Circe: A Grammar-Based Oracle for Testing
Cross-Site Scripting in Web Applications

Andrea Avancini and Mariano Ceccato
Fondazione Bruno Kessler
Trento, Italy
{anavancini,ceccato} @fbk.cu

Abstract—Security is a crucial concern, especially for those ap-
plications, like web-based programs, that are constantly exposed
to potentially malicious environments. Security testing aims at
verifying the presence of security related defects. Security tests
consist of two major parts, input values to run the application
and the decision if the actual output matches the expected output,
the latter is known as the “oracle”. In this paper, we present a
process to build a security oracle for testing Cross-site scripting
vulnerabilities in web applications. In the learning phase, we
analyze web pages generated in safe conditions to learn a model
of their syntactic structure. Then, in the testing phase, the model
is used to classify new test cases either as ‘“safe tests” or as
“successful attacks”. This approach has been implemented in a
tool, called Circe, and empirically assessed in classifying security
test cases for two real world open source web applications.

I. INTRODUCTION

Software bugs are in general detrimental for software quality
and reliability. They require even further and urgent attention
when involving security aspects, because vulnerabilities could
be exploited by attackers who intend to steal sensitive data
or to spread malware (e.g., computer viruses). According
to available surveys [5], one of the most prominent class
of vulnerabilities that affects web applications is Cross-site
scripting (XSS for short). These attacks consist in injecting
malicious fragments of JavaScript or HTML code into the web
application under attack, exploiting inadequate validation of
untrusted input data.

Security testing is the branch of software testing devoted
to stress programs with respect to security features, in order
to identify vulnerabilities. While the generation of security
test cases has been addressed by many approaches (e.g., [21],
[12], [13], [9], [8], [11]), a security oracle to judge if the
system passes security test cases is an overlooked problem.
It has been initially defined as a manual task [21] and later
by more automatic processes [12], [13], [9], [8], [11] but the
oracle has always been very specific to the approach adopted
for generating test cases. Such oracles are closely tied to the
corresponding test case generation algorithm, and they can be
hardly used out of their specific context. In [12], for example,
the oracle consists in checking if a web page contains the
same JavaScript fragment that has been used to generate the
corresponding test case.

We state that the construction of a security oracle is a
problem in itself. A reusable security oracle should not depend
too much on how test cases have been written (either manually

or automatically), but just on the specific class of vulnerability
(e.g., XSS) to tackle.

In this paper we address the problem of constructing a
security oracle for XSS vulnerabilities of web applications
with a novel approach called Circe'. Our solution is based
on the assumption that a successful code injection attack can
be recognized as a structural change in the web page, i.e. the
malicious content that has been injected. Circe constructs a
model of the structural properties of those HTML pages that
a web application generates when running on safe conditions.
A security test case is classified as a successful attack only if
it makes the web page violate this model.

The paper is organized as follows. In Section II we cover
the background on XSS vulnerabilities, while in Section III
we present the high level process to construct the oracle.
Then, in Sections IV, V and VI, the three steps of the oracle
construction are presented in detail. Our oracle is validated
empirically in Section VII. The comparison with the state of
the art (Section VIII) and the conclusions (Section IX) close
the paper.

II. CROSS-SITE SCRIPTING VULNERABILITIES

Cross-site scripting vulnerabilities (XSS hereafter) are
caused by improper validation of input data (e.g., coming
from the user). Input data may contain HTML of JavaScript
fragments that, if printed on a web page, may alter the final
content such that malicious code is injected.

A. Running Example

Figure 1 shows an example of PHP page that contains
a reflected XSS vulnerability, i.e. there exists an execution
flow where the input value param is not adequately validated
before being printed by a sink statement (echo statement in
PHP) in the output page (line 15). Any code contained in the
input value that is not properly validated is then added to the
resulting page.

The page accepts three inputs, param, cardinality and op.
It adopts a quite common PHP pattern, performing different
actions depending on the values of inputs. In case op is set
a table is shown, while a menu is displayed otherwise. The
number of rows in the table and the number of links in the

'In the Greek mythology, Circe is a goddess of magic mentioned in Homer’s
Odyssey. She was able to predict and influence the future.

