
Toward In-Vivo Testing of Mobile Applications
Mariano Ceccato∗, Luca Gazzola†, Fitsum Meshesha Kifetew∗

Leonardo Mariani†, Matteo Orrú† and Paolo Tonella‡

∗Fondazione Bruno Kessler (FBK), Trento, Italy
Email: {ceccato | kifetew}@fbk.eu

†Università di Milano-Bicocca, Milan, Italy
Email: {luca.gazzola | leonardo.mariani | matteo.orru}@unimib.it,
‡Università della Svizzera Italiana (USI) Lugano, Switzerland

Email: paolo.tonella@usi.ch

Abstract—Mobile apps can be executed with an extremely large
set of partially unpredictable configurations. Indeed, they can be
executed on an unbounded combination of devices, operating
systems, settings, and user preferences since apps may also
interact with other apps or devices that were not even available
when they were released. This results in a virtually infinite set of
configurations that might be responsible for unexpected behaviors
which can be validated in-house only to a negligible extent.

To address this challenge, this paper discusses the application
of in-vivo testing to mobile apps. The main idea is to run test
cases in the field, where we exploit the intrinsic heterogeneity
and variety of the end-user environment to dramatically increase
the range of validated configurations. Actually, the many devices
available in-the-field generate a naturally distributed and highly
scalable environment that can be exploited to timely validate
many configurations as soon as they are observed.

Index Terms—in-vivo testing, Android apps, configurations.

I. INTRODUCTION

With the advent of mobile devices, more and more soft-
ware applications are being offered as mobile apps, either
exclusively or in parallel to their traditional variants (desktop
and web applications). Indeed, mobile apps are nowadays
part of a complex environment that consists of independent,
though integrated and cooperating, systems of systems. As the
mobile devices gain more computational and storage capacity,
the level of complexity of the apps is also increasing. Such
complexity manifests, among others, in terms of the number
of configuration options that the app offers to the user. Such
options have become quite commonplace, with strong support
from the mobile platform producers. For instance, considering
the Android platform, the most popular mobile operating
system [25], developers have native support for managing the
settings of their apps via the AndroidX Preference Library1.
Unless there is a need for customized settings, developers can
simply define the settings of their app and the library takes
care of the rest (GUI, storage, saving/retrieving, etc.).

On the other hand, the version of the operating system itself,
and the hardware and models of the mobile devices are also
glowingly diverse. For the Android platform, there are 9 major
versions currently active2. Furthermore, there is an increasing

1https://developer.android.com/guide/topics/ui/settings
2https://developer.android.com/about/dashboards/index.html

number of mobile device manufacturers, each producing and
maintaining several models. A report found out that as of 2015
there were more than 24,000 distinct Android devices and over
1,000 device manufacturers [25]. The problems caused by such
a multitude of devices and operating systems is known as the
Android fragmentation problem [29]

Putting together the two spaces, that is, on one side the
diversity of the devices and operating system versions, and
on the other side the number of configurable options (set-
tings/preferences) a specific app could have, the resulting
configuration space is very large and it would be extremely
time-consuming, and therefore unfeasible, for developers to
test their apps on all these configurations before releasing
them.

In addition, an app can interact with the other apps present
in a device by emitting messages (intents). Since the associa-
tion between an intent and the responding app is dynamic, apps
that were not even available when the sending app was released
could respond to intents, resulting in highly unpredictable
scenarios. Consequently, many bugs may appear only after
deployment and while an app is being used by the end users.

In-vivo testing, that is running the test cases in the field,
directly in the devices of the end-users, can be an interesting
option to address these challenges. Indeed, it can be used to
exploit the heterogeneity of the devices, the operating systems,
the preferences, and the app-specific settings of the real end-
users to make the testing activity more effective. Although
the configuration space to be explored can be very large, the
configurations that matter, that is the ones used in practice,
would be incrementally validated as soon as they appear in the
field, with a potentially drastic increase of the effectiveness of
the testing activity. In such a setting, the network of the end-
user devices would constitute a very large testing platform that
can be used to run many test cases in-vivo and to efficiently
explore the configuration space.

