
Assessment of Source Code Obfuscation Techniques
Alessio Viticchié∗, Leonardo Regano∗, Marco Torchiano∗, Cataldo Basile∗,

Mariano Ceccato†, Paolo Tonella† and Roberto Tiella†

∗Dipartimento di Automatica e Informatica,
Politecnico di Torino, Torino, Italy

{first.last}@polito.it

†FBK, Trento, Italy
{last}@fbk.eu

Abstract—Obfuscation techniques are a general category of
software protections widely adopted to prevent malicious tam-
pering of the code by making applications more difficult to un-
derstand and thus harder to modify. Obfuscation techniques are
divided in code and data obfuscation, depending on the protected
asset. While preliminary empirical studies have been conducted
to determine the impact of code obfuscation, our work aims at
assessing the effectiveness and efficiency in preventing attacks of a
specific data obfuscation technique – VarMerge. We conducted an
experiment with student participants performing two attack tasks
on clear and obfuscated versions of two applications written in
C. The experiment showed a significant effect of data obfuscation
on both the time required to complete and the successful attack
efficiency. An application with VarMerge reduces by six times
the number of successful attacks per unit of time. This outcome
provides a practical clue that can be used when applying software
protections based on data obfuscation.

I. INTRODUCTION

Recently, a new class of attacks against software has re-
ceived great attention: Man-At-The-End attacks (MATE) [1],
[9]. MATE attacks aim at compromising software assets,
which can be classified in two types: data and code. Soft-
ware developers aim at protecting assets’ security properties,
namely data confidentiality, privacy, integrity, and code confi-
dentiality, execution correctness, and integrity. MATE attacks
are more powerful than the ones against traditional cryptogra-
phy, the Man-In-The-Middle attacks, as MATE attackers are
the end users. Hence, they have full privileges and full access
to executables on their platforms, where they also have at their
disposal a vast set of tools, like debuggers, decompilers, and
static and dynamic analysers.

Obfuscation is one of the most used protection technique to
prevent the comprehension of programs against MATE attacks.
There are several approaches to obfuscation [7], which can be
mainly divided in code obfuscation and data obfuscation. All
obfuscation types transform a program in such a way that it is
more difficult to understand for an attacker, while at the same
time preserving its original program functionality. However,
data obfuscation transformations change programs with the
aim of hiding both variable content and usage, while code
obfuscation changes layout and control information to render

the code difficult to reverse engineer and understand. The hy-
pothesis is that obfuscation can protect asset confidentiality by
making it difficult for attackers to understand the application
under attack. Obfuscation is also used indirectly to protect
data and code integrity, as well as execution correctness, since
changing programs’ functionality is also difficult when the
code is difficult to understand. Ultimately, obfuscation dis-
courages attacks against software assets as it renders them less
economically favourable. Indeed, mounting successful attacks
against software assets protected with obfuscation requires
more sophisticated attack tools, and more time to comprehend
the assets, thus a greater investment. As a consequence, profits
from exploiting software attacks are reduced.

Obfuscation makes attacks more complex but it cannot
completely block them [3]. Researchers have focused their
attention on how much obfuscation is effective in protecting
software assets. Initially, the impact of obfuscation has been
extensively investigated by means of traditional software as-
sessment techniques, based on internal code metrics [8], [2],
[12], [11], [16], [17], [4]. The claim is that by means of
these methods an objective evaluation of tamper resistance
can be reached. However, these types of quantification of
software protections are unable to entirely capture the actual
complexity for attackers who aim at compromising the assets.
A program with higher code complexity (e.g., one protected
with control flow obfuscation) should require at least the
same time to mount attacks, but there is no evidence of
significant correlation between complexity metrics and actual
attack delays. In other words, impact of code protections
metrics was not empirically validated.

Later, empirical studies have been conducted [15], [6], [5]
to assess the impact of code obfuscation on delaying the
completion of attack tasks. These studies have targeted a
quantitative estimation of the cost of understanding obfuscated
code, by means of controlled experiments with human sub-
jects. Human subjects have been asked to perform tasks on
ad hoc defined and protected applications. Then, the impact
of code obfuscation has been estimated by means of two
main parameters: correctness, which counts the number of
successful attacks, and efficiency, which measures the delay

added by the presence of obfuscation.
This paper assesses the effectiveness and efficiency of the

VarMerge data obfuscation technique by comparing the time
needed to mount attack tasks on clear and obfuscated versions
of two applications written in C, and assessing the success
rate in the execution of the task. The VarMerge technique
has been selected among a set of candidate techniques as
one of the most effective ones (using Collberg’s terminology,
with high potency) and is applicable to C source code (a
prerequisite for the involvement of students as subjects at
our institutions). While it is a general feeling that obfuscation
renders programs more difficult to understand, we wanted to
confirm this hypothesis on a data obfuscation technique and
derive, if possible, quantitative measures of its impact. To
the best of our knowledge, this is the first work that aims
at estimating with an empirical study the effectiveness of a
data obfuscation technique. While previous work focused on
control-flow obfuscation.

The paper is organised as follows. Section II presents
previous works on the assessment of obfuscation effectiveness.
Section III details the experiments preparation, realisation, and
analysis method. In Section IV, the results of the experiments
are analysed to confirm or reject the research hypothesis.
Section V discusses the results and the limitations that might
affect their validity. Finally, Section VI draws conclusions
and presents future experiments that may lead to a more
comprehensive assessment of obfuscation techniques.

II. BACKGROUND

A. Related work

There are two main research approaches for the assess-
ment of obfuscation techniques: assessment based on internal
software metrics and assessment with experiments involving
human subjects.