<html>
<body>
<?php

1 $p = $.GET[param’];

2 $n = $_.GET[’cardinality’];

3 $op = $.GET[’op’ |;

4 if ($n < 1) //input validation

5 die;

6 if (strpos(3$p,’<script’) !== false)

7 $p=htmlspecialchars($p);

8 if (isset($op)) { //print table

9 echo ’'<table.border=1>";

10 for ($i=0; $i<$n; $i++) {

11 echo '<tr><td>first.cell .</td>’
‘<td>second.-cell</td>’
'<td>thirdocell</td></tr>";

12 echo "</table>";

else { //print menu
13 for ($i=0; $i<$n; $i++) {
14 echo ’'<a_href=first .php>link #’
$i . ’
}
}
15 echo $p; //vulnerability
7>
</body>
</html>

Fig. 1. Running example of a XSS vulnerability on PHP code.

menu depend on the value of cardinality. Input param is just
printed.

By looking at the running example in detail, we can see
that, on lines 1-3, input values are read (represented in PHP
as the special associative array $_GET) from the incoming
HTML request and assigned to local variables $p, $n and $op
respectively.

On lines 4-7, input values are then validated. In case $n
contains a value smaller than 1 or a string that does not
represent a number, the execution aborts (die statement at line
5). On line 7, the value of variable $p is validated, removing
potentially dangerous characters by using the PHP function
htmlspecialchars. This function changes special HTML
characters (e.g. “<”, “>” and “"”) into their encoded form
(“&1t;”, “sgt;”, and “squot;”), safe when printed in a
web page. Validation, however, is done only when condition
on line 6 holds, but that condition is not adequate to cover
all the possible dangerous cases. For example, harmful code
containing a different tag (e.g. <a>) or with a space between
< and script would skip the sanitization.

Depending on the value of variable $op, either a table (lines
8-12) or a menu (lines 13—-14) is shown. In both the cases,
the size of the result depends on the value of $n, because of
the for loops at lines 10 and 13. Eventually, variable $p is
printed at line 15, possibly causing a security threat because
of the inadequate validation at lines 6-7.

Although quite simple, the code in Figure 1 contains the
key ingredients of a typical XSS vulnerability. An attack, in
fact, is required to satisfy the following constraints to exploit
a vulnerability:

1) Input satisfies control flow conditions: in order to avoid

the premature termination of the execution, cardinality
must be a number bigger than 0;

2) Validation is skipped: potentially malicious code is re-
moved from string param at line 7, so the attack must
drive the execution to a different control flow;

3) Input contains attack code: variable param is printed in
the web page. This input value is the attack vector where
to add malicious code in order to get it printed into the
final page.

A vulnerability, however, can be much more tangled than
this example, as it can involve intricate control flows and/or a
complex data flow between input values and sinks.

III. CIRCE: THE SECURITY ORACLE

The goal of an XSS attack is to inject JavaScript or HTML
code fragments into a web page. Thus, consequences of an
injection should be recognizable as structural changes in the
parse tree of the page under attack, when compared with the
parse tree of the same page running under normal conditions.

Web applications, however, are highly dynamic and the
parse tree of the same page may vary a lot, even without code
injection. For instance, with respect to the running example
(see Figure 1), the same PHP script under harmless conditions
can display different results (number of table rows) and can
take different alternative actions (showing a table or a menu).

The security oracle should distinguish between those varia-
tions that are safe because due to the dynamic behavior of the
application and those variations caused by code injection due
to successful attacks. To achieve this objective, the security
oracle should be equipped with a model of parse trees of
HTML pages on safe cases, so as to classify as attacks all
those outputs that do not satisfy the model. Our security oracle
classifies the output of test cases in form of parse trees of the
web page under analysis. We construct a model of the parse
trees on safe cases according to the steps shown in Figure 2.
The oracle construction (Figure 2 right hand side) requires a
preliminary preparation phase (Figure 2 left hand side) to start
with a minimal set of test cases.