However, deploying in-vivo testing on mobile devices is
challenging, since it requires, for example, also deploying non-
intrusive monitoring techniques to detect configurations and
changes, isolation mechanisms, to prevent that any side-effect
of the testing activity may impact on users, privacy preserving
algorithms, to extract only non-sensitive information from the

field.
In this paper, we discuss the challenges that we faced while

working on in-vivo testing of mobile apps and we outline our
proposed approach for in-vivo testing of Android apps. Al-
though it is still a work-in-progress, our approach can already
effectively handle the representation of the configuration space
using feature models [14], the isolation of test cases using
managed profiles3, and the discovery of the configurations to
be tested using monitoring mechanisms.

In the rest of the paper, we first discuss the challenges
related to the definition of in-vivo testing for Android apps
(Section II). We then discuss our approach to in-vivo test-
ing (Section III). We compare our work to related work
(Section IV), and finally present some concluding remarks
(Section V).

II. CHALLENGES

While designing our solution for enabling in-vivo testing
of mobile apps, we identified a list of challenges that must be
addressed to deliver an effective framework for in-vivo testing.
In the rest of this section, we discuss these challenges.

Test space. An in-vivo testing framework must know both
the features of the program that are relevant for in-vivo testing
and the values that can be assigned to these features. For
instance, the version of the operating system, the settings of
the volume, the availability of the GPS, and the look and feel
selected for a specific app are all examples of features that
could be taken under consideration. The cartesian product of
all feature-values defines the test space, that is, all the potential
configurations in which the program could be executed. Since
faults may manifest themselves only for specific configura-
tions [19], the test space must be properly defined, without
missing important features and without including irrelevant
ones.

The challenge consists of capturing all and only the fea-
tures that are relevant for testing, because missing some of
them might result in some bugs being never revealed, while
considering too many features (or too many feature values)
might make the test space explode. An additional problem is
how to represent this potentially very large test space in an
efficient way, that could be embedded in apps with limited
computational power.

Another challenge related to the test space is the manage-
ment of its evolution. Indeed, the test space must evolve as
soon as new features or new feature values turn out to be
relevant, for instance when a new hardware is released in the
market, when a new version of the OS is installed, and when
the app under test is updated.

Configuration probing. To decide when to activate in-vivo
testing, an app should be able to sense the configuration of the
environment in which the app is deployed and is operating.
However, this should be done in a way that is not invasive
and annoying for the end-user, for instance without requiring

3https://source.android.com/devices/tech/admin/managed-profiles

additional permissions w.r.t. those that the end-user already
grants to the app.

Tracking the status of the in-vivo testing process. The
relevance of the configurations for in-vivo testing changes dy-
namically and a testing framework should be able to track this.
For instance, an untested configuration might at some point be
tested, thus becoming less interesting, or not interesting at all,
for in-vivo testing. There might also be unknown feature values
that at some point are discovered and thus become a target for
in-vivo testing. In-vivo testing frameworks must be able to
track the status of the tested features and configurations, and
trigger the testing process when necessary.

An additional challenge for the framework is sharing this in-
formation across several devices. In fact, running in-vivo tests
locally on an actual device may turn an untested configuration
into a tested configuration. This change in the status should
then be shared and propagated to all the other devices running
the same app, so that no more resources are consumed for
testing an already tested configuration.

Test execution. When a configuration must be tested, the
framework has to retrieve the test cases and run them. The
testing framework should take decisions about the test cases
that can be executed in-vivo in the device [22] - e.g., the tests
that can be well-supported by the isolation mechanisms avail-
able in the device - and the test cases that should be executed
ex-vivo in-house [21] - e.g., the tests that can be isolated in-
house only. Designing this logic might be challenging.

Moreover, the ex-vivo testing process may raise additional
challenges related to the capability to replicate in-house a
configuration that has been observed in the field. In particular,
hardware configurations and configurations that include user
sensitive information might be particularly hard to replicate.

Test case selection and generation. When testing is needed
for a given configuration, the most appropriate tests should
be identified and executed. The framework should execute
the tests that better exercise the target configuration, skipping
the irrelevant ones. This decision must take into account the
specific configuration to be tested as well as the nature of the
available test cases, which could be either unit, integration, or
system test cases.

