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Abstract. On the one hand, equational reasoning is a fundamental
part of automated theorem proving with ordered completion as a key
technique. On the other hand, the complexity of corresponding, often
highly optimized, automated reasoning tools makes implementations
inherently error-prone. As a remedy, we provide a formally verified certifier
for ordered completion based techniques. This certifier is code generated
from an accompanying Isabelle/HOL formalization of ordered rewriting
and ordered completion incorporating an advanced ground joinability
criterion. It allows us to rigorously validate generated proof certificates
from several domains: ordered completion, satisfiability in equational
logic, and confluence of conditional term rewriting.
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1 Introduction

Equational reasoning constitutes a main area of automated theorem proving
in which completion has evolved as a fundamental technique [8]. Completion
aims to transform a given set of equations into a terminating and confluent
rewrite system that induces the same equational theory. Thus, on success, such
a rewrite system can be used to decide equivalence of terms with respect to
the initial set of equations. The original completion procedure may fail due
to unorientable equations. As a remedy to this problem, ordered completion—
also known as unfailing completion—was developed [3]. As the name suggests,
unfailing completion always yields a result (which may however be infinite and
thus take infinitely many inference steps to compute). This time, the result is
an ordered rewrite system (given by a ground total reduction order, a set of
rules which are oriented with respect to this order, and a set of equations) that
is still terminating, but in general only ground confluent (that is, confluent on
ground terms). Thus, the resulting system can be used to decide equivalence
of ground terms with respect to the initial set of equations. This suffices for
many practical purposes: A well-known success story of ordered completion is the
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solution of the long-standing Robbins conjecture [10], followed by applications to
other problems from (Boolean) algebra [11]. More recent applications include the
use of ordered completion in algebraic data integration [14] and in confluence
proofs of conditional term rewrite systems [20].

As an introductory example, let us illustrate ordered completion on the
following set of equations describing a group where all elements are self-inverse:

f(x , y) ≈ f(y , x ) f(x , f(y , z )) ≈ f(f(x , y), z ) f(x , x ) ≈ 0 f(x , 0) ≈ x

Using ordered completion, the tool MædMax [24] transforms it into the following
rules (→) and equations (≈), together with a suitable ground total reduction
order > that orients all rules from left to right.

f(x , f(x , y))→ f(0, y) f(x , f(y , x ))→ f(0, y) f(x , x )→ 0 f(x , 0)→ x

f(f(x , y), z )→ f(x , f(y , z )) f(0, x )→ x

f(x , f(y , z )) ≈ f(y , f(x , z )) f(x , y) ≈ f(y , x )

This ordered rewrite system can be used to decide a given equation between
ground terms, by checking whether the unique normal forms (with respect to
ordered rewriting using >) of both terms coincide.

Automated reasoning tools are highly sophisticated pieces of software, not
only because they implement complex calculi, but also due to their high degree
optimization. Consequently, their implementation is inherently error-prone.

To improve their trustability we follow a two-staged certification approach
and (1) add the relevant concepts and results regarding ordered completion to
a formal library using the proof assistant Isabelle/HOL [12], and from there
(2) code generate [5] a trusted certifier that is correct by construction. Our
formalization strengthens the originally proposed procedure [3] by using a relaxed
version of the inference system, while incorporating a stronger ground joinability
criterion [9]. Our certifier allows us to rigorously validate generated proof certifi-
cates from several domains: ordered completion, satisfiability in equational logic,
and confluence of conditional term rewriting.

More specifically, our contributions are as follows:

• We extend the existing Isabelle Formalization of Rewriting1 (IsaFoR for
short) by ordered rewriting and a generalization of the ordered completion
calculus oKB [3], and prove the latter correct for finite completion runs with
respect to ground total reduction orders (Section 3).

• We establish ground totality of the Knuth-Bendix order and the lexicographic
path order in IsaFoR (Section 3).

• We formalize two criteria for ground joinability [3,9] known from the literature,
that allow us to apply our previous results to concrete completion runs
(Section 4). In fact, we present a slightly more powerful version of the latter,
and fix an error in its proof, as described below.

1 http://cl-informatik.uibk.ac.at/isafor

http://cl-informatik.uibk.ac.at/isafor
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• We apply ordered completion to satisfiability in equational logic and infeasi-
bility of conditions in conditional rewriting (Section 5).

• We extend the XML-based certification problem format (CPF for short) [17]
by certificates for ordered completion and formalize corresponding executable
check functions that verify the supplied derivations (Section 6).

• Finally, we extend the completion tool MædMax [24], as well as the confluence
tool ConCon [20] by certificate generation and evaluate our approach on
existing benchmarks (Section 7).

As a result, CeTA (the certifier accompanying IsaFoR) can now certify (a) ordered
completion proofs and (b) satisfiability proofs of equational logic produced by
the tool MædMax, as well as (c) conditional confluence proofs by ConCon where
infeasibility of critical pairs is established via equational logic. To the best of our
knowledge, CeTA constitutes the first proof checker in all of these domains.

In the remainder we provide hyperlinks (marked by �) to an HTML rendering
of our formalization.

This work is an extension of an earlier workshop paper [19]. Further note
that the IsaFoR formalization of the results in this paper is, apart from very basic
results on (ordered) rewriting, entirely disjoint from our previous formalization
together with Hirokawa and Middeldorp [6]. On the one hand, we consider a
relaxed completion inference system where more inferences are allowed. This is
possible since we are only interested in finite completion runs. On the other hand,
we employ a stronger ground joinability criterion. Another major difference is that
our new formalization enables actual certification of ordered completion based
techniques, which is not the case for our work with Hirokawa and Middeldorp.