Preparation steps:

1) Adequacy criterion definition: a criterion to evaluate
the adequacy of test cases should be defined to assess
the completeness of the set of test cases to be generated,;

2) Test case generation: safe (i.e. without injecting any
code) input values are generated, either manually or au-
tomatically, such that they satisfy the adequacy criterion.

When a minimal set of test cases is available, it is used to
start building the model of safe executions.
Oracle construction steps:

1) Test case perturbation: the initial test suite is usually
minimalist, so it represents a too limited view of the
system to permit the construction of the model of safe
executions. In order to augment variety among the tests,
initially available test cases are mutated into a more
complete set of training test cases;

Adequacy Criterion ,.lTest case perturbation‘

[Test case generation Training test cases

|

(Few) test cases —

l Parse tree abstraction ‘

_ Abstracted parse trees
Preparation

l Abstraction merge ‘

Safe model

Oracle construction

Fig. 2. Overview of the process to construct the security oracle.

2) Parse tree abstraction: HTML pages collected when
running the training test cases are too specific to partic-
ular input values. In order to infer a generic safe model,
parse trees are processed to remove all those details that
are not relevant to detect a code injection attack; and

3) Abstraction merge: all the abstractions are combined
into a common structure, which is abstract enough to
reasonably represent the structure of the page in safe
conditions. This combination is called the safe model.

Eventually, a new test case that would not satisfy the safe
model would be classified as code injection, because it would
represent a successful XSS attack.

A. Adequacy Criterion

We decided to adopt an adequacy criterion which is based
on those candidate vulnerabilities reported by static taint
analysis [10] when analyzing the application under test. Static
taint analysis is a technique that tracks the tainted/untainted
status of variables throughout the application’s control flow. A
vulnerability is reported whenever a possibly tainted variable
is used in a sink statement (e.g. print). In case of XSS [22],
tainted values are those values that come from untrusted
sources (data base and user input) and sinks are all the
print statements that append a value to the resulting web
page. Tainted status is propagated on assignments and tainted
variables become untainted upon sanitization (e.g., function
htmlspecialchars in PHP). Taint analysis is formulated
as a flow analysis [18] problem, where the information propa-
gated in the control flow graph is the set of variables holding
tainted values.

Taint analysis does not provide executable test cases, but
just the data slice that gives raise to the vulnerability. The data
slice consists of the chain of those assignments that make a
tainted value flow into a sink statement, skipping validation.
The data slice for the vulnerability depicted in Figure 1, for
example, is composed by lines {1, 15}, because variable $p
is assigned the input param at line 1, and it is later printed at
line 15. This list of assignments does not identify a path in
the control flow, but a (possibly infinite) set of paths. In fact,
it does not specify how many iterations to take in loops (lines
10 and 13) or which alternative action to take, i.e. whether to
display the table (lines 8—12) or the menu (lines 13-14).

Identification of candidate vulnerabilities and data slices is
done by using Pixy [10], a publicly available tool for taint
analysis of PHP code.

We also identified all those control statements that hold
a control dependence on the statements in the data slice,
because they drive the code execution into (or away from)
a vulnerable path. The branches to traverse in order to make a
tainted value reach the vulnerable statements are called target
branches, because they are those branches that a security test
case must take to execute the vulnerable data slice. In the
running example of Figure 1, the target branches are {4-6, 6-
8}. The former (4-6) is required to avoid termination, while
the latter (6-8) to skip the validation of variable $p at line 7
that would break the data slice and block the propagation of
the tainted value towards the sink.

Each candidate vulnerability defines a set of branches to
take in order to execute the vulnerability itself, that we call vul-
nerability slice. Vulnerability slices (with their target branches)
are used to evaluate the adequacy of the security tests. A
vulnerability slice is covered by a test case if, when executing
the test cases, all the target branches of the corresponding
slice are taken. A test suite is considered adequate when each
vulnerability slice is covered by at least one test case.

B. Test Case Generation

To generate test cases that satisfy the adequacy criterion,
we rely on a tool that we developed for previous work [1],
[2], that integrates heuristics (Genetic Algorithms) and analytic
solutions (SMT solver) to produce input values for test cases,
with the objective that they have to cover all the candidate
vulnerability slices detected by static analysis. Many test case
generation approaches, however, exist in literature [21], [12],
[13], [9], [8], [11] and any of them is, in principle, applicable
to this context. Alternatively, input values can be also manually
written, for example by translating the application’s use cases
into test cases.