Test isolation. When test cases are executed in the end-user
device, any persistent side-effect must be prevented (e.g., user
data should not be deleted/modified by the tests cases) and
confidentiality of end-user data must be preserved (e.g., user
data should not be disclosed/exported by test cases). In vivo-
testing must thus be equipped with proper sandboxing and
privacy-preserving mechanisms that guarantee both properties.
The challenge is designing mechanisms that provide the right
level of guarantees. For instance, complete isolation of test
execution would invalidate the benefit of in-vivo testing, whose
goal is exploiting the end-user environment in the testing
process. On the other hand, the environment must be exploited
in a way that does not harm users and their data.

The actual tests could be manually written by the app
developers, could be generated automatically, or could be a
combination of the two. However, contrarily to regular unit,

integration, and system tests executed in-house, the in-vivo
test cases must support field execution. While some degree
of isolation can be provided by the in-vivo framework, there
might be other side-effects that the tests may generate and
the framework cannot handle (e.g., due to the invocation of
external services). Being either a human or a machine, the
test generator should deal with the limitations of the adopted
isolation solution.

Problem mitigation strategy. Although the primary goal of
in-vivo testing is revealing faults and reporting them to devel-
opers, in-vivo frameworks have the opportunity to immediately
improve the quality of the tested software by trying to automat-
ically repair the tested app. For instance, the in-vivo framework
may activate some failure prevention/mitigation strategy to fix
the problem while waiting for a permanent fix released by the
developers. Designing strategies and workarounds that can be
actuated in a mobile device might be challenging, although
some simple but effective policies can indeed be deployed,
such as preventing the user from selecting a configuration that
is known to cause app failures.

Performance cost. In order to be acceptable for the end
users, an in-vivo testing framework must not impose any un-
acceptable degradation of the end-user experience or cost. The
framework should be cheap in terms of memory requirements,
network overhead, slow-down of the app execution, and energy
consumption.

The cost of running the framework should be minimal
either when the framework probes and monitors the current
device configuration, but also when test cases are executed.
For instance, running the tests should not cause a denial-of-
service for the end-user (e.g., test cases should be executed
only when the device is idle and not actively used).

The main performance challenge is represented by the
contrasting goals of accurate testing with many test cases being
executed, to increase the likelihood of detecting faults, and of
cheap execution, because not too many resources should be
consumed on the end-user device for the purpose of in-vivo
testing.

III. APPROACH

In this section we introduce our in-vivo testing approach
by presenting it on a small running example based on the
ChatApp Android app.

A. ChatApp

Let us consider a hypothetical messaging app for An-
droid devices, which we call ChatApp (pronounced shut-up).
ChatApp supports the exchange of messages and multimedia
content between its users. Moreover, ChatApp can take a
picture of the user when the user creates or updates her profile.
To take a picture, ChatApp sends an intent to delegate the
task to any app that can take pictures using the camera of the
mobile device (see Figure 1).

Since ChatApp relies on external resources (installed camera
app; camera hardware) for the successful execution of the
add/update profile image functionality, the scenarios in which

1 Intent cameraIntent = new
Intent(MediaStore.ACTION_IMAGE_CAPTURE);

2 cameraIntent.putExtra(MediaStore.EXTRA_OUTPUT,
outputImgUri);

3 startActivityForResult(cameraIntent,
REQUEST_IMAGE_CAPTURE);

Fig. 1. Intent sent by ChatApp to obtain a profile picture

a failure might happen depend on multiple factors: the hard-
ware installed in the device, since the interaction with some
camera models may fail; the configuration of the environment
and operating system, since not all camera apps might be
compatible with the ChatApp application; the settings of the
app itself, since some specific choices might be not well
supported by the app; and a combination of all these factors.
Hence, adequately testing ChatApp requires addressing the
combinatorial exploration resulting from all these factors.

B. Modelling the Configuration Space with Feature Models

To represent and manage the large configuration space that
may affect apps, such as the ChatApp app, we use feature
models [14]. Feature models provide a tree-like representation
of the (combination of) features relevant to a product. In our
case, the features represented in the model are the configurable
items relevant to an app under test. We think feature models
are a natural choice to effectively deal with such a large con-
figuration space because they provide compact representations
of highly combinatorial spaces.

The configuration model of ChatApp is shown in Figure 2,
where inner nodes represent features; leaf nodes represent
feature values; and the parent-child edges represent the feature-
subfeature decomposition. While the default interpretation of
feature decomposition is AND-decomposition, modifiers are
available to express OR/XOR-decompositions and to identify
a feature as mandatory/optional (see Legend in Figure 2). The
logical constraints at the bottom-right are added to further
constrain the admissible configurations.

