QSynth - A Program Synthesis based Approach for
Binary Code Deobfuscation

Robin David
Quarkslab
rdavid @quarkslab.com

Abstract—Assessing software robustness became arduous
given the broad adoption of obfuscation in the industry and
especially in mobile applications and embedded systems. As
such, deobfuscation is becoming crucially important. Obfuscation
usually concerns either target the control-flow or the data-flow
of the program. While standard static and dynamic analyses
suffer some shortcomings, Dynamic Symbolic Execution (DSE)
turns out to be very effective on control-flow obfuscation. Yet,
fewer approaches address issues raised by data-flow obfuscation.
Program synthesis appears to be a promising approach to target
such obfuscation. We present a generic approach leveraging both
DSE and program synthesis to successfully synthesize programs
obfuscated with Mixed-Boolean-Arithmetic, Data-Encoding or
Virtualization. The synthesis algorithm proposed is an offline enu-
merate synthesis primitive guided by top-down breath-first search.
We shows its effectiveness against a state-of-the-art obfuscator
and its scalability as it supersedes other similar approaches
based on synthesis. We also show its effectiveness in presence of
composite obfuscation (combination of various techniques). This
ongoing work enlightens the effectiveness of synthesis to target
certain kinds of obfuscations and opens the way to more robust
algorithms and simplification strategies.

I. INTRODUCTION

Context: Over the last two decades software obfus-
cation has gained in popularity as an approach to protect
programs against reverse engineering and tampering attempts.
Software obfuscation consists in a semantic-preserving trans-
formation of the original instance of a program P, into a
“unintelligible” version O(P), that is harder to analyse and
to understand. A large body of obfuscation techniques have
been proposed [12] that can roughly be classified into (i)
targeting the control flow (conditional branching and loop logic
of the code) and (ii) targeting the data-flow (namely variable
values of the program). Ultimately obfuscation strongly alters
the syntactic aspect of the control-flow logic or the data-
flow logic while preserving its semantic aspect. With the
goal of measuring the strength of obfuscation solutions, or
to facilitate the analysis of obfuscated malware, in parallel,
the research community has grown an interest in elaborating
novel approaches to defeat obfuscation. In particular, semantic-
based techniques have been proposed, like abstract interpreta-
tion [15], taint analysis [32] or symbolic execution [14], [5].

Workshop on Binary Analysis Research (BAR) 2020
23 February 2020, San Diego, CA, USA

ISBN 1-891562-62-2
https://dx.doi.org/10.14722/bar.2020.23009
www.ndss-symposium.org

Luigi Coniglio
University of Trento
luigi.coniglio @studenti.unitn.it

Mariano Ceccato
University of Verona
mariano.ceccato @univr.it

Problem: Techniques based on Dynamic Symbolic
Execution (DSE) is effective at solving boolean queries like
branching condition [27], thus promising to address control-
flow related obfuscation. However obfuscation like data encod-
ing [12] or Mixed-Boolean-Arithmetic (MBA) [34] targets the
data-flow and produce overly complex expressions from simple
constant values or expressions for which DSE hardly applies.
Indeed, checking the satisfiability of a boolean condition
is easier than encoding a query to find an alternative and
semantically equivalent expression.

To overcome this limitation, alternative approaches have
been proposed based on program synthesis [7], [6], [21], [26].
The advantage in using program synthesis over other deob-
fuscation techniques is that the former is less hindered by the
semantic complexity of the program under analysis as many of
them solely consider the input/output behavior. Moreover it can
in theory be applied regardless of the obfuscation technique in
use, while other deobfuscation techniques are challenged by
heavily obfuscated expressions and usually only applicable to
a subset of obfuscation techniques. Deobfuscation approaches
based on program synthesis are usually either enumerative [1],
[25], SMT-based [21] or stochastic-based [7], [30]. All of them
have to deal with an extremely large search space and hardly
scale on the program size. Thus the first research question
raised is RQ1: How to perform deobfuscation at scale by
optimizing the search on a large space?

Obfuscation hides the semantic of a program by increas-
ing its syntactic complexity. A whole variety of techniques
like opaque predicates, virtualization and CFG flattening can
be used to hinder the analysis. While black-box synthesis
techniques are not influenced by the syntactic complexity
of the program, a number of synthesis-based approaches to
deobfuscation involve some analysis of the program [7] to
reduce the search space problem (cf. RQ1). Although such
analysis steps help reducing the synthesis search space, they
also violate the black-box property and expose synthesis to the
syntactic complexity of the program. Thus the second research
question raised is RQ2: How to make synthesis resilient to
syntactic complexity and especially composite obfuscation?

Goal and Challenge: In this paper we are interested
in automatically synthesize expressions obfuscated with MBA,
data encoding and virtualization, to recover the original version
or a close semantically equivalent one. Yet, the end goal is
to produce, as much as possible, an equivalent program that
is more readable for a reverse engineer or a software security
analyst. As such, the designed analysis should scale and should
be resilient to various kinds of obfuscations encountered.

Our approach: Program synthesis methods work by
automatically deriving a program from a given high-level
specification, such as its Inputs/Outputs (I/O) behaviour. Most
synthesis-based deobfuscation methods consider the obfus-
cated program as a virtual black-box, thus trying to solve the
problem of black-box deobfuscation, which is a harder prob-
lem than practical deobfuscation [4]. The biggest limitation of
such approaches consists in the search space size, often too
big to be exhaustively explored in an efficient manner.

This work is based on the following intuitions:

e Analysis techniques, such as symbolic execution, can
be used to reduce dramatically the size of the search
space limiting the aforementioned issue by modeling
accurately the semantic of instructions;

e Existing synthesis methods and especially stochastic
ones spend time deriving the same expressions again
and again while they can be computed once and for
all;

e By design, DSE thwarts multiple obfuscations like
dead-code, self-modification or packing thanks to its
dynamic nature. Thus leveraging a synthesis algorithm
on this basis allows addressing program obfuscated
with composite techniques while focusing for instance,
the synthesis on data obfuscation.

Contributions: Based on these intuitions and the results
obtained implementing our approach, this paper makes the
following contributions:

e We introduce a novel approach combining DSE, data-
flow graph extraction and program synthesis lever-
aging their strength to address certain obfuscation
techniques;

e We propose a black-box synthesis method based on
an offline enumerative search. This method uses pre-
computed lookup tables allowing to encode a subset
of the search space and consequently to synthesize
expressions in near constant time;

e We propose an expression simplification algorithm,
QSynth, applying black-box synthesis, iteratively sim-
plifying complex obfuscated expressions;

e We performed an empirical validation involving com-
parison with the deobfuscation tool Syntia [7] for
which we shows that we supersede it both in accuracy
and time (x20 faster).

II. MOTIVATING EXAMPLE

Let’s discuss a motivating example which exhibits the
difficulty to address MBA obfuscation. Figure 1 shows the
original expression and Figure 2 its obfuscated form using the
Encoded-Arithmetic (EA) [8] of Tigress [11]. The obfuscated
expression introduces various bit-wise expressions and pur-
posely makes it very hard to deduce the original expression
from. Yet, the semantic is preserved.

