
Reactive Attestation: Automatic Detection and Reaction to
Software Tampering Attacks

Alessio Viticchié,
Cataldo Basile

Politecnico di Torino
Torino, Italy

{alessio.viticchie,
cataldo.basile}@polito.it

Andrea Avancini,
Mariano Ceccato

Fondazione Bruno Kessler
Trento, Italy

{anavancini,ceccato}
@fbk.eu

Bert Abrath,
Bart Coppens
Ghent University
Ghent, Belgium

{bert.abrath,bart.coppens}
@elis.ugent.be

ABSTRACT
Anti-tampering is a form of software protection conceived to detect
and avoid the execution of tampered programs. Tamper detection
assesses programs’ integrity with load- or execution-time checks.
Avoidance reacts to tampered programs by stopping or rendering
them unusable. General purpose reactions (such as halting the exe-
cution) stand out like a lighthouse in the code and are quite easy to
defeat by an attacker. More sophisticated reactions, which degrade
the user experience or the quality of service, are less easy to locate
and remove but are too tangled with the program’s business logic,
and are thus difficult to automate by a general purpose protection
tool. In the present paper, we propose a novel approach to anti-
tampering that (i) fully automatically applies to a target program,
(ii) uses Remote Attestation for detection purposes and (iii) adopts
a server-side reaction that is difficult to block by an attacker. By
means of Client/Server Code Splitting, a crucial part of the program
is removed from the client and executed on a remote trusted server
in sync with the client. If a client program provides evidences of
its integrity, the part moved to the server is executed. Otherwise,
a server-side reaction logic may (temporarily or definitely) decide
to stop serving it. Therefore, a tampered client application can not
continue its execution. We assessed our automatic protection tool
on a case study Android application. Experimental results show
that all the original and tampered executions are correctly detected,
reactions are promptly applied, and execution overhead is on an
acceptable level.

Keywords
Software security; software attestation; remote attestation; code
splitting; anti-tampering; tamper detection; tamper reaction

1. INTRODUCTION
Man-At-The-End attacks (MATE) have recently been defined to

describe the cases where attackers tamper with software applica-
tions in contexts where they have full privileges (their own desktop

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

SPRO’16, October 28 2016, Vienna, Austria
c© 2016 ACM. ISBN 978-1-4503-4576-7/16/10. . . $15.00

DOI: http://dx.doi.org/10.1145/2995306.2995315

computers or mobile devices) and they can deploy advanced tools
to perform powerful and sophisticated analyses and changes.

In this paper, we cope with the problem of how to mitigate at-
tacks aiming at modifying programs to alter their behaviour, for in-
stance attacks to code integrity. For example, a procedure that per-
forms authentication could be altered to grant unauthorized users
access to critical resources, such as to freely generate temporary
passwords with One Time Password generation available as a bank-
ing mobile app.

Anti-tampering is among the techniques available in the litera-
ture to mitigate the impact of the attacks we want to counter. Anti-
tampering is usually composed of two components: detection and
reaction. The tamper detection component usually consists of an
attestation manager, in charge of collecting evidence that the appli-
cation is working as expected, and of a verifier that emits verdicts
on the program integrity based on this evidence. The tamper reac-
tion component, instead, aims at punishing a detected tampering,
e.g., turning the program unusable. Tamper detection may run lo-
cally, such as in code guards [9], where the attestation manager
and the verifier are parts of the protected program. Alternatively,
tamper detection may run remotely, like in the case of remote attes-
tation [11], where the attestation manager is part of the protected
application, but it sends proofs to a remote verifier that is executed
on a trusted server.

Similarly, tamper reaction may work locally or remotely. When
tamper reaction is local, it consists of pieces of code that worsen
the performance or block the program, like graceful degradation
[42]. Remote/server-side reactions consist in inhibiting the server
from providing services to tampered clients. Local reactions are
among the weakest points of anti-tampering. Indeed, they could
be identified and disabled by an attacker, so that anti-tampering
would become useless. Indeed, local reactions adopt patterns that
are recognisable with static and dynamic analysis. Server-side reac-
tions represent a more trustworthy solution. In fact, server-side re-
actions cannot be disabled by definition, because the remote server
is assumed to be beyond the MATE attacker’s control. However,
server-side reactions are effective only if the program’s correct ex-
ecution directly depends on the server, and the server is not easy to
fake. If a program does not depend on the server, server-side reac-
tions do not work and, to the best of our knowledge, no methods are
available to automatically transform programs to apply this kind of
reaction. They, in fact, require substantial manual intervention to be
tuned on the specific business logic of program to protect. A high
degree of automation is required to make anti-tampering cheap and
effective, and thus spur its adoption.

In this paper, we propose a novel approach to anti-tampering that
we call Reactive Attestation. Our approach consists of automati-

cally (i) transforming a program to protect, which may originally
have run without interacting with a remote server, into a program
that strictly depends on a remote server; (ii) adding tamper detec-
tion mechanisms to the program to protect, and (iii) adding support
to tamper reactions that stops tampered clients from working by
preventing the remote server from serving them.

Our approach has been implemented in a prototype tool that
works fully automatically on C code. This prototype makes the pro-
gram to protect server-dependent using Client/Server Code Split-
ting, uses Static Remote Attestation as tamper detection technique,
and uses a server-side tamper reaction logic that stops to serve de-
tected tampered programs, thanks to a server-side communication
infrastructure between tamper detection and reaction. This proto-
type has been subject to empirical validation, showing very precise
tampering detection and acceptable memory and execution time
overhead, and limited network communication bandwidth.

The paper is composed as follows. Section 2 introduces the
background knowledge on anti-tampering and Client/Server Code
Splitting we have used to design and build our approach to Reac-
tive Attestation. Section 3 first introduces the limitations of current
practice then presents the design principles of the Reactive Attesta-
tion. Section 4 describes the details of the implemented prototype.
Section 5 presents the research questions we formulated, the re-
sults, the analysis, and a discussion on the experimental validation
conducted on the implemented prototype. Section 6 presents re-
lated work and compares it with our Reactive Attestation. Finally,
Section 7 draws conclusions and sketches future improvements.

2. BACKGROUND
This section presents the background knowledge on Client/Server

Code Splitting and on Remote Attestation required to understand
the motivations of their integration as Reactive Attestation.

2.1 Anti-tampering
Remote Attestation is a tamper detection technique that relies

on a trusted server to request attestation and to verify proofs pro-
duced by the program. A generic reference architecture of Re-
mote Attestation has been proposed by Coker et al. [11] (see Fig-
ure 1). The integrity of a target protected program is evaluated
by an attestation manager, displaced in the application itself. The
attestation procedure is initiated by a remote third party, namely
the appraiser, which is in charge of requesting integrity measure-
ments (also named integrity evidence) from the attestation man-
ager, whenever it deems this appropriate. Integrity measurements
are computed by the attestation manager and sent back to an at-
testation delegation proxy, which evaluates the measurements and
decrees on the integrity of the target. Moreover, a self-protecting
trust base behaves as a root of trust and is used by the attestation
manager to certify its integrity measurements.

Remote Attestation uses challenge-response mechanisms to avoid
replay attacks. The appraiser sends attestation requests containing
nonces and, optionally, other commands for the attestation man-
ager, to be used when producing integrity proofs. The attestation
manager computes integrity measurements to be used as attestation
evidence using the nonce and following, if available, the commands
sent by the appraiser. Optionally, the computation of attestation
evidence includes data that may permit the server to authenticate
the target application. The self-protecting trust base plays a ma-
jor role to ensure validity of application authentication data. The
proxy, depending on the Remote Attestation technique, indepen-
dently computes (or pre-computes and stores) the attestation evi-
dence to be compared with the received one, or assesses though ad
hoc integrity models if the evidence received proves the correct ex-

server side components

Attestation proxy

Appraiser

network

protected program

application
logic

Attestation
Manager

secure channel

Root of trust

Figure 1: Remote Attestation architecture

ecution. In most cases, the communication between client-side and
server-side components is protected with standard secure commu-
nication protocols to avoid Man-in-the-Middle attacks.

