
1

RESTgym: A Flexible Infrastructure for Empirical
Assessment of Automated REST API Testing Tools

Davide Corradini∗, Michele Pasqua† and Mariano Ceccato‡

Department of Computer Science
University of Verona – Verona, Italy

Email: ∗davide.corradini@univr.it, †michele.pasqua@univr.it, ‡mariano.ceccato@univr.it

Abstract—As the software engineering research community
continues to propose novel approaches to automated test case
generation for REST APIs, researchers face the labor-intensive
task of empirically validating their methodologies and comparing
them with the state-of-the-art. This process requires assembling
a benchmark of case studies (notoriously difficult to find in the
context of REST API testing), building and running each API,
gathering competitor tools, conducting experimental testing ses-
sions to collect effectiveness and efficiency metrics, and processing
the results. These extensive engineering efforts consume time that
could be otherwise spent on more research-oriented tasks.

This paper introduces RESTgym, a flexible empirical infras-
tructure designed to assess the performance of REST API testing
tools and facilitate comparative analysis with state-of-the-art
approaches. By providing a standardized environment for com-
parison (actually consisting of 11 benchmark APIs and 6 state-
of-the-art tools packed into containers, but easily extensible to
add new APIs and tools) and an orchestration engine, RESTgym
significantly reduces the time and effort required for researchers
to evaluate REST API testing methodologies. The paper details
the architecture and components of RESTgym and demonstrates
its utility through a practical example, highlighting its potential
to speed up research and development in automated REST API
testing. Video: https://bit.ly/RESTgym-video

Index Terms—REST APIs, Automated Testing, Benchmarking
Infrastructure.

I. INTRODUCTION

RESTful APIs are a cornerstone of modern web architec-
tures, widely adopted for their versatility. They are essential for
integrating systems and building microservices architectures,
as they enable different services to communicate and share
data seamlessly over the web. Ensuring the reliability and
correctness of these APIs is crucial, and automated test case
generation has emerged as a promising method for identifying
defects and vulnerabilities.

Several approaches and tools have been proposed to au-
tomate test case generation for REST APIs [1], [2], [3],
[4], [5], [6], [7]. However, validating and comparing these
approaches is challenging due to the lack of a standardized
benchmarking infrastructure. This lack forces researchers to
invest significant time in identifying, acquiring, building, and
executing a benchmark set of REST API case studies, a
set of competitor testing tools to compare with, deploying
the necessary infrastructure (including the APIs, the testing
tools, and metric collection tools), scripting the experimental
execution, and processing the raw data, just to assess the
effectiveness and efficiency of their approaches.

To alleviate this issue, we introduce RESTgym, a novel,
flexible, and scalable benchmarking infrastructure for REST
API testing tools, allowing researchers and practitioners to
quickly assess their novel testing approach and compare it
with other state-of-the-art tools. RESTgym also provides a
collection of Docker images1 of 11 benchmark API case
studies, 6 state-of-the-art testing tools, metrics collection tools,
and a suite of scripts to automate the orchestration of these
components. Researchers can easily build a Docker image of
their testing tool, plug it into RESTgym, and quickly assess
its performance in terms of effectiveness and efficiency on
a set of real-world and diverse APIs. RESTgym will manage
the orchestration of testing sessions, applying each testing tool
to every API across multiple repetitions, while also gathering
experimental results regarding the effectiveness and efficiency
of the tool.

Due to its container-based architecture, RESTgym can be
executed on any system. RESTgym is available on GitHub [8]
under the Apache License, version 2.0.

II. REST API TESTING

A REST API is a web API that adheres to the REST (REpre-
sentational State Transfer) architectural style [9], allowing web
clients to access and manipulate resources and invoke remote
routines by leveraging stateless operations over the HTTP
protocol. REST APIs provide a uniform interface to create,
read, update, delete resources identified by a HTTP URI. Such
operations on resources are mapped to the HTTP methods
POST, GET, PUT and DELETE, respectively. Upon receiving
and processing an HTTP request that exercises a specific API
operation, the REST API returns an HTTP response with the
outcome of the request, called status code (e.g., 2XX for a
success; 4XX for a client-side error; or 5XX for a server-side
error), and, possibly, a payload.