2 Preliminaries

In the sequel, we use standard notation from term rewriting [2]. Let T (F ,V)
denote the set of all terms over a signature F and an infinite set of variables V,
and T (F) the set of all ground terms over F (that is, terms without variables).
A substitution σ is a mapping from variables to terms. As usual, we write tσ for
the application of σ to the term t. A variable permutation (or renaming) π is a
bijective substitution such that π(x) ∈ V for all x ∈ V . Given an equational system
(ES) E , we write E↔ to denote its symmetric closure E ∪ {t ≈ s | s ≈ t ∈ E}.
A reduction order is a proper and well-founded order on terms which is closed
under contexts and substitutions. It is F-ground total if it is total on T (F). In
the remainder we often focus on the Knuth-Bendix order (KBO), written >kbo,
and the lexicographic path order (LPO), written >lpo. Given a reduction order >
and an ES E , the term rewrite system (TRS) E> consists of all rules sσ → tσ
such that s ≈ t ∈ E↔ and sσ > tσ.

Given a reduction order >, an extended overlap consists of two variable-disjoint
variants `1 ≈ r1 and `2 ≈ r2 of equations in E↔ such that p ∈ PosF (`2) and `1
and `2|p are unifiable with most general unifier µ. An extended overlap which in
addition satisfies r1µ 6> `1µ and r2µ 6> `2µ gives rise to the extended critical pair
`2[r1]pµ ≈ r2µ. The set CP>(E) consists of all extended critical pairs between
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equations in E . A relation on terms is (ground) complete, if it is terminating
and confluent (on ground terms). A TRS R is (ground) complete whenever the
induced rewrite relation →R is. Finally, we say that a TRS R is a presentation
of an ES E , whenever ↔∗E =↔∗R (that is, their equational theories coincide).

A substitution σ is grounding for a term t if σ(x) ∈ T (F) for all x ∈ Var(t).
Two terms s and t are called ground joinable over a rewrite system R, denoted
s ↓gR t if sσ ↓R tσ for all substitutions σ that are grounding for s and t.

For any complete rewrite relation →, we denote the (necessarily unique)
normal form of a term t (that is, the term u such that we have t →∗ u but
u 6→ v for all terms v) by t↓. By an ordered rewrite system we mean a pair (E ,R),
consisting of an ES E and a TRS R, together with a reduction order >. Then,
ordered rewriting is rewriting with respect to the TRS R∪E>. Note that ordered
rewriting is always terminating if R ⊆ >. Take commutativity x ∗ y ≈ y ∗ x for
example, which causes nontermination when used as a rule in a TRS. Nevertheless,
the ordered rewrite system ({x ∗ y ≈ y ∗ x},∅) together with KBO, say with
precedence ∗ > a > b, is terminating and we can for example rewrite a∗b to b∗ a
since applying the substitution {x 7→ a, y 7→ b} to the commutativity equation
results in a KBO-oriented instance.

3 Formalized Ordered Completion

Ordered completion is commonly presented as a set of inference rules, parameter-
ized by a fixed reduction order >. This way of presentation conveniently leaves a
lot of freedom to implementations. We use the following inference system, with
some differences to the original formulation [3] that we discuss below.

Definition 1 (Ordered Completion�). The inference system oKB of ordered
completion operates on pairs (E ,R) of equations E and rules R over a common
signature F . It consists of the following inference rules, where S abbreviates
R∪ E> and π is a renaming.

deduce
E ,R

E ∪ {sπ ≈ tπ},R
if s← ·→

R∪E↔
t compose

E ,R] {s→ t}
E ,R∪ {sπ → uπ}

if t −→S u

E ] {s ≈ t},R
E ,R∪ {sπ → tπ}

if s > t
E ] {s ≈ t},R
E ∪ {uπ ≈ tπ},R

if s→S u
orient simplify

E ] {s ≈ t},R
E ,R∪ {tπ → sπ}

if t > s
E ] {s ≈ t},R
E ∪ {sπ ≈ uπ},R

if t→S u

delete
E ] {s ≈ s},R

E ,R
collapse

E ,R] {t→ s}
E ∪ {uπ ≈ sπ},R

if t→S u

We write (E ,R) ` (E ′,R′) if (E ′,R′) is obtained from (E ,R) by employing one
of the above inference rules. A finite sequence of inference steps

(E0,∅) ` (E1,R1) ` · · · ` (En,Rn)

http://cl-informatik.uibk.ac.at/isafor/v2.36/CADE2019/Ordered_Completion.html#ind:oKB'
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is called a run. Definition 1 differs from the original formulation of ordered
completion [3] (as well as the formulation in our previous work together with
Hirokawa and Middeldorp [6]) in two ways. First, collapse and simplify do not have
an encompassment condition.2 This omission is possible since we only consider
finite runs. Second, we allow variants of rules and equations to be added. This
relaxation tremendously simplifies certificate generation in tools, where facts
are renamed upon generation to avoid the maintenance and processing of many
renamed versions of the same equation or rule. Also note that the deduce rule
admits the addition of equations that originate from arbitrary peaks. In practice,
tools usually limit its application to extended critical pairs.

The following two results establish that the rules resulting from a finite oKB
run are oriented by the reduction order > and that the induced equational
theories before and after completion coincide.

