
A Family of Experiments to Assess the Impact of
Page Object Pattern in Web Test Suite Development

Maurizio Leotta∗, Matteo Biagiola†, Filippo Ricca∗, Mariano Ceccato‡, Paolo Tonella§
∗ Dipartimento di Informatica, Bioingegneria, Robotica e Ingegneria dei Sistemi (DIBRIS), Università di Genova, Italy

† Fondazione Bruno Kessler, Trento, Italy
‡ Dipartimento di Informatica (DI), Università di Verona, Italy

§ Software Institute - Università della Svizzera italiana, Lugano, Switzerland
maurizio.leotta@unige.it, biagiola@fbk.eu, filippo.ricca@unige.it, mariano.ceccato@univr.it, paolo.tonella@usi.ch

Abstract—Automated web testing is an appealing option, espe-
cially when continuous testing practices are adopted. However,
web test cases are known to be fragile and to break easily when
a web application evolves. The Page Object (PO) design pattern
addresses such problem by providing a layer of indirection
that decouples test cases from the internals of the web page,
where web page elements are located and triggered by the
web tests. However, PO development could potentially introduce
an additional burden to the already strictly constrained testing
activities.

This paper reports an empirical investigation of costs and
benefits due to the introduction of the PO pattern in web test suite
development. In particular, we conducted a family of controlled
experiments in which test cases were developed with and without
the PO pattern. While the benefits of POs did not compensate
for the extra development effort they require in the limited
experimental setting of our study, results indicate that when the
test suite to be developed is at least 10× larger, test development
becomes more efficient with than without POs.

Index Terms—End-to-End Testing, Web Testing, Family of
Experiments, Page Object, Selenium Web Driver.

I. INTRODUCTION

Testing web applications is a major challenge for software
companies. Manual testing is labour-intensive, error-prone,
and costly. It is also not compatible with agile development
and continuous testing. Test automation frameworks and tools
represent a valid alternative. Indeed, they have reached a high
level of maturity and popularity, as in the case of Selenium
WebDriver [1]. These tools usually work at the presentation
level, interacting with the web elements that are visualized on
the web page, as seen by the end-users. This kind of testing
is called end-to-end (E2E) testing, because the application is
tested as a whole system, under execution scenarios similar to
the end-user ones: test cases submit inputs and receive outputs
through the same web pages involved in end-user interactions.

With Selenium WebDriver, testers use a high-level program-
ming language (e.g., Java) to develop test cases that consist of
Selenium commands simulating the user’s actions and retrieving
information to verify the expected results. Then, test cases are
executed in an unattended way by Selenium.

Even if test automation can increase the overall software
quality [2], it comes with downsides. In fact, automated test
cases are often fragile, i.e., when the web application evolves
to accommodate requirements changes, test cases may easily

break, and testers must correct them. This is especially true
when test cases are strongly coupled with the web application
under test [3]. For instance, a test case that locates a web page
element in a list based on its index may no longer work if
the position of such element in the list changes when the web
application evolves.

Recently the Page Object (PO) design pattern has emerged
as an important solution and best practice to address such
test maintenance difficulties, reducing code duplication and
lowering the coupling between test cases and the web appli-
cation under test [4]. Although there is empirical evidence on
the benefits associated with the adoption of the PO pattern
during maintenance of web test suites [5], it is not clear if
such adoption justifies the initial additional effort needed to
implement the page objects (POs). Building POs for a web
application is in fact a non-trivial activity, which may require
substantial effort.

As a preliminary step to understand if the usage of POs
pays off, we have designed and executed a family of three
experiments with MSc and PhD students from different
universities, with the goal of investigating the impact of the
PO pattern on the development of web test cases. Since we
are interested in comparing the implementation effort between
PO-based test cases and non PO-based ones, our family of
experiments has been designed with two treatments (with and
without POs). To balance the experimental design for the
learning effect, we used two different web applications (i.e.,
the objects of the experiments) and participants were asked to
implement the test cases with each treatment in two consecutive
laboratories using different objects. In our experiments, the
test case development time increased significantly when POs
were adopted, but such increment becomes negligible when
the test suite size grows, because the methods provided by
each PO are reused many times by different test cases. For test
suites more than 10 times larger than those developed in our
experiment (constrained to two hours of test case development),
the adoption of POs is expected to give a positive return of the
investment and test case development becomes more efficient
with POs than without POs. It is reasonable to assume that
such a test suite size is frequently reached in industrial settings.

The paper is organized as follows: Section II provides some
background on the Page Object design pattern. Section III

describes the definition, design, and the settings of the family of
experiments. Section IV presents the quantitative and qualitative
results of the experiments we conducted. Section V describes
the related work, while conclusions and future work are given
in Section VI.

II. THE PAGE OBJECT

The Page Object (PO) [4] pattern is a quite popular web
test design pattern, which aims at improving the test case
maintainability and reducing the duplication of code. A PO is
a class that represents the web page elements as a series of
objects, and that encapsulates the features of the web page into
methods. Adopting the PO pattern in test cases allows testers
to follow the Separation of Concerns design principle since
the test scenario is decoupled from the implementation. Indeed,
all the implementation details are moved into the POs, which
represent bridges between web pages and test cases, with the
latter only containing the test logic. Thus, all the functionalities
to interact with a web page are offered in a single place, the
PO, and can be easily called and reused within any test case.
The use of the PO pattern reduces the coupling between web
pages and test cases, promoting reusability, readability and
maintainability of the test suites [5], [6].

Figure 1 shows a web page of EXPRESSCART, one of
the web applications used in our experiment. The left-hand
side of Figure 1 (top) shows a screenshot of the products
page of EXPRESSCART. On the right-hand side, at the top,
there is an excerpt of the source code that displays the search
functionality in the products page. Both the input textbox and
the search button have an id that identifies them uniquely

id="btn_search"

@Test //test case without Page Objects

public void testSearchOK() {

WebDriver driver = new FirefoxDriver();

driver.get("https://www.expresscart.com");

driver.findElement(By.id("search")).sendKeys("Boot");

driver.findElement(By.id("btn_search")).click();

WebElement rangerBoot = driver.findElement(

By.xpath("(//h3[@class="product-title"])[1]"));

assertEquals("Ranger Boot",rangerBoot.getText());

driver.quit();

}

id="search"

<div>

<input id="search"

placeholder="Search the shop">

<button id="btn_search">

Search</button>

</div>

Fig. 1. EXPRESSCART products web page: excerpt of the page and the
corresponding source code (top) and search test (bottom)

in the hierarchical structure of the web page, called DOM
(Document Object Model).