REST APIs are usually documented by using the OpenAPI2

standard. According to such standard, an API is described
by a structured file (either YAML or JSON), called OpenAPI
Specification (OAS), that indicates how to reach the API using
a URI, which authentication schema is adopted, and the details
of the API available operations: the input parameters (and their
schema) to be used in requests and the schema of responses.

1Actually, these are OCI compliant images that can also be executed by
other container platforms such as Podman.

2https://www.openapis.org/

https://bit.ly/RESTgym-video
https://www.openapis.org/


2

Tool1

Tooln
...

API1

APIm

...

test

test

Metric1

...
Metrick

Metric1

...
Metrick

Report1

log

Reportm

log

orchestration
engine

Tool API

Fig. 1. RESTgym overview.

Testing a REST API consists of crafting suitable input
values for parameters of the the operations exposed by the
API, as well as individuating the correct order of operations to
test, to execute meaningful business logic scenarios. Currently,
there are two main methods to test REST APIs: white-box and
black-box. The former uses the source code of the API user
test to guide test generation, while the latter approach relies
solely on the information provided in the API documentation
(OAS) for test case generation and interacts with the API
only through the REST (HTTP) interface. Having access to
the API source code is not always a viable assumption.
Hence, black-box is the most adopted strategy when testing
REST API, as demonstrated by a large number of black-box
testing tools [10]. On the other side, there is only one tool
in literature performing white-box testing of REST APIs, i.e.,
EvoMaster [7].

III. RESTGYM

RESTgym is an infrastructure designed for the empirical
assessment of REST API testing tools, aimed at simplifying
the validation of these tools and facilitating performance
comparison with competitor state-of-the-art tools. It includes
a collection of Docker images for 11 benchmark REST APIs,
as well as Docker images for 6 state-of-the-art tools, that can
be extended with supplementary APIs and tools.

As shown in Figure 1, the RESTgym’s orchestration engine
automates the execution of the experimental testing sessions
for each tool across all APIs, conducting multiple repetitions
to account for non-deterministic behaviors, while collecting
experimental data about effectiveness and efficiency. Fur-
thermore, it manages the parallel execution of experimental
testing sessions to reduce execution time while monitoring
the host machine’s available resources to prevent saturation.
It conducts runtime health checks to verify that both the API
and the testing tool containers stay alive during the testing
sessions. Additionally, RESTgym performs integrity checks on
completed testing sessions and re-runs any that are found to be
corrupted. Finally, it compiles comprehensive reports for each
experimental testing session, as well as a cumulative report
summarizing all the testing sessions.

The following subsections describe in more detail how
RESTgym works, and introduce the collection of REST API
testing tools, benchmark API case studies, and evaluation
metrics already present in RESTgym.

A. Benchmarking Testing Tools with RESTgym

When RESTgym is launched, users are guided through a
step-by-step wizard in the command line interface.

Initially, RESTgym handles the building of Docker images
for all tools and APIs. Images for the tools and the APIs that
are natively included with RESTgym are downloaded from
the Docker Hub platform [11]. Conversely, Docker images for
user-provided tools and APIs are built locally on the user’s
machine. We encourage RESTgym users to share their images
to help us expand and enhance the infrastructure.

Afterward, the experiment execution can begin: the user is
prompted to specify the number of repetitions for each exper-
imental testing session and the duration of each experiment.
RESTgym allows for repeating the same experiment multiple
times to observe various instances. This repetition aims to
control the randomness of non-deterministic components in
the tools and APIs. The total execution time of the experiment
depends on the specified duration for each experiment, the
number of repetitions, and the availability of resources (CPUs
and RAM) on the host machine. RESTgym parallelizes the
execution of experiments, utilizing up to 80% of the available
resources to minimize the cumulative execution time. Since
some APIs or tools might be unstable, each experimental
testing session is monitored by the RESTgym orchestration
engine. In the event of failures that cause containers to stop,
the testing session is suspended and then restarted to ensure
the continuity and reliability of the experiment.

When the experiment execution is complete, the user can
initiate a validation step to verify the integrity of the collected
experiment data. During this step, RESTgym checks that
certain properties hold true for the data. For example, it
ensures that metrics were consistently collected throughout the
experiment, verifies that an adequate number of requests were
recorded by the proxy, and confirms that coverage samples
are always increasing (as coverage cannot decrease). If any of
these assertions fail for some experiments, the user is alerted
and prompted to delete the corrupted execution and decide
whether to reschedule the execution of the compromised
experiments.

