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ABSTRACT
The Android platform is designed to facilitate inter-app in-
tegration and communication, so that apps can reuse func-
tionalities implemented by other apps by resorting to dele-
gation. Though this feature is usually mentioned to be the
main reason for the popularity of Android, it also poses se-
curity risks to the end user. Malicious unprivileged apps can
exploit the delegation model to access privileged tasks that
are exposed by vulnerable apps.

In this paper, we present a particularly dangerous case
of delegation, that we call the Android Wicked Delegation
(AWiDe). Moreover, we compare two distinct approaches
to automatically detect inadequate message validation, re-
spectively based on static analysis and on dynamic analysis.
We empirically validate our approaches on more than three
hundred popular apps. Vulnerabilities detected by us lead
to the implementation of successful proof-of-concept attacks,
and the app developers have confirmed one of them.

1. INTRODUCTION
Android is a popular [13] operating system for smart phones

that offers a programming interface (API) to host and run
applications written in Java, commonly called apps. An-
droid has a centralized app market that offers more than
one million apps to download and install. It is common
to find several apps in the market having similar purposes.
Therefore, when a new idea becomes apparent, an app de-
veloper needs to rush before similar apps become available
on the market by competitors. Since the first apps that ap-
pear on the market usually get accepted by the users and
are rated better, posting an app early can help the developer
gain market share.

Due to the need to develop an app as fast as possible,
developers usually spend more time on the app’s user expe-
rience and appealing user interface, but they overlook the
need for quality and security of the app [11]. Other quality
aspects (possibly including security issues) are delayed for
future updates (if there are any). Therefore, an effective,
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fast and automated tool to spot defects in apps’ code would
be highly beneficial for app developers.

Though the Android operating system enforces barriers to
isolate apps that are provided by different vendors, poorly
developed apps might still pose security risks to the end user.
Legitimate apps might unintentionally expose their access
to sensitive resources to attackers, such as phone contacts,
and privileged actions, such as making phone calls. This
problem is known as permission re-delegation [12]. However,
delegation can be legitimate, when performed according to
the Android design, or malicious, when intended to exploit
permissions in a way that was different from the developer’s
intentions.

The novel contribution of this work consists in extending
the permission re-delegated threat model to clearly distin-
guish the malicious cases. We call this extension the Android
Wicked Delegation (AWiDe for short). The vulnerability
consists in executing privileged tasks on behalf of another
app (similar to the re-delegation case) but with the addi-
tional preconditions that (i) the privileged task is executed
with data coming from attacking apps, controlled by the at-
tacker, and (ii) without performing adequate validation of
such data.

While static and dynamic taint analysis have been already
used in the past to spot inadequate input validation (e.g., in
web applications), our novelty consists in formulating mali-
cious delegation as a problem of inadequate input validation
in the context of inter-app communication in Android.

We compare two automated detection techniques for AW-
iDe vulnerabilities. In the first approach, we instantiate
static taint analysis to detect whether values used in privi-
leged actions depend on potentially malicious data. The sec-
ond approach relies on dynamic analysis with automatically
generated input values. Privileged actions are detected by
comparing execution traces of the same app with and with-
out the corresponding special permissions. Dynamic taint
analysis tracks data dependencies during execution and de-
tects when data from the attacking apps is used in privileged
actions.

These approaches have been empirically validated on more
than three hundred apps. Results show that popular apps
are affected by AWiDe vulnerabilities. We also demonstrate
the relevance of this problem by elaborating actual attacks
based on the vulnerabilities detected by our approaches.
The corresponding app developers have confirmed one of
these vulnerabilities.

The paper is structured as follows. Section 2 compares
this work with the state of the art and Section 3 presents



the threat model. Section 4 and Section 5 describe the ap-
proaches for vulnerability detection, respectively based on
static and dynamic analysis. Then, experimental evaluation
is presented in Section 6 and discussed in Section 7. Even-
tually, Section 8 closes the paper.

2. RELATED WORK
The most related work deals with vulnerabilities connected

to different threat models, i.e. permission re-delegation or in-
formation leak. Other related work is about the automatic
generation of security test cases.

Permission re-delegation. The most related work is by
Felt et al. [12]. They presented the permission re-delegation
problem, i.e. an app with special permissions that exposes
a service that does not require the same permissions to be
consumed. As a consequence, the exposed service could be
used by a second app without permissions to ask the former
to act on its behalf and take privileged actions. A vulnera-
bility is detected whenever there exists a path from a public
entry point to a privileged API call. Our work presents an
extension of this threat model, by checking additional pre-
conditions. Our threat model, in fact, requires that inade-
quately validated (potentially malicious) data is used in the
restricted API call. In our opinion, this extension is fun-
damental to distinguish malicious attacks from legitimate
delegation.

Permission re-delegation is also detected by ComDroid, a
tool developed by Chin et al. [8], which additionally detects
cases of unauthorized intent receipt. The latter cases are
malicious apps that define intent filters similar to those of
the apps under attack, to intercept the intents sent to them.
However, both Felt et al. and Chin et al. acknowledge that
their approaches cannot distinguish between legitimate and
malicious delegation.

Zhang et al. [26] proposed a runtime patch to mitigate
re-delegation problem. They perform static data flow anal-
ysis to determine sensitive data flows from sources to sinks
and apply the patch before the invocation of the privileged
API such that the app informs the user of a potential re-
delegation attack and requests if the user wants to continue.
The authors used the same taint policy as TaintDroid (see
below) but they apply the taint propagation directly on the
Dalvik bytecode instead of modifying the Dalvik virtual Ma-
chine.

Information leak. Information flow in mobile apps is
analysed either statically [22, 25, 18, 17] or dynamically [10],
to detect disclosure of sensible information. Tainted sources
are system calls that access private data (e.g., global posi-
tion, contacts entries), while sinks are all the possible ways
that make data leave the system (e.g., network transmis-
sions). An issue is detected when privileged information
could potentially leave the app through one of the sinks.

