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Abstract—Data obfuscations are program transformations
used to complicate program understanding and conceal actual
values of program variables. The possibility to hide constant
values is a basic building block of several obfuscation techniques.
For example, in XOR Masking a constant mask is used to
encode data, but this mask must be hidden too, in order to keep
the obfuscation resilient to attacks. In this paper, we present
a novel technique based on the k-clique problem, which is
known to be NP-complete, to generate opaque constants, i.e.
values that are difficult to guess by static analysis. In our
experimental assessment we show that our opaque constants are
computationally cheap to generate, both at obfuscation time and
at runtime. Moreover, due to the NP-completeness of the k-clique
problem, our opaque constants can be proven to be hard to attack
with state-of-the-art static analysis tools.

I. INTRODUCTION

Programs often contain sensitive data, e.g., license numbers
or decryption keys, that could be extracted and stolen in case
the code is scanned or analysed by malicious users (man-
at-the-end attack model [1]). Among the possible protection
strategies that can be applied to limit malicious program
understanding, data obfuscation aims at complicating data
extraction by changing data representation and use.

Many approaches for obfuscating the program control flow
have been defined and are quite largely adopted in practice [2].
However, even if the control flow is extremely difficult to un-
derstand, when values are stored in clear in the program binary,
they can be easily attacked, because control flow obfuscation
does not impede data extraction. In fact, clear data can be read
from the binary program before execution. For this reason,
data obfuscation should complement control obfuscation in
protecting against malicious reverse engineering. Though, we
want to stress here the fact that, even if in the following we will
show source code just after the application of data obfuscation,
we are assuming that control flow obfuscation techniques will
be applied to mangle the resulting source code.

While obfuscation transformations are quite effective in
turning programs hard to understand by human attackers [3],
they should be also hard to analyse by automated tools.
Opaque constants are program constants, whose value is
opaque for a static analysis tool, because the value is computed

at runtime by the program (once needed), but the value is very
difficult to recover by a static analysis tool. Moser et al. [4]
presented an approach based on opaque constants to block
static analysis tools. They used opaque constants as a building
block to implement advanced obfuscation algorithms.

The approach proposed by Moser et al. relies on the fact that
a static analysis tool (i.e., the attacker) would have to solve
a NP-complete problem, namely a 3SAT problem, to guess
the values of opaque constants. However, for the obfuscation
transformation to be sound (in Section III we list obfuscation
transformation’s requirements, soundness is among them),
the same problem should be also faced by the automatic
obfuscating tool (i.e., the defender). Thus, the opaqueness of
data can not be too high, otherwise the obfuscation tool would
be also unable to terminate the obfuscation task.

In this paper, we propose a novel approach to opaque
constants, such that they are difficult to guess with static
analysis tools, but also easy to generate for an automatic
obfuscation tool. Similarly to Moser et al., we also start
from a small 3SAT problem, that is supposed to be solved
at obfuscation time. However, this problem is mapped to a
k-clique problem of larger size, that a static analysis tool
should solve to identify the opaque value. The effectiveness
of our approach relies on an asymmetry of the effort needed
at obfuscation time and at attack time.

The novel contributions of this paper are:
• The explicit identification of the requirements for effec-

tive opaque constants;
• The presentation of a novel approach for opaque con-

stants based on the k-clique problem; and
• The empirical assessment of our opaque constants against

a state-of-the-art static analysis tool, and its comparison
with the previous approach by Moser et al.

The paper is structured as follows. Background on data
obfuscation is covered in Section II. The problem of strength-
ening obfuscations by opaque constants in exposed in Sec-
tion III. Section IV presents our approach based on the k-
clique problem which is empirically evaluated in Section V.
Section VI comments related work and, lastly, Section VII
summaries conclusions and future work.



II. BACKGROUND

Obfuscation [5] denotes program transformation techniques
aiming at turning a program into another one more hard to
understand and thus to attack, while preserving execution
semantic. In particular, XOR Masking and Residue Number
Coding are two program transformation approaches meant to
complicate the representation of data to make them harder to
comprehend.

A. XOR Masking

XOR Masking is a quite frequently [6] used data obfuscation
transformation based on the bitwise XOR operator. Variants of
XOR Masking are known to be employed by practitioners and
by malware [7]. This obfuscation consists in encoding a clear
value by computing its bitwise XOR (denoted with ˆ) with an
integer constant (the mask) p: e(x) = xˆp.

From the property of the XOR operator that (xˆp)ˆp =
x, it follows that the clear value can be recovered using the
decoding function that is e(·) itself.

Figure 1 contains snippets of code before and after having
applied the XOR Masking obfuscation with p = 12. The
values of program variables a, b and x are stored encoded in
memory, and they are decoded only where the clear values are
needed. In the third line, a and b are decoded to use their values
in a sum, and the result is encoded before being assigned to
x. The program variable x is decoded in the last line, to be
printed.

int a = 5;
int b = 8;
int x = a+b;
...
printf("%d\n",x);

→

int a = 9; // 9 = 5ˆ12
int b = 4; // 4 = 8ˆ12
int x = ((aˆ12)+(bˆ12))ˆ12;
...
printf("%d\n",xˆ12);

Fig. 1. Example of XOR Masking.

B. Residue Number Coding

Residue Number Coding (RNC for short) [8] is an encoding
on integers which is homomorphic for both the sum (and thus
the subtraction) and the product, i.e., it does not require to
decode back encoded values to perform computations.

The definition of RNC is based on modular arithmetic and,
in what follows, [x]m will denote the congruence class modulo
m represented by x, that is to say the set of integers y that are
equivalent to x modulo m, i.e. y = x + km for some k ∈ Z
(also written as y ≡ x(mod m)). Any element y ∈ [x]m can be
chosen as class representant, i.e. if y ∈ [x]m then [y]m = [x]m.

