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Abstract—Software is constantly changing as developers add
new features or make changes. This directly impacts the effec-
tiveness of the test suite associated with that software, especially
when the new modifications are in an area where no test case
exists. This article addresses the issue of developing a high-
quality test suite to repeatedly cover a given point in a program,
with the ultimate goal of exposing faults affecting the given
program point. Our approach, IFRIT, uses Deep Reinforcement
Learning to generate diverse inputs while keeping a high level
of reachability of the desired program point. IFRIT achieves
better results than state-of-the-art and baseline tools, improving
reachability, diversity and fault detection.

Index Terms—reinforcement learning, software testing, focused
testing

I. INTRODUCTION

Many software projects are under constant development and
new versions are released continuously. These modifications
may introduce new code or may alter the execution flow
inside the existing code. Therefore, existing test suites may
not adequately cover the new/modified code. As a result, it is
important to automate the creation of test suites focusing on
specific program sections, to ensure that such new/modified
code sections do not introduce bugs into the system. Al-
though monitoring the level of code coverage is a highly
recommended practice, coverage strategies alone have limited
capabilities in detecting real faults. Covering a faulty statement
once does not guarantee that the fault will be activated, i.e.,
the program state will be infected and will propagate to an
observable output [1]–[3]. In addition to coverage, another key
goal of test suite creation should be diversity, because diversity
can increase the chances of fault exposure [4].

Many automated test generation techniques at the state-of-
the-art rely on coverage to detect bugs in programs [2], [5], [6].
However, these strategies do not take diversity into account
and do not focus on specific code sections. To address this
problem, Menéndez et al. [7] proposed to focus the testing
process on the code sections added/modified by the developers
and to generate a diversified set of uniformly distributed test
cases that exercise such sections. This methodology, known
as focused testing, ensures that multiple, diverse tests (i.e., a
focused test suite) exercise a few specific program elements.
Focused testing is implemented in the DFT tool [7], which

aims at satisfying two objectives at the same time: (1) maxi-
mum diversity and (2) satisfiability of the conditions required
to reach the target. However, DFT uses a Satisfiability Modulo
Theory (SMT) solver to generate valid inputs for the program
under test. The drawback of such an approach is that it loses
efficiency when dealing with an increasing number of program
constraints and it becomes inapplicable when constraints are
too difficult to solve or even to formulate.

We propose a different approach to focused testing, which
we call IFRIT, based on Deep Reinforcement Learning. Deep
Reinforcement Learning (Deep RL) is a machine learning
technique that does not require a labeled training set as input,
since the learning process is guided by the positive or negative
reward experienced during the tentative execution of a task.
Hence, it can be used to dynamically learn how to build a
focused test suite, based on the feedback obtained during the
past successful or unsuccessful attempts. More specifically,
IFRIT manipulates a test input by applying a sequence of
modifiers (actions) to it. Each action receives positive feedback
if the target statements are reached upon execution of the test
input and such input was never generated before (to promote
diversity); neutral (zero) feedback if the target statements get
executed, but the input is not new; negative feedback if the
input does not reach the target.

The key algorithmic advantage of IFRIT over DFT is
that it requires only runtime coverage information from the
subject under test. On the contrary, DFT requires that the
subject under test can undergo static symbolic execution
and that the generated path constraints, once relaxed by
means of parametrisation, can be solved by an SMT tool.
The requirements of DFT limit its practical applicability to
simple numeric functions only. On the contrary, IFRIT requires
minimal runtime information on the coverage of the target
statements, used to provide feedback to the RL agent during
training. Hence, it is generally applicable to any, arbitrarily
complex, software system.

In terms of reachability and diversity, our empirical results
show that IFRIT is equally effective as or more effective than
DFT when executed on subjects to which DFT is applicable
(i.e., the benchmark used in the original paper [7] that pro-
posed DFT). Results show also that IFRIT is applicable to
programs that cannot be handled by DFT. On them, IFRIT



outperforms the only available baseline, which is random test
input generation.

Our paper gives the following major contributions to the
state of the art:
• The first Deep RL approach to focused testing. By relying

just on runtime coverage feedback, this approach is
applicable to a wide range of programs.

• IFRIT, an open source tool, whose code is available at
the url: https://github.com/H2SO4T/IFRIT .

• An empirical study showing the effectiveness of our
approach in comparison with existing and baseline tech-
niques.

II. RELATED WORK

Most of the related work deals with the automated gen-
eration of focused test suites [7], [8]. Other relevant work
concerns the general and wide class of automated test input
generators [5].

A. Focused Testing

Focused testing aims at testing specific, individual compo-
nents of a program. In the work by Alipour et al. [8], the
authors define focused testing as a black-box method whose
aim is to reach a specific target. A specific API can be an
example of a target. Alipour et al. use a general test generator
to reach that target by activating or deactivating different
options of the generator.

Menéndez et al. [7] adopt a white-box approach and in-
crease the granularity. The components addressed by focused
testing are said to be program points (pp) (i.e., specific nodes
in the control flow graph). Instead of using general-purpose
generators, Menéndez et al. use a generator based on SMT
solvers. Their tool, i.e., DFT, does not generate inputs for
the real program, but for its symbolic path abstraction. This
introduces some assumptions on the possibility to derive and
solve precise path conditions for the components targeted by
focused testing. Moreover, the speed of test suite generation
might be affected negatively when the path constraints grow
in size and complexity.