Finally, once all executions have been completed and val-
idated, the final phase involves processing the raw data to
extract measures of effectiveness and efficiency. RESTgym
performs this task, generating a comprehensive report for each



3

execution as well as a cumulative report summarizing all
executions.

B. Testing Tools in RESTgym

Currently, RESTgym includes the following 6 state-of-the-
art REST API testing tools.
RESTler [6] A stateful tool that enumerates sequences of

operations according to producer-consumer relations.
RestTestGen [5] A tool that uses an Operation Dependency

Graph to prioritize API operations calls based on data
dependencies.

Schemathesis [3] A tool that performs property-based testing
and detects faults by checking response compliance.

Morest [4] A tool that models the behavior of the API
under test with A Property Graph leveraged to build API
invocations.

ARAT-RL [2] The first tool adopting reinforcement learning
to prioritize API operations to test.

DeepREST [1] A recent approach that leverages deep rein-
forcement learning to guide test generation.

These tools were selected from the various options proposed
in recent years due to their demonstrated effectiveness in
comparative studies [12], [13], [2], [1]. If a tool implements
different testing strategies, as is the case with many tools
like RESTler and RestTestGen, we configured the containers
to launch the default testing strategies that the tools would
typically execute when downloaded from the authors’ official
repositories. These default strategies correspond to their most
effective strategies, according to the related papers.

Users of RESTgym can contribute their own testing tools by
packaging them into a Docker image. To ensure compatibility
with the infrastructure, the tool must be configurable via
environment variables. Specifically, the path to the OpenAPI
specification of the API under test and the port on which
the API responds must be adjustable through environment
variables within the tool’s container. Technical details on how
to prepare a compatible testing tool Docker image are available
in our GitHub repository [8].

C. REST APIs in RESTgym

The benchmark APIs currently available in RESTgym have
been sourced from a previous study, specifically the ARAT-RL
paper [2]. We extend our gratitude to the authors of ARAT-
RL for sharing their replication package, from which we
selected the APIs. To this collection, we added an additional
API from GitHub [14], which we believe enhances the diver-
sity of our benchmark in terms of complexity and business
logic domains. We containerized all APIs with the necessary
dependencies, setup scripts, and metric collection tools, to
support RESTgym. The list of API case studies of RESTgym
is reported in Table I. The table also shows the number of
operations exposed by each API and the number of lines of
code measured by JaCoCo [15] and the IntelliJ IDEA IDE.
The size and complexity of this benchmark are consistent with
existing literature on REST API testing, making it suitable
for assessing novel tools and performing comparative studies.

API # Ops LoC (JaCoCo) LoC (IntelliJ)
REST Countries 22 543 1,121
User Management 22 632 1,284
Market 13 2,206 5,543
Project Tracking System 59 1,298 3,613
Features Service 18 457 956
NCS 6 275 500
SCS 11 295 586
Genome-Nexus 23 4,831 15,541
Person Controller 12 179 522
Blog 52 1,188 3,725
LanguageTool 2 45,487 83,708

TABLE I
THE BENCHMARK APIS IN RESTGYM.

Furthermore, we believe it is representative of real-world
APIs because the included case studies exhibit the following
characteristics: they vary in size (in terms of the number of
exposed operations and parameters), they manage resources
from different domains (e.g., geography, languages, biology,
etc.), and have varying levels of business logic complexity.

Users of RESTgym can contribute their own APIs in the
same way they contribute tools. A Docker image of the
API must be provided, and the API should respond on TCP
port 9090 (specifically, behind a reverse proxy that responds
on port 9090). The API image should include all necessary
dependencies for the API to run properly, such as databases
and libraries, as well as the metric collection tools. Further
technical details are available on GitHub [8].

D. Evaluation Metrics in RESTgym

During the execution of the experimental testing sessions,
RESTgym collects effectiveness and efficiency metrics, which
are standard metrics commonly gathered in the majority of
literature on white-box and black-box REST API testing.

To measure the effectiveness of a tool, RESTgym collects
code coverage, operation coverage, and the number of unique
faults detected.
Code Coverage The extent to which the source code of a

REST API is executed by a testing tool. RESTgym col-
lects line, branch, and method coverage via the JaCoCo
library [15] (all the APIs available so far are written in
Java).