To apply RNC, u modules m1,m2, ...,mu ∈ Z should
be chosen such that they are pairwise co-prime (i.e.,
gcd(mi,mj) = 1, for i 6= j). Having the product of modules
n = m1 · m2 · ... · mu, RNC consists in encoding a value
x ∈ [0, n− 1] into u components in the following way:

e(x) =< [x]m1 , [x]m2 , ..., [x]mu >

The function e is invertible due to the fact that, given <
y1, y2, ..., yu > with yi ∈ Z, the Chinese Remainder Theorem
ensure existence and unicity (modulo n) of x satisfying the
following system of congruences: x ≡ y1(mod m1)

...
x ≡ yu(mod mu)

Furthermore x can be computed by using Euclid’s extended
algorithm for the gcd [9]. Operations in the encoded domain
are defined component by component:

< [x1]m1
,[x2]m2

, ... > + < [y1]m1
, [y2]m2

, ... >=
< [x1 + y1]m1

, [x2 + y2]m2
, ... >

< [x1]m1 ,[x2]m2 , ... > ∗ < [y1]m1 , [y2]m2 , ... >=
< [x1 ∗ y1]m1

, [x2 ∗ y2]m2
, ... >

Figure 2 shows an example of RNC encoding of program
variables x, y, z and w using the modules m1 = 31 and
m2 = 37. Each original value is split in two encoded values
(e.g., x is split in x1 and x2) because two modules are
used as encoding base. At (original) lines 1 and 2, constants
in the right hand side of the assignments are replaced by
their encoded component, 12 is replaced by <1965,1973>,
while 7 is replaced by <1433,2634>. To increase obscurity
of values, random representatives are chosen for constant
encoded values.

Sum and multiplication at lines 3 and 4, are performed
component-wise in the encoded domain and assigned to z and
w. In the last statements, z and w are decoded (using the
support function d) before being printed. We can note that the
clear values of x and y are never revealed in clear by this
program.

1: int x = 12;
2: int y = 7;

3: int z = x+y;
4: int w = x*y;

5: printf(
"z=%d, w=%d\n",
z, w);

→

// 1965 % 31 = 12
int x1 = 1965;
// 1973 % 37 = 12
int x2 = 1973;

// 1433 % 31 = 7
int y1 = 1433;
// 2634 % 37 = 7
int y2 = 2634;

int z1 = x1+y1;
int z2 = x2+y2;

int w1 = x1*y1;
int w2 = x2*y2;

printf("z=%d, w=%d\n",
d(z1,z2),d(w1,w2));

Fig. 2. Example of encoding integer variables using Residue Number Coding.

III. PROBLEM DEFINITION

Data encoded with the state-of-the-art XOR Masking and
RNC are vulnerable to attacks based on static analysis. In fact,



the mask p used in XOR Masking and the modules m1, m2, ...,
mu used in RNC are static constants that, once extracted from
the code, can be used to decode and obtain the clear value
of obfuscated variables. A way to make these obfuscation
techniques more resistant to static analysis attacks, is to turn
these constants into different software entities that are harder
to analyse, by substituting them with opaque constants [10].
A constant is opaque when its value (known at obfuscation
time) is removed from the code and it is computed at runtime
in a way that is hard to guess by analysing the obfuscated
program. Figure 3 suggests how to improve the obfuscation in
Figure 1 by using a function oc_12 that compute the opaque
constant 12.

A. Attack Model

Similarly to what assumed by related work [4], [10], in this
paper we also assume that an attacker has full access to the
program and that the attacker can deploy any static analysis
tool and algorithm on the program. Relevant examples of tools
are IDA-Pro and KLEE. The attacker objective is to extract
sensitive values from the program, those values that are meant
to be obfuscated.

int a = 9; // 9 = 5ˆ12
int b = 4; // 4 = 8ˆ12
int x = ((aˆoc_12())+(bˆoc_12()))ˆoc_12();
...
printf("%d\n",xˆoc_12());

Fig. 3. Example of XOR Masking with opaque constants.

B. Opaque Constant Requirements

The first requirement descends directly by Collberg’s defi-
nition of obfuscation transformation [5]: the substitution of a
constant with its opaque equivalent must produce a program
that behaves as the original one on valid inputs, i.e.,

Requirement Req1: The opaque constant transforma-
tion must be sound.

The second requirement for an opaque constant is that it
should make the obfuscation resilient and difficult to break.
Resilience is defined as a measure of how well a transforma-
tion holds up under attack by an automatic deobfuscator [10].
Attackers in fact might adopt tools to perform malicious
reverse engineering and try to extract decoded values from a
program. For example, if the opaque value is computed starting
from constant values, it could be easily recovered using static
analysis techniques such as constant propagation. Thus, the
opaque value should be computed starting from random values
or program inputs. Moreover, recovering the opaque constant
should require the attacker to solve a known hard problem,
i.e. a NP-hard problem. So our second requirement is the
following:

Requirement Req2: Guessing the opaque constant with
static analysis should be hard.

Conversely, from the defender point of view, the obfuscation
should be computationally cheap to apply. The obfuscation
should be based on a problem that, despite it is hard to solve
by the attacker, it should be easy to construct and verify
by the obfuscating tool. To assess that the obfuscation is
correctly applied, the obfuscating tool should not solve the
same problem as the attacker. Thus, the third requirement is
the following:

Requirement Req3: Constructing the opaque constant
at obfuscation time should not be hard.

Additional code is inserted to a program, to compute opaque
constants at execution time. When this additional code is
complex, the obfuscated code might suffer sensible runtime
overhead and performance degradation. Despite different ex-
ecution contexts might pose different constraints to execution
time, obfuscation should be in general lightweight and it
should not impact too much the program execution speed. For
example, when needed, an opaque value should be computed
in polynomial time. Thus, the last requirement is:

Requirement Req4: Computing the opaque constant at
execution time should be fast.