The first approach has been introduced by Collberg et al.,
who defined the concept of potency, a metric to estimate the
effectiveness of obfuscation on programs [8]. Potency has
been later used by Anckaert et al. to compare obfuscation
techniques [2]. Linn et al. considered the confusion factor,
which estimates the number of binary instructions that a code
decompiler is not able to parse [12]. Goto et al. proposed a
method to quantitatively measure the complexity of obfuscated
code based on the compiler syntax analysis [11]. Udupa et al.
estimated the increase of complexity in obfuscated programs
by using data that can be extracted with static and dynamic
analysis tools [16]. Visaggio et al. instead used code entropy
as a protection potency metric for obfuscated Javascript code
[17]. Ceccato et al. evaluated the impact of several obfuscation
techniques on Java code quality [4]. The authors performed a
large set of experiments and estimated the effects of obfusca-
tion on ten different complexity and modularity metrics.

Assessment by means of experiments with human subjects
has been first presented in a work by Sutherland et al., who
published the first study with human subjects [15]. The authors
correlated the expertise of attackers with the correctness of
reverse engineering tasks. Moreover, they proved that source

code metrics are not appropriate to estimate the delays on
attack tasks, when binary code is involved. Ceccato et al.
measured, with two controlled experiments, the correctness
and effectiveness in understanding and modifying decompiled
obfuscated Java code, compared to decompiled clear code [6].
This work has been extended with a larger set of experiments
on several obfuscation techniques in a successive work [5].
The major difference with respect to previous work is the
obfuscation used in the study. In fact, Ceccato et al. studied
obfuscations aiming at hiding control flow and variable names.
Conversely, we focus on a transformation meant to hide values
of critical variables. Our work continues the effort in empir-
ically assessing the effectiveness of protection techniques by
means of experiments involving human subjects, by addressing
a technique, VarMerge, which was not assessed before, in a
category of obfuscation techniques, data obfuscation, which
was not yet target of experiments.

B. Obfuscation

As anticipated, data obfuscation aims at hiding both vari-
able content and usage. Data obfuscation can be applied for
instance to critical data, such as: user-IDs, counters, expiration
dates, or privacy-sensitive data such as medical data. On
the other hand, data obfuscation is not suited for hiding
cryptographic keys, as in this case white box cryptography
offers a stronger protection for this specific asset. Several
data obfuscation transformations have been proposed in the
literature. They have been initially classified as [8]:

• Storage & Encoding: change representation of (scalar)
data;

• Aggregation: alter how data (both scalar variables and
arrays) are aggregated;

• Ordering: permute items in existing data structures.

In this paper, we report the empirical validation of the
effectiveness of a specific aggregation technique, namely Var-
Merge, which merges several scalar variables into a single
one. When selecting this technique, we have only considered
Storage & Encoding and Aggregation techniques that are not
targeted for the Object Oriented paradigm. We have excluded
Reordering transformations as their potency is low. The can-
didate techniques were: ‘Split variables’, ‘Change encoding’,
‘Change variable lifetimes’, ‘Convert static data to procedure’,
VarMerge, and ‘Split, fold, merge, arrays’. All the advantages
and disadvantages of these techniques have been considered
and, in the end, VarMerge has been selected because of its
high potency, the reasonable effort to implement an automatic
data obfuscator, and because it can be applied to the source
code of applications written in C, the language mastered by
students at our institutions. All these decisions have been made
and validated within the context of the ASPIRE project1.

Given n variables v1, ..., vn whose domain is represented
by b(v1),...,b(vn) bits, VarMerge creates a new variable m,

1www.aspire-fp7.eu

clear.c
1 int main(){
2 int a,b;
3

4 a = 3;
5 b = 5;
6

7 printf("%d\n",a+b);
8 }

obfuscated.c
1 int main(){
2 unsigned long x;
3

4 /* 3L | (5L << 0x20) */
5 x = 21474836483L;
6

7 printf("%d\n",(int)(x&0xffff)+(int)(x>>0x20));
8 }

Fig. 1: Example of clear and obfuscated code using VarMerge

whose domain is b(m) =
∑n
i b(v1), VarMerge performs the

following aggregation:

m = v1 + v2 · 2b(v1) + ...+ vn · 2
∑n−1

i b(v1)

Operations on the original variables can be mapped to oper-
ations on the merging variable by means of proper mask and
shift operations.

Figure 1 reports an example of clear code and the corre-
sponding obfuscated code. We can observe how the original
variables as well as their values is no more clearly available.

The effectiveness of VarMerge relies on the fact that it
breaks the easy association between a variable and its use,
that is, its semantics. Since most of the operations in the
obfuscated code involve the use of the same variables with
different shifts, an attacker is obliged to understand the code
semantics by reconstructing the variable flows and by associat-
ing values with shifts. Moreover, proper bitwise operations are
needed to obtain the actual decimal values. Of course, expert
attackers may recognise that a program has been protected
with VarMerge by the unusual number of shift operations.
Correspondingly, they may adapt their attack strategy to the
recognised protection. Nevertheless, they have to invest non-
negligible time to analyse the aggregation variables and to
determine the shift offsets necessary to reconstruct the program
semantics.

III. EXPERIMENT DESIGN

The next sections present all the preparation and realisation
phases of the experiment.

A. Goal and Research Questions

The main goal of the study is to evaluate the effect of a
specific source code obfuscation technique, VarMerge, with the
purpose of evaluating its ability of making the code resilient
to malicious attacks. The quality focus is how the technique
reduces the attacker’s capability to successfully perform an
attack by forcing the application behaviour.