Amandroid [25] has been proposed to detect privacy leaks
related to inter-component communication in Android apps.
IccTA [18] attempts to improve static taint analysis by mod-
elling the life-cycle and callback methods by instrumenting
the code of the app. However, it is also limited to privacy
leak. DidFail [17] attempts to detect data leaks between ac-
tivities through implicit intents. It misses other components
and explicit intents. A similar work has been done by Lu et
al. [19], where they try to identify all possible entry points
of an Android app and then performing data flow analysis
starting from the entry point until a sensitive API is reached.

Grace et al. [14], perform static analysis in stock Android
apps released by different vendors, to check the presence of
any information leak. Since vendors modify or introduce
their own apps, they might also introduce new vulnerabili-
ties. This work, however, is limited to stock apps on specific
vendor devices.

TaintDroid [10] is a tool to perform dynamic taint analy-
sis. It relies on a modified Android installation that tracks
taintedness at run-time. The implementation showed min-
imal size and computational overhead, and was effective in
analysing many real Android apps. A complementary ap-
proach is based on static analysis [22], where a type system
is implemented to track security levels. A static analyser ap-
plies the type system to byte-code and it detects violations
when privileged information could potentially leave the app
through a sink.

All these works adopt a threat model different from AW-
iDe. Their common objective is to list candidate vulnerable
cases of information leak, rather than malicious cases of per-
mission re-delegation among apps.

Security test case generation. While works mentioned
above report a list of vulnerable points, Maji et al. [21] anal-
yse inter-app messaging with the objective of generating exe-
cutable scenarios, where the communication is tested to spot
app (or system) crashes. The JarJarBinks tool has been im-
plemented to study when invalid intents (i.e. that violate
intent filters) make apps crash. Test cases, however, reveal
generic app crashes rather than focusing on security defects.

Automatic testing of peculiarities of Android apps has
been addressed from the point of view of the graphical user
interface [16, 2, 1], to detect events and event sequences that
make the app crash. Hu et al. [16] presented an approach
for testing Android apps’ GUI. Random graphical events are
generated and patterns are used to detect bugs in the sys-
tem log, such as app crashes, type exceptions and violations
in the activity state machine. Amalfitano et al. developed
AndroidRipper [2] and A2T2 [1] to test Android GUI. These
tools dynamically analyse the apps to get a list of fireable
events in the GUI widgets, they then generate sequences of
graphical events and sensor events. Code is instrumented to
record crashes and to eventually translate event sequences
into JUnit test cases.

A work that directly generates security test cases for An-
droid apps has been presented by Mahmood et al. [20]. Test
cases are generated by using random graphical events and
input values. Objective of the work, however, is just to
spot crashes due to communication errors and violations of
access permissions. Our approach, instead, generates test
cases that expose issues due to inadequate input validation,
which could threat the security of mobile devices.

This paper extends a previous workshop paper [5] that
proposed the initial intuition on the identification of AW-
iDe vulnerabilities. However, such preliminary work was
incomplete because taint analysis was not considered (nei-
ther static nor dynamic). The present paper proposes and
validates an improved threat model, by requiring that in-
tent data is used in privilege protected API calls. Moreover,
static and dynamic taint analysis are presented and used on
a large set of real Android apps.

3. THREAT MODEL

3.1 Background



Many apps are available on the official Android app store
(called Google Play). However, apps are provided by vari-
ous developers with different levels of trust. The Android
framework has been designed with the two-fold objective of
(i) allowing the integration and collaboration of apps from
different vendors but still (ii) guaranteeing a certain level of
separation to enforce security and confidentiality. Separa-
tion among apps is achieved by enforcing sand-boxing and
firewalling and by adopting a permission system to regulate
the access to sensitive resources.

Sand-box: Sand-boxing apps means isolate them from
system resources. In order to access any resource (such as
the network, the GPS position, the contact lists), apps have
to explicitly request proper permissions that the final user
evaluates and authorizes at installation time. The list of
authorizations requested by an app is specified in an XML
manifest file that is part of its packaging. Figure 1 shows
a fragment of manifest for a running example app. In this
example, the app is granted the special permission INTER-
NET to access the network.

Firewall: Firewalling apps means separating them from
each other. Apps receive a distinct Unix user-id, so they
run in their own private space and memory. Communica-
tion among apps is possible through the mediation of the
operating system by the so-called Inter-Process Communi-
cation mechanism (IPC). The framework is designed such
that apps can collaborate, integrate and complement each
other. For instance an app able to take pictures can be
delegated to make photos (and elaborate them) on behalf
of other apps that, thus, do not need to reimplement this
feature.

Integration: An app can delegate a specific task to an-
other app, without actually knowing which apps are avail-
able in the current device to accomplish that task. Different
final users might have different installed apps that are able
to take pictures, but the requester app does not need to
know which one to delegate. For the requester, it is enough
that the delegated app can take pictures.

Android has been developed such that a requester app has
just to specify what should be done (and with what data),
and the framework will identify an app able to accomplish it.
To delegate an action, apps use inter-process communication
(IPC) messages, called intents. Intents are messages that
contain the description (in a specific syntax) of the operation
that the requester needs to perform. Apps specify in their
XML manifest files what services they expose to other apps,
with the so-called intent filters. The framework relies on the
manifest to decide what app to delegate.

Figure 1 shows a fragment of the manifest file of an An-
droid app that provides a service to expand URLs shortened
by using goo.gl. URL shortening is a service to substantially
reduce long and complex URLs to few characters but still
pointing to the original locations. URL shortening is use-
ful in social networks (e.g., Twitter), in messaging apps or
to reduce typing when manually entering URLs. The offi-
cial market contains apps that offer this feature (e.g., URL
Expandroid1 and Short URL Evaluator2).

This app defines an intent filter to accept short URL to
expand to the original full URL. According to the filter def-
initions, intents for this app must specify the VIEW action

1net.studiofly.android.yuzu
2com.github.nicolassmith.urlevaluator

and the DEFAULT category. The data part of the intent
specifies the short URL to expand with scheme https and
host goo.gl.

Intents can be either implicit or explicit. Implicit intents
just specify the task to be performed. The system inspects
the intent content to decide the most appropriate destination
app(s). To decide the destination, the system compares the
content of the intent with the intent filters (i.e., with the
service definitions) that are specified in the manifest files of
the currently installed apps.