Operation Coverage The extent to which API operations are
successfully executed by the testing tool. An operation
is defined as the combination of an HTTP method and
a path, consistent with the OpenAPI standard. For in-
stance, GET /comment, POST /comment, and GET
/comments represent three distinct example operations.
An operation is considered covered when the testing
tool can generate at least one successful interaction with
the operation, indicated by the API responding with a
2XX status code. A reverse proxy monitors the traffic
occurring between the API and the testing tools and logs
the covered operations.

Unique Faults In the REST API testing context, a tool is
considered to have detected a fault when it can trigger an
API response with a status code in the 5XX class (i.e.,
an internal server error, typically caused by an exception



4

in the execution). In the literature, a fault is considered
unique when its error message is sufficiently different
from other faults observed in the API. A reverse proxy
monitors the HTTP traffic and collects the error mes-
sages in the payloads of 5XX responses, and eventually
computes the magnitude of unique error messages, i.e.,
unique faults. The bucketing algorithm was sourced from
a previous study [2] and is based on the Jaccard similarity
index [16]. To make it more accurate, we use a custom
similarity threshold for each API in the benchmark that
has been manually tuned on the observed error messages
of each API.

To measure the efficiency of a tool, RESTgym samples the
effectiveness metrics over time and in relation to the number
of requests sent by the tool. This allows for the examination of
trends in code coverage, operation coverage, and the number
of detected faults over time, enabling insights about efficiency
to be inferred from the data.

IV. RUNNING EXAMPLE

This section introduces a running example showing how
we adopted RESTgym to validate DeepREST and compare its
performance with 5 competitor state-of-the-art tools for REST
API testing. Additionally, we show how we added Blog [14]
to the collection of API case studies.

A. Containerization of DeepREST

Adding a testing tool to RESTgym requires providing its
Docker image. To containerize a tool, it is necessary to
include the tool itself and its required dependencies within
the container. For DeepREST, this involved incorporating the
Stable Baselines3 Python library [17].

Additionally, the containerized tool must “expose” a con-
trol interface that is compatible with RESTgym, which uses
environment variables to set the configuration of the testing
tool container. To achieve this and to avoid modifying the
tool itself to support RESTgym’s environment variables, we
included a script within the container. This script reads the
environment variables and subsequently launches DeepREST
with the appropriate configuration.

B. Containerization of the Blog API

Containerizing an API for RESTgym requires including
not only the API executable and its dependencies, such as
databases, but also all metric collection tools (e.g., JaCoCo for
code coverage of Java APIs) in the image. Metrics collection
tools are not deployed in a separate container because they
require access to the API execution environment to collect
white-box metrics, such as the source code coverage. To
simplify the process of containerizing an API, RESTgym
provides a comprehensive guide in the readme file, along
with a Dockerfile template that has the metric collection tools
already configured for contributors to draw inspiration from.

The Blog API is a fairly complex API that exposes 52 op-
erations and consists of 3,725 lines of code. It was developed
in Java using the Spring Boot framework, and its source code

Branch Coverage Line Coverage Method Coverage
0

20

40

60

80

-
1
7
%

-
2
%

-
2
%

-
2
1
%

-
1
%

-
2
%

-
7
1
%

-
3
4
%

-
2
7
%

-
7
2
%

-
3
3
%

-
2
1
%

-
7
7
%

-
2
4
%

-
1
1
%

V
al

ue

DeepREST RestTestGen ARAT-RL Morest Schemathesis RESTler

Operations Unique Faults
0

5

10

15

-
8
%

-
3
3
%

0
%

0
%

-
1
7
%

-
6
7
%

-
2
5
%

-
5
0
%

-
2
5
%

-
6
7
%

Fig. 2. Effectiveness results (aggregate) from the DeepREST paper [1].