The study is interpreted from the perspective of an attacker,
since we aim at evaluating the increased difficulty perceived
by attackers when the code is protected by VarMerge. In
particular, in our case the role of the attacker is played by
a set of students that have a consolidated minimum level of
expertise in manipulating application source code.

1) The subjects: The context of the study consists of
subjects, i.e., the students acting as attackers, who perform
their attacks on objects, i.e., the systems to be attacked.

Subjects are 15 University students: 14 Master students
in Computer Science Engineering and 1 PhD student in
Computer and Control Engineering, both from Politecnico
di Torino. All the students are knowledgeable about C pro-
gramming and software engineering. We filtered Master and
PhD students based on their academic career and grades.
Supported by the fact that Politecnico di Torino offers and
requires a strong knowledge of programming, in particular C
programming, in many courses, we estimated their expertise
as sufficient to perform the tasks that we were proposing
them. Moreover, we precisely estimated their expertise during
the results assessment phase based on their expertise self
estimation and number of years of experience, which is the
best practice according to a previous work [10].

The subjects are not expected to have any knowledge about
MATE scenarios, attacks, and attacks strategies. Indeed, the
students of Politecnico di Torino do not attend any course
about software tampering or software reverse engineering.
Thus, students are probably not the best choice to model
real subjects. Professional hackers could be better subjects
to evaluate MATE attacks exploitation, but it is considerably
difficult to involve them. We considered the competences and
capabilities of our subjects during the design and the analysis,
in particular when selecting the applications and the tasks. We
think the use of students as subjects did not affect our main
conclusions, as explained in Section V-B, since we measure
the impact of VarMerge on attack time in a comparative way.

We encouraged the students’ participation by putting up for
grab two gift certificates among all the participants regardless
of the success in performing their attack tasks. In our opinion,
the prize encourages participation and, at the same time, the
possibility of a win induces a larger commitment in the tasks.
On the other hand, assigning prizes to all participants would
lead to higher participation, but it would introduce noise into
the collected data, as subjects might participate just for prize.
Finally, giving no incentives at all was not possible, as students
do not usually like to spend extra time on non-profitable
academic tasks instead of investing it in regular academic
activities. In conclusion, university students participation had
to be stimulated in some way, since they are students and not
professional attackers (such as Tiger teams, penetration testers

or ethic hackers) as they do not get any monetary advantages
in performing the experiment tasks.

2) The objects: The objects of the experiment are two
applications written in C. We define as clear the original
application with no obfuscation applied and as obfuscated the
application on which VarMerge is applied.

The first application, named Lotto, is a stand-alone lottery
game. This game allows the user to input a sequence of seven
numbers (six numbers plus one bonus number) and tells, as
output, if the sequence matches another sequence, named the
jackpot sequence, which is hard-coded in an array variable in-
side the application source code. The original version of Lotto
is a 238 LOC application. VarMerge obfuscation enlarges it
to 291 LOC.

The second application, named Lottery, is a client-server
lottery game similar to bingo that works as follows: in order
to extract the bingo numbers, the client contacts the server
asking for a challenge; the server generates a random sequence
of bytes and sends it back to the client; the client uses the
challenge as a random seed to derive a sequence of seven
numbers whose value ranges between 1 and 39 - these are
the seven extracted numbers. To claim a win, the customer
exhibits its number sequence. The winning sequence is sent
back to the server that checks its validity against the previously
sent challenge; if the sequence is valid, the server accepts it
and prints it in a log – so, the win can be delivered to the
customer; otherwise, the server rejects the sequence and exits.
This iteration is repeated ten times in the application to be
attacked.

The original version of Lottery is composed of 62 client
LOC and 498 server LOC. VarMerge obfuscation makes the
client as large as 84 LOC and the server 521 LOC. The
client uses a support library, for communication purposes only,
consisting of 452 LOC. This library is not protected with
VarMerge.

The complexity of the two systems has been designed to be
different. In fact, despite the number of LOC, Lottery is harder
to understand and to modify, because it involves server-side
logic that cannot be inspected by the subjects.

Subjects are asked to carry out an attack task. For the
Lotto application, the attack task is to determine the jackpot
sequence, by spotting where the hardcoded array with the
sequence is declared and defined, and reporting its values (it
is unlikely that subjects are able to guess by random choice
the winning sequence in the allotted time). For the Lottery
application, the attack task is to modify the application to force
the client to only extract numbers between 1 and 20. The attack
tasks do not depend on clear and obfuscated application, they
only depend on the application (Lotto or Lottery).

We overall identify the tasks as follows:

TC,Lo the attack ported on the clear Lotto application;
TO,Lo the attack ported on the obfuscated Lotto application;
TC,Ly the attack ported on the clear Lottery application;
TO,Ly the attack ported on the obfuscated Lottery applica-

tion;

TABLE I: Task assignments

First sub-session task Second sub-session task

Group 1 TC,Lo TO,Ly

Group 2 TO,Lo TC,Ly

Group 3 TC,Ly TO,Lo

Group 4 TO,Ly TC,Lo

The experiment is performed in a unique session divided
into two sub-sessions. Each subject undergoes two distinct
tasks, one per sub-session. The session lasted 3 hours and 30
minutes, the sub-sessions have approximately lasted 1 hour
and 45 minutes. The task assignments were fully balanced,
to avoid the influence of obfuscation and application across
sub-sessions: each subject never worked on neither the same
application nor the same treatment (obfuscation) in the two
subsequent tasks. Therefore, during the second sub-session,
each subject received the other application in clear if the first
application was obfuscated (TC,Lo ↔ TO,Ly and TO,Lo ↔
TC,Ly). Table I summarises the four combinations of tasks
assigned in the two sub-sessions. In addition, we paid attention
to assign each task to the same proportion of subjects in the
first – hence, also in the second – sub-session.