The bottom of Figure 1 shows a test case that exercises
the search functionality of EXPRESSCART. The test case is
implemented in Java, and it uses the Selenium WebDriver [1]
framework to interact with the browser. In a nutshell, Selenium
WebDriver interacts with the web browser, allowing a test case
to navigate the web application under test as a user would (e.g.,
clicking on buttons and links, submitting forms, etc.). At line 2,
the driver that will send commands to the Firefox browser
is instantiated. The statement at line 3 starts up the Firefox
browser and the statement at line 4 makes the browser load the
first page of the web application under test (the products page
of EXPRESSCART). At line 5, the driver is used to locate the
input textbox of the search functionality within the web page
through its id (i.e., "search") and the sendKeys method
of the resulting web element is used to write the value "Boot"
into the input textbox. With the same location mechanism (i.e.,
the id) the statement at line 6 locates the search button and
clicks on it so that the web page is updated with all the products
whose name matches the search string. At line 7-8 the test
locates the web element that contains the name of the first
product in the resulting page through an XPath, a location
technique that traverses the DOM tree starting from the root
node to find the web element of interest. At line 9 the test
checks that the name of the located product matches the string
"Ranger Boot", which is the product expected to be in the
list of products after the search operation is performed. The
last statement at line 10 closes the browser and ends the test
case.

// ProductsPage Page Object

public class ProductsPage {

private final WebDriver driver;

public ProductsPage(WebDriver driver) {

this.driver = driver;

}

public ProductsPage search(String productName) {

driver.findElement(By.id("search")).sendKeys(productName);

driver.findElement(By.id("btn_search")).click();

return new ProductsPage(driver);

}

public String getProductName(int productOrder) {

return driver.findElement(By.xpath("(//h3[@class="product-title"])["

+ productOrder + "]")).getText();

}

}

@Test //test case with Page Objects

public void testSearchOK() {

WebDriver driver = new FirefoxDriver();

driver.get("https://www.expresscart.com");

ProductsPage productsPage = new ProductsPage(driver);

productsPage = productsPage.search("Boot");

assertEquals("Ranger Boot", productsPage.getProductName(1));

driver.quit();

}

Fig. 2. EXPRESSCART ProductsPage PO (top) and search test using PO
(bottom)

Figure 2 shows how the same test case can be refactored
using the PO pattern. The top part of the figure shows the
code of the ProductsPage PO (a Java class) that models
the products web page of EXPRESSCART (left hand side of
Figure 1). In the figure, only two methods are shown, namely
the search method and the getProductName method. The
first one deals with filling in the input search textbox with the
string passed as a parameter and clicking the search button; the
second one retrieves the name of the product in the list, whose
index is also passed as parameter. Therefore, the search test can
be refactored as Figure 2 (bottom) shows in the bottom part.
Assertions should not be part of a PO as including assertions
mixes the responsibilities of providing access to page data with
assertion logic, and leads to a bloated PO [4].

III. DEFINITION, DESIGN AND SETTINGS OF THE FAMILY

This section describes the definition, the design, and the
settings of the family of experiments we conducted in a
structured way, following the template and the guidelines by
Wohlin et al. [7].

Table I summarizes the main elements of the experiments.
The goal of the study is to investigate the impact of adopting
the PO pattern on the development of web test cases (and thus
of web test suites), with the purpose of evaluating how such
pattern influences the development effort. The quality focus
regards how the adoption of the PO pattern affects the time
testers employ to develop web test cases.

The results of the experiments are interpreted regarding two
perspectives: (1) researchers interested in empirically evaluating
the effects of adopting the PO pattern and (2) quality managers
who want to understand what the effort is, in terms of time, of
writing the POs. This is the first step to understand whether
the usage of POs pays off when facing actual web test case
development tasks.

The context of the study is defined as follows: the participants
are students who are assigned to web test case development
tasks, while the objects are two open-source web applications.
We collected empirical data from three experiments: the first
with 9 MSc students of the University of Trento, attending a
course on Security Testing; the second one involved 10 MSc

students of the University of Genova, attending a course on
Advanced Software Engineering; and finally, the last with 17
PhD students attending a PhD school on Automated Software
Testing.

For replication purposes, the experimental package has been
made available [8].

The research questions of the study are the following:

RQ1: What is the impact of adopting the PO pattern on the
development effort of web test cases?

To quantitatively investigate such a research question, we
measured the time spent by each student to develop correct
test cases in the assigned web test suite. We checked the
correctness of the implemented test cases by executing them
(we considered a test case as wrong if it fails) and by manually
checking the presence of assertions.

In case of test suites implemented with the PO pattern, since
it was challenging1 to determine which POs methods were
created during the development of the test cases, we applied
an approximation. We decided to uniformly distribute the total
time the student spent to develop the POs on all the correctly
implemented test cases in that test suite. In other words, we
charged each correctly implemented test case with a uniform
fraction of the total POs development time.

RQ2: How does the impact of adopting the PO pattern change
when it is distributed on a growing number of test cases?

In order to answer RQ2, we simulated the situation of larger
test suites with respect to the ones assigned and implemented
by the students in our experiments that are in the order of
dozens of test cases. Then, similarly to RQ1, we distributed
the total time for the development of all the POs (if any)
across all the correctly implemented test cases. In particular,
we considered two situations. The first one in which the test
suites are ten times larger, i.e., in the order of hundreds of

1Note that, when creating a test suite, the POs, and even the single PO
methods can be refined during the development of different test cases. This
makes it hard to assign the correct fraction of time spent on the modified
portion of the PO to the correct test case. Another problem correlated to
assigning the correct PO development time to each test case is connected with
the tests development order: in fact, the development time is assigned to the
first test case that requires a particular PO or PO method.

TABLE I
OVERVIEW OF THE FAMILY OF EXPERIMENTS

Goal Investigate the impact of adopting the PO pattern on the development of a web test suite

Quality Focus Effect of PO pattern adoption on time testers employ to develop web test cases

Context Objects: EXPRESSCART and ADDRESSBOOK web applications
Subjects: 19 (9+10) master students and 17 PhD students

Null Hypotheses
1. No difference in efficiency of development task PO-No/PO-Yes (case 1×)
2. No difference in efficiency of development task PO-No/PO-Yes, when test suite is 10× larger (case 10×)
3. No difference in efficiency of development task PO-No/PO-Yes, when POs are already available (case INF)

Treatments PO-Yes, PO-No

Co-Factors Web Application (app), Degree (deg), Experiment (exp), Laboratory (lab), LoC of a test case (loc)

Dependent Variable Time to correctly develop a test case

test cases (abbreviated with 10× in comparison to 1× used
for RQ1) than the original ones and the second one, where the
size of the test suites is much bigger, such that the quote of the
POs in terms of time on the single test case tends practically
to zero (abbreviated with INF). In the second situation, we
simulate the case in which the POs for a given web application
under test are already available (e.g., from past development
iterations or generated automatically by APOGEN [9]) or are
used for the development of an extensive test suite.