C. Opaque Constant based on 3SAT

Moser et al. [4] proposed a solution to opaque constants
based on the 3SAT problem. This solution is meant to provide
resilient opaque constants, because an attacker should solve
a hard instance of 3SAT problem in order to identify the
opaque values and break obfuscation. Here, we summarize
the approach proposed by Moser et al.

A 3SAT problem is defined as in the following. Let ϕ be a
propositional formula in conjunctive normal form with the n
propositional variables1 {v1, v2, ..., vn} and with k 3-literals
clauses:

ϕ =
∧

i=1,...,k

αi,1∨αi,2∨αi,3 with αi,j ∈ {vj ,¬vj |j = 1, ..., n}

(1)
The 3SAT problem consists in identifying the a truth assign-

ment for variables v1, v2, ..., vn such that ϕ is satisfied (i.e., ϕ
evaluates to true). An example of such propositional formula
in the propositional variables v1, v2 and v3 is:

(¬v1∨¬v2∨¬v3)∧(¬v1∨v2∨¬v3)∧(v1∨¬v2∨v3)∧(v1∨v2∨v3)
(2)

The intuition of the approach proposed by Moser et al. is
that an attack based on static analysis would fall in solving a
hard 3SAT problem.

1The term propositional variable is used to distinguish Boolean variables
used in the 3SAT propositional formula from program variables subject to
data obfuscation.



Figure 4 sketches the implementation of this approach. They
reuse a heuristic proposed by Selman et al. [11] (discussed
later in Section IV-A) to automatically generate a hard unsat-
isfiable propositional 3SAT formula ϕ. This formula is then
encoded as three arrays of integer pointers, namely a1, a2 and
a3. Each element of these three arrays is initialized (lines 4 to
6) as a pointer to an integer program variable, namely program
variables v1, v2, ..., vn or their negation nv1, nv2, ... nvn to
reflect literals αi,j in the formula. For example, in lines 4-6,
a1[0],a2[0], and a3[0] are initialized respectively to point to
nv1, nv2, and nv3 to encode the first clause ¬v1∨¬v2∨¬v3
of formula (2).

At lines 8-9, each integer program variable vi is initialized
randomly to false or true, and the corresponding negated
program variable nvi is initialized to its negation, i.e. to true
or false, respectively.

The computation of one bit of the opaque constant starts
at line 10, by initializing varaible phi to true. Then, in the
for loop, each clause is considered separately. The j-th clause
is evaluated in the if condition at line 12. Since the formula
is in conjunctive normal form, if at least one clause is false,
the whole formula is false and the loop stops with the break
statement.

However, since the formula is unsatisfiable by construction,
the clauses can not be all true and the Boolean value of phi
will be always false at the end of the iteration, regardless of
the value of random program variables vi and nvi. Thus the
opaque bit assigned at line 19 will be always 0. Swapping line
19 with line 21 generates an opaque 1-valued bit.

1 int v1, v2, ..., vn;
2 int nv1, nv2, ..., nvn;
3

4 int *a1[] = { &nv1, &nv1, ... };
5 int *a2[] = { &nv2, &v2, ... };
6 int *a3[] = { &nv3, &nv3, ... };
7

8 v1=rnd(FALSE,TRUE); nv1=!v1;
9 ...

10 int phi = TRUE;
11 for (int j=0; j<k; j++) {
12 if (!*a1[j] && !*a2[j] && !*a3[j]) {
13 phi = FALSE;
14 break;
15 }
16 }
17

18 if (!phi) {
19 opaque_bit = 0;
20 } else {
21 opaque_bit = 1;
22 }

Fig. 4. Generation of a single bit of the opaque constant based on a 3SAT
problem by Moser et al.

D. Considerations about Requirements

According to the arguments of Moser at al., opaque con-
stants based on 3SAT meet requirement Req2, because their
value is hard to guess statically. In fact, the opaque value is
computed starting from random values, that are not available

to static analysis. Thus, to guess the opaque value, symbolic
execution requires to elaborate a two set of assignments to
program variables vi and nvi, one to makes phi true and the
other to makes it false. However, this would mean to solve the
3SAT formula, and detect if it is satisfiable or not, a problem
known to be hard [12], that can be made harder and harder
by tuning the size of the propositional formula.

Additionally, Moser at al. shown that our requirement Req4
is also met. In fact, the execution of the code in Figure 4
to compute an opaque bit at runtime is quite fast (linear in
the number of clauses) and it does not impact too much the
program execution time.

However, this approach suffers a major drawback, it does
not simultaneously meet requirements Req1, Req2 and require-
ment Req3. In fact, to meet Req1, the obfuscating tool should
check that the randomly generated 3SAT formula is actually
unsatisfiable to be sure that the opaque value is constant for
any random assignment of program variables vi and nvi.
As such, the defender is supposed to solve (at obfuscation
time) the same 3SAT problem that the attacker also needs to
solve (at attack time) to break the obfuscation. Thus, a 3SAT
formula can not be too large and too hard to solve, otherwise it
would not be tractable at obfuscation time (Req3). A not very
complex 3SAT formula implies opaque constants with limited
resilience (Req2).

In the next section, we will present our approach based on k-
clique, to craft resilient and manageable opaque constants. We
will show how our solution addresses all of our requirements,
and requirement Req3 in particular, missed by the 3SAT
approach.

IV. PROPOSED APPROACH

Our opaque constants are based on the k-clique problem,
a problem known to be NP-hard [12]. We will show how
our solution meets all of the requirements for resilient opaque
constants and overcome the limitations of previous work.

Intuitively, we adopt a reduction transformation to turn a
propositional formula in conjunctive normal form into a graph.
The reduction is defined such that the graph contains a clique
of size k if and only if the formula is satisfiable. Eventually,
we compute the opaque constant based on some properties
of the graph, such that, to guess the opaque value, a static
analysis tool would have to solve a hard k-clique problem.