Lemma 1 (�). If (E ,R) `∗ (E ′,R′) then R ⊆ > implies R′ ⊆ >. ut

Lemma 2 (�). If (E ,R) `∗ (E ′,R′) then ↔∗E∪R =↔∗E′∪R′ . ut

If the employed reduction order is F -ground total then the above two results
imply the following conversion equivalence involving ordered rewriting with
respect to the final system.

Lemma 3 (�). Suppose > is F-ground total and R ⊆ >. If (E ,R) `∗ (E ′,R′)
such that E ′, R′, and > are over the signature F then ↔∗E∪R =↔∗E′>∪R′ holds
for conversions between terms in T (F). ut

This result is a key ingredient to our correctness results in Section 4. In order
to apply it, however, we need ground total reduction orders. To this end, we
formalized the following two results in IsaFoR.

Lemma 4 (�). If > is a total precedence on F then >kbo is F-ground total. ut

Lemma 5 (�). If > is a total precedence on F then >lpo is F-ground total. ut

In addition, we proved that for any given KBO >kbo (LPO >lpo) defined over a
total precedence > there exists a minimal constant, that is, a constant c such
that t >kbo c (t >lpo c) holds for all t ∈ T (F) (which will be needed in Section 4).
In earlier work by Becker et al. [4] ground totality of a lambda-free higher-order
variant of KBO is formalized in Isabelle/HOL. However, for our purposes it makes
sense to work with the definition of KBO that is already widely used in IsaFoR.

By Lemma 3, any two ground terms convertible in the initial equational
theory are convertible with respect to ordered rewriting in the system obtained
from an oKB run. The remaining key issue is to decide when the current ordered
rewrite system is ground confluent, such that a tool implementing oKB can stop.
Instead of defining a fairness criterion as done by Bachmair et al. [3], we use the
following criterion for correctness involving ground joinability.
2 The encompassment condition demands that if a rule or equation ` ≈ r is used to
rewrite a term t = C[`σ] then C is non-empty or σ is not a renaming.

http://cl-informatik.uibk.ac.at/isafor/v2.36/CADE2019/Ordered_Completion_Impl.html#lem:oKB'_rtrancl_less
http://cl-informatik.uibk.ac.at/isafor/v2.36/CADE2019/Ordered_Completion_Impl.html#lem:oKB_steps_conversion_permuted
http://cl-informatik.uibk.ac.at/isafor/v2.36/CADE2019/Ordered_Completion_Impl.html#lem:oKB'_rtrancl_FGROUND_conversion
http://cl-informatik.uibk.ac.at/isafor/v2.36/CADE2019/KBO.html#lem:S_ground_total
http://cl-informatik.uibk.ac.at/isafor/v2.36/CADE2019/RPO.html#lem:lpo_ground_total
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Lemma 6 (�). If for all equations s ≈ t in E we have s > t or t ≈ s in E and
CP>(E) ⊆ ↓gE> then E is ground confluent with respect to >. ut

Note that the symmetry condition on E above is just a convenient way to express
the split of E into rewrite rules with fixed orientation, and equations applicable
in both directions, which allows us to treat an ordered rewrite system as a single
set of equations. Lemmas 3 and 6 combine to the following correctness result.

Corollary 1 (�). If > is F-ground total and (E0,∅) `∗ (E ,R) such that E ′, R′,
and > are over the signature F and CP>(R∪ E↔) ⊆ ↓gR∪E↔> then S = R∪ E↔>
is ground complete and ↔∗E0 =↔∗S holds for conversions between terms in T (F).

Before we can apply this result in order to obtain ground completeness we
need to be able to discharge its ground joinability assumption on extended critical
pairs. This is the topic of the next section.

4 Formalized Ground Joinability Criteria

In general, ground joinability is undecidable even for terminating rewrite sys-
tems [7]. Below, we formalize two sufficient criteria.

4.1 A Simple Criterion

We start with the criterion that Bachmair et al. [3] proposed when they introduced
ordered completion.

Lemma 7 (�). Suppose > is a ground total reduction order over F with a
minimal constant. Then, E> is F-ground complete whenever for all s ≈ t ∈
CP>(E↔) it holds that s ↓E> t, or s ≈ t = (s′ ≈ t′)σ for some s′ ≈ t′ ∈ E↔. ut

A minimal constant c is needed to turn arbitrary ordered rewrite steps into
ordered rewrite steps over T (F): when performing an ordered rewrite step using
an equation u ≈ v with V = Var(v) \ Var(u) 6= ∅, a step over T (F) is obtained
by instantiating all variables in V to c. We illustrate the criterion on an example.

Example 1. The following equational system E0 is derived by ConCon while
checking infeasibility of a critical pair of the conditional rewrite system Cops #361:

x ÷ y ≈ 〈0, y〉 x ÷ y ≈ 〈s(q), r〉 x − 0 ≈ x

0− y ≈ 0 s(x )− s(y) ≈ x − y s(x )> s(y) ≈ x > y

s(x )> 0 ≈ true s(x )6 s(y) ≈ x 6 y 06 x ≈ true

In an ordered completion run, MædMax transforms E0 into the following rules R
and equations E :

x − 0→ x 0− x → 0 s(x )− s(y)→ x − y

06 x → true s(x )6 s(y)→ x 6 y x ÷ y → 〈0, y〉

http://cl-informatik.uibk.ac.at/isafor/v2.36/CADE2019/Ordered_Rewriting.html#lem:ground_joinable_ooverlaps_implies_GCR
http://cl-informatik.uibk.ac.at/isafor/v2.36/CADE2019/Ordered_Completion_Impl.html#lem:oKB'_correct
http://cl-informatik.uibk.ac.at/isafor/v2.36/CADE2019/Ordered_Completion_Impl.html#lem:check_ordered_completion_proof_sound
http://cops.uibk.ac.at/?q=361
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s(x )> 0→ true s(x )> s(y)→ x > y

〈s(x ), y〉 ≈ 〈s(q), r〉 〈0, y〉 ≈ 〈s(q), r〉 〈0, x 〉 ≈ 〈0, y〉

Ground confluence of this system can be established by means of Lemma 7. For
example, the extended overlap between the first two equations gives rise to the
extended critical pair 〈0, y〉 ≈ 〈s(x ), y〉, which is just an instance of the second
equation (and similarly for the other extended critical pairs).