Distributing the collected total time to develop all the POs in
a web test suite across an increasing number of test cases (case
10× and INF) is justified by the fact that the number of possible
POs is limited by the number of web pages (e.g., login, home,
settings, etc.) or components of web pages (navigation bar,
menu, etc.). Instead, the number of test cases is only limited
by the number of scenarios used to exercise a web application.
Since the latter is usually much higher than the former, the
cost of developing the POs on a single test case diminishes
when the total number of test cases increases.

A. Main factor and treatments

Our experiment has one main factor (PO adoption) and
two treatments: PO-Yes or PO-No. In the former case, the
participant is asked to implement the test cases using the PO
pattern (PO-Yes), while in the latter, the participant is asked
to implement the test cases without adopting the PO pattern
(PO-No).

B. Objects

The objects of the study are two web applications belonging
to two different domains, namely EXPRESSCART [10] and
ADDRESSBOOK [11]. These web applications have also been
used in other empirical studies (e.g., ADDRESSBOOK is used
by the authors of the SUBWEB [12], PESTO [13], and ROB-
ULA+ [14] tools). We have already introduced EXPRESSCART
in Section II, a full-fledged shopping cart built in Node.js,
frameworks (Express) and non-relational DBMS (MongoDB).
On the contrary, ADDRESSBOOK is a web-based address and
phone book, contact manager and organizer developed with
more standard technologies (PHP as server-side language and
MySQL as relational DBMS). Both the applications used in our
family of experiments are simple to use and straightforward to
understand, although non-trivial. ADDRESSBOOK is developed
without any server-side framework and it features 30k PHP LoC
and 1.3k JavaScript LoC, excluding libraries. EXPRESSCART
is built with the Express framework (a JavaScript server-
side framework) and it features 3k JavaScript LoC, excluding
libraries. The dimension of EXPRESSCART could appear small,
but it is in line with the size of web applications built using
frameworks. Indeed, Ocariza et al. [15] report an average of
1689 LoC for a dataset of web applications developed with the
AngularJS framework.

C. Participants

The experiments were conducted in research laboratories
under controlled conditions. The participants were 19 MSc in

total and 17 PhD Computer Science students. In the case of
MSc students, E2E testing, Selenium and POs were explained
during the course in which the experiment was conducted. In
the case of PhD students, the same concepts given to MSc
students were introduced in a practical lesson of the PhD school,
prior to the experiment. We used the same slides for all the
explanations. Before the experiment, during a training session,
all participants (both MSc and PhD) implemented a training
web test suite for a web application different from the two used
in the experiments (i.e., PETCLINIC [16]). Each participant
had to implement the web test suite with and without the PO
pattern, similarly to the tasks executed during the experiments.

D. Dependent Variable and Hypothesis Formulation

Our experiment has only one dependent variable, which is
the time to develop a test case. We used the time to correctly
develop a test case as a measure of efficiency for the test case
development task. We took into account the adoption of the
PO pattern, as previously explained in Section III.

In order to keep track of the time each participant spent
on each test case (and PO, in case of PO-Yes treatment) of
the given test suite, we used Rabbit [17], a statistics tracking
plug-in for Eclipse. Rabbit runs in background to record how
the user spends her time within Eclipse. It is then possible
to export such statistics in XML format. Since, among other
statistics, Rabbit tracks the time spent by the user working on
Java elements such as classes, we organized each test case in a
different Java class to measure the test case development time.
Another useful feature of Rabbit is that it only tracks the time
when Eclipse is active, meaning that if Eclipse’s window is
not focused, tracking is paused.

Based on the study definition reported above, we formulated
the following null hypotheses to be tested:

H01: Developing a correct test case adopting the PO pattern
is as efficient as developing a correct test case without the PO
pattern.

H02: Developing a correct test case adopting the PO pattern
is as efficient as developing a correct test case without the PO
pattern, when the cost for developing all POs is distributed
across a test suite ten times larger than the actual one.

H03: Developing a correct test case adopting the PO pattern
is as efficient as developing a correct test case without the PO
pattern, when POs are already available or their development
cost is negligible because it is distributed across an extensive
test suite.

Since it is difficult to foresee a possible trend, we opted for
the most conservative choice and formulated the null hypotheses
as a two-tailed hypotheses. In fact, on the one hand, developing
test cases without POs could be faster since there is no overhead
associated with the creation of POs. On the other hand, using
the POs could make development faster, since the overhead
for creating the POs might be balanced by their reuse across
test cases.

TABLE II
EXPERIMENTAL DESIGN (PO-YES = USING THE PO, PO-NO = WITHOUT USING THE PO)

Group A Group B Group C Group D

Lab 1 ADDRESSBOOK PO-Yes ADDRESSBOOK PO-No EXPRESSCART PO-No EXPRESSCART PO-Yes
Lab 2 EXPRESSCART PO-No EXPRESSCART PO-Yes ADDRESSBOOK PO-Yes ADDRESSBOOK PO-No

E. Co-factors

We also considered whether the efficiency is influenced by
other factors and how such factors interact with the main factor.
In particular, we considered the following co-factors:

1) The degree of the participants (MSc or PhD);
2) The object (i.e., the web application). Since we adopted

a balanced design with two objects, participants could
exhibit different performance on different objects. Hence
the object is also a factor;

3) The experiment session (i.e., lab). We measured whether
any learning effect occurred between the two labs;

4) The LoC of each test case (i.e., an approximate proxy
for the complexity of a test case). We measured whether
the impact of the PO pattern varies when the test case
size (i.e., the number of statements) varies.

F. Experiment Design

The experiment adopts a counter-balanced design to fit two
lab sessions (see Table II). Participants were split into four
groups balancing as much as possible their expertise in software
testing, test automation and programming. In the case of MSc
students, the division into groups was done considering the
evaluation of previous mandatory exercises executed during the
software engineering courses. In the case of PhD students, the
expertise was inferred by asking participants their skills about
(1) Java language, (2) usage of the Eclipse IDE, (3) software
testing and test case automation, and (4) DOM locators.

The counter-balanced design adopted in our family of
experiments ensures that each participant works on different
objects in the two labs, receiving each time a different treatment,
which is the best choice when a limited number of participants
is available. Moreover, a counter-balanced design limits as
much as possible learning effects [18].

G. Material, Procedure and Execution

The experiments took place in laboratory rooms and the
participants participated in two laboratory sessions (Lab 1 and
Lab 2) on two different days.

Before the first laboratory, during the training session, we
gave to the participants instructions on how to set up their
laptops, to avoid wasting time in software configuration during
the actual experimental session. Moreover, we distributed the
following material:

• links to the software needed to perform the experimental
tasks: the Eclipse IDE, Docker, Firefox, ChroPath [19] (a
Firefox add-on to create DOM locators) and Rabbit [17];

• links useful to download the two web applications used
as objects. ADDRESSBOOK and EXPRESSCART were
installed in a Docker container for which we created a

Docker image. Participants only had to download the
Docker image and start a Docker container using that
image with the command-line instructions we provided;

The day of the first laboratory we gave to the participants a
link useful to download:

1) a PDF file containing the detailed, step-by-step, textual
description of the test cases they had to implement
for the assigned web application. The test case textual
descriptions have been defined by the Authors, during the
planning of the experiment, to cover the most relevant
functionalities of the two web applications (i.e., the
objects).