2.2 Client/Server Code Splitting
Client/Server Code Splitting transforms a program such that part

of the computation is moved to a remote server. This transforma-
tion was initially designed as a way to protect programs from mali-
cious tampering [7, 8]. In fact, if sensitive portions or critical func-
tionalities are moved to a remote server, they can run securely and
without being tampered with by the attacker. The initial objective
of Client/Server Code Splitting can be extended so that it can be
used (possibly in combination with other ones) for new purposes.

This technique starts from the assumption that moving an entire
function to the server is not always feasible. In fact, a function
scope might not exactly match a security critical region. A func-
tion can be larger than the needed portion of code to be transferred,
thus causing unnecessary server load if moved. Moving a whole
function often has several side effects, such as updates to the pro-
gram status (e.g., values of global variables), that would require
intense client/server communication to propagate all the updates to
the server. When computing what portion of the client to move to
the server, data and control dependencies should be carefully taken
into consideration to ensure minimal server overhead and perfor-
mance impact, while guaranteeing an adequate level of client secu-
rity.

To minimise the size of the code to move, Client/Server Code
Splitting relies on the notion of barrier slicing [23], which extends
the traditional concept of (backward) program slicing1 [43].

The computation of the barrier slice starts with two sets of {pro-
gram statement, program variable} pairs, namely the criterion C =
{vc, xc} and the barriers B = {vb, xb}. The algorithm starts by
marking all the statements in the criterion xc. Then control depen-
dencies (on the statements xc) and data dependencies (on the vari-
ables vc at statements xc) are traversed backward, and the reached
statements are also marked. The algorithm is iterated, and depen-
dencies are transitively traversed backward and new statements are
marked. Dependencies, instead, are not traversed on barriers (state-
ments xb and variables vb). When the propagation reaches the fix
point, the computation of the barrier slice is over. The slice repre-
sents the part to be moved on the server.

When using Client/Server Code Splitting to protect code from
malicious tampering, the identification of criteria and barriers should
be based on security requirements. For example, the variables vc in

1A backward slice s of a program P is a sub-program P ′ that is
equivalent to the original program P with respect to the value of a
particular variable vc at a certain statement xc (the pair {vc, xc} is
called the slicing criterion).

a criterion should be those whose computation must be protected.
Barriers represent secure points where tampering is no longer an
issue. They can pose a limit to the size of the slice. When Clien-
t/Server Code Splitting is used to make an application depend on a
server, the scenario is much easier. In fact, it is sufficient to move
to the server those parts that are complicated enough to avoid being
faked by the attacker, and that are executed often enough to react
promptly to tampering.

When the computation of the slice is available, a set of program
transformations are applied:

• the slice is removed from the original application and moved
to the server where it runs;

• each assignment to criterion variables vc is replaced by a syn-
chronization point, that both server and client should reach
before the computation can proceed. Synchronization is im-
plemented by exchanging particular sync messages between
client and server;

• whenever the client requires the value of a variable whose
computation is part of the slice moved to the server (e.g.,
vc), this value is requested to the server via an ask message;

• when the server needs a value of a variable whose computa-
tion remains on the client because it is not part of the slice
(e.g., vb), this value is provided by the client via a send mes-
sage.

3. REACTIVE ATTESTATION
In this section, we present our novel approach to code protec-

tion that we call Reactive Attestation. Reactive Attestation inte-
grates the two techniques described in the previous section, namely
Remote Attestation and Client/Server Code Splitting, with the ob-
jective of conceiving a brand new protection approach that over-
comes the limitations in the reaction functionality of existing anti-
tampering techniques.

Intuitively, Remote Attestation is applied to a program to pro-
tect in order to detect tampering, and a remote server component
is deployed to request and verify integrity evidences. Then, Clien-
t/Server Code Splitting is used to transform the protected program
and move selected parts of the (original) client to a secure server, so
that the program to protect becomes server-dependent. The result-
ing protected program will be eventually composed of a client-side
and a server-side logic.

Server-side components of Reactive Attestation, i.e., tamper de-
tection and tamper reaction, are interconnected. Whenever a client
is detected as tampered by Remote Attestation, the reaction is en-
forced by stopping the server-side components of Client/Server Code
Splitting, i.e. the client is disconnected. This reaction blocks the
normal execution of the protected program, turning it unusable.

3.1 Considerations on Remote Attestation
Remote Attestation is a broad category of protections that uses

a remote server to move away from the client integrity verification
and management functionality (see Section 2.1). Since only the at-
testation manager remains at risk, Remote Attestation is a rather se-
cure protection. Moreover, since the protected program must send
attestation evidences to the server, the attacker has just a limited
amount of time to forge fake integrity evidences for the tampered
program. However, Remote Attestation is not perfect. Attacks that
aim at removing or disabling the protection can be mounted against
the different Remote Attestation techniques. For instance, static

techniques are vulnerable to memory copy attacks and they can-
not detect attacks that do not alter binaries (like attaching a debug-
ger). Time based attestation is vulnerable to proxy attacks and rely
on trusted information about the precise client hardware configu-
ration. Attestation based on dynamic techniques is subject to false
positives and negatives (see Section 6.1 for the complete definition
of Remote Attestation typologies). On the other hand, Remote At-
testation is not very demanding from the point of view of server
computation and network load. Additionally, it usually requires
very little computational resources at the client side.

3.2 Considerations on Tamper Reaction
Tamper reaction may work locally, in which case it consists of

pieces of code that worsen the performance of the application or
block it (e.g., graceful degradation). Local reaction techniques
are one of the weakest points of anti-tampering, as spotting and
disabling the reactions renders the entire anti-tampering technique
useless. Indeed, local reactions alter binaries or perform compu-
tations (mainly based on pointers) whose patterns are recognisable
with static analysis and especially with dynamic analysis (see Sec-
tion 6.2).

The only way to achieve a reasonable level of trustworthiness
in anti-tampering is by using server-side reactions, where the pun-
ishment consists of preventing the server from providing services
to compromised clients. Indeed, server-side reactions cannot be
disabled, as the remote server is not under the control of MATE
attackers.

Thus, server-side reactions are effective only if the client de-
pends on the server and the code that runs on the server is cannot
trivially be rebuilt locally by an attacker. Otherwise, stopping all
the communications with the server or creating a fake server would
be a valid way to defeat reactions. However, not all applications are
designed to depend on a server, even though assuming that an appli-
cation is always connected is more than reasonable nowadays. This
is the main limitation of remote tamper reaction, and the reason for
relying on Client/Server Code Splitting for obtaining a reliable re-
action.

3.3 Considerations on Client/Server Code Split-
ting

Client/Server Code Splitting moves parts of a program on a re-
mote server, where they are executed in parallel to the remaining
parts of the client. The main limitation of Client/Server Code Split-
ting is related to performance. Indeed, it involves costs due to
server-side computation and network load, which typically causes
extra power consumption, especially in case the original unpro-
tected barely used the network or did not access the network at
all. Therefore, the need of minimising the size of the part to split
becomes utterly important. On one hand, the portion of code sub-
ject to splitting should be small and simple enough to limit extra
costs in server-side computation, and must not be executed too fre-
quently, to limit extra costs in server-side computation and network
load.

On the other hand, the split part should contain important fea-
tures that are mandatory for the client, to prevent attackers from
easily building a fake server that emulates the server-side logic.
Split parts must be difficult to bypass (they should be scattered
throughout the source code, and possibly have no relation to code
parts annotated by Remote Attestation) and they must be executed
often enough to be able to block compromised applications with a
relatively short delay. Furthermore, split parts should not be code
regions that return constant values, to avoid the possibility for an
attacker to reuse those constant values in following executions and

to remove the need of the computation done at server-side. Thus, it
is not possible to generically split a large part of the program, but
the part to protect should be identified carefully, typically by hand
(which is costly and time consuming).

The identification of the most appropriate part to split can be
automated, for example as suggested by Ceccato et al. [8]. They
relied on static analysis to identify and minimise control and data
dependencies that would be impacted by the transformation. Static
analysis or the inspection of execution traces can be also used to
set criteria and barriers near to the part of the program subject to
remote attestation. In this way, the reaction to tampering would be
quite near (in code and, so, in time) to the identification of tamper-
ing.