4.2 Ground Joinability via Order Closures

The criterion discussed in Subsection 4.1 is rather weak. For instance, it cannot
handle associativity and commutativity, as illustrated next [9, Example 1.1].

Example 2. Consider the system E consisting of the three equations

(1) (x ∗ y) ∗ z ≈ x ∗ (y ∗ z ) (2) x ∗ y ≈ y ∗ x (3) x ∗ (y ∗ z ) ≈ y ∗ (x ∗ z )

and the reduction order >kbo with w0 = 1 and w(∗) = 0. The first equation can
be oriented from left to right, whereas the other ones are unorientable.

We obtain the following extended critical peak from equations (2) and (1):

z ∗ (x ∗ y)←− (x ∗ y) ∗ z −→ x ∗ (y ∗ z )

The resulting extended critical pair is neither an instance of an equation in E
nor joinable. Thus the criterion of Lemma 7 does not apply.

However, this extended critical pair is ground joinable, which we show in
the following. The reduction order >kbo is contained in an F ′-ground total one
on any extension of the signature F ′ ⊇ F (using the well-order theorem and
incrementality of KBO). Thus, for any grounding substitution σ the terms xσ,
yσ, and zσ are totally ordered. Suppose for instance that xσ > zσ > yσ. Then
there is an ordered rewrite sequence witnessing joinability:

zσ ∗ (xσ ∗ yσ)
zσ ∗ (yσ ∗ xσ)

yσ ∗ (zσ ∗ xσ)
yσ ∗ (xσ ∗ zσ)

xσ ∗ (yσ ∗ zσ)

(2)

(3)

(2)

(3)

If, on the other hand, xσ = yσ > zσ holds, there is a joining sequence as well:

zσ ∗ (xσ ∗ yσ) = zσ ∗ (xσ ∗ xσ)
xσ ∗ (zσ ∗ xσ)

xσ ∗ (xσ ∗ zσ) = xσ ∗ (yσ ∗ zσ)
(2)

(3)

By ensuring the existence of a joining sequence for all possible relationships
between xσ, yσ, and zσ, ground joinability can be established. Using this approach
to show that all extended critical pairs are ground joinable, it can be verified
that E is in fact ground complete.

The ground joinability test by Martin and Nipkow [9] is based on the idea
illustrated in Example 2 above: perform a case analysis by considering ordered
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rewriting using all extensions of > to instantiations of variables. Below, we give
the corresponding formal definitions used in IsaFoR. For any relation R on terms,
let σ(R) denote the relation such that sσ σ(R) tσ holds if and only if s R t.

Definition 2 (�). A closure C is a mapping between relations on terms that
satisfies the following properties:

(1) If s C(R) t then sσ C(σ(R)) tσ, for all relations R, substitutions σ, and
terms s and t.

(2) If R ⊆ R′ then C(R) ⊆ C(R′), for all relations on terms R and R′.

The closure C is compatible with a relation on terms R if C(R) ⊆ R holds.

In the remainder of this section we assume F to be the signature of the
input problem, we consider an F-ground total reduction order > as well as a
closure C that is compatible with >. Furthermore, we assume for every finite
set of variables V ⊆ V and every equivalence relation ≡ on V a representation
function rep≡ such that for any x ∈ V we have x ≡ rep≡(x), rep≡(x) ∈ V and
x ≡ y implies rep≡(x) = rep≡(y). Given an equivalence relation ≡ on V , let ≡̂
denote the substitution such that ≡̂(x) = rep≡(x) for all x ∈ V .

Definition 3 (�). Given an ES E and a reduction order >, terms s and t are
C-joinable, written s ↓CE t, if for all equivalence relations ≡ on Var(s, t) and every
order � on the equivalence classes of ≡ it holds that

s≡̂ ∗−−−→
EC(�)

· =←→
E
· ∗←−−−
EC(�)

t≡̂ (1)

Example 3. For instance, consider the terms s = z ∗(x ∗y) and t = x ∗(y ∗z ) from
Example 2. One possible equivalence relation ≡ on Var(s, t) = {x , y , z} is given by
the equivalence classes {x , y} and {z}; one possible order on these is ≡̂(x ) � ≡̂(z )
(corresponding to the second example for an order on the instantiations xσ and
zσ in Example 2). By taking C to be the KBO closure (see Definition 5 below),
we have x ∗ z C(�) z ∗ x and x ∗ (z ∗ x ) C(�) z ∗ (x ∗ x ). Using the ES E from
Example 2 we thus obtain the ordered rewrite sequence

t≡̂ = x ∗ (x ∗ z ) −−−→
EC(�)

x ∗ (z ∗ x ) −−−→
EC(�)

z ∗ (x ∗ x ) = s≡̂

Ground joinability follows from C-joinability. Since this is the key result for
the ground joinability criterion of this subsection, we also sketch its proof.