2) a Java project containing the skeleton of the test suite to
be implemented (precisely, containing 20 test skeletons
for ADDRESSBOOK and 15 for EXPRESSCART), where
the Selenium test cases (one test case per class) were
left unimplemented.

While we specified the test case skeletons for each web
application, we did not specify anything about the POs to be
implemented. The reason is that the choices regarding which
POs to create and how to create them for the given test scenarios
are modelling choices associated with the adoption of the PO
pattern and we did not want to introduce any bias on such
choices.

Moreover, on the same day of the first laboratory, we gave to
participants a description of the experimental procedure, but no
reference was made to the study hypotheses. The experiment
has been carried out according to the following instructions:

1) Import the Java project of the assigned web application
containing the test case skeletons into Eclipse;

2) Activate Rabbit plug-in in Eclipse;
3) Develop the test cases, one after the other, following the

given descriptions;
4) Create an archive containing the modified test suite

project and send it to the experimenter by email;
During the experiment, teaching assistants were present in

the laboratory to prevent collaboration among participants and
to verify that the experimental procedure was respected.

H. Post-experiment questionnaire

After the two lab sessions, at the end of the second day,
participants filled a post-experiment survey questionnaire. This
is useful for receiving opinions on the experiment and on the
PO pattern and for finding justifications for the quantitative
observations. Answers were given on the following five-item
Likert scale [20]: strongly agree, agree, neutral, disagree,
and strongly disagree. The questionnaire the participants
filled in consists of five Likert scale-based questions (we

asked participants to choose a Likert-level for evaluating each
provided statement):
Q1 : Developing a PO based test suite requires more time than
developing a test suite without POs
Q2 : Developing a PO based test suite is more difficult than
developing a test suite without POs
Q3 : The effort required to write a test case together with a PO,
compared to writing a test case with no PO, was substantially
higher
Q4 : The additional effort required to write a PO is worth
being spent, because then writing test cases is substantially
easier
Q5 : The additional effort required to write a PO is worth
being spent, because then test cases are of higher quality

I. Pilot experiment

To assess the experimental material and to get an estimate
of the time needed to accomplish the tasks, a pilot experiment
with two MSc students in Computer Science at University
of Genova was performed. Both students had a consolidated
experience in developing E2E test cases with and without the
PO pattern, hence those concepts were not explained to them
before the actual development tasks. The students finished the
development of the assigned test suites (each student with both
treatments) in about three hours and gave us feedback on how
to improve the experimental material, in particular concerning
the description of the test cases to develop. Based on the pilot
experiment and taking into account the time constraints of the
labs in which the real experiments had to be carried out, we
decided to give participants two hours per laboratory (i.e., four
hours in total).

J. Analysis Procedure

To analyse the results of the experiment, we used Generalized
Linear Models [21] (GLMs for short). GLM incorporates
a number of different statistical models: ANOVA, ANCOVA,
MANOVA, MANCOVA, ordinary linear regression, t-test and
F-test. To test the efficiency of participants in performing the

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

PO−No PO−Yes

0
1

0
0

0
3

0
0

0
5

0
0

0

T
im

e
 (

s
)

Fig. 3. EXPRESSCART: Time required for developing each Test Case
partitioned by PO adoption

test development tasks (H01, H02, H03) we used a generalized
linear model (with family = gaussian) fitting the dependent
output variable efficiency measured in terms of time as
a function of the independent input variables (all factors,
including the main factor, i.e., PO adoption). A generalized
linear model allows us to test the statistical significance of
the influence of the independent factors on the time required
to complete the test case development tasks. We assume as
usual significance at 95% confidence level (α=0.05), so we
reject the null-hypotheses having p-value < 0.05. Moreover, in
order to understand the magnitude of the statistical difference,
we computed the effect size. In particular, we computed the
Cohen’s d [22]. The effect size is considered negligible if
|d| < 0.2; small if 0.2 ≤ |d| < 0.5; medium if 0.5 ≤ |d| < 0.8;
large if |d| ≥ 0.8.

IV. RESULTS

This section reports and discusses the results for each RQ.

A. RQ1: Impact of adopting the PO pattern

The boxplots reported in Figure 3 and Figure 4 show
the time required for correctly developing the test cases for
EXPRESSCART and ADDRESSBOOK, divided by treatment. The
sum of all the possible test cases developed by the participants
is 1260 (the 19 MSc and 17 PhD participants developed up to
20 tests for ADDRESSBOOK and 15 for EXPRESSCART). Since
we consider only correctly implemented test cases, boxplots
show only the 633 correct test cases, split into 370 test cases
developed without using the PO pattern and 263 with the
PO pattern. From the boxplots, it is apparent that participants
adopting the PO pattern were less efficient, i.e., employed
substantially more time for developing the test cases. This trend
is present in both applications, even if for EXPRESSCART the
difference between the two treatments is more evident.

Table III reports the analysis of the experimental data using
GLM. The model takes into account not only the effect of the
main factor (po, with or without PO pattern adoption) but also
all the co-factors we considered in our experimental setting,

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

PO−No PO−Yes

0
1

0
0

0
2

0
0

0
3

0
0

0
4

0
0

0

T
im

e
 (

s
)

Fig. 4. ADDRESSBOOK: Time required for developing each Test Case
partitioned by PO adoption

TABLE III
GENERALIZED LINEAR MODEL (GLM) ANALYSIS OF TIME WITH RESPECT

TO THE po MAIN FACTOR AND THE OTHER CO-FACTORS

Estimate Std. Error t value Pr(>|t|)

(Intercept) -868.4456 284.5748 -3.05 0.0024
po 614.3154 79.4645 7.73 0.0000

app 669.4192 88.7260 7.54 0.0000
deg 471.8295 188.8062 2.50 0.0128
exp -244.1798 116.5279 -2.10 0.0366
lab -245.0361 84.1699 -2.91 0.0038
loc 7.2324 2.9231 2.47 0.0137

i.e., the application (app, EXPRESSCART or ADDRESSBOOK),
the degree (deg, either MSc or PhD), the experiment (exp, first,
second or third replication), the laboratory (lab, either first or
second lab), and the length of the test cases (loc, lines of code).
Statistically significant cases are in boldface, considering a
95% confidence level (α = 0.05).

Data in Table III show that all the considered factors achieved
a statistical significance. Focusing on the main factor, po, and
looking at the positive value of the Estimate column, we can
conclude that adopting the PO pattern (i.e., moving from the
PO-No treatment to the PO-Yes one) increases significantly the
time required to develop the test cases.