Intuitively, the k-clique problem is defined as the decision
whether an arbitrary undirected graph contains as subgraph
of k vertexes all pairwise connected. More formally, given an
undirected graph G = (V,E) and an integer k (with k ≤
|V |), the k-clique problem consists in deciding if the graph
G contains a clique of size k (or higher). A clique of size
k is a subset V ′ of the graph vertexes (V ′ ⊆ V ) of size at
least k (|V ′| ≥ k), in which all the pairs of vertexes in V ′ are
connected by an edge in E from the original graph G.

A. Generation of a Hard 3SAT Problem

Our approach starts from an unsatisfiable propositional
formula for 3SAT problem. To generate a hard instance of



the 3SAT problem, we adopt the guidelines proposed by
Selman et al. [11] derived by their empirical study about
random sampling 3SAT formulas. They studied 3SAT formulas
generated using the fixed clause-length model, i.e. a model
where each clause is produced by randomly choosing a set of
3 variables from the set of n available, and negating each
with probability 0.5. They found that the hardest area for
satisfiability is near the point where 50% of the formulas are
satisfiable, and when the ratio between the number of clauses
k and the number of propositional variables n is between 4.25
and 4.55. In our approach, we adopt an average ratio k/n of
4.3, i.e. our formulas will have n propositional variables and
k = b4.3 · nc clauses.

We run SAT solver on this random 3SAT formula to check
that it is unsatisfiable. If the check fails, we discard the formula
and we generate a new one, until the check with the SAT solver
passes.

This process is an example of a Bernoulli trial. The expected
number of times the check has to be repeated before the first
success is 1/p, where p is the probability of success. We will
assessed this probability and the time required to perform the
check in the evaluation part of the present work (see Section
V) but we can anticipate that the total time required to generate
a 3SAT unsatisfiable formula in up to 200 variables is less than
a second with a very high probability.

Finally, the 3SAT unsatisfiable problem that we found is
turned into a k-clique problem as described in the following.

B. Reduction of a 3SAT Problem to a k-clique Problem

A 3SAT problem can be reduced2 to a k-clique problem in
this way. Let’s assume to have a 3SAT formula ϕ in n variables
consisting in k clauses as in Equation (1). We construct a graph
Gϕ = (V,E), whose vertexes V and edges E are defined
according, respectively, to Equation (3) and Equation (4).

V = {(i, αi,1), (i, αi,2), (i, αi,3)|i = 1, ..., k} (3)

E = {(i1, αi1,j1), (i2, αi2,j2)) |
i1 6= i2 and αi1,j1 ∧ αi2,j2 satisfiable} (4)

The vertex set V contains a distinct vertex for each occur-
rence αi,k of a literal in the clause i. The edge set E contains
an edge for every pair of literals belonging to two different
clauses and so that they are jointly satisfiable, i.e. if one is not
the logical negation of the other.

Figure 5 shows the graph corresponding to the example
propositional formula in Equation (2). In the figure, a minus
sign ‘-’ stands for the logical negation, for example the
literal ¬v1 is written −v1. Nodes (1,¬v2) and (2, v2) are not
connected because v2 and ¬v2 can not be jointly satisfiable,
while node (1,¬v2) and node (2,¬v1) are connected because
¬v2 and ¬v1 can be jointly satisfied (and are present in two
different clauses, namely 1 and 2).

2Here we intend the reduction as proposed by Karp[13]. Informally, a
reduction is the transformation of a decision problem into another by means
of an algorithm that executes in polynomial time.

By construction, the 3SAT formula ϕ with k clauses is
satisfiable if and only if the graph Gϕ contains a k-clique.
In fact, if the graph contains a k-clique, vertexes in the
clique refer to literals that can be assigned to true without
resulting in contradiction (all nodes in a clique are pairwise
connected and by construction being connected means being
jointly satisfiable). Literals mentioned in clique’s vertexes
belong to different k clauses as by definition two vertexes are
connected only if they belong to different clauses. Thus the
truth assignment satisfies all the k clauses, i.e. it satisfies ϕ.
On the other hand, if there exists an assignments that satisfies
ϕ, it means that for each clause i at least a literal αi,ji is true
and the set V̄ = {(i, αi,ji), i = 1, ..., k} is a k-clique. In fact,
if (i1, αi1,ji1

), (i2, αi2,ji2
) ∈ V̄ with i1 6= i2, it means that

αi1,ji1
∧αi2,ji2

is satisfiable thus (i1, αi1,ji1
) and (i2, αi2,ji2

)
are connected.

(1, -v1)

(2, -v1) (2, v2) (2, -v3)

(3, -v2)(3, v3)

(4, v2)(4, v3)

(3, v1)

(4, v1)

(1, -v2) (1, -v3)

Fig. 5. Graph obtained by means of the Karp’s reduction of a 3SAT problem
to a k-clique problem for the formula in Example 2.

In our running example, the propositional formula in Equa-
tion (2) has 4 clauses and it is satisfiable. So the graph in
Figure 5 should contain a clique of size 4. In fact, nodes
{(1,¬v1), (2,¬v1), (3,¬v2), (4, v3)} form a 4-clique in the
graph. They correspond to the assignment:

v1 = False v2 = False v3 = True

Considering how nodes are generated starting from the
propositional formula (see Equation (3)), starting from a 3SAT
formula ϕ with k clauses, the resulting graph Gϕ will have
3k nodes.

C. Opaque Constants based on k-clique
Our approach leverages the NP-hardness of the k-clique

problem for forging resilient opaque constants. The integer
value c to be turned into an opaque constant is split into nb-
bits, c = b0b1...bnb−1. To encode the bit bi as a k-clique
problem, first of all we generate the propositional formula
ϕi with k clauses, corresponding to a hard 3SAT problem
and we reduce it to the graph Gi = (Vi, Ei) as described
earlier. The propositional formula ϕi is generated such that
it is unsatisfiable, i.e. it is false for each Boolean assignment
of its propositional variables. Thus the graph Gi = (Vi, Ei)
contains no clique of size k, i.e. any subset of k vertexes will
not be a clique.