In our experiment, test cases are modeled as sets of
valid input names and values for the page under analy-
sis. For example, the test case {param=“param”, cardinal-
ity=“2", op="“X"} is the representation of the consistent URL
http://host/page.php ?param=param&cardinality=2&op=X for
the application under test.

Since the focus of this paper is on the security oracle, we
will not provide further details on the input values generation
part, and we will use the available tool as a black box. More
details about this phase can be found in previous work [1],

[2].
IV. TEST CASE PERTURBATION

A test case generation strategy is usually minimalist and it
probably gives few (or just one) test cases for each vulnera-
bility slice. Multiple distinct test cases, however, are needed
to build a model with an appropriate level of generality. To
increase the number and the diversity of the training test cases,
initial test cases that have been automatically generated are
subject to perturbation (1) by using mutation operators and (2)

by concrete symbolic execution. Perturbation continues until
a time-out expires, or until at least 300 distinct training tests
are generated for each vulnerability slice.

A. Mutation Operators

Test cases are mutated by applying the mutation operators
listed in the following.

Change input value: The value of an input variable is
randomly changed. One input variable is chosen with uniform
probability and its value is changed in two alternative ways.
Either (1) one character of the current value is randomly
selected and substituted with a random character or (2) a
random string is concatenated to the current value.

Remove input variable: An input variable is randomly
chosen from the available in the test case, and it is removed.

Insert new input variable: A new input variable is added
to the test case. The variable name is randomly selected among
the input variable names referenced by the page under tests
and its value and type are generated randomly.

All the constant strings that appear in the page source code
are collected and stored in a pool. When a new random string
is required, such string is either chosen from the string pool
(probability 1/2) or randomly generated (probability 1/2). In
the latter case, the following algorithm is used. A character
is randomly selected from a set that contains alphanumeric
characters and special HTML/JavaScript characters, i.e. from
[a-zA-20-9], and [<>?&+—x/=\ () [1"’]. After the first
character, a second one is added with probability 1/2, so the
probability of having a string of length 2 is 1/2. In case of
the addition of a second character, a third one is added with
probability 1/2, so the probability of a string of 3 characters is
1/ 2% = 1/4. More characters are added with a probability that
decays exponentially. In general, the probability of generating
a string of length n is 1/2"".

B. Concrete Symbolic Execution

Mutation operators achieve a limited variation of input
values (local perturbation), such as the number of table rows
displayed by the running example of Figure 1. Concrete sym-
bolic execution [14] is used to achieve a broader perturbation
of test cases. Path conditions are collected along the execution
of the program on a test case, in terms of conditions on
symbolic input values. Among the collected conditions, one is
negated and, together with the remaining conditions, is passed
to an SMT solver. The SMT solver elaborates a new set of
input values, they are a new test case which is different than
the one that originated the current set of conditions. So, the
execution of the new test case will be similar to the previous
one, but a different branch will be taken according to the
negated path condition.

1) Symbolic Values: Path conditions are collected in terms
of constraints on inputs, so the symbolic values of program
variables are traced in terms of their relation with input values.
This is done by instrumenting the code. After each assignment,
a dynamic map is updated with the new symbolic value of the
assigned variables, in this way:

o The symbolic value of an input is the name of the input
variable;

o The symbolic value of a program variable can be found
in the dynamic map; and

o The symbolic value of an expression is a string represent-
ing the quotation of the expression, where variables are
replaced with their symbolic values. In case of operators
not supported by the solver (e.g., non-linear arithmetic),
concrete values are used.

2) Symbolic Path Constraints: Symbolic constraints are
collected at decision points. Conditions are collected on deci-
sion points as symbolic values of the condition expressions.
When conditions involve operators which are not supported by
the solver, we resort to concrete values. Conditions are col-
lected together with a reference of the corresponding traversed
branch.