3.4 Requirement of Reactive Attestation
Based on the considerations elaborated so far, formulated on the

strong and weak points of available protections and components,
we set the requirements of an effective solution to Remote Attes-
tation that will guide the definition of our novel code protection
approach.

• Automatic transformation. The transformation of a program
to adopt tamper detection should be fully automatic. Devel-
opers should just focus on developing and maintaining the
program business logic and they should not spend effort on
the protection.

• Security requirements as code annotations. The code areas to
be protected from tampering must be explicitly annotated by
the developers. The protection tool may suggest related ar-
eas, that is, other areas that deserve to be protected to achieve
a better security level (e.g., to protect also the function calls,
not only the function implementation). This requirement is
in line with the state of the art in software protection, as cur-
rently there is no way to automatically determine the assets
in an application.

• Server dependent. The program to be protected might not
be network-oriented, so a remote tamper reaction would be
unnatural and easy to spot. Such a program should be auto-
matically transformed in semantically equivalent version for
which remote reactions makes sense. More explicitly, this re-
quirement translates into two goals: (i) turning the program
dependent on the server so that stopping the service renders
the application unusable; and (ii) making impossible for an
attacker to generate a fake server which is able to mimic the
correct behaviour of the server.

• Accurate reaction. When tampering is detected, the deci-
sion on reaction must be made automatically and fast. How-
ever, while all the tampered clients should be always blocked
promptly, legitimate clients must not be disconnected, other-
wise the protection would cause denial of service.

• Acceptable overhead. The overhead of the protected appli-
cation (execution time, memory, network) should be limited,
and it should not impact too much the user experience.

3.5 Reactive Attestation
Reactive Attestation consists in using Remote Attestation to check

for tampering and Client/Server Code Splitting to implement the
reaction. It consists in a static transformation of the program to
protect and in some runtime logic to enact the actual protection.

3.5.1 Static Program Transformation
The process of transforming the program to protect is composed

of the subsequent steps.

• Security requirements as code annotation. The developer
specifies security requirements as the portions of code where
integrity is needed. These parts are marked by means of code
annotations added to the original program code (see Sec-
tion 4.1 for the annotation syntax).

• Automatic definition of split boundaries. The boundaries of
the code portion to split (i.e. the splitting configuration) are
determined with an automatic process based on the system
dependence graph (SDG) of the program that needs to be
protected. In particular, control and data dependencies to be
affected by splitting are minimised to limit the client/server
interaction. Moreover, the split portion should be small in
order to reduce the load at the server-side. The split configu-
ration is marked as annotations in the source code to protect
as criteria and barriers for the splitting algorithm (see Sec-
tion 4.1 for annotation syntax).

• Automatic splitting. Client/Server Code Splitting is applied,
to generate a transformed client-side component and a new
server-side component, with proper sync, ask and send mes-
sages.

• Automatic attestation. The Remote Attestation transforma-
tion is applied, that means, the attestator manager is injected
in the program to protect and all the server-side components
for management and verification of integrity evidences are
built. Client-side network management code is also injected
into the program to protect.

• Server-side orchestration logic. All the necessary reaction
logic needed on the server side is created. Server-side logic
and server-side Remote Attestation components are updated
to be aware of the presence of the reaction logic.

3.5.2 Runtime Protection
The interactions between tamper detection, tamper reaction and

server-side logic follows this sequence.

1. Verification. The Remote Attestation verifier checks if the
application is legitimate or not. All the verification results
are recorded in a server-side data base.

2. Reaction policy. The reaction logic at the server side is based
on an engine that analyses the content of verification history
in the data base and decides whether to stop a specific client
according to a reaction policy.

A policy is indeed a set of rules that determine when the
client program should be run and when it should not. For
instance, a reaction policy may require to stop serving for x
minutes an application whose last y proofs were invalid and
to stop serving the application for x+ k · t for all the succes-
sive failed t attestations.

The reaction logic updates the tampering status of the appli-
cation in the server-side data base.

3. Reaction. When the split server execution is required by a
protected client, the split server checks the application’s tam-
pering status stored in the server data base. If the tampering
status confirms that application is “valid”, the execution of
the split server is granted and proceeds as usual. Otherwise,

1 void check_license(int day, int month, int year) {
2 _Pragma("RA begin attestation(technique(static_ra),

static_attestator_type(a1),interval(180),
attest_at_startup)")

3 int dd1 = calculate_original(day, month, year);
4 int dd2 = calculate_current()
5 _Pragma("RA end")
6 if (dd2 - dd1 > 30)
7 printf("Fail\n");
8 else
9 printf("Ok\n");

10 }
11 int calculate_original(int d, int m, int y) {
12 _Pragma("RA begin splitting(barrier(valid_year), label

(s1))")
13 int valid_year = 0;
14 _Pragma("RA end")
15 valid_year = check_valid();
16 _Pragma("RA begin splitting(criterion(original_date),

label(s1))")
17 int original_date = d + m + y + valid_year;
18 _Pragma("RA end")
19 return original_date;
20 }

Figure 2: Example of source code annotations for Reactive Attes-
tation.

if the status is “tampered”, the split server code is not exe-
cuted. Since split client and split server executions are syn-
chronized with bidirectional data exchange, when the server-
side execution stops, the client-side execution also blocks.
The application then becomes unresponsive and is thus no
longer usable.

4. PROTOTYPE IMPLEMENTATION
This section describes the implementation of a prototype tool

to perform Reactive Attestation, as to validate the approach pre-
sented in Section 3. The implemented prototype includes Clien-
t/Server Code Splitting and Remote Attestation modules that work
with source files written in C. Therefore the only limitation we im-
posed, compared to the requirements in Section 3, is that the appli-
cation to protect includes at least a part to protect which is written
in C. The other limitation is that the application must be executed
only when the device on which it runs is connected to the Internet
in order to reach the server-side components. All the applications
that satisfy these requirement can be protected with the Reactive
Attestation.

4.1 Code Annotations
Source code annotations drive the program transformation. Fig-

ure 2 shows the syntax of annotations used by Reactive Attestation.
Annotations are defined by means of the pragma construct, they are
directive to the C compiler, starting with the string “RA”. When-
ever the annotated code is compiled by the standard C compiler,
which does not define semantics for “RA” annotations, a warn-
ing is emitted but the code is correctly compiled without applying
any protection, generating the original, vanilla version of the appli-
cation. When the program is compiled by our tool, however, the
resulting binary is protected by Reactive Attestation.

Annotations apply to the portions of code delimited between
“RA begin” and “RA end”. Two annotation variants are available,
to control parts subject to Remote Attestation (i.e., “RA begin at-
testation”) and parts affected by Client/Server Code Splitting (i.e.,
“RA begin splitting”).

The attestation annotation in Figure 2 indicates that the code
from line 2 to 5 will be attested for modifications with Static Re-

1 procedure calculate-slice (criterion C, barrier B)
2 set-of-vertices := vertices-of (C)
3 set-of-barriers := vertices-of (B)
4 slice := vertices-of(C)
5 while not (is-empty(set-of-vertices))
6 predecessors := predecessors-of-vertices (set-of-

vertices, DATA-CONTROL-DEPS)
7 filtered-predecessors := predecessors \ set-of-

barriers
8 set-of-vertices := filtered-predecessors
9 slice := slice UNION filtered-predecessors

Figure 3: Pseudo-code of the barrier slicing algorithm.

mote Attestation. In particular, we have requested the use of a spe-
cific attestator (we have 40 variants developed within the ASPIRE
project2) through the optional static_attestator_type key-
word. This code area is subject to attestation with an average fre-
quency of one attestation every 180 seconds through the interval
keyword. Moreover, this area is attested when the program is launched
via the attest_at_startup keyword.