Instead of using random generators or SMT solvers, IFRIT
is based on Deep RL, a technique that requires limited
guidance during the training process – in our case, coverage
and diversity information. Hence, its applicability is wider
than DFT, and its effectiveness/efficiency do not depend on
the accuracy/performance of any solver.

B. Automated Test Input Generation

The two main families of test input generators make use
respectively of static/dynamic symbolic execution [5], [9], [10]
and search based algorithms [11]–[13]. Similarly to DFT [7],
techniques based on symbolic execution encode the path
constraints that must be satisfied to traverse a given path in a
formula that can be passed to an SMT solver. Search based
algorithms rely instead on a fitness function that measures
heuristically the distance between the path traversed when
executing a candidate input and the coverage target. Inputs that

get closer to the target are selected and iteratively improved
until the target is covered. Both families of approaches succeed
when the target is covered, but none of them attempts to
generate multiple, uniformly distributed inputs that reach the
target.

Differently from symbolic execution and search based test
generation, random test input generation [14], [15] ensures
uniformity of the generated inputs by construction. However,
when the target to be covered requires that very specific
path conditions are satisfied, this approach has a very low
probability of generating inputs whose execution can actually
traverse the target. So, despite the intrinsic high uniformity of
the generated inputs, this approach is often ineffective because
of the low reachability of targets that are difficult to cover
randomly.

Only a few works [16]–[18] include diversity among the
goals of the test generator, but none of them in the context of
focused testing. Alshahwan et al. [16] maximize the diversity
of the distribution of the outputs produced upon the execution
of the automatically generated test inputs. So, they consider
output, instead of input diversity. Feldt et al. [17] propose a
new diversity metric, called test suite diameter, to quantify the
degree of diversity in a test suite, but they do not use it directly
for (focused) test generation. Biagiola et al. [18] use diversity
as a criterion to select the most promising candidates, because
in-browser web test execution is computationally expensive
and diversity ensures wider exploration of behaviors. However
their goal is not the generation of uniformly distributed inputs
that reach a target of interest.

III. PROBLEM DEFINITION

Given the space of the program inputs X , we denote by
Xpp the sub-space of inputs whose execution traverses pp.
A focused test input generator aims at producing inputs x
that belong to Xpp. In addition to this, the generator should
produce a diverse set of inputs that belongs to Xpp.

Following the work by Chakraborty et al. [19], we define
diversity using entropy. A diverse set is a set with high entropy.
We define a generator G as an algorithm that creates inputs for
a program P . We define a focused generator Gpp as a generator
that generates inputs that traverse a specific program point pp.
Considering the generator as a random variable whose values
are inputs traversing pp, our goal is to make them as much
diverse as possible, i.e., we aim at creating a focused generator
Gpp whose entropy is maximized.

Since entropy of a random variable is maximum when
its probability distribution is uniform [20], Gpp should be
a uniform random variable and the generator should be a
uniform focused generator, i.e., a generator that gives the same
generation probability to every input x ∈ Xpp.

We need to quantify how close IFRIT is to generating
samples from a uniform distribution to measure the uniformity.
The work in [21] reports different statistical tests to measure it.
These tests are divided into several categories: order statistics,
spacing, order spacing, and collisions. Some of them do not
apply to discrete distributions [21], while others do not manage
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gaps in the domain [22]. Tests based on the collisions can deal
with gaps and discrete distributions [23]. Consistently with
the recommendation made by the authors of DFT [7], as a
practical way to measure the degree of uniformity of a sample
of values generated for a given random variable Gpp we use
the L2 test [24]. The idea behind this test is that collisions
(i.e., identical variable values) observed in the sample should
be less than those that an ε-far uniform distribution defined on
the same domain would generate, where ε is a user defined
tolerance. When this happens, the L2 test is passed; otherwise
it fails. The L2 test relies on the following formulas:

c =
∑

x 6=y,(x,y)∈S×S

δx,y/2 (1)

θ =
(|S|

2

)1 + 3ε2/4

n
(2)

where S is a sample generated from Gpp; c counts the number
of collisions in S using Kronecker delta δx,y; ε defines the
acceptable tolerance, i.e., the maximum allowed distance from
the uniform probability distribution; n is the domain size.
When c < θ, the test is passed; otherwise it fails.

IV. FOCUSED TESTING BASED ON DEEP RL

In this section, we introduce the key concepts behind Rein-
forcement Learning. Moreover, we present IFRIT, a focused
testing approach based on Deep Reinforcement Learning.

A. Reinforcement Learning in a nutshell

The objective of Reinforcement Learning [25] is to train
an agent that interacts with an environment to achieve a given
goal. The agent is assumed to be capable of sensing the current
state of the environment, and to receive a feedback signal,
named reward, each time the agent takes an action.

At each time step t, the agent receives an observation xt and
takes an action at that causes the transition of the environment
from state st to state st+1. The agent also receives a scalar
reward R(xt, at, xt+1), that quantifies the goodness of the last
transition.

For simplicity, in the following we assume xt = st (in the
general case, xt might be a subset of st). The behavior of
an agent is represented by a policy π, i.e., a rule for making
the decision on what action to take, based on the perceived
state st. A policy can be: 1) Deterministic at = π(st), i.e.
a direct mapping between states and actions; 2) Stochastic
π(at|st), a probability distribution over actions, given their
state. DDPG [26] is an example of Deep RL algorithm that
learns a deterministic policy, while PPO [27] is a Deep RL
algorithm that learns a stochastic policy.

