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ABSTRACT
Firmware re-hosting is crucial when developing methodologies
to simulate and execute device-specific firmware, including tech-
niques for firmware testing and security assessments. Although
state-of-the-art solutions such as Firmadyne and FirmAE emulate
IoT firmware, they cannot simulate communication with external
clients and provide limited real-time and security testing support. In
this demonstration, we introduce MITHRAS. This novel simulation
framework enables static instrumentation and full emulation of
IoT device firmware, allowing communication with external clients
such as the companion app installed on a smartphone. MITHRAS
also supports dynamic instrumentation of the code of the mobile
companion app, allowing users to gather detailed information on
the app’s execution. MITHRAS supports seamless communication
between the emulated IoT device and its companion smartphone
app, providing a fully integrated emulation environment. Moreover,
it offers real-time tracing of php script executions. 1
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1 INTRODUCTION
Over the years, IoT devices have become increasingly ubiquitous
and play a critical role in various sectors of our daily lives. The
software on these devices is embedded within their firmware, a
self-contained file that includes the necessary software and kernel
for the device’s operation.

Usually, developers test the firmware of an IoT device by directly
uploading it to the physical device. i) Modifying and re-uploading

1Demonstration video available at: https://drive.google.com/file/d/1smSTfU9QK7RfLC_
EHotcGAjEaJCMBf3M/view?usp=sharing
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the firmware can potentially corrupt the device’s software, causing
it to become completely unresponsive and unusable, effectively
rendering the device inoperable; ii) Physical devices often lack
support for saving or restoring states, making it difficult to inspect
the device’s execution after a failure or to revert to a previous state;
iii) Acquiring the specific device for analysis can be challenging,
as it may be unavailable or discontinued; iv) Scaling the analysis
across multiple devices is complex, as users must obtain multiple
types of hardware.

Solutions such as Firmadyne [1] and FirmAE [8] enable develop-
ers to execute the firmware of IoT devices in an emulated environ-
ment. These tools emulate peripheral devices to allow device drivers
to function correctly. They can start services on the emulated IoT
device and expose them through web interfaces on dedicated pri-
vate networks. However, they cannot establish full communication
between the emulated device and external clients. Current state-of-
the-art solutions are based on QEMU [9], which supports user-mode
emulation of specific executables and full-system emulation of real
devices. However, full-system emulation struggles to expose certain
services, such as Multicast DNS (mDNS) [12], essential to make spe-
cific services available to external clients for a query. This limitation
arises because QEMU employs SLIRP [10]. This model simulates
a physical network but does not allow the emulated IoT device to
connect to the Internet or handle ICMP packets. Evaluating com-
munication between the IoT device and external clients is critical
to a comprehensive device security assessment.

MITHRAS is the first emulation platform to extend the function-
ality of QEMU, enabling full-system emulation of the firmware of
the IoT device while ensuring proper communication between the
emulation IoT device and external clients. MITHRAS includes the
following functionalities:

• Firmware emulation and client communication: En-
ables full emulation of IoT device firmware within QEMU,
supporting communication between the emulated IoT device
and external clients, such as companion apps running on
emulated Android devices.

• Security-testing support: Supports security testing of IoT
device-smartphone pairs by statically instrumenting the IoT
device firmware and dynamically instrumenting the compan-
ion app’s methods responsible for communication with the
IoT device. Specifically, MITHRAS assists users in identifying
and exploiting Remote Code Execution (RCE) vulnerabilities.
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Figure 1: MITHRAS’s run-time workflow

• Firmware code instrumentation: Uses the Php-Parser [7]
library to insert logging code into php scripts, collecting
code coverage information at the script, function, method,
and branch levels. In addition, it monitors the execution of
system commands by inserting logging code before critical
PHP function calls, such as system and passthru, capturing
both the executed commands and their output.

MITHRAS’s implementation can be found in 2.

2 MITHRAS
This section outlines the workflow of MITHRAS. The workflow is
divided into two main parts: the mobile component, which focuses
on analyzing the target mobile companion app to be executed on
the smartphone and setting up its dynamic instrumentation, and the
firmware component, which involves the static instrumentation of
the firmware’s software and configuring the emulation environment
to run the firmware.