The configuration of ChatApp is decomposed into two
main parts: 1) DeviceConfig, representing the configuration
of the device on which the app is running; and 2) AppPrefs,
representing the various settings of the app itself. DeviceConfig
includes the Android version (OS feature), the camera apps
that can be delegated the task of taking a picture (CameraApp)
and the actual model of the device (DeviceModel), all of
which are mandatory features. In turn, CameraApp can be
the default app (Default, mandatory feature) or an additional
app (Other, optional feature). Default can be instantiated by a
set of mutually exclusive apps (empty arc), while Other can
be instantiated by a set of non exclusive apps (filled arc).
When the device model is CameraApp, the camera hardware
(CameraHw feature) can be either IMX300 or IMX400.

ChatApp has also a couple of application-specific settings.
The first one (Upload) represents a preference of the user to
upload photos over wifi, mobile data, or both. The other setting
(Backup) represents the preference of the user on whether

Fig. 2. Full configuration model for the ChatApp application

or not to backup chats. The feature model contains also a
few cross-tree constraints of type “implies”. For instance, the
cross-tree constraint (v4 x ⇒ N, equivalently shown as ¬4 x
∨ N in Figure 2) indicates that version 4 x of GoogleCamera
constrains the version of Android to be N (Nougat); the camera
app SonyCamera constrains the device model to be Sony.

Even in a small example such as the environment con-
figuration model depicted in Figure 2, the total number of
configurations admitted by the feature model is non trivial
(288 valid feature configurations). Indeed, the feature model
in Figure 2 is far from being a complete one: to keep
its size manageable, only a small number of options have
been expanded (just a few OS versions, device models, app
preferences, etc). Testing all valid configurations exhaustively
before deploying the app is not feasible because the number
of combinations grows exponentially with the number of
features and because some combinations might require very
specific hardware/software components. Combinatorial testing
(e.g., pairwise testing) [6] offers a way to systematically
explore such a very large configuration spaces. However, by
sampling a small representative fraction of all possible cases, it
leaves several combinations untested. Some of them might be
handled incorrectly by ChatApp, resulting in a runtime failure
occurring in the field.

In addition to representing the full configuration space, we
need to record also the set of configurations that have been
tested so far. Let us consider ChatApp at the time it is first
deployed to its users and let us assume that pre-release testing
has been carried out on an LG phone with default camera on
all three Android versions, with user settings specifying that
upload is possible only on the wifi and that backup is disabled.
The set of tested configurations will include the following
tuples of feature values:

〈N, LG, LGCam, OnWifi, No〉
〈O, LG, LGCam, OnWifi, No〉
〈P, LG, LGCam, OnWifi, No〉

The space of the configuration can grow to a significant size,
as well as the the storage used to keep track of it. A very large
size could also make search for already tested configurations
more demanding in terms of time or computational resources.
On the other hand, as the time goes by, some configuration can
become obsolete (devices, operating system or app versions,
just to name a few, can get out the market and be less and less
adopted by the users). To this end, it would make sense, in the
future, to foresee a “garbage collector” function, which could
take care of automatically discarding the old configurations.

C. In-Vivo Testing of ChatApp

Our approach includes a run-time in-vivo test component
that can monitor the configuration elements relevant to the
app and checks whether the current configuration is:

• tested (i.e., exercised in pre-release testing): this means
that the current configuration is valid according to the
full configuration model and is among the tuples of tested
configurations.

• untested (i.e., not exercised in pre-release testing): this
means that the current configuration is valid, but it is not
among the tuples of tested configurations.

• unknown (i.e., a configuration that includes a feature
value not in the feature model): this means that the
current configuration is not valid according to the full
configuration model, which should be extended with a
new leaf value for the newly discovered case.

This information can be extracted by a run-time probe that
queries the device and the app preferences and compares the
retrieved information to the tuples of tested configurations.

The following are examples of tested, untested and unknown
configurations of ChatApp

tested 〈N, LG, LGCam, OnWifi, No〉
untested 〈N, Sony, SonyCamera, v4 x, IMX400, OnWifi, Yes〉
unknown 〈P, Xiaomi, XiaomiCamera, Xiaomi/Dual camera, v6 x, OnWifi,

OnMobile, No〉
Different configurations trigger different reactions. A tested

configuration triggers no reaction. An untested configuration,
triggers in-vivo test execution. An unknown configuration trig-
gers a feedback to testers who are asked to extend the model
to incorporate the new cases that were not considered at the
beginning, when the full configuration model was produced.
In addition, an unknown configuration can be immediately
validated with the available test cases.