The standard mathematical formalism used to describe the
agent environment is a Markov Decision Process (MDP). An
MDP is a 5-tuple, 〈S,A,R, P, ρ0〉, where :
• S is the set of all valid states,
• A is the set of all valid actions,
• R : S × A → IR is the reward function, with rt =
R(st, at, st+1),

• P : S ×A→ P (s) is the transition probability function,
with P (st+1|st, at) being the probability of transitioning
into state st+1 starting from state st and taking action at,

• ρ0(s) is the starting state distribution.
Markov Decision Processes obey the Markov property: a
transition only depends on the most recent state and action
(and not on states/actions that precede the most recent ones).

The goal in RL is to learn a policy π which maximizes the
so-called expected return, which can be computed as:

R(τ) =

|τ |/2∑
t=0

γtrt

A discount factor γ ∈ (0, 1) is needed for convergence.
It determines how much the agent cares about rewards in
the distant future relative to those in the immediate future.
τ is a sequence of states and actions in the environment
τ = (a0, s0, a1, s1...), named trajectory or episode.

To maximize the overall expected return in practice, it is
convenient to express it using an action-value function, which
estimates the contribution that a single pair action-state gives
toward maximizing the total expected reward.

B. Tabular RL & Deep RL
Tabular techniques refer to RL algorithms where the state

and action spaces are approximated using an action-value
function stored in a table. Q-Learning [28] is one of the most
adopted algorithms of this family.

In large or unbounded discrete spaces, where representing
all states and actions in a table is impractical, tabular methods
become highly unstable and incapable to learn a successful
policy [29]. The rise of deep learning, relying on the powerful
function approximation properties of deep neural networks,
has provided new tools to overcome these limitations. One of
the first deep reinforcement learning algorithms is DQN (Deep
Q-Networks) [29].

DQN uses convolutional neural networks to approximate
the computation of the action-value function. Training of such
neural networks is achieved by means of memory replay: the
last N experience tuples are sampled uniformly and replayed
when updating the weights of the networks.

While DQN can indeed solve problems with high-
dimensional observation spaces, it can only handle discrete
and low-dimensional action spaces. Among the recent ad-
vancements over DQN, PPO (Proximal Policy Optimization)
[27] overcomes the latter limitation and can deal with high-
dimensional action spaces.

RL algorithms can update a policy in two ways:
• Off-policy optimization: each update of the policy can

use data collected at any point during training, regardless
of how the agent has chosen to explore the environment
when the data was obtained.

• On-policy optimization: each policy update only uses
data collected while acting according to the most recent
version of the policy.

DQN updates the policy in an off-policy way, while PPO is
an on-policy algorithm.
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C. Overview

IFRIT (reInFoRcement learnIng for focused Testing) is an
approach to focused testing based on Deep RL. Figure 1 shows
an overview of IFRIT. The RL environment is represented
by a program P under test, which is subject to several
interaction steps. The objective is to generate inputs that reach
a program point pp ∈ P (see Section II). At each time step,
IFRIT observes the code coverage measured on the program,
computes the state st, the reward rt, and chooses an action at
used to generate a new input for the program. Then, it iterates,
receiving the next code coverage st+1 and reward rt+1 (not
shown in Figure 1).

Intuitively, if the new state st+1 reaches the target point
in the program with a new input, the reward is positive; it is
neutral if such input is not new. Otherwise, if the target is not
reached, the reward is negative.

The reward is used to update the neural network, which
learns how to guide the Deep RL algorithm to generate useful
inputs for the program. The actual update strategy depends on
the selected Deep RL algorithm.

Fig. 1. The IFRIT testing workflow. Code coverage is extracted (e.g., by
gcovr, a utility for generating summarized code coverage results), from which
IFRIT generates the state st and then determines the reward rt for the chosen
action at. By choosing an action at, IFRIT generates a new input, that
stimulates the program under test.

D. Instantiating RL for Focused Testing

To apply RL, we have to map the problem of focused testing
to the standard mathematical formalization of RL: an MDP,
defined by the 5-tuple, 〈S,A,R, P, ρ0〉. Moreover, we have to
map the testing problem onto an RL task divided into several
finite-length episodes.

State Representation: The state st ∈ S is defined as a
combined state (b0, ...bn, i0, ...im). The first part of the state
b0, ...bn represents the frequency of branch coverage during
the last program execution, i.e., bi is equal to k > 0 if the i-th
branch of the program has been taken k times; it is equal to 0 if
it was not traversed at all. The second part of the state vector,
i0, ...im is equal to the last vector of input values generated by
IFRIT. This means that the last execution of program P was
performed by calling P (i0, ..., im), where 〈i0, ...im〉 is called
the input vector.

Action Representation: Each time IFRIT takes an action,
it manipulates a previously generated input (e.g., a number
or a string) by using modifiers. Modifiers mutate an input
value based on the type of such input. Hence, an action
a = 〈a0, a1, a2〉 is 3-dimensional: the first component a0
encodes the index of the input vector to be manipulated. In
fact, in the general case a program accepts a vector of input
values as input and an action a will manipulate only one of
them. The second component a1 specifies the data to use to
manipulate the input, depending on the context. The third
component a2 specifies how to use the second component
on the input, i.e., what operation to apply using the second
component as a parameter for such operation.