A second app, for example, sends implicit intents to ask
for URL expansion. An implicit intent with action VIEW,
category DEFAULT and data https://goo.gl/IhH0Ix would
match the intent filter in Figure 1 and therefore it would
be delivered to the corresponding app. This app will con-
tact the appropriate URL shortening service to retrieve the
original URL that is returned as result.

In explicit intents the sender app specifies the receiver
name as part of the intent. This assumes that the requester
knows exactly what app to delegate. Different Android
users, however, may have a wide diversity of installed apps,
therefore a specific app may not be available. Implicit in-
tents, instead, work on the wide heterogeneity of device con-
figurations.

<activity android:name="ExpandUrl">

<intent-filter>

<action android:name="android.intent.action.VIEW" />

<category android:name="android.intent.category.DEFAULT" />

<data android:scheme="https" android:host="goo.gl" />

</intent-filter>

</activity>

<uses-permission android:name="android.permission.INTERNET" />

Figure 1: Example of Android manifest file.

3.2 Motivating Example
Apps that are granted special privileges should not expose

vulnerabilities, otherwise special privileges could be the tar-
get of attacks. Non-privileged apps could, in fact, exploit
such vulnerabilities by crafting malicious intent messages
intended to make a vulnerable app misuse its permissions
to leak sensitive data (e.g., GPS position or contacts), write
sensitive information (such as contacts or app private data)
or perform costly operations (calls or SMS to premium num-
bers).

Figure 2 shows an example of attack scenario in which
the vulnerability is due to inadequate validation of an intent
message whose data is used in a privileged operation.

The scenario includes two apps: a benign victim URL Ex-
pander app U and an attacker app A. Let’s assume that
U defines the manifest file in Figure 1. U is granted the
special permission INTERNET to query the URL shorten-
ing service. An intent filter is defined to offer the URL
expansion service to other apps. U extracts the URL to ex-
pand from an incoming intent message. The app queries the
URL shortening service and expands the URL. U is meant
to query only trusted URL shortening services, those listed
in the intent filter (goo.gl in the example).

However, U fails to correctly validate intent data, and
when a server controlled by the attacker is (explicitly) spec-
ified as a shortened URL, instead of rejecting the message,
U tries to expand the URL by directly connecting to it.

Even if the attacking app A is not fully trusted, it was in-
stalled by the final user because it requested no permission,



thus it was assumed harmless. Moreover, firewalling and
sand-boxing are expected to preserve security by guarantee-
ing separation among apps. This is true until U contains no
vulnerability.

In our attack context, A sends a malicious message as ex-
plicit intent to U . The intent data is https://evil.com/abcd
and it corresponds to a host controlled by the attacker. How-
ever, U ’s validation is defective. U does not check the host
name to block untrusted domains, but queries it directly.
The malicious host returns a long URL that encodes a piece
of malware as ASCII characters. If the size of a URL is not
large enough, several similar intents can be used to collect
all the parts of the malware. Expanded URL(s) are returned
to A that can decode and reconstruct the piece of malware.

As a result of inadequate message validation, U takes a
privileged action on behalf of the attacker A using data con-
trolled by A. Eventually, A is able to download malware on
demand (a most recent version and, possibly, device specific)
without INTERNET permission3.

U (URL Expander)A (attacker)

Intent

Internet

Data

Figure 2: Example of attack scenario.

3.3 Vulnerability Preconditions
Based on the previous attack scenario, we identify the

preconditions that a vulnerability should meet in order to be
exposed to attacks based on inadequate message validation.

Sensitive actions can be performed only by apps that are
granted the permission to access the corresponding resource.
An attacker app that misses the permission to access sen-
sitive resources might resort to other vulnerable apps that
hold the needed access right. The goal of the attacker is to
make the vulnerable app execute privileged actions on its
behalf. Thus, the first precondition of this vulnerability is
the following:

Precondition PR1: Privileged API call. While
performing the action requested by the intent message,
the vulnerable app calls a privileged API.

Using the example of Figure 1, this corresponds to an
app that, after receiving an intent from a requester attack-
ing app, accesses the Internet invoking the API HttpURL-
Connection.connect() that requires the special permission
INTERNET. This is a case of permission re-delegation, as
described by Felt et al. [12], because the vulnerable app per-
forms a privileged task on behalf of a second app that misses
the required permission.

However, as acknowledged by Felt et al., permission re-
delegation includes also cases of legitimate delegation. Our
threat model goes beyond that and requires additional pre-
conditions to distinguish between legitimate delegation and
attacks. A first precondition to assume to make delega-
tion non-legitimate is on data used in the privileged action.

3Even if A could access directly the network, this attacks
allows downloading a malware stealthily, because network
usage would be imputed to U .

Data used in the privileged action should come from the in-
tent message, which is controlled by the attacker. Thus, the
following precondition should be also satisfied:

Precondition PR2: Attacker data. A privilege API
is called using data coming from the intent message
sent by the attacker app.

In the running example, the string with the query to the
URL shortening service contains the shortened URL, which
comes from the intent message. However, this can be still
a case of legitimate delegation. A real attack would use
a malicious data that a properly implemented app would
normally discard.

Despite intent filters have not been defined explicitly for
security, nonetheless intent filters reflect the intention of the
developer on the format of incoming data. In case data
are received that clearly violate the filters, they violate the
developer intention, so they are likely cases of not legitimate
delegation, i.e. malicious intents meant to attack the app.

The Android framework inspects intent filters before de-
livering implicit intent messages to identify the most ap-
propriate destination app. Thus, the destination app is
confident to receive only valid messages, i.e. messages that
are compatible with the protocol defined in the intent fil-
ter. However, explicit intent messages already contain the
name of the destination app, therefore Android delivers the
messages immediately without verifying their content.

While in implicit intent messages validation is performed
by the (well tested and mature) Android framework, on ex-
plicit intents validation of messages is completely in charge
of the receiving app, which may implement incomplete or
partial validation.

The final precondition needed for delegation to be mali-
cious is message validation. A vulnerable app accepts and
processes an invalid message that does not satisfy the con-
ditions defined in the intent filter.

Precondition PR3: Incomplete data validation.
The validation of intent data implemented in the app
code is defective, because it accepts a message that vi-
olates the app intent filter.