B. Variables

This section describes the variables used to perform the
evaluation of the experiment. As dependent variables, we
consider the following aspects of the executed attack tasks:
Correctness of a performed attack task. The correctness

variable is evaluated as:

Corr(T , si) =

{
1 if subject si succeeded in task T
0 if subject si failed in task T

Time to perform an attack task. The variable Time(T , si) is
measured as the number of minutes spent by subject si
to perform task T , successfully or not.

Efficiency of an attack task. The efficiency variable, related
to task T , is the sum of the inverses of the time for all
those subjects who successfully performed the task T .
Formally:

Eff T =
∑
si∈ST

Corr(T , si)
Time(T , si)

where ST is the set of subjects that performed the task
T . Note that, even if the sum ranges on all the subjects
involved in task T , the numerator function Corr excludes
from the computation each subject si who failed the task
T (i.e., Corr(T , si) = 0).

We observe that the efficiency considers only the successful
attacks. A measure of efficiency considering all cases would
be equivalent to the inverse of Time. We analyzed that variable
too but decided not to report it because it brings no additional
insights. Note that all the dependent variables are related to
the duration of the experiment, i.e., the quantity they measure
is not independent from the time we have assigned to students

for the tasks. That is, the more the time of the task, the
more the students that can correctly complete it, and the
higher the average time and the efficiency. This factor has
been considered during the design and does not affect the
results of our study, which aims at assessing the effectiveness
of VarMerge obfuscation by computing dependent variable on
clear vs. obfuscated programs in equivalent conditions.

As independent variables, we consider the following ones:
Treatment applied to the source code, i.e., whether obfusca-

tion was applied to the code or not. This is the main
factor in our design.

Application used in a task; this can be used to understand how
code complexity influences the time or the correctness of
the attack task.

Lab is the order of the sub-sessions in the experiment; this is
required to assess the learning across subsequent tasks,
in terms of how the experience gained during the first
assigned attack task influences the behaviour observed in
the second task.

Experience of the subjects, in terms of number of years they
have practiced C language programming.

C. Hypotheses

We can formulate the following null hypotheses to be tested:
• H01: VarMerge source code data obfuscation has no effect

on the correctness of an attack.
• H02: VarMerge source code data obfuscation has no effect

on the time to perform an attack.
• H03: VarMerge source code data obfuscation has no effect

on the efficiency of an attack.

D. Materials and procedures

In this section we detail the procedure followed and the
material used during the experiments. To perform the tasks,
subjects have been provided with a PC equipped with the
Code::Blocks IDE running on Windows 7. We selected Code
::Blocks because all the subjects were familiar with it, having
used it in different courses during their Bachelor and Master
Degrees. Before starting the experiment, the following mate-
rials were distributed to the participants:
• the experience questionnaire, used to acquire knowledge

about the experience of the subjects in C programming
and reverse engineering;

• a description of the program to be attacked;
• a zip archive containing a Code::Blocks project with

the program to be attacked. We provided a working
and tested Code::Blocks project to prevent subjects from
losing time in creating the project and avoid problems
in the compilation and execution of the programs due to
misconfigurations of the project.
For tasks involving the Lottery program, the executable
file of the server was given, along with a batch file which
automated its execution; the server has been executed
locally, in order to avoid network related problems; we
did not provide the server source code nor tools to tamper
with binaries, since in a MATE scenario, the attacker

does not have access to the server code of client-server
applications;

• the description of the attack task the subjects were asked
to perform.

Before performing the assigned task, participants had to fill
in the experience questionnaire. The items in the questionnaire
include:

1) the work experience as a professional programmer;
2) the overall experience in C programming, expressed in

years;
3) how long participants have been using an IDE for C

programming;
4) their experience in using a C debugger, in terms of

actions they are able to perform with it:
• add breakpoints;
• execute the program stepwise;
• inspect the call stack;
• inspect the program variables;

After the questionnaire, subjects were asked to execute the
given task, following the procedure below:

1) read a brief introduction that describes the program to
ne attacked;

2) install the Code::Blocks IDE, using an automated pro-
cedure made available on all PCs provided to subjects;

3) download the zip file, containing the Code::Blocks
project from a given URL;

4) extract the Code::Blocks project from the archive file;
5) open the project with the Code::Blocks IDE;
6) (for the Lottery program only) start the batch file that

runs the server;
7) build and execute the program (the client for the Lottery

program);
8) (for the Lottery program only) look at the log file

produced, trying to interpret the logged information;
9) read the description of the assigned task;

10) write down the task start time;
11) execute the task;
12) provide evidence that the task has been correctly exe-

cuted:
• for the Lotto program, write down the jackpot

sequence;
• for the Lottery program, show the assistants run-

ning the experiments the contents of the extractions
accepted and logged by the server. As explained in
Section III-A2, the server stores in this file all legal
extractions received from the client, therefore assis-
tants checked that the file contains only extractions
with numbers between 1 and 20, so as to make sure
that the subject has successfully completed the task;

13) write down the task completion time; we asked the
students to not take into account the time elapsed for
the initial setting of the experiments, and for eventual
questions asked to the assistants; they therefore reported
an estimation of the actual time spent solving the tasks.