Numeric Input Manipulation. When managing numerical
inputs, the starting input vector contains only zeros. The
mutation of numeric input is done by using scale factors
and operands. The first component (i) of the action indicates
which portion of the input vector to modify (input[i]).
The second component (scale_factor) indicates the scale
factor, and the third specifies the operation (<op>) associated
with that scale factor: input[i] <op> scale_factor,
where <op> can be any arithmetic operator among +, -, *, /.

String Input Manipulation. When managing string inputs,
the starting input is a vector of empty strings. IFRIT mutates
the string by iteratively adding or removing characters to/from
the input. The first component of the action indicates which
portion of the input vector to modify. The second component
indicates which char to use, and the third specifies the oper-
ation to perform (i.e., add char at the beginning, append char
at the end, and remove char at the beginning/end). In the case
of remove the second component is not used.

Transition Probability Function: The transition function
determines which state the program can go to after IFRIT
has taken an action. In our case, this is decided solely by
the execution of the program: IFRIT observes the process
passively, collecting the new state after the execution of the
program has taken place.

Reward Function: The RL algorithm used by IFRIT re-
ceives a reward rt ∈ R every time it executes an action at.
We define the following reward function:

rt =



Γ1 if input(st+1) 6∈ inputs(Ej) ∧
x ∈ Xpp

Γ0 if input(st+1) ∈ inputs(Ej) ∧
x ∈ Xpp

−Γ1 x 6∈ Xpp.

(3)

with Ej the current episode and Γ1 > Γ0 ≥ 0 (in our
implementation Γ0 = 0, Γ1 = 1). This structure of the reward
function and the chosen reward values are widely used in the
literature in several different contexts [29] [26].

The exploration of IFRIT is divided into episodes. At time
t, the reward rt is positive (Γ1) if IFRIT was able to reach
the selected program point pp with an input never generated
during the current episode Ej (i.e., the current input does not
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belong to the set of inputs generated so far in Ej): if a new
episode Ej+1 is started at t + 1, its set of inputs is reset:
inputs(Ej+1) = ∅.

When an input that reaches the target has already been
generated before in the same episode, the reward is zero (Γ0),
as it is no more useful during the current episode, but it
remains a good input for the given task.

Resetting the set of generated inputs at the beginning of each
new episode is a technique that encourages IFRIT to generate
a high number of different inputs in each episode, which in
turn makes the reward positive several times in the episode.
In contrast, if we provide the algorithm a significant, positive
reward only a few times (i.e., “sparsely”), e.g., because we
have seen all new inputs already in previous episodes, the
information to learn the optimal state-action combinations
might be insufficient. The algorithm might fail to reproduce
the sequence of actions leading to a high reward in the future
and the performance of the algorithm results to be poor. On the
contrary, another pattern to avoid is rewarding every successful
input, regardless of its novelty, as this would encourage cycling
behaviors [30]. Our definition of the reward function tries to
balance the frequency of positive rewards and the avoidance
of cycling behaviors, by rewarding positively inputs that are
novel just in the current episode, not across all past episodes.
Reward is negative (−Γ1) when the input does not reach target
(i.e., the selected program point pp).

V. IMPLEMENTATION

IFRIT features a custom environment based on the OpenAI
Gym [31] interface, which is a de-facto standard in the RL
field. OpenAI Gym is a toolkit for designing and comparing
RL algorithms and includes several built-in environments. It
also contains guidelines for the definition of custom environ-
ments. Our custom environment interacts with a C program.

A. Tool Overview

As soon as it is launched, IFRIT automatically generates
a configuration file that contains information about the C
program under test. The configuration file includes several
data useful for compilation and the execution of the program
(e.g., how many parameters the program takes as input,
the type of each input, the target file, the target program
point pp). Afterward, IFRIT instantiates a custom environment
compatible with the C program and starts the testing phase.
At each time step, IFRIT takes an action (i.e., modifies the
input vector) according to the behavior of the exploration
algorithm. Once the action has been fully processed, which
includes the execution of the C program, IFRIT elaborates the
code coverage information, from which IFRIT computes the
observation and the reward for the algorithm.

IFRIT organizes the whole testing session into finite-length
episodes. The goal of IFRIT is to maximize the total reward
received during each episode. Every episode lasts 24000 time
steps. To select the ideal episode boundaries, we conducted a
preliminary experiment on a subset of programs coming from
CodeFlaws (CF) [32]. On this subset, we trained the same

Deep RL algorithm by varying the episode length. Training
characterized by short episodes results in poor performance
due to the impossibility of exploring the input space. Similarly,
long episodes took too much training time. Once an episode
comes to an end, IFRIT resets the input vector to the default
value and then it uses the acquired knowledge to reach the
target of the C program in the next episode. Figure 2 shows
an example of numeric input manipulation. IFRIT generates
an action that contains the rules to modify the previous input
vector (a). We select the parameter of (a) indicated by the
action and add to it the third scale factor (i.e., three). The new
input vector (b) is now used to stimulate the program under
test (not shown in the figure).