An intent message requesting to expand the “short” URL
https://evil.com/abcd clearly violates the intent filter of Fig-
ure 1, because the host is a server controlled by the attacker,
evil.com, instead of the trusted server goo.gl.

A defect that satisfies all of these three preconditions rep-
resents a security issue: an invalid intent message is pro-
cessed as if it was valid and intent data is used to call priv-
ileged API. In this way, an attacker app manages to con-
trol the execution of a privileged action without having the
corresponding permission. We call this an Android Wicked
Delegation, (AWiDe).

The objective of the rest of the paper is to elaborate
and assess two automated approaches to identify when an
app contains AWiDe vulnerabilities. Our analysis consists
in tracing (either statically or dynamically) malicious data
from intent messages, and in detecting when a malicious
data is used in sensitive operations, namely privileged API
calls.

4. STATIC ANALYSIS FOR VULNERABIL-
ITY DETECTION



The first approach we propose is based on static taint anal-
ysis. We instantiate static flow analysis to trace the depen-
dencies on intent values through the app control flow. When
(potentially malicious) intent values are used in privileged
API calls, the tool reports a candidate AWiDe vulnerability.

4.1 Taint Analysis
Taint analysis is intended to track the tainted/untainted

status of values throughout the app control flow. A problem
is reported whenever a tainted value is used in a security
sensitive statement, called the sink. Tainted status is prop-
agated on assignments to the variable on the left hand side,
when an expression on the right hand side uses a tainted
value. Tainted variables become untainted upon sanitiza-
tion, by means of special functions or when they are assigned
untainted values, such as a constant value or an expression
that contains no tainted value.

Two variants of taint analysis, static [24] and dynamic [9],
are possible. Static taint analysis is formulated as a flow
analysis [23] problem, where the information propagated in
the control flow graph is the set of variables potentially
holding tainted values. Static taint analysis detects can-
didate vulnerabilities as paths in the control flow that make
tainted values reach a sink (i.e., a vulnerable statement).
However, static taint analysis is conservative, because flow
information is propagated through all the paths, potentially
including infeasible paths that cannot be executed.

Dynamic taint analysis, instead, updates the tainted/un-
tainted flag of program variables during execution. Often,
taint tracking is implemented by using a modified execu-
tion environment (e.g., a virtual machine), deployed to keep
track of the tainted flag of program variables. Dynamic taint
analysis is more precise but incomplete, because it analyses
the app just with respect to the current observed execution,
at the cost of some runtime overhead. A problem is reported
when a value tagged as tainted is used in a vulnerable state-
ment (the sink).

4.2 Static Analysis
In our analysis, FlowDroid [3] was used for static taint

analysis. FlowDroid is a static analysis tool that reasons
about information flow at the level of variables, by finding
paths from sources to sinks. This tool was initially conceived
to trace data flow to detect privacy leaks in the form of
sensitive data sources (e.g., from the contact lists) that are
disclosed on sinks, for example through network messages.
It also accepts options to run analysis on different precision
levels.

We instantiated static taint analysis by changing the con-
figuration of sources and sinks to meet our analysis require-
ments. In our threat model, we are interested in tracing
how intent data flows in the app and potentially reaches
a privileged instruction, i.e. an API that requires a special
permission to be executed.

Sources: According to precondition PR2, tainted data
comes from intents sent by other apps. The API call used to
read the incoming intents is the method Intent.getIntent().
This call returns an Intent object that contains the message
payload. All fields of this object will be considered tainted.

Sinks: According to precondition PR1, the sinks are all
the method calls that require a special permission. However,
there is no complete documentation of what are the privi-

leged APIs in Android. Thus we reused the result of the
work by Au et al. [4], who discovered these APIs using dy-
namic analysis. Sinks consist of 32,203 method calls, spread
across the entire Android library classes.

Decreasing Precision Level: FlowDroid supports anal-
ysis with different levels of precision. So, we set a time limit
for the analysis at the most precise level. We stop the anal-
ysis of an app that can not complete within 10 minutes, and
we restart the analysis with a less precise configuration. We
iterate this process until the analysis complete or if all the
levels are attempted. We set this time budget by observing
that FlowDroid is in general very fast and that when it does
not complete in 10 minutes, it is unlikely that it will ever
finish.

Filtering: The report filled by FlowDroid specifies what
pair of source-sink is connected by a data flow.

Due to over-tainting (and possibly less precise analysis op-
tion), the report sometimes contains cases where our source
(i.e., method Intent.getIntent()) is not involved at all.
This can be also caused by a known bug4 on FlowDroid’s
taint wrapping which, in particular conditions, propagates
taintedness from a field to its class.

Thus, we have to filter the cases reported by FlowDroid
and keep only those source-sink pairs that explicitly mention
Intent.getIntent() as source.

Intent Filter Violation: With respect to vulnerability
preconditions of Section 3.3, so far static analysis checked
just preconditions PR1 and PR2, i.e. data from the intent
is used in a privileged API call. However, static analysis
does not check precondition PR3, i.e., the validity of intent
data. The flows reported as vulnerable are supposed to be
checked manually. This consists in verifying if the source
code of the app checks intent data for the same conditions
that are specified in the intent filter. Moreover, to qualify
the security report as a true positive, an input should be
elaborated that satisfies all the vulnerabilities preconditions.

5. DYNAMIC ANALYSIS FOR VULNERA-
BILITY DETECTION

The second approach we propose relies on dynamic analy-
sis. The execution of the app under analysis requires proper
input data, i.e. intents. Intents are automatically generated
that satisfy precondition PR3 (see Section 3.3), by check-
ing whether they violate the intent filters of the app under
analysis. Then, trace analysis is used to identify what execu-
tions hit a privileged API (precondition PR1). Eventually,
precondition PR2 holds for those intents whose data is used
in privileged API calls. Dynamic taint analysis is applied to
check this last condition.

5.1 Data Generation
Vulnerability precondition PR3 requires input data (in-

tents) to violate the intent filters defined by the app under
analysis. An intent filter specifies a set of conditions and
all the conditions should hold for an intent to be considered
valid. Consequently, to violate a filter, an intent needs to
violate just one condition. In order to maximize condition
coverage, we adopt a heuristic approach to generate input
data. Each generated input violates at least one condition
in the intent filter.