An execution of the running example on input values
{cardinality=0} would take the branch 4-5 and then exit. This
would collect just one path constraint:

4 —5: GETcardinality < 1

3) Constraint Selection and Change: Before passing the
path constraints to the solver, one of them is selected and
negated, so as to make the solver elaborate new input values
that force the execution follow a different path.

In our example, just one path constraint is collected and
then negated before being passed to the solver in the form:

GETcardinality >= 1

Since this formula is satisfiable, a new set of input values
is returned:

{cardinality = 1}

These new input data make the execution take the branch
4-6 instead of 4-5, thus executing a different part of the
application.

Test case perturbation requires to implement mutation op-
erators and concrete symbolic execution. They are integrated
with the existing tool for the automatic generation of input
values for security test cases [2]. The TXL language [6] has
been used to instrument the code for propagating symbolic
values and symbolic constraints during the execution of the
PHP code. TXL supports the definition of grammar-based rules
to perform source-to-source code transformation. To solve
symbolic constraints, we adopted Yices [7], an SMT solver
that supports linear arithmetic and operations on bit-vectors.
We also used TXL to implement an ad-hoc PHP-to-Yices
encoding of PHP path conditions, in order to make them
comprehensible for the solver. We resorted to bit-vectors to
represent strings and operations on them.

V. PARSE TREE ABSTRACTION

Training test cases obtained after perturbation are executed
on the instrumented web application to record what branches
are traversed at run-time. For those tests that still cover a

vulnerability slice, we collect the generated HTML code and
the corresponding parse tree. Each parse tree is then abstracted
by applying the subsequent abstraction rules. TXL has been
used to implement these transformation rules:

Remove text and formatting: Text and comments are re-
moved, so just HTML tags and scripts remain. We also remove
all the formatting tags (e.g., <tt>, <i>, , <big>, <small>,

 and <hr>) that do not specify JavaScript code to be
executed on user events (onclick, ondblclick, onmousedown,
nmousemove and similar).

Compact list: A sequence composed by the same tag is
replaced by a repetition pattern of the given tag. The repetition
pattern is represented by the special attribute pattern=“+".
The replacement tag contains the union of the attributes from
the original tags.

<li class="cl”> <li pattern="+"
 class="cl”>
<li class="¢c2"> | — class="¢c2">
 lang="en”>
<li lang="en”> </1li>

Fig. 3. Compact list pattern.

Compact list with same children: A sequence of the
same tag that contains the same nested tags is replaced by
a repetition pattern of the given tag. The repetition pattern
is represented by the special attribute pattern=“+". The
attributes of the replacement tag are the union of the attributes
from the original tags. The replacement tag will contain the
same child tags as the original tags.

<ul class="cl”> o
 </1li> lang—:en”>

EI/J;JITangz”en”> — </1li>
 </1i> </ﬂ;> </1i>
 </1i>

Fig. 4. Compact list with same children pattern.

With respect to the running example of Figure 1, a test
case consisting of the input values {param=‘“param”, car-
dinality=“2", op=“X"} would produce the HTML code in
Figure 5(a), i.e. a table with two rows. The first abstraction rule
that applies is remove text and formatting, which removes the
text contained in the table cells, originating the intermediate
result of Figure 5(b). Then, sequences of <td> tags are
transformed in a repetition pattern by the rule compact list
(Figure 5(c)). Eventually, the rule compact list with same
children changes the table rows <tr>, returning the final
abstraction that is shown in Figure 5(d).

This representation is more abstract than the initial test
output, because it does not model table content and size, which
are too specific to the particular test case that has generated
them. The abstraction just models the presence of the table
with all its attributes (e.g., border=1).

VI. ABSTRACTION MERGE

When parse tree abstractions are available for all the training
test cases, they need to be combined into a common rep-
resentation that models all the safe executions for the same
vulnerability slice.

Combination is done pairwise and it starts by merging two
parse tree abstractions. The resulting abstraction is then com-
bined with a third tree abstraction. The combination process
continues combining one abstraction after the other, until the
last one is merged into the final model.