When testing an app, the in-vivo framework must be able
to select the relevant test cases and run them. This can be
achieved with proper metadata that relate test cases to the
exercised portion of the configuration space.

To guarantee isolation, we exploit a managed profile, a fea-
ture available in recent Android versions, designed to meet the
bring-your-own-device policy, where employees can use their
own private devices in a corporate-controlled environment.
A managed profile represents an ideal technical solution for
testing isolation, because it allows to separate the private user
profile, where private user data are stored, from an ad-hoc
(corporate) profile, where testing will take place. In this way,
the side effects of testing will not affect user experience and
user data.

Technically, an app installed in the managed profile is
assigned a linux userid distinct from the one of the same app
installed in the regular user profile, and the end-user sees two
distinct (and well-marked) copies of the same app. These two
apps will run as separate processes with their own distinct
private memory and data space.

A managed profile is normally controlled by a profile
manager. The profile manager can install and remove apps
to/from the managed profile as needed, for instance only for
the amount of time when testing is required. Additionally,
the corporate profile manager can dynamically grant/revoke
Android privileges to the apps installed in the managed profile
(e.g., internet access, and the possibility to make phone calls),
to implement the desired level of sandboxing and limit side
effects. The possibility to monitor the apps that run in the
managed profile (e.g., what URLs they access) is also a
valuable support for testing.

If the executed test cases pass, the untested configurations
become tested and the model of the untested configurations
is updated accordingly. If a failure is detected, the failure
is reported to the developer, and countermeasures to heal
the execution and/or patch the program can be activated, if
available.

Let us now consider the following hypothetical field failure:
A new camera app, XiaomiCamera, is installed.
The camera hardware is deployed with a driver
that, under Android version N, does not initialize
the camera if not requested explicitly. When Chat-
App takes a picture of the user, the request goes

through XiaomiCamera, which does not explicitly
initialize the camera when responding to an intent
(it initialises the camera only when activated by
the user). Correspondingly, XiaomiCamera crashes.
In such a case, ChatApp times out the request to
XiaomiCamera, leaving a reference to the requested
picture set to null. When later the picture is used, a
null pointer exception is thrown and ChatApp stops
working.

In such a scenario, the in-vivo testing component would:
1) recognize the configuration as unknown (in fact it does

not appear in the feature model depicted in Figure 2);
2) execute the in-vivo tests, possibly retrieved from a test-

ing server if not available locally, to check if ChatApp
works properly with the camera app XiaomiCamera;

3) expose a failure of ChatApp (null pointer exception);
4) activate self-healing in the app (e.g., ChatApp may use

an alternative or the default camera app).
In order to recognize the configuration with

XiaomiCamera as unknown, our framework
determines which apps can respond to the intent
MediaStore.ACTION_IMAGE_CAPTURE. If any of
such apps is not present under the pre-leaf node Other, a
new leaf node is created and the configuration is marked as
unknown. After finishing in-vivo testing, the in-vivo testing
component communicates the new configuration and the
results of testing to the server, which manages centrally
all the configurations encountered and tested in the field,
optionally triggering feedback to testers to incorporate a new
case.

Recognition of a configuration as untested would trigger a
similar reaction of the in-vivo testing component (check on the
server, test execution, reporting to the server and possibly app
healing). We envision the overall status of the field testing
process, including the covered cases, the newly discovered
configurations, and the available test cases to be monitored
by testers with a dashboard.

IV. RELATED WORK

While to the best of our knowledge our work is the first
to address in-vivo testing for mobile (specifically, Android)
applications, there are previous works that deal with related
problems. In particular, the problems of in-vivo monitoring
and isolation have been already considered, though not in the
mobile domain. Other related topics are ex-vivo testing using
field data and empirical studies about field failures.

A. Techniques and approaches for in-vivo testing

In-vivo testing has been studied in recent years in several
partially overlapping applicative domains, such as cloud com-
puting [20], [31], distributed systems [24], web services [31],
and embedded software [15], [24]. Existing approaches run the
in-vivo test cases in the same environment where the software
under test is operational, such that the testing infrastructure
can share field resources with the tested product [1], [2], [28].