Lemma 8 (�). If s ↓CE t then s ↓
g
E> t.

Proof. We assume s ↓CE t and consider a grounding substitution σ to show
sσ ↓E> tσ. There is some equivalence relation ≡ on Var(s, t) such that x ≡ y
holds if and only if σ(x) = σ(y) for all x, y ∈ Var(s, t). Note that this implies
sσ = s≡̂σ and tσ = t≡̂σ.

We can define an order � on the equivalence classes of ≡ such that [x]≡ � [y]≡
if and only if σ(x) > σ(y). Hence σ(�) ⊆ > holds, and by Definition 2(2) we
have C(σ(�)) ⊆ C(>). Compatibility implies C(>) ⊆ >, and thus C(σ(�)) ⊆ >.

http://cl-informatik.uibk.ac.at/isafor/v2.36/CADE2019/Ordered_Rewriting.html#loc:order_closure
http://cl-informatik.uibk.ac.at/isafor/v2.36/CADE2019/Ordered_Rewriting.html#def:var_order_joinable
http://cl-informatik.uibk.ac.at/isafor/v2.36/CADE2019/Ordered_Rewriting.html#lem:var_order_joinable_ground_joinable
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From Definition 2(1) we can show that u→EC(�)
v implies uσ →EC(σ(�))

vσ for
all terms u and v. So using the assumption s ↓CE t we can apply σ to a conversion
of the form (1) to obtain

sσ = s≡̂σ ∗−−−−−→
EC(σ(�))

· =←→
E
· ∗←−−−−−
EC(σ(�))

t≡̂σ = tσ (2)

Ordered rewriting is monotone with respect to the order, and hence C(σ(�)) ⊆ >
implies →EC(σ(�))

⊆ →E> . Thus (2) implies the existence of a conversion

sσ
∗−−→
E>
· =←−→
E>
· ∗←−−
E>

tσ

where the ↔E> step exists as any two F -ground terms are comparable in >. ut

Note that the proof above uses the monotonicity assumption for closures (Defini-
tion 2(2)), which is not present in [9]. The following counterexample illustrates
that monotonicity is indeed necessary.

Example 4. Consider the ES E = {f(x) ≈ a} and suppose that > = C(>) is an
LPO with precedence a > b > c > f. Moreover, take s = f(b) and t = f(c). Any
order � as in Definition 3 is empty since Var(s, t) = ∅. As C is not required to be
monotone, the relation C(�) may contain (f(b), a) and (f(c), a). Then s→EC(�)

a

and t→EC(�)
a imply s ↓CE t even though s ↓gE> t does not hold.

Below, we define an inductive predicate gj which is used to conclude ground
joinability of a given equation.

Definition 4 (�). Given an ES E and a reduction order >, gj is defined induc-
tively by the following rules:

delete gj(t, t)

closure s ↓CE t =⇒ gj(s, t)

step s←→
E
t =⇒ gj(s, t)

rewrite left s −−→
E>

u and gj(u, t) =⇒ gj(s, t)

rewrite right t −−→
E>

u and gj(s, u) =⇒ gj(s, t)

congruence gj(si, ti) for all 1 6 i 6 n =⇒ gj(f(s1, . . . , sn), f(t1, . . . , tn))

This test differs from the one due to Martin and Nipkow [9] by the two rewrite
rules, which were added to allow for more efficient checks, as illustrated next.

Example 5. Consider the ES E

f(x ) ≈ f(y) g(x , y) ≈ f(x )

together with a KBO that can orient the second equation (for instance, one can
take as precedence g > f > c and let all function symbol weights as well as w0

http://cl-informatik.uibk.ac.at/isafor/v2.36/CADE2019/Ordered_Rewriting.html#ind:ground_join_rel
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be 1). Then gj(f(x ), f(z )) holds by the step rule, gj(g(x , y), f(z )) follows by an
application of rewrite left, and gj(g(x , y), g(z ,w))) by rewrite right. By Lemma 9
below it thus follows that the equation g(x , y) ≈ g(z ,w) is ground joinable.

However, the criterion by Martin and Nipkow [9] lacks the rewrite steps. Hence
ground joinability of g(x , y) ≈ g(z ,w) can only be established by applying the
closure rule. This amounts to checking ground joinability with respect to 81
relations between the four variables. Since the number of variable relations is
in general exponential, the criterion stated in Definition 4 can in practice be
exponentially more efficient than the test by Martin and Nipkow [9].

Using Lemma 8 it is not hard to show the following correctness results.

Lemma 9 (�). Suppose for all s ≈ t in E we have s > t or t ≈ s in E. Then
gj(s, t) implies s ↓gE> t. ut

Lemma 10 (�). If for all s ≈ t in E we have s > t or t ≈ s in E and
CP>(E) ⊆ ↓gE> then E is ground confluent with respect to >. ut

This test can not only handle Example 2 but also the group theoretic problem
from the introduction. Moreover, it subsumes Lemma 7 since whenever for some
equation s ≈ t we have s ↓gE> t by Lemma 7 then gj(s, t) holds.

Closures for Knuth-Bendix Orders. Definition 2 requires abstract properties on
closures. In the following we define closures for KBO as used in IsaFoR/CeTA.

Similar to the already existing definition of KBO in IsaFoR [16] we define the
closure >Rkbo as follows.