4https://github.com/secure-software-engineering/soot-
infoflow-android/issues/43



Before starting the generation of test data, the manifest
file of the app is parsed to extract information about the
intent filters. Since there could be many filters, each of
them is subject to test data generation. The first intent
to be generated is the prototype, a valid intent that does
satisfy all the conditions in the filter.

For example, for the intent filter in Figure 1 we automat-
ically create a prototype intent with action=VIEW, cate-
gory=DEFAULT and data=https://goo.gl/IhH0Ix.

A new testing intent is generated by mutating the proto-
type such that it negates one of the conditions in the filter.
The mutation operators are:

• Change action: The action of the intent is changed
into a new action that is not specified in the intent
filter. For example, the action is changed from VIEW
to EDIT;

• Change category: The category of the intent is changed
into a new category that is not specified in the intent
filter. For example the category of the prototype is
changed from DEFAULT to PREFERENCE;

• Change data: The data in the intent is changed such
that just one filter condition on data is not satisfied.
Since the data has the format scheme://host:port/path,
a change is applied on any of the composing parts (i.e.,
MIME type, scheme, host name, port, path, etc.).

In the case of the running example, we could negate the
condition on the scheme and change it from https://
to http://. Alternatively, the host might be changed
from goo.gl to evil.com.

After mutation, we need to check whether the test intents
violate the intent filter (precondition PR3). To assess this,
we rely on the Android framework. We send test intents as
implicit intents (without specifying any destination). The
Android framework will rely on intent filters to decide the
proper destination. We only keep those intents that were
not delivered to the app under test, because they violate its
intent filter. If these intents are explicitly sent to the test
app, then the app should discard them. If the app processes
these intents we can say that precondition PR3 is met.

5.2 Trace Analysis
Generated intents need to be sent to the app under test

to verify if they satisfy precondition PR1, i.e. the app fails
to reject invalid intent messages and the execution triggers
a privileged API call. A way to achieve this is by comparing
the behaviour of the app under test with trace analysis. We
revoke all permissions from an app and we check if its execu-
tion on a given input raises errors due to denied permission.

In more details, trace analysis is performed by running
two variants of the app under analysis, P and P ′. P is the
original app, while P ′ is the original app with its permissions
removed. P and P ′ are instrumented to trace method execu-
tion, exceptions and errors (both handled and unhandled).
Instrumentation is done directly at the byte-code level by
using an AspectJ5 aspect that injects new code to record
all the method executions and all the exceptions thrown at
runtime.

Each test intent is sent as explicit intent to P and to P ′

and execution traces are compared. Three cases are possible:
5AspectJ is the aspect oriented version of Java, available at
https://eclipse.org/aspectj/.

1. No error: In case of equal traces with no errors, it
means that the execution related to a given intent with
and without permission does not pose any difference.
Therefore, the intent is either discarded by both P
and P ′, or it is not discarded but no protected API is
called. Thus, according to our threat model, no defect
is found in the intent validation routine;

2. Same errors: In case the two traces present the same
error, with and without permission, it means that the
malformed intent makes P and P ′ fail in the same way,
but without triggering any privileged API call (other-
wise there would have been a difference in the traced
errors, i.e., an error in P ′ that involves the missing ac-
cess permission). Therefore, even if the intent is not
rejected, no sensitive action has been performed.

3. Different errors: If the execution traces are different,
it means that there has been an error in one of the ex-
ecutions. As the only difference between P and P ′ is
in the permissions, a variation in the trace means that
the specific intent makes app P ′ trigger a privileged
API call that causes an error due to an insufficient
permission. In this case, the test could expose poten-
tial security vulnerability because the invalid intent is
not rejected (precondition PR3) and forces the app to
perform a privileged action (precondition PR1).

At the end of trace analysis we know exactly what priv-
ileged APIs are executed, these are the calls that caused a
permission violation difference between P and P ′. The calls
detected by us might also include APIs that are potentially
missed by Au et al. [4] (as acknowledged by Au et al., their
list could be partial).

The only remaining check is to verify if intent data has
been used in these privileged calls (precondition PR2).

5.3 Dynamic Taint Analysis
An invalid intent that makes the app execute a privileged

instruction does not necessarily represent a vulnerability. In
fact, the app may perform privileged actions for reasons that
are not directly related to the received intent. For example,
the app may need to access the Internet to update a local
cache or to check for updates. We register a potential se-
curity problem when precondition PR2 is also satisfied, i.e.
when the privileged API call uses potentially malicious data
that comes from the invalid intent.

To verify if intent data is used in a privileged API call, we
instantiate dynamic taint analysis. All data fields from the
intent are marked as tainted and taintedness is propagated
on assignments during the execution. The privileged APIs
that caused error during trace analysis are then checked to
see whether they are called using any tainted data.

TaintDroid [10] is used for dynamic taint analysis, with
some modifications to adapt the tool to our security analy-
sis. TaintDroid is a dynamic taint analysis tool for Android,
intended to reveal sensitive information disclosure during
execution. In TaintDroid, data is tagged as tainted when it
comes from a privacy sensitive source, such as the address
book or the GPS. Sinks are represented by all those possible
ways a piece of information can leave the device, such as
through network transmissions or outgoing text messages.
Dynamic taint tracking relies on a modified version of An-
droid that checks the tainted flag of variables on assignments



in byte-code, and conservatively in native calls, inter-process
messaging and file system.

First, taint sources of TaintDroid differ from the ones we
need for our analysis. In fact, TaintDroid was intended to
monitor the flow of private data, while our analysis is in-
tended to track intent data. Second, while sinks in Taint-
Droid are points where data leaks from the device (e.g., via
the network), in our analysis sinks are all the privileged API
calls (that have been identified by trace analysis), including
also access to local private databases not considered orig-
inally by TaintDroid. For example, the act of writing a
new contact is a privileged action (it fails if the app is not
granted the proper permission), but it is not a sink for Taint-
Droid, because no information leaves the device. Despite
these differences, the propagation of tainted/untainted val-
ues in TaintDroid perfectly fits our needs.