Splitting annotations, instead, specify a slicing criterion (lines 16
- 18) and a slicing barrier (lines 12 - 14). Barrier and criterion an-
notations also indicate the variables subject of the splitting algo-
rithm by name, they are respectively valid_year as barrier and
original_date as criterion. Moreover, splitting annotations
use the “label” parameter to pair barrier and criterion annotations,
which is mandatory when splitting is applied multiple times to the
same program.

4.2 Client/Server Code Splitting Module
The Client/Server Code Splitting module is implemented in a

number of steps. It mainly combines Grammatech CodeSurfer3

and the TXL transformation framework to analyse the source code
of the application that needs to be transformed [13], to identify
those portions of the code that require to be moved onto the secure
server, and to apply code transformation patterns to generate the
transformed client application.

The implementation of the proof-of-concept prototype described
in this paper misses the automatic decision of the optimal slice ex-
tent. Although automation can be implemented according to al-
gorithm available in the literature [8], the current implementation
requires to manually annotate slicing barriers and criteria. Once
barriers and criteria are available, the computation of the slice and
all the program transformation steps are fully automated.

Input of the tool is the annotated source code, while the output
consists of the sliced client and the corresponding server-side slice
component.

The component responsible for the computation of the barrier
slice is implemented as an analysis script on top of CodeSurfer.
Starting from the information extracted from annotations, the slic-
ing criterion and the barriers, we implemented the slicing algorithm
to precisely calculate the portion of code that represents the barrier
slice with respect of the current annotation configuration and the
code to protect. The code in input is analysed by CodeSurfer to
extract the system dependence graph (SDG). The slicing algorithm
performs a series of queries to this data structure to extract the bar-
rier slice.

Figure 3 shows the pseudo-code of barrier slicing. Input param-
eters are the slicing criterion C and the barrier B. These parame-
ters are converted into their representations in terms of vertices of
the SDG and stored in two local variables, set-of-vertices and set-

2https://aspire-fp7.eu/
3https://www.grammatech.com/products/codesurfer

of-barriers respectively (line 2, 3). At this point, the barrier slice
(variable slice) is initialized to the vertices that represent the crite-
rion C (line 4). Then, the algorithm iterates until no new vertex can
be added to the slice (i.e., the fix point is reached). More specifi-
cally, in the first iteration the algorithm queries all the predecessors
of the current set of vertices (representing the criterion C) by fol-
lowing data and control dependencies backward in the SDG. The
set of predecessors is filtered by removing possible barriers. When
a barrier is found, the propagation of dependencies stops and ver-
tices at that barrier are not included in the slice. After filtering, the
resulting set of vertices becomes the set of vertices for the next iter-
ation. When no new predecessor is found, the algorithm stops and
returns the final barrier slice.

When the slice is computed, a set of program transformation
rules is applied, which have been implemented on top of TXL as
rewriting transformations of the parse tree of the program. These
transformation rules are used in order to:

• create a new compilation unit for the new component that
needs to be deployed on the split server;

• transform the client program such that it only works when
paired with the corresponding split server.

4.3 Remote Attestation Module
The reference architecture of our software only Static Remote

Attestation system is composed of three main components, based
on the work of Coker et al. (as in Figure 1) and on the analysis of
the literature presented in Section 6.1.

The Manager is the appraiser in charge of initiating the integrity
evaluation procedures. It prepares and sends requests to the attesta-
tor. Requests contain indications on how to perform the attestation
and a nonce used for countering replay attacks. The frequency of
requests is stochastically described, i.e., the time between two at-
testation requests is defined by an average expected value and a
variance. Namely, the variance is statically defined as 2% of the
average expected value.

The Attestator is the attestation manager that computes the in-
tegrity measurements on the target. The integrity measurements,
that are the integrity proofs, are the hash of data obtained as random
walks into selected portion of the target code memory and nonces
sent by the Manager. As a special case, the random walk can be
performed on the entire application. The actual portion of the code
memory to attest, the type of random walk and the hash algorithm
to use are requested by the Manager. The obtained measurement is
then hashed and sent to the Verifier.

The Verifier is the attestation proxy. This element compares the
integrity evidences received from the attestator against the precom-
puted valid values and emits a verdict about the target integrity.

The Reactive Attestation data base logs all the attestation trans-
actions that include sent requests, evidences as well as the verdicts,
so that the complete history of all the evaluations is tracked. This
information is accessed by the policy engine to determine if a reac-
tion is needed and its severity.

All the messages exchanged by the components over the network
are protected by using secure communication channels.

The attestation evidence is computed as:

e = hash(prepare(d, ID, n))

where ID is a valid target identification data, and n is the nonce re-
ceived from the server. The integrity measurement data d are com-
puted as a random walk on a memory code area (d = random_walk(a)).
The random walk function to use is determined by the nonce (i.e.,
random_walk = fr(n)). The data to hash are concatenated and

manipulated by the prepare e.g., to compute a keyed digest n that
is put at the begin and the end of the data to hash.

Information about the code areas to attest is stored in an Attesta-
tion Areas Data Structure (ADS). The code areas to attest are not in
general contiguous segments of the code memory and are thus rep-
resented as sequences of contiguous memory blocks. Information
about each memory block is determined as an offset from the appli-
cation base address (also named “load address of the text segment”
in the ARM specifications4). Areas to attest are associated with
unique integer identifiers. The actual area to attest is derived from
the nonce by means of an ad hoc function a = fa(n). An API
provides access to the i-th byte of the j-th code area. Therefore,
the ADS can be injected into the application binary code either as
a contiguous blob or spread across the binaries. The injection is
actually performed by means of the binary rewriting features of
Diablo5, which is a link-time rewriting framework.

4.4 Reaction Policy Engine and Reactive At-
testation Data Base

The Reactive Attestation data base has been implemented as a
standard relational data base. It includes the following tables:

• Area, which reports the ID of all the areas, the attestation av-
erage frequency, and if the area needs to be attested at startup;

• Request, which reports about the area ID, request time, re-
sponse time, verification results, and all other parameters;

• Reaction_status, which reports the allowed values for the
overall application status, depending on the reaction policy;

• Reaction, which reports the overall status of clients as estab-
lished by the reaction policy engine;

• Prepared_data, which stores the association between nonces,
code areas, and pre-computed attestation data that serve to
save time at verification time;

• Policy, which stores the association between an application
and the reaction policy to enforce.

The reaction engine has been trivially implemented as a set of
processes, one for each used policy, which accesses the data base
and searches information about the programs that need to react
with the algorithm implied by the policy. Clearly, this approach
is acceptable for a prototype and it is not expected to scale to real
systems. However, it can be easily improved with an event-based
architecture. Every policy process accesses the request table and
write the results (one of the reaction_status values) in the reaction
table. We have implemented three sample policies: “stop serving
a tampered application”, “stop serving a tampered application until
it is restarted”, and the “stop serving for x minutes an application
whose last y proofs were invalid and to stop serving the application
for x+ k · t for all the successive failed t attestations”.

5. EXPERIMENTAL VALIDATION

5.1 Research Questions
This section is meant to investigate Reactive Attestation from an

empirical point of view, according to the following research ques-
tions.
4http://infocenter.arm.com/help/topic/com.arm.doc.dui0101a/
DUI0101A_Elf.pdf
5http://diablo.elis.ugent.be/

• RQ1: is Reactive Attestation effective in detecting tamper-
ing?

• RQ2: what is the overhead of Reactive Attestation?

The first research question is devoted to explore the accuracy of
Reactive Attestation in detecting real cases of code tampering. In
fact, the protection should block only the programs that are under
attack, while all the legitimate and original programs should not be
impacted. The second research question investigates the cost of the
protection, in terms of execution overhead of the protected clients
with respect to the original clients.

It would also be interesting to pose questions on how long a tam-
pered program can be executed before it is detected by the attes-
tation and on the delay between detection and reaction. However,
to correctly address these other questions, we would need a more
advanced experimental environment, with different case study ap-
plications. A more detailed and in depth experimentation goes be-
yond the scope of our preliminary assessment, so other research
questions are left as future work.