Figure 6 shows the snippet that generates a single bit of the
constant c. The function call at Line 13 randomly generates a



set of vertexes. The generate_subset(idx,n,s) ran-
domly assigns elements from the set {0, 1, 2, ..., s− 1} to the
vector idx of length n. In the actual obfuscation, the function
generate_subset(v,n,m) is inlined. The nested loops
at Line 15 and Line 16 verify whether the subgraph induced by
the set of vertexes is a clique or not. If it is not, which is always
the case by construction, the bit is set to the required value, 0
in this example (Line 18). The chunk of code is repeated for
all nb.

Figure 3 suggests how to improve the resilience XOR
Masking shown in Figure 1 with an opaque constant. Each
use of the constant 12 was replaced by a call to the function
oc_12 generated by our approach.

1 int gm [][51] = {
2 { 0,0,...,1,1,1,0,1,1,},
3 ...
4 { ... }
5 };
6

7 int phi = TRUE;
8 int i,j;
9 int n = 17;

10 int s = 3*n;
11 int idx[n*sizeof(int)];
12

13 generate_subset(idx,n,s);
14

15 for (i=0; i<n-1; i++) {
16 for (j=i+1; j<n-1; j++) {
17 if (!gm[idx[i]][idx[j]]) {
18 phi=FALSE;
19 break;
20 }
21 }
22 }
23

24 if (!phi) {
25 opaque_bit = 0;
26 } else {
27 opaque_bit = 1;
28 }

Fig. 6. Generation of a single bit of the opaque constant based on our k-clique
problem based approach.

D. Resilience of the k-clique based approach

Our approach meets all the requirements that we identified
for resilient opaque constants.

Requirement Req4 imposes a fast computation of the opaque
constant when the obfuscated program is executed. The com-
putation of our opaque constants requires a quite short time
(i.e., polynomial time). The algorithm for the computation
of an opaque bit (see in Figure 6) checks if a random
set of k vertexes is a clique. The algorithm verifies if the
k(k − 1)/2 vertexes needed by the clique are present in the
graph. However, this algorithm can stop at the first edge that
does not satisfy the condition.

Our opaque constants are based on a hard problem (the k-
clique problem) and a static analysis tool should solve it to
identify the value of the constant. We can easily make static
analysis harder and harder (requirement Req2) by increasing

the size of the problem with more and more propositional
variables.

The time required to construct the opaque constant at ob-
fuscation time is dominated by the time needed to check if the
random propositional formula (to be used for generating the
graph) is satisfiable or unsatisfiable. In fact, only unsatisfiable
formulas should be used. This means that, to check that the
correct (unsatisfiable) propositional formula is chosen, the
obfuscation tool has to solve the corresponding 3SAT problem.
For this reason, the propositional formula can not be too
complex. Our approach meets requirement Req3 by limiting
the complexity of the propositional formula.

In the approach by Moser et al., the obfuscation tool and the
attacker should solve the same 3SAT problem, so requirement
Req2 (hard for the attacker) and requirement Req3 (easy for the
obfuscation tool) can not be meet at the same time. Conversely,
our approach fully meets these two requirements, because the
obfuscation tool has to solve a small 3SAT problem (Req3)
while the attacker will face a bigger k-clique problem (Req2).

Let’s quantify the asymmetry of the problems. The obfus-
cation tool has to check a 3SAT formula ϕ in n variables
and k = b4.3 · nc clauses. Instead, the attacker as to solve
a k-clique problem on a graph with 3k nodes. For example,
a 3SAT formula in 4 variables with 17 = b4.3 · 4c clauses
generates a 17-clique problem for a graph G whit 51 nodes.

Considering that no polynomial algorithm is known to solve
these problems, a linear size expansion from the 3SAT to the
k-clique would cause an exponential explosion of the time
required to solve the lager (k-clique) problem with respect to
the time required to solve the smaller (3SAT) problem.

In our evaluation (in Section V), we will show how a
state-of-the-art static analysis tool behaves differently when
analysing the two problems.

V. EMPIRICAL EVALUATION

We performed an empirical evaluation of the proposed
approach, to validate the execution time overhead involved
with the usage of opaque constants and their strength against
static analysis.

A. Research Questions and Variable Selection

We formalized our evaluation goals in the following re-
search questions:
• RQ1: How long does a state-of-the-art SAT solver take

to check satisfiability of a 3SAT formula?
• RQ2: How long does an obfuscated program take to

compute the value of an opaque constant based on k-
clique at runtime?

• RQ3: What is the resilience of opaque constants based
on 3SAT?

• RQ4: What is the resilience of opaque constants based
k-clique?

This first research question aims at assessing the compu-
tational effort required by the defender to generate a 3SAT
problem. Later, this effort is compared with the one required
by the attacker to solve the relative k-clique problem. The



second question is intended to quantify the performance degra-
dation due to program obfuscation and study how long it
takes to compute an opaque constant at runtime. Then, we
are interested in comparing the effectiveness of our opaque
constants with the existing approach based on 3SAT. Thus
the third research question is formulated on the resilience of
opaque constants based on 3SAT while the fourth research
question is specifically on the resilience of opaque constants
based on k-clique.

To answer these research questions, we will consider these
metrics on a number of experiments:
• ETIME: Execution time for a program, the user time

reported by the Linux’s tool time and converted in
seconds.

• NCLS: Number of clauses in a 3SAT problem.
• NVARS: Number of propositional variables in a 3SAT

problem.
• NVGR: Number of vertexes in a graph.
• KCLQ: Size of a k-clique, i.e. KCLQ=k.
• PSAT: Fraction of satisfiable problems in a given set of

3SAT problems.