In-vivo testing has been used to address both functional
and non-functional properties, often exploiting specification-
based approaches based on choreographies and service-based
specifications [1], [7], and finite-state models [5] to obtain
the test cases. In the specific domain of mobile applications,
in-vivo testing has received limited attention. Gu et al. [13]
exploited in-vivo testing to validate the changes performed by
repair actions, and Suliman et al. [27] proposed a framework
for runtime testing of component-based applications using
built-in tests. Differently from these works, this paper proposes
to use in-vivo testing to address the very large configuration
space that characterizes mobile applications, exploiting the
end-user environment as a testbed that naturally offers the
diversity required to effectively cover such a space.

B. Techniques to isolate in-vivo test execution

Several techniques [8], [11], [18], [22] have been proposed
to support isolation during in-vivo testing. Duplication (also
called Cloning) [8], [11], [22] consists of cloning the execution
state (e.g., by forking a parallel process [22]) and executing
in-vivo tests on the cloned execution state, hence ensuring
that there is no interference with the end user execution of
the application. Another proposed isolation mechanism is Test
mode execution [3], [12], [15], [17], [24], [30], which allows
to execute a component in a mode that does not interfere
with regular executions (e.g., via data tagging). Transactional
memory [4] can be used to perform in-vivo testing by creating
a memory transaction whenever a test is executed. Then, such
transaction is rolled back to prevent side-effects. Components
can also be equipped with built-in tests [26] that are specifi-
cally designed for in-vivo test execution.

Existing approaches are hardly applicable in the context
of Android because of limitations imposed by devices and
operating systems. We thus addressed the isolation problem
by taking advantage of the managed profiles available in the
Android platform (see Section III).

C. Field Monitoring Techniques

Monitoring is a crucial activity for in-vivo testing. It is used
to trigger test execution, to possibly start test generation and to
eventually halt in-vivo testing. Monitoring may target different
elements, including the target system [23], its events and
states, and the system hosting the application under test [16].
The monitoring strategy closest to our approach is the one
proposed by Lahami et al. [18], which monitors structural
dynamic changes in the context of adaptable and distributed
component-based systems. Their goal is to validate dynami-
cally reconfigurable component-based systems upon change,
so they monitor the runtime configuration of components and
its changes, while we monitor the end user configuration of a
mobile app.

D. Test generation using ex-vivo data

Ex-vivo testing consists of generating tests using data com-
ing from production, with the purpose of running such tests in

a testing environment which is isolated (or at least separated)
from the production one.

In some cases, tests are created manually by the developers
using ex-vivo data. For instance, Elbaum et al. [9] collected
more than one thousand user sessions for the Pine email client,
showing that field data have a strong ability to support test
suite improvement.

Since ex-vivo testing cannot always reproduce untested/un-
known configurations in-house, it has limited effectiveness
when used with mobile applications. This justifies our proposal
of in-vivo testing for such applications.

E. Empirical studies on field failures

Gazzola et al. [10] investigated the nature of field failures by
analysing the bug reports of five applications. They introduce
the notion of field-intrinsic fault, that is, a fault that is
inherently hard to detect in-house. Their study shows that com-
binatorial explosion is the main cause of field-intrinsic faults.
This finding motivates our proposal to move testing to the end
user environment, where such combinatorial explosion can be
dealt with thanks to the multitude of diverse installations and
configurations available in the field.

V. CONCLUSION AND FUTURE WORK

In-vivo testing can be promisingly used to exploit the
resources available in the field to more effectively test software
applications, taking advantage of the diversity and heterogene-
ity of the end-user environments and user-data. In this paper,
we discussed the main challenges associated with designing
in-vivo testing for mobile application, and Android applica-
tions in particular. We specifically described an approach that
exploits feature models to manage the in-vivo testing process,
configuration monitoring to trigger the field test process, and
managed profiles to achieve isolation. This is an initial step
towards the design of a complete distributed in-vivo testing
solution for mobile apps.

We are now working toward the implementation and exper-
imentation of our approach. Our future work includes advanc-
ing with the definition of cost-effective configuration probing
strategies, designing test generation and execution strategies
for in-vivo testing of mobile applications, and enriching the
framework with policies to mitigate or repair problems that
might be revealed during the in-vivo testing process.