5.2 Metrics
To measure the effectiveness of Reactive Attestation we collect

the following metrics:

• True Positives (TP), the number of tampered clients that are
correctly blocked;

• False Positives (FP), the number of legitimate clients that are
incorrectly blocked;

• True Negatives (TN), the number of legitimate clients that are
correctly executed as legitimate;

• False Negatives (FN), the number of tampered clients that
are incorrectly executed as legitimate.

These metrics are key metrics in information retrieval as they mea-
sure the performance of a classifier to correctly classify documents,
so they are useful for us to understand the ability of our tool to
distinguish between legitimate and unauthorised application exe-
cutions. In our context, we want to maximise the ability of our
Reactive Attestation tool in detecting True Positives (TP), those
applications that are real cases of tampering in order to block their
executions, and True Negatives (TN), those applications that are le-
gitimate and which executions must be allowed. While maximising
TP and TN, we also want to minimise the number of False Positives
(FP). A FP means that a legitimate application has been blocked,
negating an authorised user his/her rights to access a service. Fur-
thermore, the number of False Negatives (FN) must be minimised
too in order to avoid malicious users accessing restricted contents.

To assess the overhead caused by applying Reactive Attestation,
we measure and collect the following metrics.

• Memory (MEM) is the amount of memory required to exe-
cute the (original and protected) program. Memory is mea-
sured by the time utility embedded in our experimental de-
vice (see following Section for details about the device used
for the experiment). The time command runs a program,
and displays information about the resources, like memory
and time, consumed by that program.

• Execution time (TIME) is the time required to run the pro-
gram. As done with MEM, TIME is also measured by means
of the time system utility.

• Network usage (NET) is the amount of data exchanged by
the program in a complete run. NET is directly measured
at server-side by the Remote Attestation and Client/Server
Code Splitting components.

The goal of applying Reactive Attestation to a program is to re-
duce the attack surface that can potentially be targeted by attackers.
This, however, introduces modifications in the protected applica-
tion. These changes have an impact on the overall performances
of the application, in particular on execution time and memory oc-
cupation: with the metrics listed earlier, we aim to estimate the
magnitude of that impact.

5.3 Experimental Procedure
The experimental assessment has been conducted on a case study

program, namely License. License is an Android app written in
Java, with a security critical part written in C. This critical part is a
routine devoted to check the validity of a license number to activate
a software component. Reactive Attestation will be deployed on the
C part to protect it against potential tampering attacks. The native
code is composed of two distinct functions, for a total of 105 lines
of code.

Considering the security requirements for this case study, we
manually define code annotations to specify where Remote Attes-
tation should check for tampering and what is the mandatory fea-
ture that should be subject to Client/Server Code Splitting for im-
plementing the reaction. In particular, Remote Attestation checks
the function that actually verifies the validity of the license, while
Client/Server Code Splitting transforms an utility decoding func-
tion used by the check, such that, if the secure split server is dis-
connected, the client does not work. With the selected annotation
configuration, each line of code is transformed by at least one of
the two steps, Remote Attestation or Client/Server Code Splitting.
This means that the two protections combined protect the 100% of
the security critical code.

We created seven different tampered versions of the License app.
We obtained these by mutating the C binary part of the protected
app. In particular, to simulate a real attacks, we use a binary rewrit-
ing tool to alter the code that checks the license validity. The mu-
tations include attacks that skip the check (overwrite with NOPs),
that force a date as current date in the license period, or that alter
the licence expiration date.

We then execute the original and each of the tampered programs
produced by our tampering tool. Each execution is performed on a
NITROGEN6X development board, equipped with an i.MX6 ARM-
Cortex A9 processor, 1GHz clock speed, with 1GB of 64-bit wide
DDR3 at 532MHz and with Android 4.3 Jelly Bean installed. Server-
side components run on a virtual machine with 4 processor cores,
4GB RAM, with Debian 7.7 installed. We trace if the program
is executed correctly or if its execution is stopped by the server
in case of tampering detection. Moreover, for the vanilla (the origi-
nal, unprotected) application and for the protected, untampered ver-
sion, we collect the overhead in terms of memory, execution time
and network usage. To have a reliable measurement of time, we
wrapped the original C code into a loop, to execute the native part
for 100 times (which means that the license check is performed 100
times before exiting). We defined two distinct usage scenario, one
in case of valid license and another one in case of invalid license.
Each scenario is then executed 15 times, for a total of 30 times per
application version.

5.4 RQ1: Reactive Attestation Effectiveness
Table 1 shows the effectiveness of Reactive Attestation in terms

of True/False Positives and True/False Negatives. As we can see,

Reactive Attestation correctly reports the protected, non tampered
version of the application as True Negative (column 4). When ex-
ecuted, the protected app is checked but its execution is allowed
because no malicious tampering is detected. All the 7 tampered
versions are correctly classified as True Positives (column 2).

Table 1: Effectiveness of Reactive Attestations
Variant TP FP TN FN
Protected - - X -
Tampered 1 X - - -
Tampered 2 X - - -
Tampered 3 X - - -
Tampered 4 X - - -
Tampered 5 X - - -
Tampered 6 X - - -
Tampered 7 X - - -
Overall 7 0 1 0

Thus, according to our experimental settings, Reactive Attesta-
tion managed to correctly identify and grant execution to all the
legitimate clients. It also managed to correctly identify and block
all the tampered clients.

5.5 RQ2: Reactive Attestation Overhead
The measured overhead of Reactive Attestation is shown in Ta-

ble 2. For the original and for the protected programs, and for both
usage scenarios (column 1), the Table reports the mean and stan-
dard deviation of absolute values of Memory (MEM, column 2),
execution time (TIME, column 3) and network usage (NET, col-
umn 4).

For both versions of License, original and protected, we added
an artificial loop of 100 executions of the native code. This is done
for two reasons, a) to measure the execution time of the vanilla ver-
sion of the app, which otherwise executes too fast to be measured
accurately, and b) to avoid that constant setup time required to start
a process dominates the actual execution time. With this modifica-
tion, execution time can be measured in a more precise way.

As can be seen in Table 2, memory usage for the original, vanilla
version of the program is 2192 kB in case of checking a valid li-
cense, and 2176 kB otherwise. In case of the protected app, the
memory usage increases to 13 715 kB for the valid license scenario,
and 13 960 kB for the invalid one. The increment in memory usage
we registered is roughly 11 000 kB, and it is caused by the setup of
the network communication infrastructure used by Reactive Attes-
tation to make client-side and server-side communicate, and by the
insertion of the attestation manager and its Attestation Area Data
Structure. The size of all these components, except for the ADS,
are constant and do not depend on the application or the protection
configuration chosen. The size of the ADS will scale linearly with
the amount of binary code regions that can be attested.

Execution time for the original version in both the usage scenar-
ios is 17ms and 18ms. This means that the execution time for a
single run of the vanilla app can be roughly calculated by dividing
the obtained times by 100, which gives a result of 170 µs for the
valid license scenario, and 180 µs for the invalid license scenario.
For the protected version, the execution time for the two scenarios
is 8.441 s and 8.506 s. By dividing this time by 100, we obtain an
execution time for single run which is 84ms and 85ms.

Network load is constant across the usage scenarios, for a net
payload of 392B. This represents the exact amount of net data
the Reactive Attestation protection needs to exchange from client
to server (and vice versa when required) for a single run of the
application, without considering data used by the communication

protocol to initialise and establish the connection between the two
ends.

5.6 Observations
Based on the quantitative results collected in the experimental

validation, we can formulate the following qualitative observations.
We highlight here that it is not possible to estimate the impact of
this protection on a generic application without having execution
traces. Indeed, the performance overhead depends on how often
the split points are encountered and on the complexity of the split
code. Nevertheless, to avoid these performance issues, we propose
to choose the parts to split by analysing the execution traces in order
to maintain the overhead to an acceptable level.