2.1 MITHRAS’s Run-Time Workflow
Figure 1 illustrates the execution workflow of the emulated environ-
ment ofMITHRAS. First, MITHRAS launches themobile companion
app on the smartphone using a running instance of the Frida server,
which is part of the Frida framework. The Frida server monitors
the app’s execution and allows the injection of user-defined code,
referred to as a hook, replacing the original code of specific app’s
methods. The Frida agent monitors the execution of the app and,
when a sink method (i.e., a method responsible for sending data
directly to the connected IoT device) identified during the static
analysis phase of the app (detailed in Section 2.2) is invoked, it runs
the hook code from the uploaded agent script in place of the original
method. The hook logs the method call information and sends it to
the host connected to the Frida agent. Due to limitations in existing

2https://anonymous.4open.science/r/Mithras-Tool-766F

emulated environments, network requests from the emulated smart-
phone cannot reach the emulated IoT device, as both devices operate
on distinct private networks. To overcome this issue, MITHRAS
deploys a proxy server on the host machine that runs the emulated
IoT device and the smartphone. The proxy server, built with the
Flask [3] library, supports communication by redirecting incoming
network requests to their intended target using the device’s public
address. The proxy server forwards network requests generated by
the companionmobile app on the smartphone, which are directed to
a host with a private IP address to the emulated IoT device. It is also
responsible for relaying the responses received from the emulated
IoT device back to the emulated smartphone. Most mobile compan-
ion apps discover the IoT device on the network through services
exposed through the mDNS protocol. This protocol enables devices
on the same local network to communicate directly by broadcasting
service discovery requests to all devices on the network. When a de-
vice needs to access a service that another device provides, it sends
a request to discover the device hosting that service. In the case
of IoT device-smartphone communication, the mobile companion
app must locate the IoT device on the same network. However, the
IoT device and the smartphone reside on separate networks in the
emulated environment. This network segmentation prevents ICMP
packets, which the mDNS protocol relies on for device discovery,
from traversing the emulated network. To address this limitation,
MITHRAS installs a custom app on the smartphone that exposes an
mDNS service within the local smartphone network, allowing the
companion mobile app to establish a connection. The custom app
uses the JmDNS [6] library to create and expose a simulated mDNS
service that mimics the real one provided by the IoT device. From
the perspective of the mobile companion app, the service exposed
by the custom app appears to be the original service from the IoT
device, allowing the companion app to proceed with the IoT device
configuration.

2.2 Mobile Companion App Instrumentation
Workflow

Figure 2 shows the workflowMITHRAS relative to the instrumenta-
tion of the companion mobile app. The Control-Flow Graph
Extractor module begins by extracting the app’s smali code
from its compiled artifact and constructing a comprehensive control
flow graph (Step 1). The Control-Flow Graph Extractor
module leverages the Androguard [5] library to compute the com-
plete Control Flow Graph (CFG) of the app. Once the graph is
calculated, the Sink Methods Searchermodule identifies all
methods responsible for handling network requests to the IoT de-
vice, referred to as candidate sink methods (Step 2), using the
Androguard library. These sink methods send requests to the IoT
device and process its responses. Next, the Methods Static
Reachability Analyzer module checks whether the identi-
fied candidate sink methods are reachable from the app’s layout
classes by statically analyzing all possible paths originating from the
layout classes’ methods (Step 3). Unreachable methods are excluded
from the list, and the remaining ones are stored in a repository (Step
4). The Frida Agent Uploader sends the Frida agent script
and the list of methods to hook on the Frida server installed on
the smartphone (Step 5). This script includes a list of sink methods

https://anonymous.4open.science/r/Mithras-Tool-766F
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Figure 2: Mobile workflow

identified during the static analysis phase and the implementation
of hooks. The agent script includes logic to log all sink method in-
vocations and method calls along the execution path from a layout
class to the sink function. It is a JavaScript file that the user can
manually modify by adding JavaScript code to extend the func-
tionality of sink methods, enabling customized behavior as needed.
After generating the agent script as a single JavaScript file, the
Frida Agent Uploader module uploads the file to the Frida
Agent process, a component of the Frida library running on the
smartphone (Step 6). This process is responsible for launching the
app and loading the uploaded Frida agent script to instrument the
app dynamically.