To adapt TaintDroid to our needs, we deploy an aspect
written in AspectJ, that sets the taint flag of data from
the incoming intent (sources) and that checks the taint flag
of data on privileged API calls (sinks). While the sources
are constant, i.e. they are the calls to Intent.getIntent(),
sinks might change because they depend on the result of
trace analysis. An aspect is automatically generated to in-
tercept the privileged API calls detected by trace analysis.
After this aspect is applied to the app byte-code, the app is
executed with test intents on TaintDroid to check whether
tainted data is used in sink calls. The automatically gener-
ated aspect reports if test intents satisfy precondition PR2.

6. EMPIRICAL RESULTS
This section reports a study that assesses our vulnerabil-

ity detection, when analysing a set of 329 apps to identify
potential AWiDe security defects.

6.1 Research Questions
The aim of this section is to investigate the following re-

search question:

• RQ1: How do static and dynamic analysis compare in
detecting Android Wicked Delegation vulnerabilities?

This question aims at studying the detection accuracy of
static and dynamic analysis. Answering this research ques-
tion would suggest what is the most appropriate tool to sup-
port developers of Android apps.

6.2 Metrics
To answer this question, we apply the proposed detec-

tion techniques to the same case studies. We then validate
detection results by manually filtering the reported vulner-
abilities. During this process we record these metrics:

• True positives: Number of vulnerable apps correctly
detected as vulnerable by a tool;

• False positives: Number of safe apps incorrectly de-
tected as vulnerable by a tool (false alarms);

True positives and False positives are meant to quantify
the accuracy of the techniques.

6.3 Subject Apps
Our approaches work on compiled apps; therefore, avail-

ability of source code is not a requirement for the analysis.
However, we decided to opt for open source projects because

they offer the possibility to inspect the app code and man-
ually verify the correctness of vulnerability detection.

The F-Droid repository6 represents an ideal setting for
our experimentation, because (i) it includes real world and
popular apps that can be found also in the official market,
and (ii) apps can be downloaded with their source code, for
manual validation of the security reports delivered by the
tools.

The whole app catalogue was downloaded in October 2014,
and it consisted of a total of 1,216 apps. Sometimes, multi-
ple versions were available for the same app. In these cases
we considered the most recent version.

Apps that specify no intent filters do not support dele-
gation, so they can not be target of delegation attacks. In
the empirical assessment we only consider apps that define
intent filters. Among the 329 apps that do define intent fil-
ters, more than 70% are also present in the official Google
Play Store and some of them (in particular games) are also
quite popular there. We queried the official Android store
to study the popularity of the apps considered in our study.
Figure 3 shows the number of user reviews and the number
of installs reported in the official Android store. While the
number of installs ranges from 30 to 300 million, the aver-
age number of installs of the case study apps is 2.3 million.
The minimum number of reviews is 0 and the maximum is
700.000, while the average number of reviews is 12,803.

The number of installs and reviews supports the claim
that our study considered popular apps that can be found
in the official store.

(a) App installs (b) App reviews

Figure 3: Popularity (installs and reviews) of case
study apps according to the official Android store.

6.4 Results

Table 1: Detailed intermediate results of the static
and dynamic analysis.

(a) Static analysis.

Analysed With source- Filtered for
apps sink path “getIntent”
329 141 53

(b) Dynamic analysis.

Analysed Apps calling Tainted data
apps privileged APIs on sink
329 84 10

6http://f-droid.org/



Table 2: Apps analysed with different precision
level.

Options used Number of apps
Default configuration 222
–NOCALLBACKS 40
–ALIASFLOWINS 4
–PATHALGO SOURCEONLY 1
–ALIASFLOWINS,
–NOCALLBACKS, –NOEXCEPTION 6
(Timeout) 56
Total 329

Detailed results of static analysis are shown in Table 1(a).
Out of the 329 apps that can actually be targeted by dele-
gation attacks, i.e. they define intent filters and permission
requests in their manifest XML files, static analysis could
complete only on 273 apps (time out in 17% of the cases),
because of limitations of the tool we used. Among them,
141 apps were reported as containing a flow from the source
to a sink. Further automatic filtering was required to ex-
clude vulnerability reports that did not include getIntent

as source. The final result of static analysis consists of 53
apps classified as affected by the AWiDe vulnerabilities.

Table 2 shows the level of precision used in the analysis.
222 apps were analysed with the default analysis option. A
slightly less precise analysis (without considering callbacks)
allowed completing static taint analysis in 40 apps. Even
less precise analysis was required in fewer cases. However,
on 56 apps, even the less precise analysis did not deliver any
result by the time out (17% of the cases).

Table 1(b) summarizes the results of dynamic analysis.
The 329 apps with intent filters and permissions were in-
strumented and analysed. Trace analysis revealed 84 apps
that invoked privileged APIs after receiving an invalid intent
that violated their intent filters. Among them, our modified
version of TaintDroid detected 10 cases as vulnerable, be-
cause a tainted data from an intent was actually used in
privileged API calls.

Table 3: Final results of automatic tools in detecting
AWiDe vulnerabilities.

Metric Static analysis Dynamic analysis
True positives 9 9
False positives 44 1

Manual inspection of source code was required to assess
the accuracy of the analysis, to check whether reported vul-
nerabilities were true positives. Manual inspection of source
code consists of (i) verifying that intent data is used in the
privileged call; (ii) that no (or partial) validation of intent
data is enforced before using it on privileged call; and (iii),
only for static analysis, elaborating an input value that sat-
isfies all the vulnerability preconditions.

The comparison of the results of the two approaches is
summarized in Table 3. Among the 53 apps classified as
vulnerable by static analysis, we identified 9 apps as true
positive because they contain at least one vulnerable flow
from source to sink that misses adequate data validation.
The remaining 44 cases were false positives due to the rea-

sons mentioned in Section 4 (conservative analysis and over-
tainting).

After manual inspection of the results of the dynamic anal-
ysis, we classified the reported cases as 9 true positives and
1 false positive. The false positive case was due to a bug
in our implementation that was difficult to solve, because it
involves interference between taint tags for our analysis and
privacy leak taint tags originally propagated by TaintDroid.
Table 4 shows details of the actual discovered vulnerabil-
ities, with the special permission related to the privileged
API call. Only 3 apps have been correctly classified as vul-
nerable by both static and dynamic analysis.