As the computation does not involve branching condition
everything would be performed in a single basic-block making
the obfuscation recognizable. Figure 3 shows the obfuscated

a— (—((bx a) xb))

Figure 1: Original expression.

—(((bAa) x (bVa)+ (bA—a) x
bVa)+(bA—a) YV b)+ ((

a (b

—a ((bAa)x (b
bAa)) Ab))=1)) = (ma A (=((((bAa)
x(ﬂb/\a))/\b)x(()x (bVa)+ a)
(((b/\a) (+ (bA=a) X (=bAa))

x (bVa)+ a) x (mbAa))Ab))—1

(=b A @) Ab) x

Na)x (bV
Va)+ (bA
X b\/a)+
(bA—a) x
A

+(bA~

—~

)

Figure 2: Obfuscated expression, arithmetic encoding.

expression after applying the Zigress Virtualization pass [10]
(abbreviated VR), further intertwining control-flow and data-
flow obfuscation. After applying this virtualization pass it is
even harder to determine the function’s original semantic by
examining it manually.

[—
[—
[
[—
[—1 .
0
i
[
Y i

TR

Figure 3: Function CFG computing expression obfuscated
using arithmetic encoding and virtualization.

Current approaches based on symbolic execution are able
to reconstruct the obfuscated expression after virtualization
by carefully keeping track of the dataflow, however they do
not offer any way of simplifying the obtained expression.
Other approaches based on plain arithmetic simplification (e.g.
7Z3’s simplify) works on simple arithmetic properties and
mangle the expression to be more easily solved, but not
necessarily more readable. On expressions with a complex
semantic, simplify is then ineffective and it cannot be used
for synthesis purposes.

This motivating example is leading the study and we show
in this paper how retrieving the original expression is made
possible by carefully combining DSE and program synthesis.

III. BACKGROUND
A. Obfuscation

1) Mixed Boolean-Arithmetic expressions: MBA expres-
sions mix arithmetic operators (ADD, SUB, MUL, etc.)
with bit-wise operators (AND, OR, XOR, ROL, ROR etc.).
MBA expressions are well-known in the literature, especially
in the context of cryptography. For example, they have been
used as building block to implement numerous ciphers and
hash functions: such as the International Data Encryption
Algorithm (IDEA), ChaCha or, for instance, constructs based
on add-rotate-xor networks (ARX) [23]. Their strength de-
rives from the combination of operations from two different
algebraic structures (modular arithmetic and bit-vector logic)
which do not “work well together”. There is little work
regarding simplification of MBA expressions [17]. The usage
of complex MBA for obfuscation purposes was first formalized
by Zhou et al. [33], [34]. In practice any expression can be
transformed in an equivalent, as complex as desired, MBA
expression by iteratively applying any of the two following
transformations:

e Expressions matching and rewriting: a portion p
of the original expression is matched and replaced
using a list of known rewriting rules. For example,
if p is an addition x + y (z and y being constants,
variables or even expressions) it can be rewritten with
the equivalent expression (z V y) + (z A y). Table I
shows some additional examples of rewriting rules;

e Insertion of identities: given an invertible function
f, any portion p of the original expression can be
replaced with the equivalent expression f~1(f(p)).

rty—(xVy) +y—(-zAy)
z@y = (xVy) —y+ (T Ay)
zANy— —(zVy) +y+z

sVy > (@@y)+y— (-zAy)

Table I: Example of MBA rewriting rules.

This method can be used to obfuscate statements in a
program by replacing them with longer equivalent statements.

2) Virtualization: This technique is used as a way to hide
the control-flow of the original program under an additional
level of abstraction. It transforms a target function or program
in an interpreter of a custom virtual instruction set [12],
often referred as Virtual Machine (VM). The instructions of
the original program are translated into the corresponding
VM instructions, which are then embedded in the obfuscated
program together with the interpreter. Upon execution the
interpreter applies a fetch, decode and execute scheme on
VM instructions using the appropriate instruction handlers.
Depending on the implementation, the VM may make use
of a virtual stack (such as in the case of Tigress) and a
number of virtual registers. To strengthen obfuscation some
VM implementation make use of duplicated instruction codes,
repeated instructions handlers running different instructions or
multiple nested levels of virtualization.

B. Dynamic Symbolic Execution

DSE, also known as concolic execution [31], is a dynamic
data-flow path-based analysis technique. It consists in con-
sidering the symbolic values of some or all program inputs,
and tracking them during the execution of the program. This
allows reasoning on the values that symbolic inputs may take
on an execution path in order to solve constraints. Formalized
by King [24], it found a renewal of interest the last decade
with breakthrough and performances improvements of SMT
solvers [16]. During the execution, a symbolic state gets
updated according to the semantic of instructions. Working on
the semantic makes the DSE sound for the path considered.
However, to be complete, DSE would require to cover all paths
in a program, which is infeasible in practice.

IV. SYNTHESIS APPROACH

Our deobfuscation approach involves various steps for
which a global overview is shown in Figure 4; we start by
tracing an execution of the obfuscated program to obtain an
execution trace on which DSE is then performed. For every
value of interest, a backward slice is computed on the DSE path
predicate to extract the value expression as an Abstract Syntax
Tree (AST). The AST of each expression is then forwarded to
the synthesis simplification algorithm itself interacting with the
Offline Enumerative Synthesis Oracle (denoted SO) that will
act as a black-box synthesis primitive. These different steps
are defined hereafter.

A. Program tracing

The execution is performed via Dynamic Binary Instru-
mentation (DBI) that will collect all instructions and their
concrete side-effects on registers and memory. All these data
are consolidated in an execution trace. More formally, a trace
Tr £ < insg,insy,...ins, > is defined as a sequence of
instructions ins that produces side effects on registers and
memory. We denote C all the concrete states and C' € C
a concrete state of the CPU (registers and memory). Then,
~> 1is the concrete evaluation operator of an instruction on
the concrete state such as evaluating insy on Cj is denoted

Cy "3 €, with C} the concrete state updated. The approach
considers a single execution trace of the program. Thus, any
obfuscated expression located outside the executed instructions
subset will be ignored. Performing program coverage in order
to deobfuscate the whole program is beyond the scope of this

paper.

B. Dynamic Symbolic Execution

The considered DSE is offline as it is performed as a sep-
arate step performed after program execution. In our approach
no SMT solver is being used as part of the DSE process
(SMT solvers are only used for semantic equivalence checking
c.f. VII). The whole synthesis computation is performed on
symbolic expressions.

Let Var be the set of free variables representing either
a register or a memory cell at a given address. Let also
Val be the set of all integer constant values represented as
bit-vectors. We can define C : Var +— Val a concrete
memory state mapping variables to constant values. Similarly

Enumerative
Synthesis Oracle
(generated once for all)

Inputs ouibuis equivalent
| expression
Obfuscated Execution Obfuscated —
program _ | execution tracing Uace | Dynamic Symbolic | S*Pressions Simplfication synthesized
! —_— ;
(DBI) - Execution Strategy EXPressions
. (for each sub-expression)

Figure 4: Overview of our deobfuscation approach.

we can define S : Var — & to be a symbolic state mapping
variables to their logical (i.e. symbolic) counterpart. The DSE
works on a semantic of instructions which upon execution
updates a symbolic state denoted S € S that keeps symbolic
values for both registers and memory. We similarly denote
the symbolic execution as the successive application of the
current instruction semantic on the symbolic state denoted
S, R Sy,+1 with ~% the symbolic evaluation function
and n the instruction index in the trace. Symbolic values are
defined on the bit-vector theory.