For this reason, we can reject H01 and conclude that
Developers adopting the PO pattern are less efficient than
developers not adopting it.

This result is reasonable, since adopting the PO pattern
brings additional work compared to the development of bare
test cases and savings occur only when POs are reused many
times. Indeed, even if the steps of the test cases are the same,
PO adoption implies: (1) the design of the PO navigation
model, i.e., an abstract view of the navigational structure of
the web application, where each node corresponds to a PO;
(2) the implementation of the POs, including DOM locators
and navigation/observational methods. This conceptual (PO
modelling) and practical effort impacts negatively on the
development time when the total number of developed test
cases is low, e.g., 10-20, as in our experiment. On the contrary,
we conjecture that when the number of test cases increases,
the reuse of PO methods in different test cases could reverse
the trend and bring improvements in terms of development
efficiency. This conjecture is investigated in RQ2.

From Table III we can also analyse the role of the other
factors influencing the dependent variable. For the most influ-
ential ones (app and lab) we also report the interaction plots
with the main factor po. Interaction plots visually represent
the interaction between the effects of two factors.

Thus, let us first consider the application (app) and the
laboratory (lab). We can notice that both of them have
a significant effect. From the interaction plot reported in
Figure 5, we can notice that the participants spent more time
in developing test cases for EXPRESSCART. Moreover, the
difference in time is amplified when POs are adopted (PO-
Yes). The reason may be that EXPRESSCART is a single-page

0
5
0
0

1
0
0
0

1
5
0
0

2
0
0
0

Application

T
im

e

PO−No PO−Yes

 App:

ExpressCart

Addressbook

Fig. 5. Interaction plot of Time between Treatment (PO Pattern YES, NO)
& Application (EXPRESSCART, ADDRESSBOOK); diverging/converging lines
indicate potential interactions.

web application, while ADDRESSBOOK is a multi-page web
application. The specific nature of single-page applications
complicates the design/implementation of the POs. In fact, in
multi-page web applications, the creation of a PO can be guided
by the URL of the web page (since each web page is identified
by a unique URL) whereas, in single-page web applications,
the URL could be no longer meaningful (as in the case of
EXPRESSCART) and each PO has to be created based on the
logical meaning of the displayed web page. The difference
in time in the PO-No case can be explained considering that
EXPRESSCART is slightly more complex than ADDRESSBOOK.

From the interaction plot reported in Figure 6, it is quite clear
that adopting the PO pattern in the first lab required more time
than adopting the pattern in the second lab. This is probably

0
5
0
0

1
0
0
0

1
5
0
0

2
0
0
0

PO−Pattern

T
im

e

PO−No PO−Yes

 Lab:

first−day

second−day

Fig. 6. Interaction plot of Time between Treatment (PO Pattern YES, NO)
& Laboratory (First Day, Second Day); diverging/converging lines indicate
potential interactions.

due to a lack of training and experience. We provided some
training on the PO pattern, but it was probably not enough:
the PO design pattern needs time and practice to be applied
effectively and efficiently. From this result, we can speculate
that the effect on the time required to develop a test case
with the PO pattern is amplified in our experiment w.r.t. the
one that is likely to be observed with skilled developers (i.e.,
professional testers having experience in E2E testing).

Looking at the co-factor deg, we can observe that the degree
of the participants (i.e., being an MSc or PhD student) had a
significant impact in the expected direction. This is reasonable
since usually, the skills of PhDs attending a doctoral school
on testing are higher than the skills of MSc students. For
the same reason, the exp co-factor is also significant. Not
surprisingly, the loc co-factor is significant: longer test cases
require significantly more time to be developed than shorter
test cases.

Summary: the adoption of the PO pattern decreases the
efficiency of testers developing web test cases. This is true
in particular when: a) small test suites are developed (test
suites comprising 10-20 test cases), due to a low reuse of PO
methods across test cases; and, b) in the presence of testers
poorly skilled in E2E testing. Also the type of application
(single vs. multi-page) plays an important role: single page
applications complicate PO design/implementation, increasing
the gap between poorly and very skilled developers, in terms
of efficiency in PO development.

B. RQ2: Test Suite Size Influence

Table IV reports the GLM analysis in the simulated case
in which the cost of developing all POs is distributed across
a test suite ten times larger (i.e., case 10×) than the real test
suites developed in the experiments.

Also in this case, as done for RQ1, the model takes into
account all the considered co-factors. Statistically significant
cases are in boldface.

TABLE IV
GENERALIZED LINEAR MODEL (GLM) ANALYSIS OF TIME (CASE 10×)
WITH RESPECT TO THE po MAIN FACTOR AND THE OTHER CO-FACTORS

Estimate Std. Error t value Pr(>|t|)

(Intercept) 82.6199 254.9939 0.32 0.7461
po -106.2981 71.2044 -1.49 0.1361

app 435.1771 79.5032 5.47 0.0000
deg 278.6427 169.1802 1.65 0.1002
exp -166.5301 104.4151 -1.59 0.1114
lab -133.5374 75.4206 -1.77 0.0773
loc 11.2036 2.6193 4.28 0.0000

Table V reports the GLM analysis in the simulated case in
which the POs are already available, are automatically generated
or are reused a very large number of times, which corresponds
to the case where the time needed for developing the POs
approaches zero (i.e., the time required to develop page objects
is negligible compared to the time required to develop test
cases).

TABLE V
GENERALIZED LINEAR MODEL (GLM) ANALYSIS OF TIME (CASE INF)
WITH RESPECT TO THE po MAIN FACTOR AND THE OTHER CO-FACTORS

Estimate Std. Error t value Pr(>|t|)

(Intercept) 188.2938 253.7993 0.74 0.4585
po -186.3663 70.8708 -2.63 0.0088

app 409.1502 79.1307 5.17 0.0000
deg 257.1776 168.3876 1.53 0.1273
exp -157.9024 103.9259 -1.52 0.1293
lab -121.1487 75.0673 -1.61 0.1072
loc 11.6448 2.6070 4.47 0.0000

Focusing on the main factor (po), the two tables show that
when the number of test cases increases and PO methods
are reused more, the advantage of adopting the PO pattern
becomes apparent. In fact, comparing the main factor in the
three tables, we can see that: for 1× (Table III) the estimate
column is positive and the contribution significant, for 10×
(Table IV) the estimate column becomes negative, meaning that
now the usage of the PO pattern diminishes the time to develop
test cases instead of increasing it, but the contribution is not
significant (p-value = 0.1361) and finally, for INF (Table V) the
estimate column remains negative but the contribution turns to
be significant.

As a consequence, we cannot reject H02 but we can reject
H03. Thus, we can conclude that: Developers adopting the
PO pattern are more efficient than developers not adopting
it only when POs are already available or their development
cost is distributed across a reasonably large test suite (i.e.,
one covering the web application functionalities in depth, with
multiple test cases).