ACKNOWLEDGEMENTS

This work has been partially supported by the Italian
Ministry of Education, University, and Research (MIUR) with
the PRIN project GAUSS (grant n. 2015KWREMX); by the
H2020 Learn project, funded under the ERC Consolidator
Grant 2014 program (ERC Grant Agreement n. 646867); by
the H2020 Precrime project, funded under the ERC Advanced
Grant 2017 program (ERC Grant Agreement n. 787703); by
activities “API Assistant/STAnD” and “Teı̂chos” of the action
lines Digital Infrastructure and Digital Finance of the EIT
Digital.

We would like to thank Filip Ivanov Karchev for contribut-
ing to the implementation of the initial in-vivo prototype, in
particular for engineering a solution for on-device execution
of Espresso test cases and for contributing to the initial sketch
of the in-vivo server.

REFERENCES

[1] M. Ali, F. De Angelis, D. Fan, A. Bertolino, G. De Angelis, and
A. Polini. An extensible framework for online testing of choreographed
services. Computer, 47(2):23–29, Feb 2014.

[2] X. Bai, S. Lee, W. Tsai, and Y. Chen. Ontology-based test modeling and
partition testing of web services. In 2008 IEEE International Conference
on Web Services, pages 465–472, Sep. 2008.

[3] C. Bartolini, A. Bertolino, S. Elbaum, and E. Marchetti. Bringing white-
box testing to service oriented architectures through a service oriented
approach. Journal of Systems and Software, 84(4):655 – 668, 2011.

[4] J. Bobba, W. Xiong, L. Yen, M. D. Hill, and D. A. Wood. Stealthtest:
Low overhead online software testing using transactional memory. In
18th International Conference on Parallel Architectures and Compila-
tion Techniques, pages 146–155, Sep. 2009.

[5] D. Brenner, C. Atkinson, B. Paech, R. Malaka, M. Merdes, and
D. Suliman. Reducing verification effort in component-based software
engineering through built-in testing. In 2006 10th IEEE International
Enterprise Distributed Object Computing Conference (EDOC’06), pages
175–184, Oct 2006.

[6] M. B. Cohen, P. B. Gibbons, W. B. Mugridge, and C. J. Colbourn.
Constructing test suites for interaction testing. In Proceedings of the
25th International Conference on Software Engineering ICSE, pages
38–48, 2003.

[7] M. B. Cooray, J. H. Hamlyn-Harris, and R. G. Merkel. Dynamic
test reconfigurationfor composite web services. IEEE Transactions on
Services Computing, 8(4):576–585, July 2015.

[8] H. Dai, C. Murphy, and G. E. Kaiser. CONFU: configuration fuzzing
testing framework for software vulnerability detection. International
Journal of System of Systems Engineering, 1(3):41–55, 2010.

[9] S. Elbaum and M. Hardojo. An empirical study of profiling strategies for
released software and their impact on testing activities. In Proceedings
of the ACM SIGSOFT International Symposium on Software Testing and
Analysis, ISSTA ’04, pages 65–75, New York, NY, USA, 2004. ACM.

[10] L. Gazzola, L. Mariani, F. Pastore, and M. Pezzè. An exploratory study
of field failures. In 28th IEEE International Symposium on Software
Reliability Engineering, ISSRE, pages 67–77, 2017.

[11] A. González-Sanchez, É. Piel, and H. Groß. Ritmo: A method for
runtime testability measurement and optimisation. In Proceedings of
the Ninth International Conference on Quality Software, QSIC, pages
377–382, 2009.

[12] M. Greiler, H.-G. Gross, and A. van Deursen. Evaluation of online
testing for services: a case study. In Proceedings of the 2nd International
Workshop on Principles of Engineering Service-Oriented Systems, pages
36–42. ACM, 2010.

[13] T. Gu, C. Sun, X. Ma, J. L, and Z. Su. Automatic runtime recovery
via error handler synthesis. In 2016 31st IEEE/ACM International
Conference on Automated Software Engineering (ASE), pages 684–695,
Sep. 2016.

[14] K. C. Kang, S. G. Cohen, J. A. Hess, W. E. Novak, and A. S. Peterson.
Feature-oriented domain analysis (FODA) feasibility study. Technical
Report CMU/SEI-90-TR-21, Carnegie-Mellon University – Software
Engineering Institute, November 1990.