Reactive Attestation is effective.
Reactive Attestation blocks all the executions of malicious copies

of the application under analysis. At the same time, the approach
did not block executions of the legitimate version of the applica-
tion. This result suggests that Reactive Attestation is effective in
detecting tampered applications, without affecting the experience
of legitimate users. However, it is important to note that the use
case subject of the experiment is small and probably not fully rep-
resentative of real-world applications. Moreover, Reactive Attes-
tation is vulnerable to all the attacks that defeat the Remote At-
testation, that is, attacks that allow forging valid evidences from
invalid applications. The Static Remote Attestation is known to be
relatively fragile but the Reactive Attestation is independent on the
actual tamper detection technique used.

Reactive Attestation requires time.
We observed a huge difference in the amount of time required by

the vanilla application and the protected application to complete.
While the vanilla program is very fast, the protected program took
a lot more, even if execution time for the protected program in case
of a single run is also very small and the delay caused by the pro-
tection is barely perceivable by the user. It should be noted that
we chose to protect the entire application (100% of code protected)
instead of focusing on specific variables or assets. In fact, if we
consider the case of a program developer, she/he might want to
protect peculiar, small parts of her/his application. Focusing only
on small portions of the application would drastically reduce the
impact of Reactive Attestation on the execution time. However, in
case of our License application 100% of protected code means 105
lines, a quantity which is roughly comparable to the dimension of
security critical areas and assets in real-world applications. In case
of bigger applications, the overhead caused by Reactive Attesta-
tion on the execution time would be most probably dominated by
the time required for the regular execution, which is usually much
larger than few microseconds.

Reactive Attestation has small network usage.
The protected application and the server-side components ex-

changes 392B per single execution. This indicates a small network
consumption, and suggests that Reactive Attestation could have a
limited impact on user’s data plans to be consistently use as pro-
tection for mobile applications. The amount of exchanged data,
however, strongly depends on the functionalities and what code a
developer might need to protect. Using Client/Server Code Split-
ting to protect a functionality that is computationally intensive and
that handles lots of data can highly increase the network occupa-
tion of the application. Protection configurations must be carefully
chosen to reduce the impact on the network.

Table 2: Overhead of Reactive Attestations
Variant (scenario) MEM TIME NET

Mean (kB) SD Mean (s) SD Mean (B) SD
Original (valid license) 2,192 0 0.017 0.006 - -
Original (invalid license) 2,176 0 0.018 0.004 - -
Protected (valid license) 13,715 145.540 8.441 0.290 392 0
Protected (invalid license) 13,960 33.598 8.506 0.323 392 0

6. RELATED WORKS

6.1 Remote Attestation
At a very high level, work about remote attestation can be classi-

fied as solutions that rely on hardware components as a self-protecting
trust base and software-only solutions. One of the first and most
common applications of the remote attestation is the Integrity Mea-
surement Architecture (IMA) proposed by the Trusted Computing
Group (TCG) [12, 34]. The TCG realisation exploits a hardware
module, the Trusted Platform Module (TPM), which acts as the
self-protecting trust base. As the technology evolved, the TCG ap-
proach evolved as well, thus TCG has extended the hardware-based
solution to virtual and cloud-based environment [30, 35]. Other
authors proposed a secure processor architecture based on Phisi-
cally Unclonable Functions [41]. On the commercial side, Intel
proposed the Trusted eXecution Technology (www.intel.com). An-
other work from Basile et al. [5] proposed the use reconfigurable
devices (FPGA) as a HW self-protecting trust base. In their ap-
proach, Attestation Managers are FPGA cores able to attest the
executed binaries in memory by directly accessing them without
being mediated by the operating system. All these hardware-based
solutions rely on the fact that programs to protect already depend on
a remote service. They could take advantage of our Client/Server
Code Splitting approach in order to be applied to more scenarios.
In general, hardware-based solutions could be used as tamper de-
tection with reactive attestation, even if, given their requirements,
they barely apply to mobile and embedded scenarios.

Beside the HW-based solutions, software-only mechanisms have
been proposed that are better suited for mobile and embedded sys-
tems. Armknecht et al. [3] have coined the definition of software
attestation, to distinguish software-only approaches from the ones
that follow the TCG approach. Software-only approaches are di-
vided in three categories, depending on the properties used to com-
pute and verify attestations: time-based attestation, where being
able to compute an answer in time is indeed the integrity evidence;
static attestation, where static properties of the application are con-
sidered, like binaries and read-only memory properties; and em-
bryonal works that use dynamic properties to infer execution cor-
rectness.

Time-based approaches estimate a time limit within which the
evidence must be produced and sent to the verifier, if the time ex-
ceeds this estimation the evidence is not accepted. Seshadri et al.
[38] realized their prototype, named Pioneer, based on time-based
attestation. Integrity, with their solution, is assessed through the
precise estimation of the execution time of precise code fragments
executed as attestation proofs. Therefore, the need for hardware
has been replaced with the need for a more precise relation be-
tween the software to execute and its execution environment, to
avoid proxy attacks [26]. To the best of our knowledge, the bind-
ing to the execution platform cannot be effectively proved without
the use of hardware to ensure OS Kernel integrity (like COPILOT
[31]), which indeed becomes the new self-protecting trust base.

To our knowledge, the earliest proposal of static attestation is
the Spinellis’ software reflection, which proposed the hash of ran-

dom parts of the memory [40]. Similar solutions are SWATT, pro-
posed by Seshadri et al., a software-based Remote Attestation that
monitors target code memory regions [39], and MobileGuards, pro-
posed by Grimen et al., short-lived attestation agents downloaded
from a trusted server [17]. Kennel et al. proposed a set of genuinity
tests based on static information [20]. Indisputable Code Execu-
tion (ICE) is used in [36, 37] to build a root of trust and an un-
tampered execution environment. Despite ICE implementation has
been proven vulnerable [6], ICE has inspired Conqueror, another
software-based scheme where the attestation manager receives an
encrypted and obfuscated routine to compute the evidence [27], and
SBAP, designed for resource limited peripherals like keyboards but
it is likely suitable also for sensors [25]. Armknecht et al. have
proposed to use a static approach that also limits the acceptance of
the provided evidence on the basis of response time [3]. All the
static remote attestation techniques can be considered as alterna-
tive techniques of the Static Remote Attestation we used for tam-
per detection. However, no one of the analysed papers focused very
much on effectiveness of the reactions. Moreover, to the best of our
knowledge, no one of the referenced papers focused on automatic
application of Remote Attestation on generic applications, which is
one of the main achievements of this work.

The Remote Attestation techniques presented so far aim at attest-
ing static properties of the target, i.e., they only check target com-
ponents’ execution independent properties, like binaries images,
configurations and read-only memory related properties. Sadeghi
et al. proposed to focus on software properties instead of proposing
new attestation mechanisms [32, 10]. This approach opened up the
way towards dynamic attestation and has been applied to build a
virtual TPM and a property-based bootstrap architecture [33, 22].
Similarly, Li and Shen [24] proposed model-based attestation as an
alternative technique to static and property-based attestation, ap-
proach that was later generalized by Alam et al. [2] in what they
call Model-Based Behavioral Attestation (MBA). Both works are
based on the UCON model [29]. The goal of MBA is to provide
a method to attest that a remote platform will comply with a par-
ticular usage model when handling some objects. Gu et al. [18]
measure target integrity by tracking the system calls invoked by the
target during its execution and comparing the usage profiles with
precomputed valid values obtained by a preliminary static and dy-
namic analysis. Furthermore, Abadi proposed to attest software
based on CFG information [1]. Dynamic remote attestation has
been also implemented by exploiting software invariants. Kil et
al. [21] proposed a remote attestation system that monitors targets
by checking data integrity throughout data likely invariants evalua-
tion. They automatically extract data invariants by using a modified
version of Daikon [15] that empirically deduces data invariants by
analysing execution traces of the target. Baliga et al. [4] proposed
a remote attestation system that detects rootkits inside an operating
system by checking the validity of pre-computed data invariants on
the data structures values with pre-computed data invariants (ex-
tracted with Daikon). Dynamic techniques are certainly promising
but currently they suffer from false positives/negatives, as in sev-
eral cases it is not possible to infer with reasonable precision that

an attack actually alters some of the dynamic monitored proper-
ties. Nevertheless, in the future, they can be selected as alternative
techniques in our framework thus taking advantage of the tamper
reaction framework.