We denote 7 a symbolic execulogicaltion result, such that
7w € IT with II the set of all possible symbolic execution paths.
We define m £< S, S; - - - S, > the sequence of symbolic
memory state updates with Sy _,, € S!.

C. Expression abstract syntax tree computation

We now denote p = (v,n) a slicing criterion defined by
(Var x N) indicating to retrieve a logical value expression
of v € Var at an offset n € N in the trace. Therefore we
introduce a backward slicing function get_expr : (IIxp) — ®
that performs a backward dependency lookup to starts from
the memory state .S,, and recursively finds all logical variables
expressions used by v up Sy. The output of get_expr(m, p)
is an expression formula on bit-vectors noted ¢ with the
symbolic value of the variable v € Var at trace offset n.
Figure 5 depicts a high level view of what get_expr is
performing underneath. Starting from the executing path taken
(5a) it backtracks on logical dependencies (control and data)
(5b) and then only keeps the data flow to create the final
AST representation of the expression?. Note that, automatically
locating and selecting these criteria in the execution trace is
out-of-scope of this paper (criteria used for experiments are
discussed in VI-B). This logical expression ¢ is structured as
an AST whose nodes are operators and leaves are constants or
variables. These free variables are the inputs of the expression.

We now define assignment : (Var) — (Val) a function
that given a vector of variables returns an assignment of values
acting as test inputs noted 7. This assignment can be determin-
istic or random. We now can define: O, : (Val) — Val the
I/O oracle associated with ¢! that given a test input returns
the associated output constant value after evaluation. A similar
oracle can be defined for any sub-expressions (namely sub-
AST) of ¢7; only the number of variables might vary.

IThe path predicate is implicitly included in the sequence as it is the
conjunction of the symbolic values of the instruction pointer register.
2For the rest of the paper we use AST and expression interchangeably

D. Synthesis Oracle

We define SO : & — {® U @} a general synthesis
oracle function, taking an expression formula as parameter
and returning either a new expression formula satisfying some
high-level specification (Section IV-E) or no formula if the
synthesis failed (@).

Let I £ < ig,i1,...1; > be a test suite of inputs where
each i provides an assignment Var ~ Val. Let also O £
< 09,01, -0 > be the vector of output values obtained by
evaluating an expression ¢; on I. SO is composed of two
sub-oracles components:

e (O, the expression I/O oracle defined hereabove

e (g :{0O} — @ afunction mapping a vector of outputs
to expressions that by means of evaluation on a test
input I produces O.

As an example, applying each test inputs of I on the I/O
oracle O, associated with ¢} produces an output vector O.,.
If O, belongs to Og then Og provides ¢’ that exhibit the
exact same I/O behavior (with respect to I) than ¢]. The
test suite of inputs being finite, the SO is not sound and
may produce expressions which behave differently than the
original target (except for the given set of inputs I). The larger
the set of inputs, the more successful the synthesis will be.
In practice during our experimentation we have verified that
even small tests input vectors (~10-20) appears to be sufficient
(c.f VII-C). Section VI-D further illustrates our input values
selection strategy In practice any black-box synthesis technique
could be used as the Og synthesis oracle. We present hereafter
our approach based on an offline enumerative search.

1) Offline Enumerative Search: The function Og mapping
output vectors to expression is implemented as an exhaustive
search on a context-free grammar G = {N,%, R, S} and
making usage of a fixed set of inputs [, where each k is the
size of the input test suite. In G, N is the set of non terminal
symbols, 3 is the set of terminal symbols, R is the set of
production rules (also known as derivation rules) and S the
set of starting symbols. We define our grammar G such that
the set of terminal symbols ¥ contains any number of constant
values as well as input variables. As such, each ¢ € I should
provide a mapping of at least x values so that each terminal
variable can get a valuation in <.

Table II illustrates a minimal example of grammar, contain-
ing a non-terminal symbol ug, three terminal symbols (among
which two variables a and b) and derivation rules necessary to
construct the program represented by the AST in Figure 5d.

1 if (a > 0){ < N\ '
2 b+=a - 1; if 1 / \
3 } else { l i 1
4 b += 2; (a>0) + g’
5 } { b -
P b [b [z S\
7 return b; / \ a 1
a 1
(a) Program with path (b) Dynamic Slicing with C' = (c) Remove control dependen- ~ (d) Final expression
taken. (b, 7). cies. AST of b.

Figure 5: Expression AST extraction process.

Table III shows the derivation steps needed to obtain the
program in Figure 5d.

{us}

{as,rs, 1}

{us — us + us, us — usg — us,
ug — ag, ug — rg, uUg — 1}

{us}
Table II: Example of grammar G.

0 M=z
I

Derivation rule Expression

us

ug — us

(ug + ug) — us

(us + (us — us)) — us

ug — ug — Uy
ug — ug + us
ug — Ug — U

us = b (b + (us —ug)) — ug
ug — a (b+ (a — ug)) — us
ug —> 1 (b+ (a—1)) — us
ug —> 1 b+ (a—1))—1

Table III: Derivation steps used to obtain the expression 5d
using grammar in Table II.

Then, we exhaustively generate all terminal (i.e., containing
only terminal symbol) expressions up to a defined number of
derivations 3. Each expression ¢ is then evaluated for all test
suites ¢ yielding a vector of outputs O. Then, a new entry
O — ¢ is added to the Og mapping. If the same vector is
already in the mapping, we only keep the existing one. Indeed,
the enumerative exploration is performed as a breath-first-
search, thus, all entries already in the mapping are guaranteed
to be more compact than the candidate ones. The mapping
ensures an optimal solution since only the first expression
corresponding to the given output vector is kept.

Table IV shows an example of the mapping generated from
the grammar in Table II with three derivations at most*. Here,
each ¢ € I, contains two values (i.e., x = 2), the first one is
always mapped to variable a while the second is mapped to
b>. Expressions are generated from top to bottom and grayed
expressions are ignored as they produce the same output than

3 The ideal number of derivations depends on the complexity of expression
to synthesize, which is however concealed by of obfuscation. As a general
rule a higher number of derivations results in higher chances of successful
synthesis.

“Note that the table does not contain any two-derivations expression as it
not possible to create such terminal expression using the considered grammar.

SIn practice only one mapping is necessary since the derivation step will
already generate all possible combinations of variables.

previously computed entries. In practice this mapping function
Og is implemented as a lookup table (i.e. a dictionary).