Fig. 2. The IFRIT action vector [0, 2, 1] indicates that the input element at
index 0 should be modified by applying the operator at index 1 (i.e., ‘+’)
with the scale factor at index 2 (i.e., ‘3’). The new input element at index 0
becomes thus equal to 3 (i.e., 0+3).

B. Program Environment

The application environment is responsible for handling
the actions to interact with the program. Since the envi-
ronment follows the guidelines of the Gym interface, it is
structured as a class with two key functions. The first func-
tion init(configuration_file) is the initialization of
the class. The additional parameter configuration_file
consists of a dictionary containing the program tester setup and
the program to be tested. The second function is the step(a)
function, that takes an action a as input and returns a list of
objects, including observation (code coverage state) and
reward.

C. Algorithm Implementation

IFRIT exploits Stable Baselines [33], a modular library that
adopts a plugin architecture to integrate the RL algorithm
to use. In the current implementation, IFRIT provides two
exploration strategies: (1) random, (2) PPO. The random
algorithm interacts with the program by randomly selecting
a mutation to perform on the input vector. Currently, one
Deep RL algorithm is available in IFRIT: PPO. Its imple-
mentation comes from the Python library Stable Baselines.
IFRIT is publicly available as open source software at the url:
https://github.com/H2SO4T/IFRIT.
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VI. EVALUATION

We seek to address the following research questions:
• RQ0 Which scale factors provide the best configuration

of IFRIT? Selecting proper scale factors is essential to
maximize the performance in terms of reachability and
uniformity of IFRIT. To determine the optimal scale
factors to use, we conducted a preliminary experiment.

• RQ1 What proportion of inputs generated by IFRIT
reaches the target point of the program under test and
how uniform are such inputs? To evaluate the usefulness
of IFRIT, we analyzed two key aspects: uniformity and
reachability.

• RQ2 How do the test suites generated by IFRIT compare
to those generated by the state-of-the-art tool DFT and
random generators in terms of uniformity and reach-
ability? What is the time required to produce them?
We aim to evaluate reachability and diversity of IFRIT
in comparison with three baselines, namely, a pseudo-
random generator (Random), Random Mutations, and
DFT. To the best of our knowledge, DFT is the only test
input generator that features focused testing, producing a
diversified set of test inputs capable of reaching the target.
Random performs random uniform sampling of the input
domain. It has the highest possible (100%) uniformity
level by construction, but it might produce only a few
or no inputs that reach the target. Random Mutations
performs uniform selection of the input mutation to apply
to a previously generated input. This means that it uses
the same mutation operators as IFRIT, but it applies them
randomly instead of learning how to apply by means of
RL.

• RQ3 What is the quality of the test suites generated
by IFRIT with respect to the state-of-the-art, in terms
of mutation killing capability and fault detection? Fault
detection is the ultimate goal of focused testing. We
evaluate IFRIT’s fault detection by considering both
mutants and real faults. Mutation testing introduces small
syntactic alterations to the program (i.e., mutants). It
measures the ability of a test suite to detect the errors
caused by these alterations, i.e., the ability to kill the
mutants. We aim to evaluate the ability of IFRIT to detect
these artificial faults, in comparison with three baselines,
Random, Random Mutations, and DFT. We also evaluate
fault detection on real faults.

A. Evaluation Design

To evaluate the proposed approach, we used the software
subjects coming from two open-source software repositories:
the Software-artifact Infrastructure Repository (SIR) [34], and
CodeFlaws (CF) [32]. SIR contains C programs that accept
numeric or string inputs. From the SIR repository, we used
tcas as a numeric program. It is used to avoid collisions
in aircraft systems. The tcas program has 135 LoC and 40
branch statements. As programs that accept string input, we
used printokens, printokens2, flex, gzip, grep.

The programs have from 570 to 10459 LoC and have 45 to
1065 branch statements. The CF repository includes 7,436
C programs in total. Each of them has on average 50 LoC.
Among these, around 3900 programs have both a buggy and a
fixed version. We selected 100 pairs of buggy/fixed programs
for our experiment at random. These programs have an average
of 10 branch statements. To identify the program points pp on
which we should focus the test generation process, we applied
a tree edit distance algorithm to buggy and fixed versions of
each program. Finally, we evaluated the performance of IFRIT,
by computing reachability and uniformity.

1) Tree Alignment: The target point in our experiments is
the one that contains the fault or the mutation. When this
error is fixed by adding new lines or deleting existing lines of
code, the identification of the target program is rather complex.
Using Zhang and Shasha’s algorithm [35], the alignment pro-
cess converts the programs into their abstract syntax trees and
calculates the tree edit distance between them. This algorithm
provides the shortest sequence of edit commands at the node
granularity that converts one tree into the other. Each node is
labeled with the edit operation corresponding to it, which can
be transform, insert, delete, or keep. Using this information,
we set the program point after the modified node in the fixed
version. In the presence of multiple modified lines, we treat
them all as target program points, with the beginning of each
area serving as the program point of interest. This ensures that
IFRIT targets all modified code.

Fig. 3. Example of alignment

Figure 3 shows an example of target point identification. In
this example, the fix of the fault requires deleting a line. We
set the program point at line 5, immediately after the deleted
node.