2.3 Firmware Instrumentation Workflow
Figure 3 illustrates the workflow of MITHRAS related to the in-
strumentation and emulation of the IoT device’s firmware. First,
the Firmware Extractor module extracts the firmware’s con-
tent (Step 1), producing the Extracted Firmware (Step 2). Next, the
Emulation Initializer module leverages the Firmadyne
emulation library to set up the emulated environment for the ex-
tracted IoT device firmware (Step 3). Specifically, it automatically
inspects the extracted file system of the firmware to identify the
network interfaces exposed by the firmware. It also extracts other
critical information necessary for emulation, such as the kernel
version. The Firmadyne library uses kernel information to select
the appropriate pre-built kernel for execution within the emulated
environment.

ThePhp AST Static Instrumentermodule uses the Php-
Parser library to modify the content of the php files extracted from
the firmware (Step 4). These modifications insert logging code into
the firmware’sphp files to track functions, method calls, and branch
executions. Additionally, the instrumentation provides information
on which php files are executed at runtime, thereby improving the
coverage data collected during emulation. The code inserted by the
Php AST Static Instrumenter module includes logic to
send detailed information–such as which function, method, script,
or branch was executed, along with the exact line number in the
source file–as a string through a socket opened by a designated host
that collects this data. The user must manually specify the host ad-
dress duringMITHRAS’s configuration in a dedicated configuration
file.

The Php AST Static Instrumenter module begins by
computing the complete Abstract Syntax Tree (AST) of each php
file found in the firmware’s extracted file system. It then traverses
each AST to perform the static instrumentation. The instrumen-
tation process varies depending on the type of target statement:
i) Script Instrumentation: The module inspects the root of the
php file’s AST and inserts logging code at the start of the AST to
capture script-level execution. ii) Function Instrumentation: The
module navigates the AST of each php file, searches for function
definition statements, and inserts logging code at the beginning
of each function’s implementation block to track function calls.
iii)Method Instrumentation: The module searches the AST of
each php file for class definition statements, identifies methods
within each class, and inserts logging code at the beginning of
each method’s implementation block to monitor method execu-
tions. iv) Branch Instrumentation: The module traverses the
AST of each php file, looking for branch statements (e.g., if-else
or switch statements), and inserts logging code at the start of the
code block that executes if the branch condition is (resp. is not)
met, enabling tracking of control flow paths. v) System Command
Tracking: The module navigates the AST of each php file, search-
ing for calls to system command execution functions (e.g., exec,
passthru, shell_exec, system) and, when these function calls are
found, it inserts logging code before the function call and modifies
the call to log the execution trace of the command it executes.

After modifying the php file’s ASTs, the Php AST Static
Instrumenter module packs back the modified ASTs into php
files and uploads them into the Extracted Firmware folder (Step
5). Finally, the Firmware Emulator module emulates the in-
strumented firmware (Step 6). This module is built entirely on the
Firmadyne emulation library and uses QEMU for full-system emu-
lation, enabling it to emulate firmware across a wide range of CPU
architectures. The Firmware Emulator first prepares the file
system to be pushed into the emulated virtual machine by packag-
ing the statically instrumented files from the Php AST Static
Instrumenter module into a QCOW2 [2] image file. It then
performs an initial two-minute execution of the firmware to dy-
namically identify runtime information, such as exposed network
interfaces, core services provided by the emulated firmware to exter-
nal clients, and the programs that run at startup. After collecting this
information, the Firmware Emulator automatically generates
a run.sh script that configures the necessary tasks inferred from
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Figure 3: Firmware workflow

the initial firmware execution and proceeds with the full firmware
emulation. The module also sets up a TAP network [4] between
the emulated firmware and the host running QEMU, isolating all
network traffic onto a dedicated, exclusive network to facilitate
communication between the host and the emulated device.

3 RESULTS
Using tenD-Link firmware files, we evaluated the efficacy ofMITHRAS’s
emulation capabilities. We selected firmware from this specific ven-
dor because D-Link has publicly available firmware on its site, with
known vulnerabilities documented in the Common Vulnerabilities
and Exposures (CVE) database. We focused on router firmware,
which typically connects with a dedicated mobile companion app.
For the companion mobile app needed to interface with the IoT
device, we used version 1.4.8 of the D-Link Wi-Fi app, available in
the Google Play Store3.