0

1,
00
0

2,
00
0

3,
00
0

4,
00
0

5,
00
0

6,
00
0

7,
00
0

8,
00
0

9,
00
0

10
,0
00

11
,0
00

12
,0
00

13
,0
00

14
,0
00

15
,0
00

16
,0
00

17
,0
00

18
,0
00

19
,0
00

20
,0
00

21
,0
00

22
,0
00

23
,0
00

24
,0
00

25
,0
00

26
,0
00

0

10

20

30

C
ov

er
ed

O
pe

ra
tio

ns

DeepREST RestTestGen ARAT-RL Morest Schemathesis RESTler

Fig. 3. Efficiency trends on the Blog API.

is available on GitHub [14]. After compiling the API source
code and packaging it into a JAR executable, we created a
Dockerfile. This Dockerfile uses a Ubuntu base image, on top
of which it installs the Java Development Kit (JDK), MySQL,
JaCoCo, and the MITM proxy. While the JDK and MySQL
are dependencies of the Blog API, JaCoCo and the MITM
proxy are employed to collect source code coverage and record
HTTP interaction histories, respectively. This data is later used
to extract effectiveness and efficiency metrics.

C. RESTgym Execution

After incorporating the DeepREST and Blog API images
into RESTgym, we are ready to start the execution of the
experiment. The orchestration engine downloads API and tool
images from Docker Hub and builds the DeepREST and Blog
API images locally. After selecting a duration of one hour
for each experiment and ten repetitions for each experimental
testing session, RESTgym can begin the execution. We ran
RESTgym on a machine featuring a 128-core processor and
386GB of RAM, enabling many parallel testing sessions. The
entire experiment, consisting of 660 hours of machine time (1
hour × 6 tools × 11 APIs × 10 repetitions), was completed
in slightly less than a week. Some testing sessions failed
during execution, but the health checks performed by the
orchestration engine automatically detected these failures and
rescheduled the executions.

After the execution is completed, results are available in
the results folder for each testing session. Moreover, a global
CSV file is produced summarizing the final results for all
executions.



5

D. Results

The results generated by RESTgym can be used to perform
statistical analyses on the performance of testing tools, as
demonstrated in the DeepREST paper [1]. For instance, Fig-
ure 2, taken from the same paper, presents a graph illustrating
the cumulative results for effectiveness metrics across all
executed testing sessions for DeepREST and its competitor
tools. The plot reports on the left the average coverage among
all 11 APIs for each tool and reports on the right the average
count of successfully tested operations (2XX) and faults (5XX).
See [1] for comments on the results.

Conversely, Figure 3 depicts a graph showcasing the ef-
ficiency of the tools during a single execution on the Blog
API. The graph illustrates the trend in operation coverage with
respect to the number of HTTP interactions with the API. Note
that the graph displays the trends only up to the 26,000th
request, as a plateau was reached beyond this point.

In this execution, DeepREST and RestTestGen emerged as
the most efficient tools, as their performance demonstrated
a steep increase during the first 2,000 interactions. However,
DeepREST continues to show growth beyond that point,
likely due to its novel deep reinforcement learning algorithm,
and reaches the plateau quickly at the 4,000th interaction,
surpassing all the other tools.

Other tools exhibit a slower growth in coverage; for in-
stance, RESTler appears to be the least efficient among them.

While RestTestGen and ARAT-RL achieve the same oper-
ation coverage by the end of the testing session, RestTestGen
exhibits quicker growth initially. However, it is overtaken by
ARAT-RL around the 4,000th interaction, after which both
tools eventually reach the same coverage.

V. CONCLUSION

In this paper, we introduced RESTgym, a comprehensive
and flexible benchmarking infrastructure designed to facilitate
the empirical assessment of automated REST API testing
tools. RESTgym addresses the engineering challenges faced by
researchers in evaluating and comparing different REST API
testing approaches by providing a benchmarking infrastructure
that works out of the box. The infrastructure includes a
diverse set of benchmark APIs and state-of-the-art testing
tools, enabling thorough performance evaluations in terms
of both effectiveness and efficiency. This set can be easily
extended by adding novel (containerized) APIs and testing
tools.

Through our demonstration involving the assessment of
DeepREST, we showcased RESTgym’s capability to stream-
line empirical validations and comparative analyses among
various REST API testing tools.

Future work will focus on enhancing RESTgym’s features,
such as including additional REST API case studies in the
benchmark, additional automated test generation tools, and,
possibly, additional metrics for more fine performance eval-
uations. We also plan to develop a graphical user interface
to display real-time data about ongoing experiments and their
results.