Tu—s = {(42,10), (6,2), (75,231)}
Derivations 0] D
1 42, 6, 75 a
1 10, 2, 231 b
1 1, 1, 1 1
3 84, 12, 150 | a+a
3 52, 8, 51 a+b
3 43, 7, 76 a+1
3 0, 0, 0 a—a
3 32, 4, 99 a—b
3 41, 5, 74 a—1
3 52, 8, 51 b+a
3 20, 4, 207 b+b
3 11, 3, 232 b+1
3 223, 251, 156 b—a
3 0, 0, 0 b—1b
3 9, 1, 230 b—1
3 43, 7, 76 1+a
3 11, 3, 232 1+0b6
3 2, 2, 2 1+1
3 214, 250, 181 1—a
3 246, 254, 25 1—-0b
3 0, 0, 0 1—-1

Table IV: Example mapping table generated with G.

This exhaustive search is costly and its complexity largely
depends on the grammar used with the number of terminal
symbols and operators. However the insight is that this cost is
affordable for the following three reasons:

1) This enumerative search is performed once. Then, all
expressions that will be synthesized afterward will
take advantage of this pre-computation. This is the
“offline” aspect of the search. Other approaches like
Syntia [7] have to perform similar derivations for all
expressions they intend to synthesize.

2) Various optimizations on the search and derivations
allows reducing the complexity. For example, it is
possible not to perform some derivations thanks to
the commutative property of operators or given the
property that applied on the identity, result is known
in advance (e.g., a ®a =0, a A a = a, etc.).

3) The mapping of large grammar can be approximated
by using multiple mappings obtained from smaller
subsets of the target grammar. This technique is an
easy and convenient way to tune synthesis precision.

Finally, the last key intuition is that, it is not mandatory
to derive very large expressions, as it all depends on the sim-

plification strategy that will use this synthesis oracle. It is the
role of the simplification strategy to replace sub-expressions
such as by recursion the original expression will be recovered.
Next section discusses a candidate strategy to achieve such
simplification.

E. Expression simplification

This section covers the global simplification strategies
leveraging the SO synthesis primitive to simplify AST of
expressions via synthesis. Given an expression ¢ the naive
approach would be to run a direct synthesis of the whole
expression. However for expressions encoding complex be-
haviors it is unlikely that an entry of Og would have the
exact same output vector O. Thus the general idea is to
iterate the expression and use SO to synthesize and replace
parts separately, if not all sub-expressions. In practice this
simplification paradigm (e.g. divide-and-conquer etc.) can be
implemented using a variety of strategies, differing from the
order used to visit sub-expressions to the way successfully
synthesized sub-expressions are handled. In this work we
present and run benchmark on a simplification strategy with
the algorithm name QSynth.

The idea of QSynth is iteratively rewriting the expression
AST with placeholder variables, until reaching a fix-point
when no more substitution takes place (Figure 6). Algorithm 1
in annex describes the QSynth simplification strategy. QSynth
takes as input an expression ¢ to simplify and a synthesis
oracle SO (line 1). It then proceeds to create a mapping hold-
ing the associations between synthesized sub-expressions of
and placeholder variables. At every loop iteration it performs
a synthesis step (1.4), namely it traverses all sub-trees using
a randomized breadth-first-search (BFS) order (1.16,17) until
finding a synthesizable sub-tree (1.18-21). The randomized
BFS works by processing all nodes of a given AST depth
before getting deeper. Using BFS order ensures that bigger
sub-expressions, closer to the root node, are addressed first.
Randomization aims at introducing diversity among different
executions®.

Every time a sub-tree of ¢ is successfully synthesized, its
root node is replaced with a new placeholder variable (1.9,10)
and stored in the mapping associating placeholder variables to
synthesized expressions (1.11). This simplification loop (1.3-12)
continues until the whole AST has been reduced to a single
placeholder variable. At the end, the final AST is reconstructed
by interating placeholder variables in reverse (addition) order
and recursively substituting all of them with the associated
AST (1.13, 25-33). The process is illustrated in Figure 7.

It is important to notice how this simplification by substi-
tution with placeholder variables makes simplification possible
even if the target expression contains a bigger number of input
parameters than what Og can handle. This because Algorithm
1 will summarize sub-expressions containing multiple vari-
ables into a single placeholder variable.

Algorithm 1 is guaranteed to terminate, but not to suc-
cessfully simplify any sub-expressions. In this later case,

5The success of the simplification also depends on the node processing
order. Therefore introducing order diversity might help synthesizing sub-
expressions that were not simplified at a first iteration but that can be simplified
using a different order.

SO returns &, indicating that it has not been able to fully
synthesize the AST. The number of steps needed for synthesis
grows with the size of the expression counted as AST nodes,
noted ||¢||. As every synthesis step traverses the expression
from top to bottom until a suitable node has been found, the
worst case time-complexity of our algorithm is O(n?) where
n is the number of nodes in the expression AST. However,
QSynth performs much better than that, since the quadratic
effect is limited by the two following aspects:

e The size of the AST is reduced at every iterations;

e Each synthesis step terminates as soon as a suitable
node has been found (i.e., it will likely stop before
traversing all nodes).

V. IMPLEMENTATION

The synthesis engine is implemented as part of bigger
dynamic analysis framework called QTrace [13] developed at
Quarkslab. This framework is architectured on the following
two main components:

e QBDI [20] (version 0.7.0), a Dynamic Binary Instru-
mentation (DBI) framework which allows configuring
the instrumentation and working on multiple archi-
tectures x86, x86_64, ARM and ARMvVS (internally)
and also multiple platforms Linux, Windows, Mac OS,
Android (internally);

e Triton [29] (version 0.7), a DSE engine written in C++
performing the dynamic symbolic execution for vari-
ous architectures x86, x86_64, ARMv8 and ARMv7
(on-going).

Both of these core components are open-source. Based on
these, QTrace works by collecting execution traces with QBDI
which gather instructions executed along with their concrete
state C namely register and memory values. The trace is
then stored in an SQL database for which QTrace exposes a
Python API. This API allows implementing all the subsequent
analyses.

In the context of this work, an execution trace is processed
by Triton which performs the DSE using trace data stored in
the database. At any point of the execution it is then able
to compute the backward slice/data dependency of a register
or memory cell in order to retrieve its AST. The synthesis
engine processes the generated expression AST and performs
the synthesis as presented in Section IV-E.

VI. EXPERIMENTAL SETUP

The goal of this section is to evaluate how our approach
compares to similar synthesis-based deobfuscation approaches,
namely Syntia, and also how does the two strategies compares
to one-another. Similarly to Syntia, benchmarks have been
performed on Tigress 2.2. All the tests were performed on a
laptop with an Intel Core i17-6700HQ CPU running at 2.60GHz
along with 16GB of RAM.

Step 1 SUB | Step 2 SUB Step 3
OR AND v
A""'/ K A / \ / \
ADD [a] [apo| vi A A V1
N,:S = ‘ *‘t“'; ‘ "“OAR Variables - _—
) g ’ / Vi | = V2 | =
¥ N ¥ Ny ¥ Y ¥ y A B V1 A
A B A B [a][&] A B
Figure 6: AST iterative synthesis and rewriting.
Final Result shown with the motivating example in Figure 3, virtualization
Substitute Substitute strongly alters both control and data flow.
vz [xor] Vi [xor
vz . ' S N\ > \y d) Dataset 4: Use the same original expressions than
vi | [a] A] Dataset 2 but obfuscated with EncodeArithmetic and En-
i/ Ny codeData passes. Due to the complexity induced by this
= obfuscation, only the first 239 functions of the program were

Figure 7: AST’s placeholder variables unrolling.