These results are also confirmed by looking at Table VI
showing the effect size (Cohen’s d) for the cases 1×, 10×
and INF computed between the two distributions of the times
(PO-Yes vs. PO-No). To appreciate the effect of the application
factor, results are partitioned by application.

TABLE VI
COHEN’S D OF TIME VS PO ADOPTION (PARTITIONED FOR APPLICATION)

IN CASES 1×, 10× AND INF

1× case 10× case INF case

ADDRESSBOOK -0.459126 0.243672 0.326870
EXPRESSCART -0.939566 0.031810 0.150949

In case 1× the Cohen’s d values are negative for both web
applications. This means that adopting the PO pattern has a
(large for EXPRESSCART and medium for ADDRESSBOOK)
negative impact on the time required to develop the test cases
(i.e., it increases the time). On the contrary, in the 10× case,
both Cohen’s d values become positive (i.e., POs diminish
development time). In particular, for ADDRESSBOOK we have
a “small” positive effect, while for EXPRESSCART the effect
is “negligible”, but still positive. Finally, the same trend is
appreciable also in the INF case where the effect size values

still increase for both applications, but by a much greater
amount.

Concerning the co-factors, the significant ones in the simu-
lated cases are loc and app (see Table IV and Table V). This
means that even when the PO development cost is distributed
across larger test suites, the contribution of these co-factors
continues to be significant.

Summary: our results show that the effect of adopting the
PO pattern on the time required to develop the test cases is
strongly dependent on the reuse level of the PO methods.

When the test cases reuse few methods in the POs, as in case
1×, the total development time of the test suite is higher when
the PO pattern is adopted. On the contrary, when each method
is reused at least ten times (as in case 10×) the adoption of the
PO pattern becomes convenient. It is important to notice that
reuse across hundreds of tests in a typical industrial context is
not difficult to reach.

C. Post Experiment Questionnaire

We used the answers to the questions Q1 to Q5 of the post-
experiment questionnaire to gain insights on the participants’
activity. Results are summarized in Table VII, split by MSc and
PhD students and considered all together. All students agree
in their answers to questions Q2, Q4 and Q5. In particular,
both categories of students are neutral on the difficulty of PO
adoption (Q2), they think that using the PO pattern eases the
development of web test cases (Q4) and improves web test
cases quality (Q5), i.e. test cases are more maintainable and
readable when the PO pattern is adopted.

TABLE VII
ANALYSIS OF POST QUESTIONS Q1 -Q5 FOR EACH DEGREE LEVEL AND

AGGREGATED. LIKERT SCALE LEVELS REPRESENT THE MEDIAN FOR EACH
QUESTION

M
Sc

(M
ed

ia
n)

Ph
D

(M
ed

ia
n)

A
ll

(M
ed

ia
n)

Q1: PO-Yes requires more time Agree Disagree Agree
Q2: PO-Yes is more difficult Neutral Neutral Neutral
Q3: PO-Yes requires more effort Agree Neutral Agree
Q4: PO-Yes test case writing easier Agree Agree Agree
Q5: PO-Yes test cases higher quality Agree Agree Agree

Concerning Q3, there is almost agreement. Overall, the
perceived effort in terms of time is in line with the quantitative
results shown in Table III. On the contrary, there is a remarkable
difference for Q1. For PhD students, the usage of POs does
not require more time w.r.t. developing a bare test suite, while
MSc students perceive the PO adoption more expensive in
terms of time.

We tried to understand the reason for this difference by
analysing the fraction of the test suites implemented during
the experiments. We found that MSc students correctly im-
plemented about 30% of the test cases with POs and 50%

without POs. On the contrary, PhD students implemented about
55% and 65% of the test suites respectively in the two cases.
Thus, the difference between using or not the POs is clearly
appreciable in the case of the MSc (close to a 2× factor) while
it is less evident in the case of PhD students. This could have
distorted the perceptions of PhD students.

D. Threats to validity

This section discusses the threats to validity that could affect
our results: internal, construct, conclusion and external validity
threats [7].

Internal validity threats concern factors that may affect a
dependent variable, in our case the time required to develop
the test cases. Since students participated in two labs, a
learning and fatigue effect might have intervened. Students
were previously trained and the chosen experimental setting
should have limited learning effects. However, our analysis
of co-factors shows some learning effect, in particular when
the PO pattern is adopted (see Figure 6). This shows that
mastering the PO pattern is not trivial and requires substantial
skills and experience. To reduce any fatigue effect, we chose to
execute the two lab sessions on different days. An additional
threat, that could add an additional confounding factor to the
experiment, concerns the specific applications used for the
experiment belonging to two different categories (single vs
multi-page web apps). Another possible threat could be related
to the textual descriptions of the test case, which affect the
test cases and the page objects to be implemented, and which
could give an advantage to a treatment with respect to the other.
We mitigated this threat by defining the test cases as usually
done in functional testing, i.e., by covering the most relevant
functionalities of the web application under test, regardless of
the POs that are eventually required for their implementation.

Construct validity threats concern the relationship between
theory and observation. They are mainly due to how we
measured the capability of a participant to develop a correct test
case and the time needed to do it. Thus, this threat is related to
how the correctness of the test case and time were measured.
The measurements we conceived to assess the correctness of
test cases are as objective as possible. Even if we have no
guarantee that the implemented test cases considered in the
analysis are correct, executing them and checking the presence
of assertions gave us a good level of confidence. The time
needed to develop the test cases and the POs was recorded
by an automated tool (Rabbit), reducing as much as possible
inaccuracies.

Threats to conclusion validity concern issues that may affect
the ability to draw a correct conclusion. They can be due to
the sample size of the family of experiments (36 participants
in total) that may limit the capability of statistical tests to
reveal any effect and to the chosen statistical tests. In our
family of experiments, we chose to use GLM (as done in
other recent empirical Software Engineering papers, e.g., [23],
[24]) to develop an optimal predictive model to predict the
time required to develop the test cases because this statistical
test is particularly robust (i.e., it does not give false rejections

of the null hypothesis) under deviations from normality and
homoscedasticity. Post experiment questionnaires, mainly in-
tended to get qualitative insights, were designed using standard
structure and scales [20].

Threats to external validity can be related to: (i) the choice of
simple web applications as objects and (ii) the use of students
as experimental participants. The size and complexity of the
two web applications are suitable for the time allotted to the
experiment but are significantly smaller than that of most
industrial web applications. It is possible that some phenomena
do appear only as the size scales up (both the size of the web
application and of the corresponding test suite) and, thus, they
are not observable in our experiments. We have simulated larger
sizes of test suites by distributing the PO development cost
across a larger number of test cases. As far as the participants
are concerned, we are aware that the expertise of students
may be different from that of professionals. However, finding
professionals available to conduct a demanding experiment as
the one we designed is not easy. This threat was mitigated
by: (a) considering students with different levels of education
(MSc and PhD); and, (b) performing a co-factor analysis by
deg, so as to take into account different skills and experience,
as occurring in our two populations of MSc and PhD students.