We evaluated the capabilities of Firmadyne and FirmAE to simu-
late a fully functional Mobile-IoT environment using these mobile
companion apps and firmware. The evaluation demonstrated that
Firmadyne and FirmAE fall short due to the limitations of their em-
ulated network. MITHRAS, instead, successfully emulated all ten
firmware files of the router, enabling proper communication with
the companion app running on an Android smartphone emulator.
To demonstrate MITHRAS’s effectiveness in supporting security
testing activities, we instantiated an existing app security testing
framework that utilizes Deep Reinforcement Learning (DRL) [13].
Our tool automatically navigates the mobile app’s interface to trig-
ger communication with the IoT device, allowing for malicious
modifications to the network requests directed at the emulated
device to exploit vulnerabilities. We tested MITHRAS’s capabilities
through an experimental campaign, conducting ten episodes of 10
minutes each per firmware. The results demonstrated that our tool
could exploit vulnerabilities on average 15 times per firmware.

4 CONCLUSIONS & FUTUREWORKS
This demonstration presents MITHRAS, the first simulation frame-
work in which the firmware of an IoT device can be emulated using
a system-level emulation approach, while also supporting commu-
nication with an emulated smartphone. Our framework supports
the testing of scenarios where the IoT device interacts with its
companion app installed on the smartphone, eliminating the need
to physically set up real devices. MITHRAS also supports static

3https://play.google.com/store/apps/details?id=com.dlink.dlinkwifi&hl=en

instrumentation of the IoT device’s firmware and dynamic instru-
mentation of the companion app, to collect comprehensive code
coverage information from both platforms and to inject malicious
payloads when the app communicates with the device.

MITHRAS currently supports only the static instrumentation of
php files within the firmware. We plan to extend support to addi-
tional file types, such as binaries. Additionally, we aim to replace the
Firmadyne library, currently used for emulating the IoT device’s
firmware, with Renode [11], an emulation platform that allows
users to define low-level implementations of specific peripherals.
This will enhance support for firmware that requires interaction
with specialized hardware components.
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APPENDIX
Demonstration Video
The demonstration video can be accessed at: https://drive.google.
com/file/d/1smSTfU9QK7RfLC_EHotcGAjEaJCMBf3M/view?usp=
sharing
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4.1 Demonstration Walkthrough
Mithras is designed to run on a PC with Ubuntu. We recommend
avoiding using virtual machines or Docker containers due to limi-
tations in the QEMU process, which Mithras relies on. These limita-
tions may cause issues when emulating specific IoT device firmware
in virtualized environments.

Tested Setup
• Operating System: Ubuntu 24.04 LTS
• Processor: Intel 9th Gen i9 or equivalent
• Memory: 32 GB RAM

Mithras has been tested and optimized on this hardware config-
uration to ensure stable performance during firmware emulation
and testing. However, these configurations are only suggested ones

SET UP ANDROID EMULATOR
1. Download and Install Android Studio
You can download Android Studio from the official website:
Download Android Studio.
Follow the instructions provided for your operating system to com-
plete the installation.

2. Set Up Environment Variables
Export ANDROID_HOME environment variable into the .bashrc file

1 echo "export ANDROID_HOME=~/Android/Sdk" >> ~/.

bashrc

2 source ~/.bashrc

3. Download and Configure Android Emulator
When setting up the Android emulator, select the Google APIs
version instead of the Google Play version. We highly recommend
installing the Android 11 emulator, which is the most stable and
fully supports ARM translations. The Google APIs emulator grants
root permissions, which are crucial for Mithras to interact with the
companion app during testing.

We recommend configuring an x86_64 Android emulator, as
the modified mobile companion app used to test Mithras’ main
functionalities supports only the x86_64 architecture.

INSTALL MITHRAS
1. Prepare the Python Environment
Install the Python Virtual Environment Package
To manage dependencies effectively, install the python3-venv
package:

1 sudo apt install python3-venv

Create a Virtual Environment
Use the venv Python module to create an isolated Python environ-
ment:

1 python3 -m venv venv

Activate the Virtual Environment
Before installing dependencies, activate the virtual environment:

1 source venv/bin/activate

Install wheel
Ensure that the wheel package is installed to handle precompiled
binaries:

1 pip install wheel

Install Required Packages
Finally, install all dependencies listed in therequirements.txt
file:

1 pip install -r requirements.txt

2. Prepare the PHP Environment
Install PHP (CLI Version)
Install PHP to run scripts from the command line:

1 sudo apt install php-cli

Install Composer
Install Composer for managing PHP dependencies:

1 sudo apt install composer

Install the Php-Parser Library
Install the Php-Parser library required for the project:

1 cd ./mithras/src/firmware-instrumenter

2 composer dump-autoload

3 composer require nikic/php-parser:^4.0

3. Set Up Emulator Engines
Install Binwalk
Binwalk is required for firmware extraction and analysis:

1 sudo apt install binwalk

Install cURL
cURL is required to ensure the firmware is functioning correctly.