A. Datasets

For the experiments, we use four different datasets consist-
ing in 500 obfuscated functions each. The first one is the same
data set used by Syntia authors. However, we hardly managed
to get Syntia working, thus results are not experimentally repli-
cated by us, but those reported in their paper. On other datasets,
Syntia never gave interesting results or did not terminate in
a reasonable amount of time. Thus, only results on the first
dataset appeared to be conclusive and fair (cf. Section VII-A).
The three other datasets are expressions obfuscated with com-
bination of different obfuscations and aims at comparing the
simplification strategy. Original expressions to obfuscate were
generated automatically with the same grammar than Syntia
that includes up to 3 variables and a variety of 8 opera-
tors including (+, —, X, @, V, A, ~, —(unary))- The datasets are
built in such a way that expression variables are sent through
function parameters and the result of the evaluation is the
return value.

a) Dataset 1: created by Syntia authors, the 500 ran-
domly generated functions were obfuscated with the En-
codeArithmetic [8] and EncodeData [9] transformation. The
first obfuscation technique hides the original expression using
MBA equivalent expressions, while the second transformation
encodes all integer parameters before calling the function and
decode them on the return site. Original expressions were
generated deriving from 3 to 5 times the expression. Thus,
average expression size is 3.97 nodes while its obfuscated
version is approximately 140 nodes.

b) Dataset 2: is a custom dataset only obfuscated with
the EncodeArithmetic transformation, but the original expres-
sions were derived from 6 to 21 times (Section IV-D), yielding
in average expression of 13.4 nodes. Obfuscated expressions
were in average 246 nodes, thus almost twice more complex
than Dataset 1.

c) Dataset 3: also uses expression of dataset 2, but ob-
fuscated with Virtualize and EncodeArithmetic transforms. As

considered in this dataset. Expressions are significantly bigger
than other datasets by pushing their complexity to some
extremes.

Trace Mean Mean size ¢ (in node)

len fun.len* Orig Obfg Obfy
#1: Syntia 77K 148 3.97 139.08 203.19
#2: EA 48K 90 13.5 245.81 131.56
#3: VR-EA 582K 1156 13.5 / 443.64
#4: EA-ED 823K 3369 13.5 6176.89 | 9223.46

* Mean instruction length of function symbolically executed

Table V: Dataset statistics information.

Table V summarizes the global statistics of the four
datasets. The first two columns give the complete execution
trace length and the average instruction size of functions
symbolically executed as the symbolic execution is performed
on a per function basis. Remaining columns shows the mean
size of expressions for the original one, the obfuscated one at
source-level and the one obtained after compilation and sym-
bolic execution. The three last datasets uses the same original
functions but obfuscated with different schemes. For VR-EA
it is not possible to establish the obfuscated expression size, as
it is splitted in various basic-blocks. At this obfuscation, trace
length significantly increases as many control-flow overhead
is introduced by the VR obfuscation.

B. Slicing criterion

Similarly to Syntia dataset, obfuscation hides the func-
tion return value computation. For each function, the slice
is then automatically performed on the rax register at the
ret instruction with an unbounded backward lookup p £
(rax, loc,et). In practice, the implementation uses Triton func-
tionalities to do it and iterates the path predicate in SSA (Static
Single Assignment) starting from the register or memory cell
of interest. Besides benchmarks, the criterion highly depends
on the kind of code being examined, thus, as a general
approach, the choice has to be made manually.

Mean expr. size Simplification Mean scale factor Sem. Time
Orig Obfp Synt %) Partial Full Obfs/Orig Synt/Obfg Synt/Orig Sym.Ex Synthesis Total per fun.
Syntia / / / 52 0 448 / / / / / / 34 min 4.08s
QSynth | 3.97 | 203.19 371 0 500 500 x35.03 x0.02 x0.94 500 1m20s 15s 1m35s 0.19s

Orig, Obfs, Obfg, Synt are respectively original, obfuscated (source, binary level) and synthesized expressions

Table VI: Benchmark 1 results (Syntia benchmark).

C. Benchmarks

The four dataset are grouped in two benchmarks. The
first aims at comparing Syntia against our approach. The
second benchmark groups dataset 2, dataset 3 and dataset 4 in
order to compare the simplification strategy. A last benchmark
experiment aims at evaluating the influence of the lookup table
Og generation parameters on the synthesis accuracy. The sizes
of execution traces are ranging from a few instructions to more
than 2000 for virtualized functions.

D. Synthesis lookup tables presetting

For our experimental evaluation we used 14 lookup tables,
each generated using a random, yet not repeating, sub-grammar
of five operators and three variables. Expressions are exhaus-
tively derived up to five non-terminal derivations, followed by
all possible combination of terminal derivations. Each table
contains in average 344,933 expressions.

Each expression is evaluated on an input vector of 15,
64-bit integer inputs for the each of the 3 variables. Indeed,
larger the inputs vectors, more likely the output vector will
be unique. The choice of input values plays an important
role during synthesis. For our experiment inputs values are
generated uniformly randomly, but favoring values (1, 0, -1)
which reveal the idiosyncratic behaviors of expressions and
help distinguishing otherwise similar expressions.

The choice of these settings is discussed in Section VII-C.
Tables generated (as Python pickle objects) use in average 70
MB on disk and were generated in a matter of few minutes.
The bottleneck is not the generation time but the memory, as
expressions are growing exponentially in memory. Tables are
generated in a matters of minutes reaching easily depth of 5
(~11 nodes expressions).

E. Metrics

a) Success rate: This metric evaluates whether some
simplification took place or not. Among simplified expression
denoted “partial synthesis”, it measures the one that are equal
or smaller than the original expression “full synthesis”. The
AST node count is used as unit. Results does not take in
account the correctness of the returned expression.

b) Correctness: Our approach is unsound as output
expressions are constructed in such a way that it does not
necessarily behave identically to the target obfuscated ex-
pression for all possible inputs (but only for the I/O pairs
considered). However it is possible to formally check the
semantic equivalence of the synthesized expression by the
mean of an SMT solver.

c) Execution time: In order to assess the scalability
and the practical applicability of the simplification algorithm,
benchmarks includes both the DSE time and the synthesis time
of the simplification routine on every obfuscated functions.

d) Understandability: The main goal of deobfuscation
is to make the code more comprehensible for a reverse engineer
or an analyst. There is no predefined metrics encompassing this
aspect. However, for benchmark we evaluates the understand-
ability by evaluating the size reduction factor of the obfuscated
expression against the synthesized one. This metric is based
on the insight that, even if not completely simplified, the more
the expression is reduced the more it is understandable.