B. RQ1: Time to Verify 3SAT

In the experiment we measure how long it takes to Yices3,
a state-of-the-art SMT solver, to check if a 3SAT formula in
NVARS propositional variables and with NCLS = 4.3·NVARS
is satisfiable. For NVARS running from 50 to 350, we generate
100 random 3SAT formulas and for each formula we execute
Yices to check if it is satisfiable or not. We collect execution
time from the execution log Yices produces when the tool
is run with the flag (show-stats). We take NVARS ≥
50 to avoid time measures be shorter than the measurement
accuracy. Table I show aggregated statistics for collected data.
Mean of ETIME ranges from 1.9 · 10−4 for NVARS = 50 to
837.7 for NVARS = 350. PSAT ratio estimates the probability
of generating a satisfiable 3SAT problem and ranges from 0.60
for 50 variables to 0.30 for 350 variables.

TABLE I
SATISFIABILITY RATIO (PSAT), MEAN AND SD OF EXECUTION TIME FOR

YICES SOLVING RANDOMS 3SAT PROBLEMS IN NVARS VARIABLES.

NVARS PSAT MEAN(ETIME) SD(ETIME)
50 0.60 0.00013 0.00019

100 0.51 0.00176 0.00143
150 0.49 0.01134 0.00645
200 0.45 0.09320 0.06800
250 0.37 1.09245 0.74141
300 0.37 25.42116 26.68942
350 0.30 828.21444 837.64963

Based on the empirical evidence, we can answer to RQ1 in
this way:

The time a state-of-the-art SAT solver takes to decide
a 3SAT formula with a number of variables NVARS less
than 200 is negligible.

3http://yices.csl.sri.com/

C. RQ2: Time to Compute Opaque Values at Runtime

In this second experiment we measure how long an ob-
fuscated program takes to compute the value of an opaque
constant based on k-clique.

We base this empirical assessment on a program that just
calls 1,000,000 times a function f that computes an opaque
constant value of 16 bits. The experiment is repeated with a
increasing number of propositional variables NVARS. We start
with NVARS = 4 and we increase this value in steps of size
4, until 40 propositional variables. For each value of NVARS,
10 different random 3SAT formulas have been generated. To
minimize random error, the measurement of the execution time
ETIME is repeated 25 times. Thus, in total, we collect 250
measurements of ETIME for each value of NVARS.

Figure 7 reports the boxplot of the execution time ETIME
for increasing values of NVARS. It can be noted that the com-
putation of 1,000,000 opaque constants on average takes from
4.13 seconds for formulas with 4 propositional variables up to
4.48 seconds for formulas with 40 propositional variables.
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Fig. 7. Execution time taken by the obfuscated program to compute 1,000,000
opaque constants. Opaque constants are based on a k-clique problem defined
by 3SAT formula in NVARS propositional variables. The red line represents
the log model.

The trend of ETIME seems to suggest a logarithmic de-
pendency with NVARS. To validate this observation, we fit
experimental data with the subsequent log model:

ETIME = a+ b · log(NVARS)

Table II show the result of the model estimated with a linear
least squares regression. The first column reports the name
of parameter that is estimated (a and b). The second column
reports the estimated value for the parameter. Then the third



and fourth columns report, respectively, the standard error and
the p-value of the t-test. As we can see, the parameters can
be estimated with a very large confidence4. The estimated log
model is shown in Figure 7 as an interpolating red dashed line.

TABLE II
ESTIMATED COEFFICIENTS OF THE LOGARITHMIC MODEL FOR THE

EXECUTION TIME TAKEN TO EVALUATE 1,000,000 OPAQUE CONSTANTS.

Parameter Estimation Std. Err. P-value
a 3.99126 0.04789 4.79e-13
b 0.12560 0.01607 5.17e-05

Based on this experiment, we can answer to research
question RQ2 in this way:

A program obfuscated with opaque constants based on
k-clique is affected by a very low runtime overhead.
The runtime overhead increases logarithmically with the
the number of propositional variables used in the 3SAT
formula according to this model:

ETIME = 3.99 + 0.12 · log(NVARS)

D. RQ3: Resilience of Opaque Constants based on 3SAT

In the third experiment, we evaluate the resilience of the
approach based on 3SAT proposed by Moser et al.

We estimate the resilience of obfuscation as the amount
of time taken by a static analysis tool to break obfuscation.
Breaking obfuscation means to guess that for any possible
input value, the same opaque value is returned by the obfus-
cated function. This boils down to detect that some execution
paths in the control flow graph are always executed (e.g.,
opaque_bit=0 in Figure 4) and some other paths are never
executed (e.g., opaque_bit=1) because they are unfeasible.

To this aim, we resort to symbolic execution [14].
KLEE [15] is a state-of-the-art symbolic execution tool that
automatically generates (several sets of) input values for a
C program or a C function. The control flow graph of the
program under analysis is visited and path conditions are col-
lected along branch statements. Path conditions are solved to
compute concrete input values that would make the execution
traverse the visited branches.

With respect to the opaque constant bit based on 3SAT in
Figure 4, KLEE will try to explore the branch at line 21 and
generate a set input values (values of v1...vn) that makes the
execution reach the branch with opaque_bit=1. To execute
line 21 all the propositional clauses should evaluate to true.
However, there is no assignment that makes the execution
reach that point, because the 3SAT formula is unsatisfiable
by construction. To understand this fact, KLEE needs to solve
the 3SAT problem.

The experimental procedure consists in measuring how long
KLEE takes (i.e., ETIME) to fully analyse a function that
computes an opaque constant bit based on 3SAT, similar to
the function in Figure 4.

4A confidence of 95% requires a p-value< 0.05. In our case, p-values are
always much smaller.