1 sudo apt install curl

(Suggested) Set Up FirmAE
Navigate to the toolkit directory, and run the following scripts:

1 cd FirmAE

2 ./download.sh

3 ./install.sh

4 ./init.sh

Set Up Firmware Analysis Toolkit
Navigate to the toolkit directory, copy the modified setup script,
and run it:

1 cd firmware-analysis-toolkit

2 cp ../mithras/src/firmware-instrumenter/fat_setup.

sh ./setup.sh

3 ./setup.sh

Update Root Password in fat.conf
Add the current system root password to the sudo_password
field.

https://developer.android.com/studio?hl=en
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INSTRUMENT IOT DEVICE FIRMWARE
1. Download Firmware for Testing
Download a publicly available firmware file to be instrumented and
emulated. The repository also contains a compatible companion
app that can be used to communicate with the IoT device:

1 wget https://github.com/pr0v3rbs/FirmAE/releases/

download/v1.0/DIR-868L_fw_revB_2-05

b02_eu_multi_20161117.zip

2. Prepare Emulation Environment
We recommend using the FirmAE emulation engine, as it is the
most stable and supports a broader range of firmware than the
firmware analysis toolkit.

Firmware Emulation with Firmware-Analysis-Toolkit
Navigate to the Firmware Analysis Toolkit directory and start the
firmware emulation:

1 cd ./firmware-analysis-toolkit

2 sudo ./fat.py <firmware-file>

Firmware Emulation with FirmAE
Navigate to the FirmAE directory and start the firmware emulation:

1 cd ./FirmAE

2 sudo ./run.sh -r dlink <firmware-file>

3. Firmware Static Instrumentation
Set Up Instrumentation Configurations
Modify the configuration file ./mithras/src/firmware-instrumenter/
instrumentation_pipeline.jsonwith the necessary details for firmware
instrumentation. The emulation_engine parameter must match the
emulation engine chosen at the beginning of the demonstration:

1 {

2 "firmware_name": "<name-of-the-firmware-to-

↩→ emulate>",

3 "root_password": "<system-root-password>",

4 "emulation_engine": "firmae|firmadyne"

5 }

Instrument IoT Device Firmware
Activate the Python virtual environment and run the instrumenta-
tion pipeline:

1 source ./venv/bin/activate

2 cd ./mithras/src/firmware-instrumenter

3 python router_instrumenter_pipeline.py

4. Unpack Resources
Unpack Frida-Server
Extract the Frida server binary:

1 unzip ./mithras/bin/frida-server.zip

Unpack Companion App APK
Extract the companion app APK file:

1 unzip ./apps/companion_app.zip

5. Execute Mobile-IoT Emulated Environment
Set Up Router Configurations
Modify the configuration file ./mithras/router_mapping.json. This
configuration file contains a list of firmware details. For each firmware,
provide a name (matching the firmware’s instrumentation step) and
its public ip_address:

1 {

2 "firmware1": {"model": "firmware1_name", "

↩→ ip_address": "firmware_1_ip_address"},

3 "firmware2": {"model": "firmware2_name", "

↩→ ip_address": "firmware_2_ip_address"}

4 }

6. Set Up Emulation Configurations
Modify the configuration files ./mithras/config.json and ./mithras/rou
ter_mapping.json. These files define the configurations for estab-
lishing the emulated Mobile-IoT ecosystem. Key options include:

• firmware_name: Match the name used during the instru-
mentation step.

• android_sdk_platforms: Define the path of theplatforms
folder in the Android SDK.

• proc_name: The package name of the mobile companion
app.

• device_id: The Android emulator’s identifier, used by adb
to select the appropriate emulator when multiple instances
are running.

• device_name: The Android emulator’s name, matching the
name given during creation.

• root_password: The password for the root user on the sys-
tem host.

• emulation_engine: The emulation engine selected by the
user (this must match the emulation engine chosen at the
beginning of the demonstration). Valid options are: firmae
or firmadyne.

7. Emulate Mobile-IoT Environment
Activate the virtual environment and execute the firmware test
script:

1 source venv/bin/activate

2 cd ./mithras

3 export ANDROID_HOME="<path-to-Android-Sdk-Folder>"

4 python test_firmware.py --cf ./config.json
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