We analysed more in depth the other cases, detected only
by one or the other approach. Among the 6 cases missed by
dynamic analysis, in 5 cases none of the test case generated
by dynamic analysis could execute the vulnerable path de-
tected by static analysis. The remaining case is a limitation
of our implementation on a particular filter protocol.

Conversely, considering the 6 cases missed by static analy-
sis, in 2 cases static analysis got stuck and did not complete.
In the remaining 4 cases, the vulnerable data flow traverses a
system library not modelled by the static analysis tool, lim-
ited just to intra-component analysis. For example, Zirco
Browser receives (potentially malicious) URLs from other
apps through intent messages and displays them using We-
bView, a system component. This inter-component interac-
tion is missed by FlowDroid hence reporting no flow.

Then, we compared the amount of time required to com-
plete the analysis. While static analysis was quite fast (135’
for the 273 apps that completed), dynamic analysis, even if
fully automated, took more time (5 days). Long execution
time of dynamic analysis is due to the large set of input
values to test. Each intent required at least two distinct
executions in the instrumented environment (trace analysis
requires running an app with and without permissions). An
additional execution with TaintDroid was required for those
apps that passed the trace analysis phase. The set of in-
puts for the 329 apps consisted of 9,756 intents. It should
be noted here that we do not perform combinatorial testing,
because each test intent violates just one condition among
those from the intent filter.

A major difference was also observed in number of apps
with incomplete analysis. While dynamic analysis always
delivered a result, FlowDroid (static analysis) could not com-
plete the analysis on 56 apps (17%), for reasons related to
limitations of the tool version we used for the experiment.

6.5 Outcome
All in all, experimental results allow us to answer the re-

search question in the following way:

• Both static analysis and dynamic analysis report the
same number of true positives (both 9 cases, however,
the overlap is on 3 apps). On the other hand, static
analysis reports many more false positives than dy-
namic analysis (44 vs. 1, respectively).

The outcome of the experiments also allows us to formalize
the following considerations:

• Static analysis is faster than dynamic analysis (min-
utes compared to days).

• Android Wicked Delegation vulnerabilities affect real-
world apps. In a set of 329 apps, we found 15 apps
that match the threat model defined by us.



Table 4: Apps correctly detected as vulnerable by
static and dynamic analysis.

App name Static Analysis Dynamic Analysis
DAAP Internet —

Scid on the go Internet —
Short URL Evaluator Internet —

TunesViewer Internet —
OpenSudoku Internet Internet

Call Meter 3G Internet Internet
ACV Internet —
Moss Internet Internet

ZooBorns Set Wallpaper —
SipDroid — Call Phone
Lumicall — Call Phone
Car Cast — Internet

Ermete SMS — Read Contacts
Zirco Browser — Internet

Crosswords — Internet

6.6 Attacks
To show that the vulnerabilities discovered by us can be

exploited to port serious attacks, we elaborated attacks7

starting from the results of our analysis techniques. Table 4
summarizes the permissions that can be abused on vulner-
able apps. For space reason, in this section we present only
some of them.

The first attack is on SipDroid, an app with more than
1 million downloads from the Android market. It is an
open-source SIP client that is granted the CALL_PHONE per-
mission to make phone calls. A particular activity of this
app defines an intent filter to accept implicit intents with
data schemes related to messaging (schemes are sms:// and
smsto://). However, the app’s implementation fails to en-
force these schemes on incoming intents. Therefore, it ac-
cepts and processes explicit intents with scheme tel:// that
does not match the intent filter. As a result, the app dials
any number specified in the intent.

This vulnerability can be used to port complete attacks
either by, (i) making the vulnerable app dial a premium
number or, (ii) performing a USSD/MMI attack [15, 6].
USSD/MMI codes are numeric strings between the “*” or
“#” characters. They are meant to access services supplied
by the mobile operator or to access phone functions. This
attack can lead to the factory reset of the device on a very
popular device from a mainstream vendor [7], or play with
operator configurations (e.g., #793#, which resets the voice-
mail password on T-Mobile USA).

Lumicall is another telephony app that borrows code from
SipDroid, which makes it vulnerable to the same attack.
Vulnerabilities in both these apps have been reported to the
authors8.

An attack related to information leak can be ported to an
app detected by both the techniques. The app is OpenSu-

7These attacks are not meant to cause real damages or steal
real data, their purpose is to demonstrate that a vulnerabil-
ity is exploitable. In security terms they are called proof-of-
concept attacks.
8https://code.google.com/p/sipdroid/issues/detail?id=1183
https://github.com/opentelecoms-org/lumicall/issues/32

doku, an open-source version of the popular Sudoku game.
Besides the normal game play, one of its functions is the
possibility to import new sudoku schemes from the Inter-
net, using the special permission INTERNET.

While the intent filter allows to open streams only towards
a subset of URLs (e.g., a specific MIME-Type or .opensu-
doku file extension), these restrictions are not enforced by
the app code. The URL from an invalid intent is directly
interpreted as a source to load the sudoku scheme definition
data.

A malicious app without permission to access the Internet
can still leak sensitive data (e.g., the device serial number
1234) by sending data in parameter as GET request. The
URL should refer to a server controlled by the attacker,
for example evil.com. The complete attack contains the
URL http://evil.com/?deviceid=1234. When receiving this
intent, OpenSudoku loads the URL and leaks the device se-
rial number to the malicious server. The vulnerability we
spotted in this app has been reported to the developer who
confirmed it9.

Another interesting vulnerability that might allow an at-
tacker publish as well as download file from a malicious host
exists in the app Short URL Evaluator. The details of the
attack are omitted because of space constraint, but they are
similar to the running example of Section 3.2. They can be
found in the vulnerability report filed by us10.

7. DISCUSSION

7.1 Considerations
Static analysis reports more false positives: Static

analysis and dynamic analysis report the same number of
true positives, but static analysis reports a larger number
of false positives. This result suggests that both analysis
methods are effective in detecting defects. However, it is
important to consider the large number of false positives
that are also involved (44 versus 1). Valuable development
time should be invested in inspecting each potential security
problem. High false positive rate could potentially make
app developers miss their time-to-market objective. Thus,
dynamic analysis, with lower number of false positives, is
an effective option. In fact, vulnerabilities that are reported
by dynamic analysis are more likely to be instances of real
problems that deserve high priority in manual investigation.