We use 3SAT formulas with an increasing number of
propositional variables NVARS. For each formula the number
of clauses NCLS is set to NCLS = b4.3 · NVARSc as
suggested by Selman’s et al. to maximize the likelihood of
having a hard-to-solve SAT problem (see in Section IV-B).
For each value of NVARS, we experiment with 10 different
unsatisfiable 3SAT formulas. The measurement of the time
ETIME taken by KLEE to analyse each 3SAT formula is
repeated 25 times.

TABLE III
EXECUTION TIME TAKEN BY KLEE TO ANALYSE A PROGRAM WITH A

1-BIT 3SAT OPAQUE CONSTANT USING NVARS PROP. VARIABLES.

NVARS ETIME CI
4 0.24 0.01
8 1.08 0.04

12 6.73 0.65
16 43.63 5.16
20 530.48 143.75
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Fig. 8. Execution time (y axis is logarithmic) taken by KLEE to analyse a
program with a 1-bit opaque constant based on a 3SAT problem in NVARS
propositional variables.

Table III shows the summary of experimental data. The first
column reports the number of propositional variables NVAR,
the second column reports the the average ETIME of KLEE in
seconds and the third column shows the the 95% confidence
interval for the average. The same data are also shown in
Figure 8 with the y axis in logarithmic scale. As expected,
the trend looks exponential (linear on a logarithmic axis), so
we try and fit ETIME against the number of propositional
variables using an exponential model:

ETIME = ea+b·NVARS

The obtained model is shown in Table IV. The table
columns report, for each model parameter, the estimated value,
the standard error and the p-value of the t-test.

TABLE IV
ESTIMATION OF THE MODEL TO FIT KLEE EXECUTION TIME DATA

PRESENTED IN TABLE III.

Parameter Estimation Std. Err. P-value
a -3.60377 0.34213 0.001827
b 0.47717 0.02579 0.000345

Based on the empirical evidence, we can answer to RQ3 in
this way:



A state-of-the-art symbolic execution tool can analyse
opaque constants based on 3SAT, and the analysis time
grows exponentially with the number of propositional
variables. Furthermore to analyse a function that com-
pute a 1-bit opaque constant the analysis time can be
estimated with this model:

ETIME3SAT = e−3.60+0.48·NVARS

E. RQ4: Resilience of Opaque Constants based on k-clique

Similarly to the experiment on opaque constants based on
3SAT, here we study the resilience of opaque constants based
on k-clique. Also in this case we use KLEE as state-of-the-art
static analysis tool.

However, it turns out that collecting time measures for the
k-clique problem is not feasible. According to our approach,
the smallest k-clique problem is reduced from the smallest
non-trivial 3SAT problem, i.e. with NVARS=4. It corresponds
to a 17-clique in a graph with 51 vertexes. When analysing the
code for such small problem, KLEE is not able to complete
the analysis after having run for more than 9 days.

Thus, we have to resort to a different experiment, with
an easier problem instance. The new problem consists in
measuring how long KLEE takes to analyse simpler k-clique
problem, that is not derived from a (unsatisfiable) 3SAT
formula. We use smaller random generated graphs (with less
than 51 vertexes) instead of graphs derived from a 3SAT
formulas. In this case, graphs are randomly generated. We
we can not guarantee that they do not contain a k-clique.
Henceforth it is possible that KLEE needs less time to analyse
the program obfuscated with on these graph. Thus, we measure
a lower-bound of actual ETIME for unsatisfiable problems.

In detail, the experimental procedure consists in generating
random graphs of increasing size and checking for the pres-
ence of cliques. The number of vertexes NVGR of graphs is
set equal to three times the size KCLQ of the clique, namely
NVGR = 3 · KCLQ. For each pair of vertexes, we randomly
add an edge to the graph with probability P = 0.85. The
experiment is conducted with different values of KCLQ that
varies between 3 and 8. The analysis of each opaque constant
with KLEE is repeated 25 times, and its execution time ETIME
is measured.

Table V summaries the empirical data. For each size of the
clique KCLQ, the table shows the mean of ETIME in seconds
and the 95% confidence interval (CI).

TABLE V
MEAN EXECUTION TIME AND 95% CONFIDENCE INTERVAL FOR THE

MEAN, REQUIRED BY KLEE TO ANALYSE A PROGRAM WITH ONE-BIT
OPAQUE CONSTANT BASED ON k-CLIQUE.

KCLQ ETIME CI
3 1.28 0.12
4 13.54 1.26
5 96.83 16.59
6 569.09 140.62
7 3,722.56 1,040.93
8 14,358.15 2,389.90
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Fig. 9. Execution time (y axis is logarithmic) taken by KLEE to analyse a
program with one-bit opaque constant based on random graphs whose size is
NVGR = 3 ·KCLQ.

Figure 9 reports the boxplot of execution time for different
sizes of the clique (y axis has a logarithmic scale). The graph
suggests an exponential trend (linear in the logarithmic scale),
so we try and fit ETIME against the number of vertexes in the
clique KCLQ using an exponential model:

ETIME = ea+b·KCLQ

Table VI shows the resulting model, for each parameter
(a and b) the estimated value is shown (second column)
with the standard error and p-value (third and fourth columns
respectively). The estimated model is shown in Figure 9 as a
red dashed line.

TABLE VI
ESTIMATION OF THE MODEL TO FIT KLEE EXECUTION TIME DATA

PRESENTED IN TABLE V.

Parameter Estimation Std. Err. P-value
a -4.9915 0.4221 0.000293
b 1.8641 0.0733 1.42e-05

Based on these results, we can formulate the subsequent
answer to RQ4:

A state-of-the-art symbolic execution tool can not
analyse opaque constants based on k-clique. The anal-
ysis on simplified versions of opaque constants based
on k-clique takes exponential time in the size of the
clique KCLQ. Furthermore, to analyse a function that
computes a 1-bit opaque constant, the analysis time can
be underestimated with this model:

ETIMEK−Clique ≥ e−4.99+1.86·KCLQ

F. Considerations about Requirements

Here we discuss the results of the empirical investigation
with respect to the requirements of opaque constants defined
in Section III-B.