6.2 Tamper Reaction
The field of tamper reaction has not been widely explored and

the proposed solutions do not have a high level of maturity. Triv-
ially, a reaction mechanism may be to stop the software execution
as soon as tampering is detected, thus collapsing detection and re-
action in the same place. Unfortunately, this kind of reaction is not
very effective because the effect – a software crash – can be easily
associated to the cause – the tampering. Thus, this makes it easy
to pinpoint the reaction part of the application and consequently
to disable it. Indeed, Tan et al. [42] defined a basic principle for
tamper reaction and its relations with tamper detection: tamper de-
tection and tamper reaction must be separated in space and time.
Code for detection and reaction must be placed in different parts
of the application and must be hard to tell from rest of application
code. Moreover, they must be executed at different moments, to
decouple them and to avoid that a cause-reaction relationship can
be inferred. In the same work, the authors proposed a delayed in-
jection of software failures to “gracefully degrade” the normal ex-
ecution of a tampered application. Oishi et al. [28] also proposed
an execution degradation approach: they modify the original ap-
plication binary by replacing (camouflaging) a set of instructions
that get restored (de-camouflaged) at runtime only if the integrity
of the application is still valid. If evidence of tampering is detected,
the system does not restore the original instructions correctly, thus
making the program run differently than expected, which includes
buggy behaviour and errors. A self-correcting system has been pro-
posed by Jakubowski et al. as an alternative to degradation or in-
terruption [19]. The proposed reaction mechanism invalidates the
effect of tampering by correcting it and replacing the changes with
the original code by means of redundant code blocks and a voting
system.

All the proposed reaction mechanisms apply changes to the run-
ning code in order to worsen or correct its behaviour. Given that
the changes made by the reaction inevitably reside on the attacker’s
(untrusted) environment, they could be spotted – sooner or later. In
our proposal, we move the reaction away from the untrusted en-
vironment, thus impeding any form of counter reaction. Remote
reactions that stop serving compromised applications has certainly
consistently used in practice (e.g., on demand media streaming ser-
vices). Moreover, we are not aware, to the best of our knowledge,
of tools that can automatically apply remote tamper reaction tech-
niques to selected applications.

6.3 Client/Server Code Splitting
Our Client/Server Code Splitting approach is close to work pro-

posed by Zhang and Gupta [44] to protect software against soft-
ware piracy. In their work, a standalone application is turned into
a network application by stripping fragments of code from open,
insecure components to hidden, secure components. Fragments
are selected via slicing to maximise the complexity for an attacker
to reconstruct the original application. Differently from them, we
adopted the concept of barrier slicing in order to reduce the size of
code fragments that are moved to the secure server. This helps in
limiting the workload at server-side and also to minimise network
traffic generated by the protected application.

The concept of barrier slicing was also used by Ceccato et al. [7,
8] to design a protection technique against malicious tampering,
with the idea of using barrier slicing to ensure that security critical

portions of client computation are executed on the secure server. In
our work, barrier slicing is applied to required although less criti-
cal functionalities, to turn the application server dependent and to
perform the reaction is case of tampering detection.

Dvir et al. [14], instead, proposed to split applications into two
new programs, a client that performs the application’s active tasks,
and a server that carries out lazy tasks. They identified memory
allocation as lazy task to split, to make application and server com-
municate asynchronously. Our approach generates a client and a
server that communicate in synchronous way, so to immediately
react in case of tampering.

Another code splitting approach was proposed by Fukushima [16].
A separation technique is applied to the program to protect, to di-
vide it into two pieces, a user program and a protected program, in
order to protect applications that run in untrusted cloud computing
environments. They defined a set of code transformations to en-
code/decode variables that need to be secured on the trusted server.
Our tool, instead, uses an algorithm that is based on barrier slicing
to separate the client from the server.

To the best of our knowledge, we do not know any tool that au-
tomatically applies code splitting to C code.

7. CONCLUSIONS
In this paper we presented Reactive Attestation, a novel approach

for software protection that integrates Remote Attestation for tam-
pering detection and Client/Server Code Splitting for tampering re-
action. Once the security requirements are added to the code in
form of annotations, our prototype tool automatically outputs a pro-
tected client and the corresponding server-side components. The
program to protect is turned server-dependent by moving part of its
execution to a remote server. Our approach reacts to tampering by
denying server-side execution to clients that do not pass attestation
checks. Experimental validation shown that Reactive Attestation
is capable of accurate tampering detection with acceptable perfor-
mance overhead.

As future work, we intend to extend the assessment of Reactive
Attestation on real-world programs, and to study the server load
when more and more clients connect at the same time. Moreover,
we intend to study if, and to what extent, Reactive Attestation can
be detected and defeated by automatic tools and by expert industrial
hackers.

Acknowledgement
This research has been funded by the European Union 7th Frame-
work Programme (FP7/2007-2013), under grant agreement number
609734 - ASPIRE project (Advanced Software Protection: Integra-
tion Research and Exploitation), https://www.aspire-fp7.eu/.

8. REFERENCES
[1] M. Abadi, M. Budiu, U. Erlingsson, and J. Ligatti.

Control-flow integrity principles, implementations, and
applications. ACM Trans. Inf. Syst. Secur., 13(1):1–40, 2009.

[2] M. Alam, X. Zhang, M. Nauman, T. Ali, and J.-P. Seifert.
Model-based behavioral attestation. In Proceedings of the
13th ACM Symposium on Access Control Models and
Technologies, SACMAT ’08, pages 175–184, New York, NY,
USA, 2008. ACM.

[3] F. Armknecht, A.-R. Sadeghi, S. Schulz, and C. Wachsmann.
A security framework for the analysis and design of software
attestation. In Proceedings of the 2013 ACM SIGSAC
conference on Computer & communications security, pages
1–12. ACM, 2013.

[4] A. Baliga, V. Ganapathy, and L. Iftode. Automatic inference
and enforcement of kernel data structure invariants. In
Computer Security Applications Conference, 2008. ACSAC
2008. Annual, pages 77–86. IEEE, 2008.

[5] C. Basile, S. Di Carlo, and A. Scionti. FPGA-based
remote-code integrity verification of programs in distributed
embedded systems. IEEE Transactions on Systems, Man,
and Cybernetics, Part C (Applications and Reviews),
42(2):187–200, 2012.

[6] C. Castelluccia, A. Francillon, D. Perito, and C. Soriente. On
the difficulty of software-based attestation of embedded
devices. In Proceedings of the 16th ACM conference on
Computer and communications security, CCS ’09, pages
400–409, New York, NY, USA, 2009. ACM.

[7] M. Ceccato, M. Dalla Preda, J. Nagra, C. Collberg, and
P. Tonella. Barrier slicing for remote software trusting. In
Seventh IEEE International Working Conference on Source
Code Analysis and Manipulation (SCAM 2007), pages
27–36. IEEE, 2007.

[8] M. Ceccato, M. Dalla Preda, J. Nagra, C. Collberg, and
P. Tonella. Trading-off security and performance in barrier
slicing for remote software entrusting. Automated Software
Engineering, 16(2):235–261, 2009.

[9] H. Chang and M. Atallah. Protectioning Software Code by
Guards. In Proc. ACM Workshop Security and Privacy in
Digital Rights Management, ACM Press, pages 160–175,
2001.

[10] L. Chen, R. Landfermann, H. Löhr, M. Rohe, A.-R. Sadeghi,
and C. Stüble. A protocol for property-based attestation. In
Proceedings of the First ACM Workshop on Scalable Trusted
Computing, STC ’06, pages 7–16, New York, NY, USA,
2006. ACM.

[11] G. Coker, J. Guttman, P. Loscocco, A. Herzog, J. Millen,
B. O’Hanlon, J. Ramsdell, A. Segall, J. Sheehy, and
B. Sniffen. Principles of remote attestation. International
Journal of Information Security, 10(2):63–81, 2011.

[12] T. Committee et al. Trusted computing platform alliance
(tcpa) main specification v1. Technical report, 1b. Technical
report, TCPA Alliance, 2002.