Finally, participants had to fill in a post-experiment ques-
tionnaire, asking for their impressions on the task just com-
pleted. The questionnaire includes the following items:

1) whether the task was clear to the subject;
2) whether there was enough time to perform the task;
3) whether the subject felt that the task was easy to

perform;
4) which tools the subject used to perform the task:

• disassembler;
• IDE;
• debugger;
• internet search;
• other (open for the subject to specify);

5) on which activity most of the time was spent:

• reading and understanding the binary;
• inspecting the execution by means of the debugger;
• changing the execution by means of the debugger.

The first three items were measured on a Likert scale with 5
levels.

E. Analysis method

The experimental measures are first summarised with basic
descriptive statistics. Correctness is reported in terms of pro-
portion of correct answers. For Time and Efficiency, we report
the mean and standard deviation.

In all hypothesis testing we consider as independent vari-
ables the main factor – i.e. Treatment – and two co-factors,
Application and Lab.

Among the two co-factors, Application is potentially the
most relevant: in fact, we are considering two applications
whose size (and possibly complexity) is quite diverse: a 238
LOC stand-alone vs. 62 LOC client-server application (in
the Clear version). For this reason, we will report it in the
summary tables and diagrams together with the main factor.

The Lab co-factor, representing the order of the lab task
might be relevant in case maturation or learning effects
emerge.

The two potentially confounding co-factors are included in
all the hypothesis testing analyses. The motivation is that we
aim at assessing the effect of the main factor once the co-
factors have been accounted for.

To test hypothesis H01, concerning Correctness, we use a
logistic regression of Correctness vs. the three independent
variables. Such analysis is suitable for the dichotomous na-
ture of the measure. The logistic regression is based on the
following model:

Correctness =
1

1 + e−(β0+βT ·T+βA·A+βL·L)

where T and A are indicator variables for the Treatment and
Application variables, while L indicates the assignment order.
In particular:

T =

{
1 if Treatment = Obfuscated
0 if Treatment = Clear

A =

{
1 if Treatment = Lotto
0 if Treatment = Lottery

L =

{
1 if first task
2 if second task

To test hypotheses H02 and H03 concerning Time and
Efficiency, we conduct a non-parametric test equivalent to
ANOVA – permutation test – of the output variable vs. the
three factors. The choice of a non-parametric test method is
due to the expected non-normality of the measures. The linear
regression is based on the following model:

V = β0 + βT · T + βA ·A+ βL · L

Where V is the output variable (either Time or Efficiency)
and the other variables are the same as those used in the
logistic regression.

The assessment of the statistical test results is carried out
assuming significance at a 95% confidence level (α=0.05).
Since we test three distinct hypotheses on the same set of
participants, to avoid inflating the family-wise error rate we
applied the Bonferroni correction; therefore we employ a
corrected αC = 0.05/3 = 0.017 for decisions. So, we reject
the null-hypotheses when p−value < αC .

All the data processing is performed with the R statistical
package [14]. In particular the permautation test analysis was
conducted using the lmPerm package [18].

IV. RESULTS

Before starting the analysis we looked for potential outliers.
One subject qualified as such, showing an outlier timing (in
excess) for the easiest task and an outlier timing (in defect)
for the hardest task. This is probably due to a mistake in the
annotation of the time. We decided to discard the subject from
any further analysis.

Table II reports the descriptive statistics for the three output
variables for different combination of Treatment and Applica-
tion levels.

A. H01: Correctness

The effect of the treatment on the Correctness is visible
in the dot-plot reported in Figure 2a. The results of the tests
on the logistic regression are reported in Table III. Based on
the results from the tests, we cannot reject the null hypothesis
H01: the obfuscation Treatment has no significant effect on
the Correctness of the attack task outcome. Only Application
significantly affects the correctness of the task. The potential
confounding factor Lab has no relevant effect.

TABLE II: Summary statistics for Correctness and Time.

Correctness Time Efficiency

Treatment Application N n prop. mean sd mean sd

Clear Lottery 7 3 0.43 30.00 14.50 3.98 2.03
Clear Lotto 6 6 1.00 6.50 3.08 10.75 4.05
Obfuscated Lottery 7 1 0.14 94.57 14.37 0.65 NA
Obfuscated Lotto 7 5 0.71 56.43 33.15 1.61 1.90

25%

50%

75%

100%

Lottery Lotto

Application

C
o

rr
e

c
tn

e
s
s

Treatment

Clear

Obfuscated

(a) Proportion of correctly completed tasks per
Treatment and Application.

0

25

50

75

100

Lottery Lotto

Application
T

im
e

 [
m

in
]

Treatment

Clear

Obfuscated

(b) Boxplot of time to complete the task.

0

5

10

15

Lottery Lotto

Application

E
ff
ic

ie
n
c
y

[S
u
c
c
e
s
s
fu

l
a
tt
a
c
k
s
 p

e
r

h
o
u
r]

(c) Efficiency of attacks.

Fig. 2: Outcomes of the experiment

TABLE III: Logistic regression of Correctness

Est. Std.Err. z value Pr(>|z|)
β0 (Intercept) -0.101 1.991 -0.051 0.960
βT TreatmentObfuscated -2.001 1.240 -1.614 0.107
βA ApplicationLotto 3.235 1.246 2.595 0.009
βL Lab -0.022 1.086 -0.020 0.984

TABLE IV: Permutation test of Time

Estimate Iter Pr(Prob)

β0 (Intercept) 35.566 5000 <0.001
βA ApplicationLotto -32.799 5000 0.002
βT TreatmentObfuscated 55.151 5000 <0.001
βL Lab -9.511 316 0.241

B. H02: Time

The distributions of Time for different combinations of
Treatment and Application are reported in the boxplot of
Figure 2b. The result of the permutation tests on the linear
regression is reported in Table IV.