The trees to merge are visited in parallel using a breadth-
first strategy. Starting from the root, all the children nodes
are fully processed, before continuing with the grand-children
nodes. Tags and attributes are merged with the following rules:

Merge equal tags: during the parallel visit of trees A and B,
the same tag <x> is found at the same position in the the two
trees, as shown in Figure 6. Tag <x> is then copied into the
result. The attributes of the result are the union of attributes
of <x> from A and B. The parallel visit continues with the
child tags of <x> in A and B.

A B Result
v v v
<X> <X> <X>
attrl=1 attr2=2 attrl=1 attr2=2

Fig. 6. Merge equal tags rule.

Merge different tags: during the parallel visit, two different
tags are found, <x> in A and <y> in B, according to the
example shown in Figure 7. The pattern <x |y> is created in
the resulting tree. The attributes of the result are the union of
attributes of <x> and <y>. The parallel visit continues on the
child tags in <x> and <y>.

A B Result
v v v
<x> <y> <x|y>

Voo

attrl=1 attr2=2

N

attrl=1 attr2=2

Fig. 7. Merge different tags rule.

Compute difference on child tags: When done with a par-
ent tag, the merge continues on the child tags. The difference
between the two lists of children is computed by using the
longest common subsequence algorithm [4]. The result is the
edit difference between the two lists, that consists in those tags
that have to be added or removed from the first list to obtain
the second one. Common tags are copied in the result (taking
the union of the attributes) using the merge equal tags rule,
while different tags are transformed by the merge different tags
rule.

In the example shown in Figure 8, the edit difference
between the children of <x> in A and <x> in B consists in
removing <z> and adding <k> and <w>. As <z> and <w>

<html> <html>
<body> <body>
<table border=1> <table border=1>
<tr> <tr>
<td>first</td> <td> </td>
<td>second</td> <td> </td>
<td>third</td> <td> </td>
</tr> </tr>
<tr> <tr>
<td>first</td> <td> </td>
<td>second</td> <td> </td>
<td>third</td> <td> </td>
</tr> </tr>
</table> param </table>
</body> </body>
</html> </html>
(@) (b)

<html>
<body>
<table border=1> <html>
<tr> <body>
<td pattern=f> <table border=1>
</td> <tr pattern=+>
</tr> <td pattern=+>
<tr> </td>
<td pattern=+> </tr>
</td> </table>
</tr> </body>
</table> </html>
</body>
</html>
(c) (d)

Fig. 5. Abstraction transformation on the running example: (a) HTML output, (b) remove text, (c) compact list, (d) compact list with same children.

appear in the same position (i.e., just after the common <y>)
they are replaced by an alternative pattern. Tag <k>, instead,
misses a corresponding tag in A, so it is copied in the result
as an optional tag, i.e. a tag with the optional pattern attribute
pattern="2".

A B Result
v v v
< x> <x> < x>
<y> <z> <k> <y> <w> <k> <y> <z|w>
pattern=?

Fig. 8. Compute difference on child tags rule.

Merge pattern attributes: Tags may contain attributes that
specify a pattern, which possible values are:

« ? for optional tags (zero or one tags);

o + for a list of one or more tags; and

o * for a list of zero or more tags.
When merging tags that contain pattern attributes, patterns are
composed applying the composition rule on Table I.

Merge |
?

+

?
?
*
® *

* ¥ ¥ ®

+

%

+

*
TABLE 1

RULE FOR MERGING PATTERN ATTRIBUTES OF TAGS.

Figure 9 shows the combination of two abstractions (a) and
(b), corresponding to the execution of the running example
(Figure 1) on the two alternative functionalities, i.e. displaying
a table or a menu respectively. Both the trees start with the
same <html> root tag. The common tag is then copied into the
safe model (c) by the merge equal tags rule, and their children
nodes are visited by the compute difference on child tags rule.
No difference is found, so merge equal tags applies and child
tag <body> is copied into the result. Then, some differences
are found on the child nodes of <body> (the third level of the
trees), so merge different tags applies and <table> and <a> are
merged into the brand new tag <table|a>. The attributes of

the new tag are the union of the attributes of the original tags.
Then, computation continues on the child tags, but while (a)
has one child tag (i.e. <tr>), (b) has none. Compute difference
on child tags rule merges the second empty list with the first
list of children, so the <tr> tag is added to the result with
the optional pattern “?”. Since this tag already had the list
pattern “+”, it must be composed with the new pattern “?” as
specified by the merge pattern attributes rule, resulting in the
new pattern “*”.