[13] J. R. Cordy, C. D. Halpern-Hamu, and E. Promislow. Txl: A
rapid prototyping system for programming language dialects.
Computer Languages, 16(1):97–107, 1991.

[14] O. Dvir, M. Herlihy, and N. N. Shavit. Virtual leashing:
Creating a computational foundation for software protection.
J. Parallel Distrib. Comput., 66(9):1233–1240, Sept. 2006.

[15] M. D. Ernst, J. H. Perkins, P. J. Guo, S. McCamant,
C. Pacheco, M. S. Tschantz, and C. Xiao. The daikon system
for dynamic detection of likely invariants. Science of
Computer Programming, 69(1):35–45, 2007.

[16] K. Fukushima, S. Kiyomoto, and Y. Miyake. Towards secure
cloud computing architecture - a solution based on software
protection mechanism, 2011.

[17] G. Grimen, C. Mönch, and R. Midtstraum. Tamper
protection of online clients through random checksum
algorithms. In Information Systems Technology and its
Applications, 5th International Conference ISTA’2006, May
30-31, 2006, Klagenfurt, Austria, pages 67–79, 2006.

[18] L. Gu, X. Ding, R. H. Deng, B. Xie, and H. Mei. Remote
attestation on program execution. In Proceedings of the 3rd
ACM workshop on Scalable trusted computing, pages 11–20.
ACM, 2008.

[19] M. H. Jakubowski, C. W. N. Saw, and R. Venkatesan.
Tamper-tolerant software: Modeling and implementation. In
International Workshop on Security, pages 125–139.
Springer, 2009.

[20] R. Kennell and L. H. Jamieson. Establishing the genuinity of
remote computer systems. In Proceedings of the 12th
Conference on USENIX Security Symposium - Volume 12,
SSYM’03, pages 21–21, Berkeley, CA, USA, 2003.
USENIX Association.

[21] C. Kil, E. C. Sezer, A. M. Azab, P. Ning, and X. Zhang.
Remote attestation to dynamic system properties: Towards
providing complete system integrity evidence. In 2009
IEEE/IFIP International Conference on Dependable Systems
& Networks, pages 115–124. IEEE, 2009.

[22] R. Korthaus, A.-R. Sadeghi, C. Stüble, and J. Zhan. A
practical property-based bootstrap architecture. In
Proceedings of the 2009 ACM Workshop on Scalable Trusted
Computing, STC ’09, pages 29–38, New York, NY, USA,
2009. ACM.

[23] J. Krinke. Barrier slicing and chopping. In SCAM, pages
81–87, 2003.

[24] X.-Y. Li, C.-X. Shen, and X.-D. Zuo. An efficient attestation
for trustworthiness of computing platform. In Proceedings of
the 2006 International Conference on Intelligent Information
Hiding and Multimedia, IIH-MSP ’06, pages 625–630,
Washington, DC, USA, 2006. IEEE Computer Society.

[25] Y. Li, J. M. McCune, and A. Perrig. SBAP: Software-Based
Attestation for Peripherals. In Proceedings of the 3rd
International Conference on Trust and Trustworthy
Computing (Trust 2010), June 2010.

[26] Y. Li, J. M. McCune, and A. Perrig. Viper: Verifying the
integrity of peripherals’ firmware. In Proceedings of the 18th
ACM Conference on Computer and Communications
Security, CCS ’11, pages 3–16, New York, NY, USA, 2011.
ACM.

[27] L. Martignoni, R. Paleari, and D. Bruschi. Conqueror:
Tamper-proof code execution on legacy systems. In
Proceedings of the 7th International Conference on
Detection of Intrusions and Malware, and Vulnerability
Assessment, DIMVA’10, pages 21–40, Berlin, Heidelberg,
2010. Springer-Verlag.

[28] K. Oishi and T. Matsumoto. Self destructive tamper response
for software protection. In Proceedings of the 6th ACM
Symposium on Information, Computer and Communications
Security, pages 490–496. ACM, 2011.

[29] J. Park and R. Sandhu. Towards usage control models:
Beyond traditional access control. In Proceedings of the
Seventh ACM Symposium on Access Control Models and
Technologies, SACMAT ’02, pages 57–64, New York, NY,
USA, 2002. ACM.

[30] R. Perez, R. Sailer, L. van Doorn, et al. vtpm: virtualizing
the trusted platform module. In Proc. 15th Conf. on USENIX
Security Symposium, pages 305–320, 2006.

[31] N. L. Petroni, Jr., T. Fraser, J. Molina, and W. A. Arbaugh.
COPILOT - a coprocessor-based kernel runtime integrity
monitor. In Proceedings of the 13th conference on USENIX
Security Symposium, pages 13–13, 2004.

[32] A.-R. Sadeghi and C. Stüble. Property-based attestation for
computing platforms: Caring about properties, not
mechanisms. In Proceedings of the 2004 Workshop on New
Security Paradigms, NSPW ’04, pages 67–77, New York,
NY, USA, 2004. ACM.

[33] A.-R. Sadeghi, C. Stüble, and M. Winandy. Property-based
tpm virtualization. In T.-C. Wu, C.-L. Lei, V. Rijmen, and
D.-T. Lee, editors, Information Security: 11th International
Conference, ISC 2008, Taipei, Taiwan, September 15-18,
2008. Proceedings, pages 1–16, Berlin, Heidelberg, 2008.
Springer Berlin Heidelberg.

[34] R. Sailer, X. Zhang, T. Jaeger, and L. Van Doorn. Design and
implementation of a TCG-based integrity measurement
architecture. In USENIX Security Symposium, volume 13,
pages 223–238, 2004.

[35] N. Santos, K. P. Gummadi, and R. Rodrigues. Towards
trusted cloud computing. HotCloud, 9:3–3, 2009.

[36] A. Seshadri, M. Luk, and A. Perrig. SAKE: Software
attestation for key establishment in sensor networks. In
Proceedings of the 2008 International Conference on
Distributed Computing in Sensor Systems (DCOSS), 2008.

[37] A. Seshadri, M. Luk, A. Perrig, L. van Doorn, and P. Khosla.
Scuba: Secure code update by attestation in sensor networks.
In WiSe ’06: Proceedings of the 5th ACM workshop on
Wireless security, pages 85–94, New York, NY, USA, 2006.
ACM.

[38] A. Seshadri, M. Luk, E. Shi, A. Perrig, L. van Doorn, and
P. Khosla. Pioneer: Verifying code integrity and enforcing
untampered code execution on legacy systems. In
Proceedings of the Twentieth ACM Symposium on Operating
Systems Principles, SOSP ’05, pages 1–16, New York, NY,
USA, 2005. ACM.

[39] A. Seshadri, A. Perrig, L. Van Doorn, and P. Khosla. Swatt:
Software-based attestation for embedded devices. In Security
and Privacy, 2004. Proceedings. 2004 IEEE Symposium on,
pages 272–282. IEEE, 2004.

[40] D. Spinellis. Reflection as a mechanism for software
integrity verification. ACM Trans. Inf. Syst. Secur.,
3(1):51–62, Feb. 2000.

[41] G. E. Suh, C. W. Fletcher, D. E. Clarke, B. Gassend, M. van
Dijk, and S. Devadas. Author retrospective AEGIS:
architecture for tamper-evident and tamper-resistant
processing. In ACM International Conference on
Supercomputing 25th Anniversary Volume, pages 68–70,
2014.

[42] G. Tan, Y. Chen, and M. H. Jakubowski. Delayed and
controlled failures in tamper-resistant software. In
International Workshop on Information Hiding, pages
216–231. Springer, 2006.

[43] M. Weiser. Program slicing. In Proceedings of the 5th
International Conference on Software Engineering, ICSE
’81, pages 439–449, Piscataway, NJ, USA, 1981. IEEE Press.

[44] X. Zhang and R. Gupta. Hiding program slices for software
security. In Proceedings of the International Symposium on
Code Generation and Optimization: Feedback-directed and
Runtime Optimization, CGO ’03, pages 325–336,
Washington, DC, USA, 2003. IEEE Computer Society.