VII. BENCHMARK RESULTS

A. Benchmark 1: Syntia benchmark

This benchmark aims at assessing our synthesis simpli-
fication approach (QSynth) against the state-of-the-art tool in
this domain, Syntia. Table VI shows the results. Our algorithm
manages to synthesis all the expressions with 100% semantic
accuracy in 1m35s. Syntia takes 34 minutes to terminate and
it misses the synthesis of 52 functions. QSynth spends in
average 0.19s per functions which makes it 20 times faster
on this benchmark. The mean expression size after synthesis
is 3.71 thus even more compact than original expression which
mean size was 3.97. This is explained by the fact that some
expressions can be reduced to constant values. The mean
reduction scale with the original expression is then 0.94 and
0.02 with obfuscated expressions. This means synthesized
expressions are more than 50 times smaller than their obfus-
cated counterpart. This constitutes a significant speed-up and
improvement over Syntia [7] where 448 expressions out of 500
were deobfuscated on the first run. They managed to reach 495
out of 500 expressions after nine runs of Monte Carlo Search
Tree black-box synthesis’.

B. Benchmark 2: Scale benchmark

This benchmark aims at assessing the scale of the QSynth
on larger expressions and in presence of composite obfusca-
tions. Thus, functions are significantly bigger. The first impact
is on the execution trace ranging from 48,838 instructions to
823,078 for EA-ED. Table VII shows the results on the three
datasets EA, VR-EA and EA-ED. The two first successfully
simplify all expressions and achieve a full synthesis for 3/4
of them. Synthesized expressions are less than two times
bigger than to original expressions, which is a considerable
improvement considering the obfuscated size. To illustrate that,
Figure 8 shows for EA the node size (in y) of obfuscated
expressions, the expressions after symbolic execution, the

"this first run took ~34 minutes, thus extrapolating to ~5h for the 9 runs

Obruscated

800 == Obfuscated |
= Symbolic Execution

e Synthesized H ’

e Original ‘ |

|
.w

Number of AST nodes

420 430 440 450 460 470

478
Functions (ordered by obfuscated node size)

Figure 8: Expressions sizes comparison of each functions on
EA benchmark (with functions on x, and their expression sizes in
y. Functions are ordered by size of their obfuscated expression).

synthesized and the original expression sizes. Expressions (in
x) are sorted by obfuscated sizes®. The area below the curve
represents the gain in nodes number that have been reduced by
synthesis. Thus even though an exact synthesis is not obtained
for each function, the overall complexity of expressions is
strongly reduced. As shown by the scale factor, synthesized
expressions are 0.17 and 0.06 times the size of the obfuscated
expressions.

For the VR-EA, an appreciable side-effect of the DSE
is that it thwarts the control-flow obfuscation added virtual-
ization. Indeed, by symbolizing only function parameters all
internal states used by the virtual machine will be ignored
in the synthesized expression. However, it has a noticeable
impact on the symbolic execution time (17m10s), which is
significantly higher than the synthesis time. The two other
datasets are spending more time synthesizing.

For EA-ED, given the blow-up of obfuscated expressions,
the algorithm still manages to divide by almost two the size
of synthesized expressions, lowering the scale factor ratio to
x234.44. Also, more than half of functions managed to be fully
synthesized.

C. Benchmark 3: Lookup table presetting

This benchmark aims at assessing the tables parameters in
order to maximize the synthesis correctness while minimizing
input vectors. Figure 9 shows the soundness evolution as the
number of input parameters increases. It has been tested on
the 500 functions of the dataset 2. For each input vector
size, 5 tables were generated with 5 operators. On the figure,
semantically correct expressions are shown in green, incorrect
expression in red. No timeout was set on the query solving.
Results show that the correctness of our approach is directly
proportional to the number of inputs used. A vector of 15
inputs gives a reasonable trade-off between input vector size
and correctness.

Sonly a slice of all functions is shown on the figure

500,
400
300
200
100

02 3 4 5 6 7 8 9 1011 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Figure 9: synthesis semantic accuracy of all 500 functions in
y, w.L.t. input size in X. (semantic equivalence verified in green and
respectively invalid in red)

VIII. RELATED WORK

Program Synthesis is a general concept. Thus, it can be
put in practice in a variety of manners. Three approaches have
been favored in the litterature: enumerative search, stochastic
search and SMT-based approaches. In all cases the synthesis
faces the problem of intractability of the program space and
the diversity of possible program inputs. The approach of
this paper is enumerative. As such, Alur et al. [1] pro-
pose an enumerative approach aiming at finding expressions
that behave correctly on a subset of I/O pairs as well as
distinguishing predicates for those subsets. The expressions
are then organized in a decision tree. The key limitation of
this approach is the assumption that distinguishing predicates
exists, which is not always the case for large and complex
arithmetic operations.

Synthesis applied to program optimization is often called
superoptimization. This approach aims at finding a better
performing version of a program f given its original definition.
This approach is similar to deobfuscation only the cost func-
tion varies. Superoptimization considers running performance
while deobfuscation consider compactness and understand-
ability. The concept of superoptimization was first introduced
by H. Massalin [25], who proposes a superoptimizer based
on exhaustive search over a selected subset of machine’s
instructions. In their work, two optimization methods are used
to reduce search time. The first consists in probabilistically
testing each generated program on a carefully chosen set
of inputs instead of rigorously testing its equivalency to
the program to optimize using a so-called boolean program
verifier. The second consists in skipping redundant instructions
patterns during the search. Other superoptimization approaches
discuss the generation of Peephole superoptimizers [3] or to
use SMT-based approach like Souper [28]. Schkufza et al. [30]
introduced STOKE stochastic approach based on Monte Carlo
Markov Chain method, capable of exploring the space of
possible programs faster than previous approaches, but without
guarantees of optimality.

Program synthesis for deobfuscation. Applied on de-
obfuscation matter, the Jha et al. technique [21] involves
transforming the synthesis problem into a satisfiability problem
by selecting a list of base operations, called components, and
encoding in a formula the space of all possibly generated
programs as well as “well-formedness” and behavioural con-

Mean size Simplification Mean Scale factor Semantic Time
Synt %) Partial Full Obfs/Orig Synt/Obfg Synt/Orig Sym.Ex Synthesis Total per fun.
Dataset 2 21.92 0 | 500 354 x18.34 X0.17 xioa | OK43 1m7s 1m42s | 2md9s 0.34s
EA (70.80%) KO: 4
3 :

Dataset 3 25.42 0 | 500 73 ; X0.06 100 | OKAOL o0 | 2mdes | 1omses | 2.39

VR-EA (75.00%) KO: 43
Dataset 4 | = Jooga | 5 | 24 133 x405.25 x0.41 X234.44 . 13mi8s | 2h7m 2h2im | 35.47s

EA-ED (55.65%)

Orig, Obfs, Obfg, Synt are respectively original, obfuscated (source, binary level) and synthesized expressions, OK: semantic equivalence verified (KO if not)

Table VII: Benchmark 2 results (Scale benchmark).

straints. An SMT solver is then used to solve the formula
and generate a candidate program. This approach focus on
automatic generation of programs performing non-obvious bit
manipulations and assume only black box oracle access to the
target.