Requirement Req1: Our transformation is sound because
we check that the propositional formula used in the transfor-
mation is unsatisfiable, so the program semantic is preserved.

Requirement Req2: We have a direct measurement for the
time required to analyse opaque constants based on 3SAT



(see RQ3). However, we could not directly measure now
long KLEE takes to analyse an opaque constant based on
k-clique (RQ4). We could measure the tool execution time
only on simplified problems. If we assume that we can extend
the validity of results for RQ4 to a larger problem size, we
can speculate on and predict the amount of time needed to
complete the analysis. Considering that in our approach we
have that KCLQ = b4.3 ·NVARSc, we can rewrite the model
fitted on RQ4 in terms of NVARS:

ETIMEK−Clique ≥ e−4.99+1.86·KCLQ = e−4.99+1.86·b4.3·NVARSc

Using this interpolated model for ETIMEK−Clique, we can
predict the time required to analyse a k-clique problem. Let’s
consider the problem instance obtained from a 3SAT formula
of 17 clauses in 4 propositional variables. ETIMEK−Clique

should be about e−4.99+1.86·17 ' 3.7 · 1011 seconds, that is
more than 11,000 years. Thus, we can claim that our approach
satisfies requirement Req2, because static analysis would take
years to attack an opaque constant based k-clique.

Requirement Req3: Our tool took milliseconds to generate
the opaque constant code for the k-clique problem discussed
above, i.e. based on 3SAT formula in 4 propositional variable
and 17 clauses. So we can claim that requirement Req3 is also
fully met, because the time taken to obfuscate constant values
is short and, specifically, much shorter than the time taken to
attack them.

Requirement Req4: The the computation of the value of
an opaque constant based on k-clique is quite fast (see RQ2)
and it grows logarithmically with the problem size. Thus, we
can claim that requirement Req4 is also fully met. Thus, we
can formulate the subsequent statement:

Opaque constants based on the k-clique problem are
sound (Req1); hard to guess with symbolic execution
(Req2); fast to generate with our approach (Req3); and
fast and scalable to compute at execution time (Req4).

To complete the discussion, we compare the amount of time
required to analyse (i.e. to attack) opaque constants based on
3SAT-based and those based on k-clique. So, we compute
a lower bound for the ratio between ETIMEK−Clique and
ETIME3SAT as:

ETIMEK−Clique

ETIME3SAT
≥ e−4.99+1.86·b4.3·NVARSc

e−3.4+0.48NVARS
≥ 0.2·103.2·NVARS

(5)
This result clearly shows for KLEE our opaque constants

based on a k-clique problem are (exponentially) more difficult
to analyse than opaque constants proposed by Moser et al.
based on a 3SAT problem. So, our opaque constants clearly
improve the resilience of previous approaches, while they
require a similar cost at obfuscation time and at execution
time.

VI. RELATED WORK

The most related work by Moser et al. [4] has already
extensively described in this paper. We overcome their lim-

itations by requiring static analysis to run for (exponentially)
longer time to analyse our opaque constants. Other relevant
techniques to tackle the problem of generating opaque con-
stants and opaque predicates were presented by Collberg et
al. [5][10][16] and by Wang et al. [17].

The techniques proposed by Collberg et al. leverage the
hardness (undecidability, in general [18]) of the statically
must/may point-to analysis problem. The opaque predicate is
formulated on a dynamic data structure (e.g. a graph) that is
difficult to analyse statically, because continuously updated at
runtime.

Wang et al. [17] presented a technique to obfuscate pred-
icates that trigger malware behaviours. The technique aims
at preventing symbolic execution to devise which conditions
satisfy a certain predicate. To this aim, they leverage mathe-
matical conjectures, such as the Collatz’s one.

However, the arguments of Collberg et al. and Wang et
al. to support the strength of their approaches are informal.
Conversely, we adopted an empirical framework to show that
our approach defeats a state-of-the-art symbolic execution tool.

Work by cryptographers, such as Barak et al. [19], aims
to a formal definition for the concept of obfuscation, proving
possibility or impossibility theorems for the existence of differ-
ent strength class of obfuscations, such as indistinguishability
obfuscation [20]. Other work focuses on proposing obfuscation
implementations for practitioners and on providing measures
or speculations on obfuscation’s strength and ability to delay
attacks.

Jakubowski et al. [21] used code metrics (size, cyclomatic
number and knot count) to measure code complexity as a
proxy of human understanding effort.

The term “resilience” was proposed by Collberg et al. [16]
as a quality related to how difficult is an obfuscated program
to be automatically de-obfuscated. Karnick et al. [22] measure
resilience as the number of errors generated when decompil-
ing the obfuscated code. Sutherland at al. [23] relied on a
program binary instrumentation tool to measure the fraction
of the obfuscating transformations that attackers can undo
automatically. Udupa et al. [24] evaluated the effectiveness
of control flow flattening obfuscation, by measuring how long
a combination of static and dynamic analysis takes to perform
the automatic de-obfuscation. We also used an automatic tool
to asses the resilience of our obfuscation approach.

VII. CONCLUSIONS AND FUTURE WORK

Opaque constants are cornerstone features to extend and
improve existing obfuscation transformations. We presented
a novel approach for opaque constants that are sound, hard
to guess, fast to generate and fast to compute. According
to our empirical investigation, symbolic execution does not
threaten our opaque constants, because it would require too
long analysis time (many years to complete).

As future work, we plan to investigate the effect of our
obfuscation on human comprehension. Human participants
will be involved in a controlled experiment to measure how
hard is to tamper with obfuscated code.
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