A. Stump and B. Löchner. Knuth-Bendix completion of theories of commuting
group endomorphisms. Information Processing Letters, 98(5):195–198, 2006.

6. I. Wehrman. Knuth-Bendix completion with modern termination checking. Master’s
thesis, Washington University in St. Louis, 2006. Technical report WUCSE-2006-45.

7. I. Wehrman, A. Stump, and E.M. Westbrook. Slothrop: Knuth-Bendix completion
with a modern termination checker. In Proc. 17th RTA, volume 4098 of LNCS,
pages 287–296, 2006.

7