[15] K. Kawano, M. Orimo, and K. Mori. Autonomous decentralized
system test technique. In [1989] Proceedings of the Thirteenth Annual
International Computer Software Applications Conference, pages 52–57,
Sep. 1989.

[16] T. M. King, D. Babich, J. Alava, P. J. Clarke, and R. Stevens. Towards
self-testing in autonomic computing systems. In Proceedings of the
International Symposium on Autonomous Decentralized Systems, ISADS
’07, pages 51–58, 2007.

[17] M. Lahami, M. Krichen, and M. Jmaiel. Safe and efficient runtime
testing framework applied in dynamic and distributed systems. Science
of Computer Programming, 122:1–28, 2016.

[18] M. Lahami, M. Krichen, and M. Jmael. Runtime Testing Approach of
Structural Adaptations for Dynamic and Distributed Systems. Int. J.
Comput. Appl. Technol., 51(4):259–272, July 2015.

[19] Y. Lu, M. Pan, J. Zhai, T. Zhang, and X. Li. Preference-wise testing for
android applications. In Proceedings of the 27th ACM Joint European
Software Engineering Conference and Symposium on the Foundations
of Software Engineering (ESEC/FSE), 2019.

[20] A. Metzger, O. Sammodi, K. Pohl, and M. Rzepka. Towards pro-
active adaptation with confidence: Augmenting service monitoring with
online testing. In Proceedings of the 2010 ICSE Workshop on Software
Engineering for Adaptive and Self-Managing Systems, SEAMS ’10,
pages 20–28, New York, NY, USA, 2010. ACM.

[21] J. Morn, A. Bertolino, C. de la Riva, and J. Tuya. Towards ex vivo testing
of mapreduce applications. In 2017 IEEE International Conference
on Software Quality, Reliability and Security (QRS), pages 73–80, July
2017.

[22] C. Murphy, G. Kaiser, I. Vo, and M. Chu. Quality Assurance of Software
Applications Using the In Vivo Testing Approach. In 2009 International
Conference on Software Testing Verification and Validation, pages 111–
120, Apr. 2009.

[23] C. Murphy, M. Vaughan, W. Ilahi, and G. Kaiser. Automatic detection of
previously-unseen application states for deployment environment testing
and analysis. In Proceedings of the 5th Workshop on Automation of
Software Test, pages 16–23. ACM, 2010.

[24] E. Nishijima, H. Yamamoto, K. Kawano, K. Fujiwara, and K. Oshima.
On-line testing for application software of widely distributed system.
In Proceedings 15th Symposium on Reliable Distributed Systems, pages
54–63, Oct 1996.

[25] Opensignal. Android fragmentation visualized. https:
//www.opensignal.com/sites/opensignal-com/files/data/reports/global/
data-2015-08/2015 08 fragmentation report.pdf. Accessed 4
September 2019.

[26] O. Sammodi, A. Metzger, X. Franch, M. Oriol, J. Marco, and K. Pohl.
Usage-Based Online Testing for Proactive Adaptation of Service-Based
Applications. In 2011 IEEE 35th Annual Computer Software and
Applications Conference, pages 582–587, 2011.

[27] D. Suliman, B. Paech, L. Borner, C. Atkinson, D. Brenner, M. Merdes,
and R. Malaka. The morabit approach to runtime component testing.
In 30th Annual International Computer Software and Applications
Conference (COMPSAC’06), volume 2, pages 171–176, Sep. 2006.

[28] Y. Wang, X. Bai, J. Li, and R. Huang. Ontology-based test case
generation for testing web services. In Eighth International Symposium
on Autonomous Decentralized Systems (ISADS’07), pages 43–50, March
2007.

[29] L. Wei, Y. Liu, and S.-C. Cheung. Taming android fragmentation:
Characterizing and detecting compatibility issues for android apps.
In Proceedings of the 31st IEEE/ACM International Conference on
Automated Software Engineering (ASE), 2016.

[30] H. Zhu and Y. Zhang. Collaborative testing of web services. IEEE
Transactions on Services Computing, 5:116–130, 2012.

[31] H. Zhu and Y. Zhang. A Test Automation Framework for Collaborative
Testing of Web Service Dynamic Compositions, pages 171–197. Springer
New York, New York, NY, 2014.