B. Evaluation Procedure
To answer RQ0, we conducted a preliminary experiment on

numeric input manipulation. The objective is to determine the
optimal number of scale factors to use. We selected a subset of
10 programs coming from CodeFlaws (CF) [32]. We tested on
each program 5 different groups of scale factors. We selected
scale factors that can ensure a good exploration of the input
space once combined, considering the input domain and the
episode length during the testing phase. Configurations A-B-
C uses small scale factors that allow to easily generate inputs
close among them. Configurations D-E feature both small both
large scale factors, that allow to quickly traverse the input
space.

To answer RQ1, we measure the performance of IFRIT in
terms of reachability and uniformity. In RQ2, we compare the
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same metrics with respect to other baseline techniques. Every
experiment was repeated 20 times per program to account for
the non determinism of the algorithms involved. Moreover, we
checked whether there is a statistically significant difference
between these distributions by using the Wilcoxon rank sum
test. When the p-value is smaller than 0.05, we consider that
there is a significant difference between IFRIT and the best
performing generator between the opponents.

The last part (RQ3) compares the ability of IFRIT to detect
mutants and real faults with respect to the baseline tools.
We dedicate one hour of testing time per technique for each
program point.

VII. EXPERIMENTAL RESULTS

A. Reachability and Uniformity

Configuration Scale Factors Reachability
A 1,2,3 90%
B 1,2,3,4,5 100%
C 3,4,5,6,7 92%
D 1,2,5,10 87%
E 1,2,5,10,100 83%

TABLE I

Table I shows the reachability obtained with different con-
figurations of scale factors of IFRIT. Configuration B achieves
the highest score in terms of reachability. When only a few
scale factors are used (i.e., Configuration A), IFRIT does not
explore enough the input space of the programs and does not
generate enough different inputs within the same episode. The
problem with the other configurations (i.e., Configurations C-
D-E) is that they tend to generate sparse inputs, which do not
explore accurately the neighborhoods of the inputs that are
close to those reaching the program point. Configuration B
has enough scale factors to explore the input space at large,
but at the same time it has factors that are small enough to
avoid overly big jumps in the input space.

RQ0: Configuration B achieves the highest score in
terms of reachability. Hence it has been selected as the
default configuration of IFRIT.

Table II shows the comparison between IFRIT and baseline
tools when dealing with programs that accept only numeric
inputs, as DFT can handle only this type of programs. We
chose a program point at the beginning of each branch of each
program in our corpus to measure reachability and uniformity.
When there is a statistically significant difference between
IFRIT and the second best performing generator according to
the Wilcoxon test (p-value < 0.05), we show the performance
metric in boldface, including the Vargha-Delaney effect size
in brackets (N = Negligible; S = Small; M = Medium; L =
Large).

To measure reachability, we read the traces produced by the
instrumentation and verified that the flag of the program point
is active for the given test case. We calculated the percentage
of tests that reached their target program points for each test

suite and show their descriptive statistic in Table II (mean).
This table shows that the Random has the worst reachability
results (around or lower than 50%), and Random Mutations
behaves similarly. DFT performs well on the programs coming
from CodeFlaws. The metric “Time to IFRIT” (i.e., T. to
IFRIT) in Table II is computed for Random as the hypothetical
time in minutes needed to produce the same number of
inputs that reach the target as IFRIT by continuing random
generation beyond the test suite size limit (indicated in column
2). For instance, if the test suite size is 2000 and the IFRIT
reachability is 90% (Random reachability is 40%), we know
that in total IFRIT has been able to produce 1800 (Random:
800) inputs that reach the target. Hence, the execution time
of Random should be multiplied by a factor ×2.25 (i.e.,
1800/800) to generate the same number of reaching inputs
produced by IFRIT.

On simple programs, like the ones contained in CF, there is
no advantage in using IFRIT rather than a random algorithm.
In fact, the time to achieve reachability with Random is lower
than the time that IFRIT takes to generate the same amount of
inputs that reach the target. Instead, on tcas it is clear that a
random generator can not match the performance of IFRIT in a
reasonable amount of time. Considering DFT, its reachability
on CF is close to that of IFRIT. This could be due to the
simplicity of the programs that the CF repository contains.
On tcas, IFRIT performs better than DFT, and the difference
is statistically significant. This could be due to the higher
complexity of the program under test, which the symbolic
execution component of DFT can not handle efficiently.

We measured the uniformity of the approaches by running
the L2-test, which requires the definition of a metric of
distance and of the associated ε-margin. We used ε = 0.05.
This distance is smaller than the traditional distance from
the state-of-the-art experiments, where it is generally around
0.25 [36], hence setting a stricter criterion for the L2-test. We
limited the number of samples generated for the experiments
considering the following domain sizes: 2,000, 6,000, 12,000,
and 24,000, respectively. The L2-test results are shown in
Table II. Percentages represent the proportion of test suites
generated for each program point that passed the L2-test.
Because it samples directly from the uniform distribution,
Random passes the L2-test in all cases by construction (its
value is always 100%). Hence, it is not included in Table II.
As we can see, IFRIT achieves significant improvements in
almost every scenario w.r.t. DFT.