Rolles [26] also uses an enumerative program synthe-
sis approach using I/O pairs as oracle backed by an SMT
for correctness. The approach inspired by the peephole su-
peroptimizer [3] is called peephole superdeobfuscation. He
also suggested a template-based program synthesis to address
metamorphic code. Biondi et al. [6] propose a deobfuscation
approach based on the drill and join method for inductive
program synthesis first introduced by Balaniuk [2] to de-
obfuscate obfuscated conditionals using black-box synthesis.
This technique iteratively decomposes each bit-component of
the target function in its own sub-space and re-enconding
the component’s function in a simpler form. Their approach
has shown to be effective in deobfuscating MBA-obfuscated
expressions, however its complexity grows exponentially with
the size of the input. Lately, Blazytko et al. [7] proposed Syntia
a stochastic search using Monte-Carlo-Tree-Search (MCTS)
trying to find programs with equivalent I/O behaviour given
set of 1/O pairs.

Other deobfuscation approaches. Many other approaches
address obfuscation such as virtualization or MBA with other
techniques. Salwan et al. [27] demonstrated how Triton [29],
a Dynamic Symbolic Execution framework, can be used to
deobfuscate virtualization obfuscation. The approach works by
carefully symbolizing user inputs to distinguish between the
instruction of the original non-obfuscated program and those
belonging to the VM. Our Synthesis approach leverages this
mechanism for the VR-EA dataset.

Multiple deobfuscation approaches are focusing on analyt-
ical simplification of MBA expressions from the obfuscated
program. These approaches are complementary to our work,
in that they can be used as an additional simplification step
prior and/or after our deobfuscation strategy (e.g., to refine
our result). Biondi et al. [6] suggest an algebraic simplification
approach to polynomial MBA expressions. Their approach
is aimed at reducing the complexity of polynomial MBA to
MBA of degree one, in order to ease deobfuscation or the
satisfiability check. However, it only works on a subset of
MBA expression having a specific construct. The approach of
Eyrolles et al. [18] simplifies expressions via pattern matching
and rewriting. The associated tool SSPAM works similarly to
the simplify API of Z3[16] but with a specific focus on MBA.
It was able to reduce the obfuscated expressions tested by the
authors to 50% of their original size. However the effectiveness

10

of the approach heavily depends on the richness of its database
of known patterns.

Another approach based on boolean algebra also known as
“bit-blasting” consists in handling all obfuscated expression’s
operations using bit-vector logic. A boolean variable is created
for every bit of the expression, representing the constraints of
the expression for that particular bit. Simplification is then
done bit-by-bit by applying well-known boolean identities.
Arybo by Guinet et al. [19] is on of the only simplification
tool supporting boolean and arithmetic operations tracking
on bit-vectors. It works by constructing a bit-level symbolic
representation of a given expression where each bit is normal-
ized using the Algebraic Normal Form (ANF). Results shows
the effectiveness of the approach on expressions with a low
number of bits but struggles to scale to the size of inputs.

IX. DISCUSSION

Results obtained in this work are preliminary results, yet
promising. Larger experiments are planned on other obfusca-
tors like Obfuscator-LLVM [22] and other commercial obfus-
cators. Some real-world cases are also considered to assess the
efficiency of the approach.

The algorithm still needs to be tuned and improved. It is
still rather ineffective on encoded-data and is weak on common
synthesis issues like synthesizing constants. The latter is the
main limitation as MBA makes heavy usage of constants.
Combining the synthesis with other algorithm like SSPAM [18]
may be beneficial.

The paper does not discuss the problem of locating the
obfuscated expression. This is left as future work in order being
able to apply a global automated deobfuscation on a whole
program.

While QTrace and the QSynth algorithm are not open-
source, the two main components, namely QBDI [20] and
Triton [29] are open-source. Moreover, all the datasets and
artifacts are available on Github’.

X. CONCLUSION

This paper presents an offline enumerative search synthesis
primitive combined with a simplification strategy geared for
deobfuscation. Experimental results demonstrate the scalabil-
ity of the approach and suggest that it overcomes cutting-
edge approaches like Syntia (cf. RQ1). Results also suggest

“https://github.com/werew/qsynth-artifacts

resilience in presence of composite obfuscation (combina-
tions) leveraging for instance, the power of DSE to simplify
control dependencies introduced by virtualization obfuscation
(cf. RQ2). These preliminary results are very encouraging to
address data obfuscation such as MBA and might lead to more
robust algorithms targeting other kind of data obfuscation.

REFERENCES

[1] R. Alur, A. Radhakrishna, and A. Udupa, “Scaling enumerative program
synthesis via divide and conquer,” in Tools and Algorithms for the
Construction and Analysis of Systems - 23rd International Conference,
TACAS 2017, Held as Part of the European Joint Conferences on Theory
and Practice of Software, ETAPS, 2017, pp. 319-336.

[2] R. Balaniuk, “Drill and join: A method for exact inductive program syn-
thesis,” in International Symposium on Logic-Based Program Synthesis
and Transformation. Springer, 2014, pp. 219-237.

[3] S. Bansal and A. Aiken, “Automatic generation of peephole superopti-
mizers,” in Proceedings of the 12th International Conference on Archi-
tectural Support for Programming Languages and Operating Systems,
ASPLOS 2006, San Jose, CA, USA, October 21-25, 2006, 2006, pp.
394-403.

[4] B. Barak, O. Goldreich, R. Impagliazzo, S. Rudich, A. Sahai, S. P.
Vadhan, and K. Yang, “On the (im)possibility of obfuscating programs,”
J. ACM, vol. 59, no. 2, pp. 6:1-6:48, 2012.

[5] S.Bardin, R. David, and J. Marion, “Backward-bounded DSE: targeting
infeasibility questions on obfuscated codes,” in 2017 IEEE Symposium
on Security and Privacy, SP 2017, San Jose, CA, USA, May 22-26,
2017, 2017, pp. 633-651.

[6] F. Biondi, S. Josse, A. Legay, and T. Sirvent, “Effectiveness of synthesis
in concolic deobfuscation,” Computers & Security, vol. 70, pp. 500-515,
2017.

[71 T. Blazytko, M. Contag, C. Aschermann, and T. Holz,
“Syntia: Synthesizing the semantics of obfuscated code,” in
26th USENIX Security Symposium, USENIX Security 2017,
Vancouver, BC, Canada, August 16-18, 2017, 2017, pp.
643-659. [Online]. Available: https://www.usenix.org/conference/
usenixsecurity 1 7/technical-sessions/presentation/blazytko

[8] C. S. Collberg, S. Martin, J. Myers, and B. Zimmerman, “Docu-
mentation for arithmetic encodings in tigress.” [Online]. Available:
http://tigress.cs.arizona.edu/transformPage/docs/encode Arithmetic

[91 ——, “Documentation for data encodings in tigress.” [Online].
Available: http://tigress.cs.arizona.edu/transformPage/docs/encodeData

[10] ——, “Documentation for virtualization transformation in tigress.”
[Online]. Available: http://tigress.cs.arizona.edu/transformPage/docs/
virtualize

[11] ——, “The tigress C Diversifier/Obfuscator,” http://tigress.cs.arizona.
edu/.