Definition 5 (�). Let R be a relation on terms, > a precedence on F , and
(w,w0) a weight function. The KBO closure >Rkbo is a relation on terms inductively
defined as follows: s >Rkbo t if s R t, or |s|x > |t|x for all x ∈ V and either

(a) w(s) > w(t), or
(b) w(s) = w(t) and one of

(1) s 6∈ V and t ∈ V, or
(2) s = f(s1, . . . , sn), t = g(t1, . . . , tm) and f > g, or
(3) s = f(s1, . . . , sn), t = f(t1, . . . , tn) and there is some i 6 n such that

sj = tj for all 1 6 j < i and si >Rkbo ti

Note that even though Definition 5 resembles the usual definition of KBO, it
defines a closure of a relation R in a KBO-like way rather than a reduction order.
For instance, if x � z , as in Example 3, then x ∗ z >�kbo z ∗ x holds.

We prove that >Rkbo is indeed a closure that is compatible with >kbo based on
the same weight function and precedence.

Lemma 11. Let R be a relation on terms, > a precedence on F , and (w,w0) a
weight function. Then all of the following hold:

(a) If s >kbo t then s >Rkbo t for all terms s and t. �

(b) If R ⊆ R′ then >Rkbo ⊆ >R
′

kbo. �

(c) If s >Rkbo t then sσ >
σ(R)
kbo tσ, for all substitutions σ, and terms s and t. �

(d) The closure >Rkbo is compatible with >kbo. �

http://cl-informatik.uibk.ac.at/isafor/v2.36/CADE2019/Ordered_Rewriting.html#lem:ground_join_rel_ground_joinable
http://cl-informatik.uibk.ac.at/isafor/v2.36/CADE2019/Ordered_Rewriting.html#lem:xCPs_ground_join_rel_GCR
http://cl-informatik.uibk.ac.at/isafor/v2.36/CADE2019/KBO_More.html#def:kbo_closure
http://cl-informatik.uibk.ac.at/isafor/v2.36/CADE2019/KBO_More.html#lem:kbo_kbo_closure
http://cl-informatik.uibk.ac.at/isafor/v2.36/CADE2019/KBO_More.html#lem:kbo_closure_mono
http://cl-informatik.uibk.ac.at/isafor/v2.36/CADE2019/KBO_More.html#lem:kbo_closure_subst
http://cl-informatik.uibk.ac.at/isafor/v2.36/CADE2019/KBO_More.html#lem:kbo_closure_compatible
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5 Applications

Ground complete rewrite systems can be used to decide equivalence of ground
terms with respect to their induced equational theory. Here we highlight applica-
tions of this decision problem.

Deciding Ground Equations. Suppose we obtain the ordered rewrite system (E ,R)
and the reduction order > by applying ordered completion to an initial set of
equations E0. Then it is easy to decide whether two ground terms s and t are
equivalent with respect to E0 (that is, whether s ↔∗E0 t): it suffices to check if
the (necessarily unique) normal forms of s and t with respect to R∪ E> coincide.
Also if all variables of a non-ground goal equation are universally quantified, the
goal can be decided by substituting fresh constants for its variables.

Equations with Existential Variables. Also the case where all variables are
existentially quantified can be reduced to the ground case using a trick already
noted by Bachmair et al. [3].

Consider a set of equations E and a goal equation s ≈ t where all variables
are existentially quantified. This corresponds to the question whether there is a
substitution σ such that sσ ↔∗E tσ holds. We employ three fresh function symbols
eq, true, and false, and define Eeq

s,t to denote E extended by the equations

eq(x , x ) ≈ true eq(s, t) ≈ false

If a ground complete system equivalent to Eeq
s,t is found—for instance discovered

by ordered completion—then it can be used to decide the goal, as stated next.

Lemma 12 (�). Suppose s, t, and E are all over the signature F and let S
be a ground complete TRS such that ↔∗Eeq

s,t
⊆ ↔∗S on T (F). If sσ ↔∗E tσ then

true↓S = false↓S .

Proof. If sσ ↔∗E tσ then there is also a conversion sσ ↔∗Eeq
s,t
tσ by construction

of Eeq
s,t, and moreover (by appealing to an earlier formalization about signature

extensions [18], we obtain that) there exists an F -grounding substitution τ such
that sτ ↔∗Eeq

s,t
tτ . So we have

true←−−
Eeq
s,t

eq(sτ, sτ)
∗←−→
Eeq
s,t

eq(sτ, tτ) −−→
Eeq
s,t

false

and by the assumed conversion inclusion an S-conversion between true and false.
Now, by several applications of ground confluence of S we obtain joinability of
true↓S and false↓S . However, both true↓S and false↓S are normal forms and thus
they coincide. ut

http://cl-informatik.uibk.ac.at/isafor/v2.36/CADE2019/Ordered_Rewriting.html#lem:conversion_imp_fground_NF_eq
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Infeasibility of Conditions. A decision procedure for ground equations can also be
harnessed to prove infeasibility of conditions in conditional term rewriting. Here
a condition c is a sequence of pairs of terms s1 ≈ t1, . . . , sk ≈ tk and wesay that c
is infeasible whenever there is no substitution such that siσ →∗R tiσ holds for all
1 6 i 6 k. Now, it is obviously a sound overapproximation to ensure that there
is no σ such that siσ ↔∗R tiσ for all 1 6 i 6 k. This suggests that completion
methods might be applicable.