REFERENCES

[1] D. Corradini, Z. Montolli, M. Pasqua, and M. Ceccato, “Deeprest:
Automated test case generation for rest apis exploiting deep reinforce-
ment learning,” in Proceedings of the 39th IEEE/ACM International
Conference on Automated Software Engineering, 2024, pp. 1383–1394.

[2] M. Kim, S. Sinha, and A. Orso, “Adaptive rest api testing with rein-
forcement learning,” in 2023 38th IEEE/ACM International Conference
on Automated Software Engineering (ASE). IEEE, 2023, pp. 446–458.

[3] Z. Hatfield-Dodds and D. Dygalo, “Deriving semantics-aware fuzzers
from web api schemas,” in Proceedings of the ACM/IEEE 44th Interna-
tional Conference on Software Engineering: Companion Proceedings,
2022, pp. 345–346.

[4] Y. Liu, Y. Li, G. Deng, Y. Liu, R. Wan, R. Wu, D. Ji, S. Xu,
and M. Bao, “Morest: Model-based restful api testing with execution
feedback,” in Proceedings of the 44th International Conference on
Software Engineering, 2022, pp. 1406–1417.

[5] D. Corradini, A. Zampieri, M. Pasqua, E. Viglianisi, M. Dallago,
and M. Ceccato, “Automated black-box testing of nominal and error
scenarios in restful apis,” Software Testing, Verification and Reliability,
vol. 32, no. 5, p. e1808, 2022.

[6] V. Atlidakis, P. Godefroid, and M. Polishchuk, “Restler: Stateful rest api
fuzzing,” in 2019 IEEE/ACM 41st International Conference on Software
Engineering (ICSE). IEEE, 2019, pp. 748–758.

[7] A. Arcuri, “Restful api automated test case generation with evomaster,”
ACM Transactions on Software Engineering and Methodology (TOSEM),
vol. 28, no. 1, pp. 1–37, 2019.

[8] SeUniVr, “The GitHub Repository of RESTgym,” https://github.com/
SeUniVr/RESTgym, 2024.

[9] R. T. Fielding, Architectural styles and the design of network-based
software architectures. University of California, Irvine Doctoral
dissertation, 2000, vol. 7.

[10] A. Golmohammadi, M. Zhang, and A. Arcuri, “Testing restful apis: A
survey,” ACM Trans. Softw. Eng. Methodol., vol. 33, no. 1, nov 2023.

[11] SeUniVr, “The Docker Hub Repositories of RESTgym,” https://hub.
docker.com/u/restgym, 2024.

[12] D. Corradini, A. Zampieri, M. Pasqua, and M. Ceccato, “Empirical
comparison of black-box test case generation tools for restful apis,”
in 2021 IEEE 21st International Working Conference on Source Code
Analysis and Manipulation (SCAM). IEEE, 2021, pp. 226–236.

[13] M. Kim, Q. Xin, S. Sinha, and A. Orso, “Automated test generation for
rest apis: No time to rest yet,” in Proceedings of the 31st ACM SIGSOFT
International Symposium on Software Testing and Analysis, 2022, pp.
289–301.

[14] osopromadze. (2024) Blog REST API. [Online]. Available: https:
//github.com/osopromadze/Spring-Boot-Blog-REST-API

[15] E. Team, “Jacoco,” https://www.eclemma.org/jacoco/, 2023.
[16] P. Jaccard, “Étude comparative de la distribution florale dans une portion

des alpes et des jura,” Bull Soc Vaudoise Sci Nat, vol. 37, pp. 547–579,
1901.

[17] A. Raffin, A. Hill, M. Ernestus, A. Gleave, A. Kanervisto, and N. Dor-
mann, “Stable Baselines3,” 2019.

https://github.com/SeUniVr/RESTgym
https://github.com/SeUniVr/RESTgym
https://hub.docker.com/u/restgym
https://hub.docker.com/u/restgym
https://github.com/osopromadze/Spring-Boot-Blog-REST-API
https://github.com/osopromadze/Spring-Boot-Blog-REST-API
https://www.eclemma.org/jacoco/

	Introduction
	REST API Testing
	RESTgym
	Benchmarking Testing Tools with RESTgym
	Testing Tools in RESTgym
	REST APIs in RESTgym
	Evaluation Metrics in RESTgym

	Running Example
	Containerization of DeepREST
	Containerization of the Blog API
	RESTgym Execution
	Results

	Conclusion
	References