Table III shows the comparison between IFRIT and base-
lines tools when dealing with programs that accept string
inputs. In this scenario, we were not able to test DFT since it
only generates numeric inputs. The Random string generator,
which builds up a random string length at first, and then
it generates random characters to fill the string, shows the
worst reachability results. We do not report its uniformity
results because it generates a uniform distribution by construc-
tion. Random Mutations, which randomly mutates previously
computed strings, performs better than Random. Still, the
reachability of IFRIT is higher than that of Random Mutations,
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Repo IFRIT DFT Random Random Mutations

Size Reach. Unif. Time Reach. Unif. Time Reach. Time T. To IFRIT Reach. Unif. Time T. To IFRIT

CF

2000 100% 100%(M) 468 100% 85% 158 48% 8 17 60% 90% 12 20
6000 100% 95% (S) 468 99% 85% 483 51% 25 49 70% 90% 28 40

12000 88% 95% (M) 468 82% 80% 683 52% 53 90 53% 85% 59 98
24000 84% 90% (L) 468 81% 60% 1071 53% 97 153 51% 85% 108 178

tcas

2000 95% (S) 95% 477 85% 90% 161 9% 23 243 24% 85% 29 115
6000 93% (M) 90% 477 83% 85% 476 10% 70 651 20% 90% 82 381

12000 90% (M) 95% (S) 477 80% 85% 657 13% 140 969 19% 85% 157 744
24000 86% (S) 95% (S) 477 78% 85% 1034 13% 280 1852 14% 85% 284 1745

TABLE II
COMPARISON ON MEAN REACHABILITY AND MEAN UNIFORMITY ACROSS THE CONSIDERED TOOLS. BOLDFACE HIGHLIGHTS THE BEST RESULTS, WHEN
STATISTICAL SIGNIFICANCE IS REACHED (THE EFFECT SIZE IS SUMMARIZED IN BRACKETS: N = NEGLIGIBLE; S = SMALL; M = MEDIUM; L = LARGE).

with statistical significance and large effect size. Looking
at the metric “Time To IFRIT”, on simple programs (e.g.,
printtokens, and printtokens2 ), both Random and Random
Mutations are more convenient to use than IFRIT. IFRIT
becomes more convenient to use when dealing with more
complex programs (e.g., gzip and grep) and a test suite of
size 6000. Figure 4 shows the reachability of the different
generators on tcas (with test suite size: 12,000) over time.
Random is the fastest to terminate, but its reachability is low
compared to the other generators. DFT reaches a plateau after
500 minutes and remains quite stable until the end. This plot
confirms that IFRIT is faster than DFT, and achieves better
results than Random and DFT.

Fig. 4. Reachability over time for IFRIT, DFT, and Random on tcas (with
test suite size: 12,000).

RQ1: IFRIT produces test suites with a close to uni-
form distribution and it reaches the target program
point 85% of the times on average.

RQ2: IFRIT improves reachability and uniformity with
respect to the baselines and state-of-art tools.

Fig. 5. Example of conditional branch from tcas, where the DFT parame-
terized constraints are unsatisfiable or divergent, while IFRIT input mutations
are guided toward the target.

Qualitative Analysis: Figure 5 shows an excerpt
from tcas, which includes a target program
point controlled by the condition enabled &&
((tcas_equipped && intent_not_known) ||
!tcas_equipped). The boolean variables that appear in
this condition are defined in previous statements as boolean
expressions that involve input variables (identifiers made of
words starting with a capital letter and continuing with lower
case letter, such as Other_Capability) and constants
(upper case identifiers, such as TCAS_TA).

The symbolic execution step of DFT will replace all pro-
gram variables (e.g., tcas_equipped) with the expressions
defining them along the path of interest and will repeat the
process recursively until only input variables and constants
are left. In the example in Figure 5, such symbolic substi-
tution produces a rather complex boolean expression for the
condition controlling the target. Indeed, the resulting symbolic
condition contains 6 distinct input variables and 4 distinct
constants, and involves 8 boolean or relational operators.
Then, DFT relaxes the constraints by introducing parameters
to be optimized by a search algorithm. However, due to the
complexity of the parameterized expression, the SMT solver
executed to find a solution either finds no solution (8% of
the cases) or finds a diverging solution, i.e., a solution that
respects the parameterized constraints but do not lead to the
target.

On the contrary, the incremental input mutation process of
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Repo IFRIT Random Mutations Random

Size Reach. Unif. Time Reach. Unif. Time T. To IFRIT Reach. Time T. To IFRIT

printtokens 2000 89% (L) 90% 523 51% 100% 70 123 40% 58 129

6000 86%(L) 85% 501 60% 95% 130 186 39% 112 246

printtokens2 2000 88% (L) 85% 502 56% 85% 74 116 37% 62 147

6000 84%(L) 90% 490 65% 85% 134 173 39% 117 252

flex 2000 83% (L) 80% 496 22% 85% 69 260 13% 65 415

6000 80% (L) 85% 478 32% 90% 123 307 15% 123 656

gzip 2000 70% (L) 85% 533 14% 85% 87 435 8% 75 656

6000 70% (L) 85% 520 22% 85% 160 509 10% 137 959

grep 2000 72% (L) 85% 487 12% 80% 92 552 9% 81 648

6000 71% (L) 85% 483 24% 85% 174 514 13% 143 781

TABLE III
REACHABILITY AND UNIFORMITY ACROSS THE CONSIDERED TOOLS. BOLDFACE HIGHLIGHTS THE BEST RESULTS, WHEN STATISTICAL SIGNIFICANCE IS

REACHED (THE EFFECT SIZE IS SUMMARIZED IN BRACKETS: N = NEGLIGIBLE; S = SMALL; M = MEDIUM; L = LARGE).