[12] C. S. Collberg and J. Nagra, Surreptitious Software - Obfuscation, Wa-
termarking, and Tamperproofing for Software Protection, ser. Addison-
Wesley Software Security Series. Addison-Wesley, 2010.

[13] L. Coniglio, “Exploring Execution Trace Analysis,” Oc-
tober 2019. [Online]. Available: https://blog.quarkslab.com/
exploring-execution-trace-analysis.html[DEANONYMIZING]

[14] K. Coogan, G. Lu, and S. K. Debray, “Deobfuscation of virtualization-
obfuscated software: a semantics-based approach,” in Proceedings of
the 18th ACM Conference on Computer and Communications Security,
CCS 2011, Chicago, Illinois, USA, October 17-21, 2011, 2011, pp.
275-284.

[15] M. Dalla Preda and R. Giacobazzi, “Semantic-based code obfuscation
by abstract interpretation,” in International Colloquium on Automata,
Languages, and Programming. Springer, 2005, pp. 1325-1336.

[16] L. M. de Moura and N. Bjgrner, “Z3: an efficient SMT solver,” in
Tools and Algorithms for the Construction and Analysis of Systems,
14th International Conference, TACAS 2008, Held as Part of the Joint
European Conferences on Theory and Practice of Software, ETAPS
2008, Budapest, Hungary, March 29-April 6, 2008. Proceedings, 2008,
pp- 337-340.

11

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

[32]

[33]

[34]

N. Eyrolles, “Obfuscation with mixed boolean-arithmetic expressions
: reconstruction, analysis and simplification tools,” Ph.D. dissertation,
University of Paris-Saclay, France, 2017.

N. Eyrolles, L. Goubin, and M. Videau, “Defeating mba-based ob-
fuscation,” in Proceedings of the 2016 ACM Workshop on Software
PROtection, SPRO@CCS 2016, Vienna, Austria, October 24-28, 2016,
2016, pp. 27-38.

A. Guinet, N. Eyrolles, and M. Videau, “Arybo: Manipulation, canon-
icalization and identification of mixed boolean-arithmetic symbolic
expressions,” 2016.

C. Hubain and C. Tessier, “Implementing an Illvm based dynamic
binary instrumentation framework, in 34th chaos communication
congress, lipzeig, germany, december 27-30, 2019,” December 2017.
[Online]. Available: https://qbdi.quarkslab.com/QBDI_34c3.pdf

S. Jha, S. Gulwani, S. A. Seshia, and A. Tiwari, “Oracle-guided
component-based program synthesis,” in Proceedings of the 32nd
ACM/IEEE International Conference on Software Engineering-Volume
1. ACM, 2010, pp. 215-224.

P. Junod, J. Rinaldini, J. Wehrli, and J. Michielin, “Obfuscator-LLVM
— software protection for the masses,” in Proceedings of the IEEE/ACM
1st International Workshop on Software Protection, SPRO’15, Firenze,
Italy, May 19th, 2015, B. Wyseur, Ed. 1EEE, 2015, pp. 3-9.

D. Khovratovich and I. Nikoli¢, “Rotational cryptanalysis of arx,” in
International Workshop on Fast Software Encryption. Springer, 2010,
pp- 333-346.

J. C. King, “Symbolic execution and program testing,” Communications
of the ACM, vol. 19, no. 7, pp. 385-394, 1976.

H. Massalin, “Superoptimizer: a look at the smallest program,” in ACM
SIGARCH Computer Architecture News, vol. 15. IEEE Computer
Society Press, 1987, pp. 122-126.

R. Rolles, “Program synthesis in reverse engineering, in no such
conference, paris, france, november 19th, 2014,” November 2014.

J. Salwan, S. Bardin, and M. Potet, “Symbolic deobfuscation: From
virtualized code back to the original,” in Detection of Intrusions and
Malware, and Vulnerability Assessment - 15th International Conference,
DIMVA 2018, Saclay, France, June 28-29, 2018, Proceedings, 2018, pp.
372-392.

R. Sasnauskas, Y. Chen, P. Collingbourne, J. Ketema, J. Taneja,
and J. Regehr, “Souper: A synthesizing superoptimizer,” CoRR, vol.
abs/1711.04422, 2017. [Online]. Available: http://arxiv.org/abs/1711.
04422

F. Saudel and J. Salwan, “Triton: A dynamic symbolic execution frame-
work,” in Symposium sur la sécurité des technologies de I'information
et des communications, SSTIC, France, Rennes, June 3-5 2015. SSTIC,
2015, pp. 31-54.

E. Schkufza, R. Sharma, and A. Aiken, “Stochastic superoptimization,”
in ACM SIGPLAN Notices, vol. 48. ACM, 2013, pp. 305-316.

K. Sen, “Concolic testing,” in 22nd IEEE/ACM International
Conference on Automated Software Engineering (ASE 2007), November
5-9, 2007, Atlanta, Georgia, USA, 2007, pp. 571-572. [Online].
Available: https://doi.org/10.1145/1321631.1321746

B. Yadegari, B. Johannesmeyer, B. Whitely, and S. Debray, “A generic
approach to automatic deobfuscation of executable code,” in 2015 IEEE
Symposium on Security and Privacy. 1EEE, 2015, pp. 674-691.

Y. Zhou and A. Main, “Diversity via code transformations: A solution
for ngna renewable security,” NCTA-The National Show, 2006.

Y. Zhou, A. Main, Y. X. Gu, and H. Johnson, “Information hiding in
software with mixed boolean-arithmetic transforms,” in International
Workshop on Information Security Applications. Springer, 2007, pp.
61-75.

APPENDIX

Algorithm 1: AST simplification algorithm (starting at function SimplifyAST)

1

=R RN - 7 B N)

W W W W W W W RN N NN N [T e T e e g
AR E2L PR RYURNREREEEIZRGEIRE =

Function Simplify(p: an expression, SO: a synthesis oracle):
varsMap < NewMapping()
while ¢’s root edge is not a placeholder variable do
r < SynthesisStep(p, SO)
if is @ then
| return @
end
(pe; pe) <1
v <—NewPlaceholderVariable()
@ Substitute(p, Y., V)
varsMap[v] < ¢

end
return UnrollAST (p, varsM ap)

Function SynthesisStep(p: an expression, SO: a synthesis oracle):
foreach edge ¢ in ¢ using randomized breadth-first order do
e < sub-tree of ¢ with root €
o+ SO(pc)
if ¢ is not @ then
| return (¢, ¢7)
end
end
return &

Function UnrollAST(p: an expression, varsMap: a mapping of variables to expressions):
foreach variable v in ¢ do
if v is in varsMap then
¢ < varsMap[v]
e UnrollAST (L, varsMap)
© < Substitute(p, v, ;)
end
end
return ¢

Function Substitute(yp: an expression, pi: a target sub-expression, ps: a substitute expression):
Substitute all instances of ¢, in ¢ with ¢,
return ¢

12