We reject the null hypothesis H02: the obfuscation Treat-
ment has a significant effect on the attack task time.

Similarly to what we observed for Correctness, also Time
is affected by the specific Application considered in the task.

The potential confounding factor Lab has no significant
effect.

The goodness of fit for the linear regression (R2 = 0.70)
is relatively high, considering the inherent difference among
the participants.

C. H03: Efficiency

The distributions of Time for different combination of
Treatment and Application are reported in the boxplot of

TABLE V: Permutation test of Efficiency

Estimate Iter Pr(Prob)

β0 (Intercept) 4.786 5000 0.006
βA ApplicationLotto 5.424 1233 0.109
βT TreatmentObfuscated -7.717 5000 0.002
βL Lab 1.025 112 0.477

Figure 2c. The result of the permutation tests on the linear
regression is reported in Table V.

On the basis of the tests, we can reject the null hypothesis
H03: the obfuscation Treatment has a significant effect on the
attack Efficiency. Neither Application nor Lab have any effect
on the Efficiency.

The goodness of fit for the linear regression (R2 = 0.59)
is relatively high, considering the inherent difference among
the participants.

A practical measure of how much Obfuscation is effective
in reducing the efficiency of an attacker can be computed by
dividing the mean Efficiency on the clear code by that on
obfuscated code, for either applications. The Efficiency ratios
for the two applications are 6.1 for Lottery and 6.6 on Lotto.

D. Post-questionnaire

The post-questionnaire contains three items aimed at evalu-
ating the perceived difficulties encountered by the participants
while performing the attack tasks. The participant perception
of clarity, availability of time, and easiness of the tasks is
reported in Figure 3.

We observe that in general the task assignments were
considered clear; somewhat less for the obfuscated Lottery.

Concerning the available time, when the participants worked
on Lottery in a few cases they felt that not enough time was
allowed. No problem of time was reported when they worked
on Lotto.

The different complexity of the two applications shows up
in the responses to the third item concerning easiness of the
task. The attack task on Lottery was considered more difficult.
In addition, as expected, the tasks on obfuscated code turned
out to be more difficult than those on clear code.

The second part of the post-questionnaire concerns the tools
used to perform the task. Figure 4a shows the frequency of
usage of each tool, by Application and Treatment.

We can observe two changes that occurred when the ob-
fuscated version was used in the task: first, tools were used
more; second, specifically the usage of the debugger increased.
In addition, we observe different pattern of usage between the
two applications. This reflects a difference that also emerged
in the previous analyses.

Eventually, an item of the post-questionnaire addressed the
activity on which participants spent most of their time during
the task (see Figure 4b).

We can observe that the obfuscated versions of both ap-
plications required the participants to devote more time to
execution of the application. This phenomenon appears in
agreement with the increased usage of the debugger. Moreover,
not surprisingly, we see a difference between the applications.

V. DISCUSSION

In the next sections we comment on the results and their
validity.

A. Interpretation of results

The analysis results are summarized below.
• Data obfuscation significantly affects the time to com-

plete an attack task (see Figure 2b) and the attack
efficiency (see Figure 2c), while it does not affect the
correctness of the attack outcome;

• The two applications significantly differ both in terms of
time and correctness, while no difference can be observed
for the efficiency. Such a disparity can be observed also
in the perceived difficulties of the task (see Figure 3).

• The presence of obfuscation forces the attacker to resort
more on all the available tools (see Figure 4a).

• Participants modified their attack strategy when facing
obfuscated code: they mostly employed their time to
execute the program. (see fig. 4b) The data on the tools
used (see fig. 4a) allows us to infer that they attempted
to understand the behaviour of the program by observing
its dynamic evolution. This is in line with the anecdotal
knowledge about data obfuscation in general and Var-
Merge in particular, which is expected to defeat attacks
based on static analysis, while remaining relatively more
vulnerable to dynamic analysis.

• By looking at the mean efficiency reported in Table II,
we can observe a six-fold decrease in attack efficiency
when the VarMerge obfuscation is used. Such effect is
nearly the same for both applications.

We also observe that it is not possible to distinguish between
subjects that did not succeeded in mounting the attack because
they run out of time and the ones wouldn’t have been able

to actually perform the task. We highlight, however, that this
distinction is irrelevant for our purpose of measuring the effect
of VarMerge. Delaying successful attacks to the extent that
they are no longer profitable is indeed one of the purposes of
obfuscation techniques, which are not provable secure.

B. Threats to validity

We have checked our experiments against the checklist of
the possible threats to validity proposed by Wohlin et al. [19],
which are classified into construct, internal, conclusion, and
external validity threats.

Construct validity threats concern the relationship between
the theoretical constructs and the actual metrics defined for the
experiment. While there are several types of attacks, we only
focused on attacks that imply understanding and modifications
of the source code. Alternative scenarios have not been tested.
The presence of obfuscation is expected to affect both the
comprehension and the change activities. However, in our
experiment we could not measure the actual comprehension
achieved by the subjects. Hence, we can only claim they
achieved the minimum comprehension needed to perform
their attack tasks, although we know they had to use more
frequently sophisticated tools to understand the code when
protections were applied. Time is one of the direct measures
we collected; it is a coarse grained metric, including both
comprehension and change. Though the two activities might
be separate, a typical attack consists of a close interleaving
of the two. The correctness of the attack task is evaluated as
a boolean outcome. Although this is a very simple and crude
metric, it reflects a real-case scenario where the attacker either
gets access to the protected resources or not. Finally, all the
threats related to mono-operation and method are excluded by
design.