V. RELATED WORK

Empirical evidence on test automation is well represented
in the literature [25]–[27], while specific studies aimed at
assessing the effectiveness and usefulness of page objects as
a way to abstract the implementation details of a GUI are
extremely rare.

Martin Fowler was the first to describe this pattern under
the name Window Driver [1]. However, the term Page Object
has been popularised by the Selenium web testing framework,
becoming the standard, de-facto name. Van Deursen [28] goes
one step further and proposes a state-based formalization of
page objects, which can help testers to build the PO model,
representing both page objects and how to navigate from a
page object to another.

The empirical study by Leotta et al. [5] shows that test
suites developed with a programmable approach (Selenium
WebDriver) involve higher development but lower maintenance
effort w.r.t. test suites developed with a capture-and-replay
approach (Selenium IDE). This result is also due to the
introduction of the PO design pattern, able to decouple the test
logics from that of the application. The goal of our study is
different, even if related to the Leotta et al.’s study. In fact, we
are interested in quantifying the cost of using the PO pattern
within the programmable approach, rather than comparing two
different test case development approaches. In particular, our
goal was to understand if there is a test suite size at which the
benefits of reusing POs across test cases compensate for the
extra development effort required.

Another study, conducted in an industrial setting [29],
indicates a strong reduction in terms of time required and
the number of modified LoC to maintain a test suite when the
PO pattern is used. While in our study we evaluated only the

potential cost of introducing POs, considering also the benefits
of POs during maintenance activities is another interesting
direction that we will consider in future controlled experiments.

Building POs for web applications is considered by prac-
titioners as an expensive task, which is usually performed
manually. For this reason, some researchers proposed a solution,
implemented in the tool APOGEN [9], able to provide a
considerable degree of automation, hence reducing the effort for
the creation of POs. Although our goal is completely different,
both works are motivated by the adoption effort involved in
the usage of POs in test cases.

Yu et al. [30] claim to have developed a prototype capable
of automatically generating POs and PO based test suites.
Their prototype is based on feedback directed random test
generation. The SUBWEB tool [31] uses the PO model defined
by developers and applies a search-based approach, instead of
a random one, to generate test inputs and feasible navigation
paths.

While the perspective of automatically generating the POs
is very attractive and potentially very useful for practitioners,
existing proposals [9], [30] are still research prototypes and
their output requires manual intervention to fix the reverse-
engineered abstractions. On the contrary, our empirical study
shows that manual PO development is affordable and pays off
if the test suite size is reasonably large, at least ten times the
size of a test suite that a student can develop in two hours.

VI. CONCLUSIONS AND FUTURE WORK

We have conducted a family of three controlled experiments
with MSc and PhD students to measure how the adoption of
the PO design pattern impacts the time to develop a web test
suite of small size (10 to 20 test cases). We then simulated
the development of larger test suites by distributing the PO
development cost across a larger number of tests. The results of
our statistical analyses indicate that the benefits of PO adoption
in terms of higher developer’s efficiency can be appreciated
only with reasonably large test suites, estimated as at least 10×
larger than those developed by the students involved in our
two hours sessions. In a typical industrial web development
context, it is quite common to create test suites with hundreds
of test cases, hitting the point at which the PO pattern pays
off. It should also be noticed that the developers’ skills play
a statistically significant role. In an industrial context, where
web testing skills and domain knowledge are higher than those
reached by students during our two hours training session, the
benefits of PO adoption are amplified and are likely to become
apparent even with smaller size increase than our estimated
10× factor. Hence, our results can be deemed as conservative
overestimates of the turning point at which POs affect the
developers’ efficiency in a positive way.

In our future work, we will design and conduct controlled
experiments to measure the effects of the PO pattern during
software and test suite evolution. Similarly to Leotta et al. [29],
we also intend to conduct industrial case studies on the adoption
of the PO pattern.

REFERENCES

[1] “Selenium WebDriver,” https://www.seleniumhq.org/projects/webdriver/.

[2] M. Fewster and D. Graham, Software Test Automation: Effective Use of
Test Execution Tools. Boston, MA, USA: Addison-Wesley Longman
Publishing Co., Inc., 1999.

[3] F. Ricca, M. Leotta, and A. Stocco, “Three open problems in the
context of E2E web testing and a vision: NEONATE,” ser. Advances in
Computers, A. M. Memon, Ed. Elsevier, 2019, vol. 113, pp. 89–133.
[Online]. Available: https://doi.org/10.1016/bs.adcom.2018.10.005

[4] M. Fowler, “PageObject,” http://martinfowler.com/bliki/PageObject.html.

[5] M. Leotta, D. Clerissi, F. Ricca, and P. Tonella, “Capture-replay vs.
programmable web testing: An empirical assessment during test case
evolution,” in Proceedings of 20th Working Conference on Reverse
Engineering, ser. WCRE 2013. IEEE, 2013, pp. 272–281. [Online].
Available: https://doi.org/10.1109/WCRE.2013.6671302

[6] M. Leotta, D. Clerissi, F. Ricca, and P. Tonella, “Approaches
and tools for automated End-to-End web testing,” Advances in
Computers, vol. 101, pp. 193–237, 2016. [Online]. Available:
https://doi.org/10.1016/bs.adcom.2015.11.007

[7] C. Wohlin, P. Runeson, M. Höst, M. Ohlsson, B. Regnell,
and A. Wesslén, Experimentation in Software Engineering - An
Introduction. Kluwer Academic Publishers, 2000. [Online]. Available:
https://doi.org/10.1007/978-1-4615-4625-2

[8] “Complete experimental package for replication purposes,” http://sepl.
dibris.unige.it/ICST2020-exp-PO-replication.php.

[9] A. Stocco, M. Leotta, F. Ricca, and P. Tonella, “APOGEN: Automatic
page object generator for web testing,” Software Quality Journal
(SQJ), vol. 25, no. 3, pp. 1007–1039, 2017. [Online]. Available:
https://doi.org/10.1007/s11219-016-9331-9

[10] “ExpressCart: A fully functioning Node.js shopping cart with Stripe,
PayPal and Authorize.net payments.” https://github.com/mrvautin/
expressCart, 2019.

[11] “PHP Address Book: simple, web-based address and phone book,” https:
//sourceforge.net/projects/php-addressbook, 2017.