But there are still two complications before we are able to achieve an infeasi-
bility check: (1) the rules of a conditional term rewrite system (CTRS for short)
R may be guarded by conditions, making R an unsuitable input for ordered
completion, and (2) the conditions c are most of the time not ground. As is
conventional when adopting TRS methods to conditional rewriting, we solve (1)
by dropping all conditions from the rules of R, resulting in the unconditional
TRS Ru whose rewrite relation overapproximates the one of R. Of course if we
can establish that there is no σ such that siσ →∗Ru tiσ for all 1 6 i 6 k, then we
also obtain infeasibility of c with respect to the CTRS R. In order to solve (2)
we use a fresh function symbol c and apply Lemma 12 to decide the equation
s = c(s1, . . . , sk) ≈ c(t1, . . . , tk) = t by applying ordered completion to Rueq

s,t. If
s 6↔∗Rueq

s,t
t we can conclude infeasibility of c.

Checking for infeasibility is for example useful when analyzing the confluence
of a conditional rewrite system, since whenever we encounter a conditional critical
pair whose conditions are infeasible, we can ignore it entirely. Since 2019 the
Confluence Competition (CoCo)3 also features a dedicated infeasibility category.

6 Certification

In this section we describe the proof certificates for the different certifiable
properties and summarize the corresponding Isabelle/HOL check functions.

Here, check functions are the formal connection between general, abstract
results and concrete certificates. For example, a check function for a KBO
termination proof takes a certificate, containing a concrete TRS, a specific
precedence, and fixed weight functions, as input. It checks that the KBO instance
is admissible and that all rules of the TRS are oriented from left to right. By
appealing to the abstract result that compatibility of a TRS with an admissible
KBO implies termination, it then concludes termination of the concrete instance.

In order to be usable in the certifier, a check function has to be executable
and proven sound. The latter means that success of the check function implies a
concrete instance of the corresponding general result (for our example this means
that success proves termination of the TRS in the certificate). In case of failure
it is customary for CeTA check functions to give a human readable error message
that indicates why a certificate is rejected.

3 http://project-coco.uibk.ac.at/2019/

http://project-coco.uibk.ac.at/2019/
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6.1 Ordered Completion Certificates

For ordered completion proofs, the certificate consists of

• a set of initial equations E0,
• an ordered completion result (E ,R) together with a reduction order >, and
• a sequence of inference steps according to Definition 1.

The corresponding check function verifies that (1) the inference steps form a
valid run (E0π,∅) `∗ (E ,R) for some renaming π, (2) all extended critical pairs
are joinable, by default according to Lemma 10, and (3) the reduction order is
admissible, in case of KBO.

Next, we illustrate such an ordered completion proof by an example.

Example 6. The certificate corresponding to Example 1 contains the equations
E0, the resulting system (E ,R), and the reduction order >kbo with precedence
> > s > 6 > true > − > ÷ > 〈·, ·〉 > 0, w0 = 1, and w(0) = 2, w(÷) =
w(true) = w(s) = 1, and all other symbols having weight 0. In addition, a
sequence of inference steps explains how (E ,R) is obtained from E0:
simplifyleft x ÷ y ≈ 〈s(q), r〉 to 〈0, y〉 ≈ 〈s(q), r〉
deduce 〈0, x 〉 ← 〈s(u), v〉 → 〈0, y〉
deduce 〈s(x ), y〉 ← 〈0, u〉 → 〈s(q), r〉
deduce x > y ← s(x )> s(y)→ s(s(x ))> s(s(y))
orientlr 06 x → true
orientrl s(s(x ))> s(s(y))→ x > y (?)

deduce s(s(x ))> s(0)← s(x )> 0→ true
orientlr s(s(x ))> s(0)→ true
orientlr s(x )> s(y)→ x > y
orientlr s(x )> 0→ true
orientlr x − 0→ x
orientlr x ÷ y → 〈0, y〉
orientlr s(x )− s(y)→ x − y
orientlr 0− x → 0
orientlr s(x )6 s(y)→ x 6 y
collapse s(s(x ))> s(s(y))→ x > y to x > y ≈ x > y
collapse s(s(x ))> s(0)→ true to s(x )> 0 ≈ true
simplifyleft s(x )> 0 ≈ true to true ≈ true

delete x > y ≈ x > y

delete true ≈ true

The first collapse step using rule (?) above illustrates our relaxed inference
rule, it would not have been possible according to the original inference system [3]
due to the encompassment condition since s(s(x ))> s(s(y)) 6B· s(s(x ))> s(s(y)).

We briefly comment on the differences to the certification of standard Knuth-
Bendix completion as already present in CeTA [16]. For standard completion,
the certificate contains the initial set of equations E0, the resulting TRS R
together with a termination proof, and stepwise E0-conversions from ` to r for
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each rule `→ r ∈ R. The certifier first checks the termination proof to guarantee
termination of R. Then, confluence of R can be guaranteed by ensuring that
all critical pairs are joinable. At this point it is easy to verify the inclusion
↔∗E0 ⊆ ↔

∗
R: for each equation s ≈ t ∈ E0 the R-normal forms of s and t are

computed and checked for syntactic equality. The converse inclusion ↔∗R ⊆ ↔∗E0
is taken care of by the provided E0-conversions. Overall, we obtain that R is a
complete presentation of E0 without mentioning a specific inference system.

Unfortunately, the same approach does not work for ordered completion:
The inclusion ↔∗E0 ⊆ ↔

∗
R∪E> cannot be established by rewriting equations in

E0 to normal form, since they may contain variables but R∪ E> is only ground
confluent. Moreover, since ground joinability is undecidable no complete check
can be performed. Therefore, we instead ask for certificates that contain explicit
inference steps, as described above.