Internal validity is concerned with the capability to capture
a cause-effect relation between the independent variables and
the outcomes. That is, all noise factors, which may indirectly
affect the outcomes, should have been eliminated or measured
(e.g., assessed as negligible). Before starting any activity, the
tasks and attack objectives have been explained to all subjects.
The post-questionnaires confirmed that they had no problems
in understanding the experiments. A maturation effect during
the experimental session could have occurred: every subject
has been assigned two tasks in sequence. Although we did
not report it for the sake of readability, we tested the results
for statistically significant effects of the order of the task. No
significant effect was found. Since subjects were very homoge-
neous we could divide them randomly into groups. Finally, the
experiment has been designed to avoid any ambiguity about
direction of casual inference. Moreover, the inference stating
that obfuscation renders attacks more complex did not appear
ambiguous (and was already proved for analogous techniques
in previous works).

External validity threats are related to the impossibility
to generalise our results to the case of real attackers who
want to tamper with real applications protected by means
of VarMerge. The selection of participants was made on a

100%

57%

83%

100%

0%

0%

0%

0%

0%

43%

17%

0%

43%

0%

100%

71%

14%

100%

0%

14%

43%

0%

0%

14%

57%

29%

100%

86%

43%

14%

0%

0%

0%

57%

0%

14%

The task was clear to me

The task was easy to perform

There was enough time to perform the task

Lottery:Clear

Lottery:Obfuscated

Lotto:Clear

Lotto:Obfuscated

Lottery:Clear

Lottery:Obfuscated

Lotto:Clear

Lotto:Obfuscated

Lottery:Clear

Lottery:Obfuscated

Lotto:Clear

Lotto:Obfuscated

100 50 0 50 100

Percentage

Response Strongly agree Agree Not certain Disagree Strongly disagree

Fig. 3: Assessment of task difficulties

Lottery Lotto

0

2

4

6

0

2

4

6

C
le

a
r

O
b
fu

s
c
a
te

d

IDE Debugger Internet IDE Debugger Internet

Used tools

F
re

q
u

e
n

c
y

(a) Tools used during the task.

Lottery Lotto

0

1

2

3

4

5

0

1

2

3

4

5

C
le

a
r

O
b
fu

s
c
a
te

d

Read Execute Change Read Execute Change

Activity

F
re

q
u

e
n

c
y

(b) Activity that required most time.

Fig. 4: Tools and activities analysis.

voluntary basis: greater motivation better represents realistic
hackers’ profile. While students expertise in hacking programs
is far from that of ”professional“ hackers, the problem solving
ability of the best students is not supposed to be very different
from that of hackers. Given a fixed time frame, the expertise
certainly affects the correctness variable in tampering with
a given application, but the selection of the applications to
protect has been fine tuned to have enough successful attacks
in the 105 minutes available for the experiments even with
students. Furthermore, we measure our outcomes and draw
conclusions on the effectiveness of VarMerge by comparing
the performance of subjects on clear and obfuscated ver-
sions of the application. Students with homogeneous expertise
give the same validity results as hackers with homogeneous
expertise. This comparison mitigates the lack of expertise.
Our experiment included two applications. However, we do
not have enough findings to estimate how VarMerge may

protect programs that are considerably different (e.g., larger
or more complex) than the considered ones. This is one of
the main directions for future work: including complexity
metrics of the applications to protect as independent variables.
However, complexity metrics have been not considered in this
experiment as, given the size of our samples, we wouldn’t
have drawn any significant conclusion. Tools made available
to subjects were up to date and valid representative of tools
hackers may use. When we ran the experiment, no special
event or news could have affected the data collected from
subjects. Actually, we were not acquiring any subjective data,
but their expertise and impression on the attack tasks. We are
aware that the effectiveness variable we have introduced is
not the only way to measure the impact of successful attacks.
Indeed, our formula favours attacks that are mounted quickly
even if by a limited number of participants. We have decided
for this approach as an application becomes vulnerable as

soon as the the first attacker succeeds. We have found less
interesting alternative formulas that emphasize when more
people succeeds in mounting an attack with higher average
time. Moreover, it did not add any insight to what we already
presented in Section III-E.

Conclusion validity threats are related to the validity of
the methods to derive outcomes from the treatment data. We
have used non-parametric statistical methods and controlled
the error rate (permutation test ANOVA, error rate corrected
with the Bonferroni method) as presented in Section III-E.
We have collected data by means of survey questionnaires
designed according to standard methods and scales [13]. Tasks
were similar and balanced (one clear code and one obfuscated
application; only VarMerge obfuscation used); subjects were
not heterogeneous, as they were all master students, and
experiments avoided random irrelevance.

VI. CONCLUSIONS

This paper reported an experiment aimed at assessing a
specific data obfuscation technique – VarMerge – in terms
of its capability to hinder and delay an attack. The experiment
involved 15 students from the master degree programme in
Computer Engineering at Politecnico di Torino. The exper-
iment revealed no significant difference in terms of attack
success rate between obfuscated and clear programs. This is
mainly due to the size of the sample. In contrast, a significant
difference was observed in the time required to complete the
attack task. In addition, the results show that the presence
of the VarMerge obfuscation is able to reduce by six times
the attack efficiency (measured as the number of successful
attacks per unit of time). This outcome provides a practical
clue that can be used in designing software protections based
on data obfuscation. However, since it is the first experiment
that addresses data obfuscation techniques, we cannot draw
conclusions on the comparison with other techniques. More-
over, we had no possibilities to apply other techniques as given
the size of the sample.