Dynamic analysis requires more time: We observed
a huge difference in the amount of time required by the
two analyses to complete. While static analysis is very fast
(minutes), dynamic analysis took a lot more (days). This
probably reduces the possibility of using dynamic analysis
as a tool to check code quality by app-store managers, i.e.,
where a large set of apps has to be considered. In that
context, the more lightweight approach of static analysis is
probably more appropriate. However, if we consider the case
of an app developer, who just needs to inspect the quality of
a single app during development, both static and dynamic
analysis are viable approaches. In fact, dynamic analysis of
one app took on average one hour, which is still acceptable
in this second context.

9https://code.google.com/p/opensudoku-
android/issues/detail?id=170
https://code.google.com/p/opensudoku-
android/issues/detail?id=171

10https://github.com/nicolassmith/urlevaluator/issues/42



Manual filtering of security reports: Apart from the
different false positive rate, security reports differ also in
terms of information provided. Reports from static analysis
just lists what sink statement is reachable with tainted input
data. The developer needs to figure out by herself/himself
how data can flow from the source to the sink. In our experi-
ence, this was quite easy when the source and the sink were
located in the same class, or in the same method, because
the control flow was quite easy to understand. However, it
was much harder when the source and the sink were in dif-
ferent classes. In some cases the flow was complicated by
the presence of multiple methods in multiple classes, and
manual inspection was more time consuming.

The report of dynamic analysis, instead, consists of an
executable scenario. It is a concrete instance of an input
value that triggers the discovered vulnerability in a candi-
date vulnerable flow. To classify one of these cases, the full
understanding of the whole control flow was not required,
and the developer could just focus on the particular exe-
cution flow taken by the test. Often, step-wise execution in
debug mode was enough to quickly figure out the vulnerable
data flow and confirm or discard the reported case.

Fast understanding and filtering of executable scenarios
makes dynamic analysis reports more appropriate for a fast
time-to-market business model.

User interaction: Static analysis considers all the po-
tential flows, including those that may potentially require
external events (e.g., user intervention or system event) to
execute a privileged API call. On the other hand, since it
is not included in our execution scenarios, dynamic analysis
does not consider any user interaction.

For this reason, AWiDe vulnerabilities detected by dy-
namic analysis are more direct and stealthy. A malicious app
could exploit them directly, just by sending an accurately
crafted intent, without the help of any subsequent event to
execute the intended privileged API. Secondary events (user
or system event) might be required to exploit vulnerabilities
reported by static analysis. However, a user who might be-
come suspicious could block these second cases of attacks
when the confirmation required to perform an attack pops
up out of the blue.

Vulnerabilities reported by dynamic analysis should be
considered with higher precedence, and they would require
immediate attention by the developers.

7.2 Limitations
We acknowledge these limitations on the two approaches

we propose.
Static analysis checks all the vulnerability preconditions

(see Section 3.3) but one. The only non automated check is
whether input data violates the intent filter (i.e., precondi-
tion PR3). As such, the report of static analysis is not fully
compliant with our threat model. Manual inspection was re-
quired to identify cases of missing or incomplete validation
in the source codes.

The current implementation of FlowDroid is affected by
over-tainting, resulting in false positives. Communications
with the maintainers of FlowDroid revealed that over-tainting
would be reduced after they fixed some implementation limi-
tations. Indeed, some cases of over-tainting that we observed
in our experiment are connected to a documented bug of this
tool.11

11https://github.com/secure-software-engineering/soot-

The approach based on static analysis cannot propagate
taintedness through constructs that FlowDroid cannot re-
solve statically, such as reflective calls and calls to native
code, which can be present in Android apps. Although some
support could be implemented to model native code, reflec-
tive calls are hard to be handled statically in the general
case. This limitation does not affect dynamic analysis, where
actual calls can be observed.

In our dynamic analysis tool, trace analysis runs the app
without permissions. An error due to insufficient privileges
reveals the first protected API call. As a result, for each
input value, only the first AWiDe vulnerability is detected by
dynamic analysis. This defect should be fixed by developers,
to make our dynamic analysis tool able to detect potentially
subsequent security defects. Security checks performed just
before release could pose a limitation to the applicability
of dynamic analysis to a fast time-to-market development
model. Security verification should be more integrated in
the daily development activity.

Our dynamic analysis tool does not model user interac-
tion. On one side, this allows detecting stealthy attacks
that a final user would not notice. On the other side, this
restricts the number of attacks that dynamic analysis would
detect. For this reason, we recommend to use static analysis
to complement the limitations of dynamic analysis.

Eventually, in future versions of Android, a different per-
mission scheme will be adopted. Common permissions, such
as the Internet access, will be granted by default to all
the apps, without the need of end-user confirmation. This
change will probably reduce the number of apps that are vul-
nerable according to the AWiDe threat model, because many
cases of vulnerability were related to the Internet permission
(see Table 4). However, less than 1% of the Android devices
run the latest version of the framework (Android M) 12 that
automatically grants Internet permission to all apps. Thus,
misuse of the Internet permission is still a threat on most
of the Android devices and our approach is still relevant to
identify security defects related to Internet. Moreover, our
approach is effective on the remaining set of sensitive per-
missions, for example to make phone calls.

8. CONCLUSION
Smart phone apps are often developed under a high time-

to-market pressure. For this reasons, they are sometimes
delivered while they still contain defects. Automatic support
for fast quality verification is highly advisable.

In this paper, we present a novel case of malicious dele-
gation, the Android Wicked Delegation. We also proposed
two approaches to automatically identify this class of secu-
rity defects. Static analysis showed to be faster than dy-
namic analysis, but less reliable and affected by more false
positives.

In future work, we intend to integrate static and dynamic
analysis to combine their strong points and overcome their
limitations. Moreover, we plan to validate the effectiveness
of our security reports with human studies to check what
piece of information is the most important for developers
when validating true vulnerabilities within a limited time
budget.

infoflow-android/issues/43
12http://developer.android.com/about/dashboards/index.html
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