6.2 Equational Satisfiability Certificates

Here we use the term “satisfiability” of unit equality problems in line with the
terminology of TPTP [22]: given a set of input equations E0 and a ground goal
inequality s 6≈ t, we want to show that this axiomatization is satisfiable. To this
end, completion-based tools try to find a ground complete presentation S of E0
and verify that s↓S 6= t↓S .

A certificate for this application extends an ordered completion certificate by
the goal terms. The corresponding check function verifies that

• the presented ordered completion proof is valid as described above,
• the goal inequality is ground,
• the signature of E0, E , and R is included in the signature of >, and
• the terms in the goal have different normal forms.

We chose the symbols mentioned by the reduction order to be the considered
signature F . In comparison to picking the signature of E0, this has the advan-
tage that it is easy to add additional function symbols. Moreover, since KBO
precedences in the CPF input are lists of function symbols, no additional checks
are required to ensure F-ground totality of the constructed reduction order.

As a side note, unsatisfiability proofs are much easier to certify: a tool only
needs to output a conversion between the two goal terms. Support for the
corresponding certificates has already been added to CeTA earlier [21].

6.3 Infeasibility Certificates

Actually we check (generalized) nonreachability [15] of a target t from a source s
with respect to a TRS R, that is, the property that, given a TRS R and two
terms s and t, there is no substitution σ such that sσ →∗R tσ.

The corresponding certificates list function symbols eq, true, and false, together
with an equational satisfiability certificate. The check function first constructs,
using eq, true, and false from the certificate the TRS Req

s,t and then verifies that
the equation true ≈ false is not satisfiable according to the supplied equational
satisfiability certificate with Req

s,t as initial set of equations.
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7 Experiments

Below we summarize experiments with our certifier on different problem sets.
More details are available from the accompanying website.4

Ordered Completion. Martin and Nipkow [9] give 10 examples where the criterion
corresponding to Lemma 10 with KBO applies in 7 cases. Indeed MædMax
produces proofs for these 7 problems, 6 of which are certified by CeTA. The
missing example uses a trick also used by Waldmeister [1]: certain redundant
equations need not be considered for critical pair computation. This simplification
is not yet supported by CeTA.

We also ran MædMax on the 138 problems [13] for standard completion
collected from the literature. Using KBO, MædMax can complete 55 of them, and
52 of those are certified. (Using LPO and KBO, 91 are completed.) For the three
remaining (AC) group examples, MædMax uses a stronger criterion [23] which
is currently not supported by CeTA. Overall, this amounts to 58% certification
coverage of all ordered completion proofs by MædMax.

Satisfiable Unit Equality Problems. There are 144 unit equality problems (UEQ)
in the TPTP 7.2.0 [22] benchmark that are classified as satisfiable, of which
MædMax using KBO only can prove 11. All these proofs are certified by CeTA.
With its general strategy MædMax can handle 14 problems, but two of those
require duplicating rules, such that KBO is not applicable, and one has multiple
goals, which is currently not supported by CeTA.

Infeasibility Problems. There are 148 oriented CTRSs in version 807 of the Cops5
benchmark (that is, the version of Cops where the highest problem number
is 807) of CoCo. Here oriented means that a condition s ≈ t is satisfied by a
substitution σ, whenever sσ →∗R tσ. (This is the class of systems ConCon is
specialized to, hence we restrict our experiments to the above 148 systems.)

Out of those 148 CTRSs, the previous version of ConCon (1.7) can prove
(non)confluence of 109 with and of 112 without certification. The new version
of ConCon (1.8), extended by infeasibility checks via ordered completion with
MædMax, can handle 111 CTRSs with and 114 without certification. We thus
obtain two new certified proofs, namely for Cops #340 and #361.

8 Conclusion

We presented our Isabelle/HOL formalization of ordered completion and two
accompanying ground joinability criteria—now part of IsaFoR 2.36. It comes with
check functions for ordered completion proofs, equational satisfiability proofs,
and infeasibility proofs for conditional term rewriting. Formalizing soundness of
these check functions allowed us to add support for corresponding certificates to
4 http://cl-informatik.uibk.ac.at/experiments/okb/
5 http://cops.uibk.ac.at?q=1..807

http://cops.uibk.ac.at/?q=340
http://cops.uibk.ac.at/?q=361
http://cl-informatik.uibk.ac.at/experiments/okb/
http://cops.uibk.ac.at?q=1..807
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the certifier CeTA that is code generated from IsaFoR. To the best of our knowledge,
CeTA constitutes the first proof checker for ordered completion proofs. Indeed,
it already helped us to detect a soundness error in MædMax, where in certain
corner cases some extended critical pairs were ignored. Our experiments show
that we can certify 58% of ordered completion proofs (corresponding to 94%
of the KBO proofs) and 85% of the satisfiability proofs produced by MædMax
(100% for KBO). The number of certified proofs of ConCon increased by two.

Moreover, CeTA is the only certifier used in the Confluence Competition; by
certifying infeasibility proofs our work thus helps to validate more tool output.
Regarding the recent CoCo 2019, certification currently covers roughly 83%
of the benchmarks in the two categories (CTRS and TRS) that have certified
counterparts (CPF-CTRS and CPF-TRS).

In the future, we plan to add support for closures of LPO and extend our
certifier to verify proofs of pure, not necessarily unit, equality formulas, as well
as ground confluence proofs by tools participating in the confluence competition.
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