In addition to the presence of obfuscation, the attack effi-
ciency and time appear to be affected by the size and complex-
ity of the program under consideration. This additional factor
did not interfere, in our results, with the effect of obfuscation.
Though this outcome is far from being conclusive due to the
limited range in size and complexity that was investigated in
our experiment.

As further work, we plan to:
1) test the VarMerge technique to other programs, with a

wider variability in terms of size and complexity;
2) apply the same technique to binary programs;
3) apply and compare other obfuscation techniques;
4) involve subjects with different attacker skills.
Of course, considering all these independent variables and

confounding factors needs proper preparation of the exper-
iments and high number of participants, which we cannot
reach in our institutions. Evaluating the effect of several
obfuscation techniques on different applications can only be

achieved with the collaboration and sharing of the results
among researchers in the software engineering field. We have
started investigating how to build such a community, prepare
a planning of experiments and share data.

ACKNOWLEDGEMENT

The research leading to these results has received funding
from the European Union Seventh Framework Programme
(FP7/2007-2013) under grant agreement number 609734.

REFERENCES

[1] A. Akhunzada, M. Sookhak, N. B. Anuar, A. Gani, E. Ahmed, M. Shiraz,
S. Furnell, A. Hayat, and M. K. Khan. Man-at-the-end attacks: Analysis,
taxonomy, human aspects, motivation and future directions. J. Network
and Computer Applications, 48:44–57, 2015.

[2] B. Anckaert, M. Madou, B. De Sutter, B. De Bus, K. De Bosschere,
and B. Preneel. Program obfuscation: a quantitative approach. In Proc.
ACM Workshop on Quality of protection, pages 15–20, 2007.

[3] B. Barak, O. Goldreich, R. Impagliazzo, S. Rudich, A. Sahai, S. Vadhan,
and K. Yang. On the (im) possibility of obfuscating programs. Lecture
Notes in Computer Science, 2139:19–23, 2001.

[4] M. Ceccato, A. Capiluppi, P. Falcarin, and C. Boldyreff. A large study
on the effect of code obfuscation on the quality of java code. Empirical
Software Engineering, pages 1–39, 2014.

[5] M. Ceccato, M. Di Penta, P. Falcarin, F. Ricca, M. Torchiano, and
P. Tonella. A family of experiments to assess the effectiveness and
efficiency of source code obfuscation techniques. Empirical Software
Engineering, 19(4):1040–1074, 2014.

[6] M. Ceccato, M. Di Penta, J. Nagra, P. Falcarin, F. Ricca, M. Torchiano,
and P. Tonella. The effectiveness of source code obfuscation: An
experimental assessment. In IEEE 17th International Conference on
Program Comprehension (ICPC), pages 178–187, may 2009.

[7] C. Collberg and J. Nagra. Surreptitious Software: Obfuscation, Water-
marking, and Tamperproofing for Software Protection. Addison-Wesley
Professional, 1st edition, 2009.

[8] C. Collberg, C. Thomborson, and D. Low. A taxonomy of obfuscating
transformations. Technical Report 148, Dept. of Computer Science, The
Univ. of Auckland, 1997.

[9] P. Falcarin, C. Collberg, M. Atallah, and M. Jakubowski. Guest editors’
introduction: Software protection. Software, IEEE, 28(2):24–27, 2011.

[10] J. Feigenspan, C. Kästner, J. Liebig, S. Ape l, and S. Hanenberg. Measur-
ing programming experience. In Program Comprehension (ICPC), 2012
IEEE 20th International Conference on, pages 73–82. IEEE, 2012.

[11] H. Goto, M. Mambo, K. Matsumura, and H. Shizuya. An approach to
the objective and quantitative evaluation of tamper-resistant software.
In Third Int. Workshop on Information Security, pages 82–96. Springer,
2000.

[12] C. Linn and S. Debray. Obfuscation of executable code to improve
resistance to static disassembly. In Proc. ACM Conf.Computer and
Communications Security, pages 290–299, 2003.

[13] A. N. Oppenheim. Questionnaire Design, Interviewing and Attitude
Measurement. Pinter, London, 1992.

[14] R Core Team. R: A Language and Environment for Statistical Comput-
ing. R Foundation for Statistical Computing, Vienna, Austria, 2015.

[15] I. Sutherland, G. E. Kalb, A. Blyth, and G. Mulley. An empirical exam-
ination of the reverse engineering process for binary files. Computers
& Security, 25(3):221–228, 2006.

[16] S. K. Udupa, S. K. Debray, and M. Madou. Deobfuscation: Reverse
engineering obfuscated code. In Proceedings of the 12th Working
Conference on Reverse Engineering, pages 45–54, Washington, DC,
USA, 2005. IEEE Computer Society.

[17] C. A. Visaggio, G. A. Pagin, and G. Canfora. An empirical study of
metric-based methods to detect obfuscated code. International Journal
of Security & Its Applications, 7(2), 2013.

[18] B. Wheeler. lmPerm: Permutation tests for linear models. R package
version 2.0.

[19] C. Wohlin, P. Runeson, M. Höst, M. Ohlsson, B. Regnell, and
A. Wesslén. Experimentation in Software Engineering - An Introduction.

Kluwer Academic Publishers, 2000.