[12] M. Biagiola, A. Stocco, A. Mesbah, F. Ricca, and P. Tonella, “Web
test dependency detection,” in Proceedings of 27th Joint Meeting on
European Software Engineering Conference and Symposium on the
Foundations of Software Engineering, ser. ESEC/FSE 2019, 2019, pp.
154–164. [Online]. Available: https://doi.org/10.1145/3338906.3338948

[13] M. Leotta, A. Stocco, F. Ricca, and P. Tonella, “PESTO: Automated
migration of DOM-based web tests towards the visual approach,” Journal
of Software: Testing, Verification and Reliability (STVR), vol. 28, no. 4,
p. e1665, 2018. [Online]. Available: https://doi.org/10.1002/stvr.1665

[14] M. Leotta, A. Stocco, F. Ricca, and P. Tonella, “ROBULA+: An
algorithm for generating robust XPath locators for web testing,” Journal
of Software: Evolution and Process (JSEP), vol. 28, no. 3, pp. 177–204,
2016. [Online]. Available: https://doi.org/10.1002/smr.1771

[15] F. S. Ocariza Jr, K. Pattabiraman, and A. Mesbah, “Detecting
unknown inconsistencies in web applications,” in Proceedings of
32nd International Conference on Automated Software Engineering,
ser. ASE 2017. IEEE, 2017, pp. 566–577. [Online]. Available:
https://doi.org/10.1109/ASE.2017.8115667

[16] “AngularJS and Spring Boot version of the Spring Petclinic sample ap-
plication,” https://github.com/spring-petclinic/spring-petclinic-angularjs,
2019.

[17] “Rabbit: a statistics tracking plug-in for Eclipse.” https://code.google.
com/archive/p/rabbit-eclipse/, 2011.

[18] H. Motulsky, Intuitive biostatistics: a non-mathematical guide to statisti-
cal thinking. Oxford University Press, 2010.

[19] “AutonomIQ offers developers a platform (ChroPath) to generate and
validate unique selectors like in the devtools panel,” https://addons.mozilla.
org/en-US/firefox/addon/chropath-for-firefox/, 2019.

[20] A. N. Oppenheim, Questionnaire design, interviewing and attitude
measurement. Bloomsbury Publishing, 2000.

[21] J. A. Nelder and R. W. M. Wedderburn, “Generalized linear models,”
Journal of the Royal Statistical Society. Series A (General), vol. 135, no. 3,
pp. 370–384, 1972. [Online]. Available: https://doi.org/10.2307/2344614

[22] J. Cohen, “A power primer,” Psychological Bulletin, 1992. [Online].
Available: https://doi.org/10.1037/0033-2909.112.1.155

[23] M. Leotta, M. Cerioli, D. Olianas, and F. Ricca, “Two experiments
for evaluating the impact of Hamcrest and AssertJ on assertion
development,” Software Quality Journal (SQJ), 2020. [Online].
Available: https://doi.org/10.1007/s11219-020-09507-0

[24] M. Ceccato and R. Scandariato, “Static analysis and penetration
testing from the perspective of maintenance teams,” in Proceedings of
10th International Symposium on Empirical Software Engineering and
Measurement, ser. ESEM 2016. ACM, 2016, pp. 25:1–25:6. [Online].
Available: https://doi.org/10.1145/2961111.2962611

[25] F. Dobslaw, R. Feldt, D. Michaelsson, P. Haar, F. G. de Oliveira Neto,
and R. Torkar, “Estimating return on investment for GUI test
automation tools,” CoRR, vol. abs/1907.03475, 2019. [Online]. Available:
http://arxiv.org/abs/1907.03475

[26] E. Alégroth, R. Feldt, and P. Kolström, “Maintenance of automated
test suites in industry: An empirical study on visual GUI testing,”
Information and Software Technology, vol. 73, pp. 66–80, 2016. [Online].
Available: https://doi.org/10.1016/j.infsof.2016.01.012

[27] J. Kasurinen, O. Taipale, and K. Smolander, “Software test
automation in practice: Empirical observations,” Advances in Software
Engineering, vol. 2010, no. Article 4, 2010. [Online]. Available:
https://doi.org/10.1155/2010/620836

[28] A. van Deursen, “Testing web applications with state objects,”
Communications of ACM, vol. 58, no. 8, pp. 36–43, 2015. [Online].
Available: https://doi.org/10.1145/2755501

[29] M. Leotta, D. Clerissi, F. Ricca, and C. Spadaro., “Improving test suites
maintainability with the Page Object pattern: an industrial case study,”
in Proceedings of 6th International Conference on Software Testing,
Verification and Validation Workshops, ser. ICSTW 2013. IEEE, 2013,
pp. 108–113. [Online]. Available: https://doi.org/10.1109/ICSTW.2013.19

[30] B. Yu, L. Ma, and C. Zhang, “Incremental web application testing using
page object,” in Proceedings of 3rd Workshop on Hot Topics in Web
Systems and Technologies, ser. HOTWEB 2015. IEEE, 2015, pp. 1–6.
[Online]. Available: http://dx.doi.org/10.1109/HotWeb.2015.14

[31] M. Biagiola, F. Ricca, and P. Tonella, “Search based path and
input data generation for web application testing,” in Proceedings of
9th International Symposium on Search Based Software Engineering,
ser. SSBSE 2017, 08 2017, pp. 18–32. [Online]. Available:
https://doi.org/10.1007/978-3-319-66299-2_2

https://www.seleniumhq.org/projects/webdriver/
https://doi.org/10.1016/bs.adcom.2018.10.005
http://martinfowler.com/bliki/PageObject.html
https://doi.org/10.1109/WCRE.2013.6671302
https://doi.org/10.1016/bs.adcom.2015.11.007
https://doi.org/10.1007/978-1-4615-4625-2
http://sepl.dibris.unige.it/ICST2020-exp-PO-replication.php
http://sepl.dibris.unige.it/ICST2020-exp-PO-replication.php
https://doi.org/10.1007/s11219-016-9331-9
https://github.com/mrvautin/expressCart
https://github.com/mrvautin/expressCart
https://sourceforge.net/projects/php-addressbook
https://sourceforge.net/projects/php-addressbook
https://doi.org/10.1145/3338906.3338948
https://doi.org/10.1002/stvr.1665
https://doi.org/10.1002/smr.1771
https://doi.org/10.1109/ASE.2017.8115667
https://github.com/spring-petclinic/spring-petclinic-angularjs
https://code.google.com/archive/p/rabbit-eclipse/
https://code.google.com/archive/p/rabbit-eclipse/
https://addons.mozilla.org/en-US/firefox/addon/chropath-for-firefox/
https://addons.mozilla.org/en-US/firefox/addon/chropath-for-firefox/
https://doi.org/10.2307/2344614
https://doi.org/10.1037/0033-2909.112.1.155
https://doi.org/10.1007/s11219-020-09507-0
https://doi.org/10.1145/2961111.2962611
http://arxiv.org/abs/1907.03475
https://doi.org/10.1016/j.infsof.2016.01.012
https://doi.org/10.1155/2010/620836
https://doi.org/10.1145/2755501
https://doi.org/10.1109/ICSTW.2013.19
http://dx.doi.org/10.1109/HotWeb.2015.14
https://doi.org/10.1007/978-3-319-66299-2_2