Repo Mutants Faults

IFRIT DFT Random Rand. Mut. IFRIT DFT Random Rand. Mut.

CF 89%(S) 79% 71% 72% 81% 80% 74% 72%

tcas 85%(M) 73% 7% 10% 65% (S) 55% 10% 13%

IFRIT Rand. Mut. Random IFRIT Rand. Mut. Random

printtokens 80% (L) 32% 23% 73% (L) 40% 26%

printtokens2 74% (L) 38% 27% 75% (L) 35% 28%

flex 70% (L) 32% 25% 81% (L) 28% 23%

gzip 74% (L) 15% 13% 78% (L) 12% 17%

grep 70% (L) 14% 9% 73% (L) 9% 14%

TABLE IV
MUTATION SCORE AND FAULTS DETECTED ON THE TWO REPOSITORIES IN A FIXED TIME BUDGET (ONE HOUR). BOLDFACE HIGHLIGHTS THE BEST

RESULTS, WHEN STATISTICAL SIGNIFICANCE IS REACHED (THE EFFECT SIZE IS SUMMARIZED IN BRACKETS: N = NEGLIGIBLE; S = SMALL; M =
MEDIUM; L = LARGE).

IFRIT can find a solution by exploring the neighborhood of
previously attempted candidate inputs. While initially such a
search process is mostly random, once any viable solution is
found, the positive reward received by the RL algorithm is
consolidated into its exploration policy. Hence, in the next
iterations the RL algorithm will exploit such accumulated
knowledge to select the actions (input mutations) that are more
likely to lead to the target. At the same time, as a larger reward
Γ1 is granted only when new inputs that reach the target are
generated, the learned policy will avoid the mere repetition
of previous actions, which would re-generate the same inputs
multiple times (this is associated with a smaller reward Γ0),
and will promote diversity in the generation process.

Overall, reachability of IFRIT for this target branch was
92%, while DFT had a reachability of 80%. At the same time,
IFRIT passed the uniformity L2 test 90% of the times.

B. Mutation Score and Faults Detected

We evaluate IFRIT in terms of mutation score and number
of faults detected and compare it with the baseline techniques.

We created up to 100 mutants per program using Milu [37].
We did not filter the generated mutants. We used the same
test suite on both the mutant and the original program to see
if they produce different results. When the test results differ,
we conclude that the test suite strongly kills the mutant. The
mutation score represents the percentage of mutants that were
killed. We used the alignment algorithm described in Section
VI to determine the program point where the mutation or
the fault is located. We allocate one hour of testing time per
technique for each program point.

Table IV shows the mutation score and percentage of
faults detected for each technique and repository. On numeric
inputs, we compare Random, Random Mutation, DFT, and
IFRIT. On CF, IFRIT performs statistically better than DFT
in killing mutants. The effect size is small. On tcas, IFRIT is
statistically better both in killing mutants and in fault detection.
Considering the programs that accept string inputs, IFRIT
reaches up to 61% improvement in mutation score and up
to 59% improvement in detecting real faults.

Figure 6 shows the asymptotic behavior of the different
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Fig. 6. Mutation score over time for IFRIT, DFT, and Random on tcas.

generators on tcas. DFT reaches a plateau and remains quite
stable earlier than IFRIT, which keeps a positive derivative
all over the allotted time budget, while Random and Random
Mutations are not enough powerful to kill a significant pro-
portion of mutants. This plot confirms that IFRIT outperforms
the rest of the tools, achieving better results even on the SIR
repository.

RQ3: On every repository, IFRIT performs better than
the baselines, with an improvement between 18% and
78% on mutation score, and between %7 and %61 on
fault detection.

VIII. EXTENSIONS AND LIMITATIONS

A. Future extensions

The current implementation of IFRIT is limited to the
manipulation of numeric and string inputs only. However
IFRIT can be extended to deal with types such as structures
and pointers, by recursively applying the generators for strings
and numbers, for structure fields that belong to these two types,
and by choosing abstract memory references to typed data
structures from a pool of available memory references, when
pointers are used as structure fields. This extension of IFRIT
is part of the ongoing tool development.

Another potential extension of IFRIT would be to add
support for other programming languages. Given the black box
nature of the RL algorithm being used, the main limitations
are technological (e.g., how to collect coverage information)
rather than conceptual.

B. Threats to Validity

Construct Threats. Our definition of diversity may pose a
threat to construct validity. Due to its grounding on informa-
tion theory, we used uniformity as a measure of diversity.

Other authors, on the other hand, use test case similarity
metrics. It is possible that different findings would have been
obtained if similarity measures had been used instead of
relying on diversity/distance.

External Threats. Our experiments are performed on open-
source code repositories. Although our subjects have been pre-
viously used in the literature [7], [38], [39], our results might
not generalize to other subjects or programming languages.

IX. CONCLUSION

IFRIT improves the quality of fault detection and mutation
killing when a focused test suite that reach a given target is to
be generated automatically. By using Deep RL, our approach
enhances the diversity of the test suite, making the input
distribution close to a uniform distribution. Empirical results
show that the quality of the test suites generated by IFRIT
significantly outperforms random generation and the state-of-
the-art tool DFT. Moreover, IFRIT is faster in generating big
test suites since it does not rely on symbolic execution.
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