Figure 9(c) represents the safe model of the running exam-
ple for the vulnerability slice consisting of the target branches
{4-6, 6-8}. It models both the alternative behaviors (i.e., table
and menu) in all their safe variants (i.e., number of rows and
menu entries).

A. Oracle Decision Procedure

Once the safe model is available, it can be used to assess
whether a new test case is a successful attack. The decision
procedure consists in:

1) Running the candidate attack on the web application

under test and collecting the HTML output page;

2) Calculating the parse tree abstraction on the output of

the candidate attack;

3) Merging the abstraction with the current safe model,

obtaining the evaluation model; and

4) Comparing the safe model and the evaluation model.
In case the safe model results to be equal to the evaluation
model, it means that the oracle is unable to detect any
structural difference between the candidate attack execution
and any safe execution, so the test case is classified as pass (the
attack is non-successful). A difference between the safe model
and the evaluation model, instead, means that the candidate
attack has caused structural changes with respect to safe
executions. In this case, the oracle detects a code injection
and it classifies the test as non-pass (the attack is successful).

VII. EMPIRICAL ASSESSMENT

The proposed approach has been implemented in Circe, and
assessed on some case studies. First of all, the safe model
for the system under test is learned using the training test
cases as described in the previous sections. Then, the oracle is

< html > < html >

l !

< body > < body >
! !
< table > <a>
Y\ RN
border=1 <tr> pattern=+ href=first.php
/N
pattern=+ <td>
!
pattern=+

(@) ()

pattern=+

< html >

}

< body >

}

< table | a >

— N~

border=1 href=first.php <tr>

YN\

pattern=* <td>

!

pattern=+

(©

Fig. 9. Example of combination of two parse tree reductions (a) and (b) into the safe model (c).

evaluated, by studying its performance in classifying a (new)
set of test cases, the assessment test cases, containing both
safe tests and successful attacks.

A. Case Studies and Oracle Construction

For the empirical validation, we used two case study appli-
cations written in PHP. An important requirement for the case
studies is that they contain real vulnerabilities, so the oracle
can be evaluated in terms of correct classification of attacks
ad safe tests.

The first case study we selected is Yapig version 0.95b,
an open-source application that implements an image gallery
management system. It consists of 9,113 lines of code and
53 source files, with 160 user-defined functions and 2,638
branches. The second case study is PhpPlanner version 0.4, a
calendar/agenda that uses mySQL as back-end, which consists
of 1,953 lines of code in 19 source files, 23 functions and 136
branches.

Static analysis reported a total of 41 candidate XSS vulner-
ability slices, 25 in Yapig and 16 in PhpPlanner respectively.
The preliminary test case generation step built test cases for
22 vulnerability slices out of 41.

Test case perturbation expanded this initial set of test cases
into a larger set, consisting in 300 distinct test cases for each
vulnerability slice. Then, all these training test cases have been
abstracted and merged into the corresponding safe model, the
knowledge base of the security oracle.

B. Assessment Test Cases

In order to measure the capability of the security oracle to
correctly classify the output of test cases, we needed new test
cases, different from the training tests already used to build
the model. We call these new tests the assessment test cases.
Assessment test suite will contain both safe test cases and
successful attacks, in equal number.

To generate attacks, we could resort to available techniques
for attack generation, such as [13], [9], [8], [11]. However,
since we need attacks to be general (i.e., not just limited to
inject “<script> tags) and we need safe tests and attacks to be
balanced, we adopted an ad-hoc generation strategy, described

in the following. However, the objective of the assessment is to
evaluate the oracle and not to evaluate the generation strategy.

Code injection exploits are generated by using attack strings
from a library of 50 known malicious fragments of HTML and
JavaScript. They are code fragments used by Surribas [20] in
a tool for penetration testing and black-box fuzzing. Attack
strings represent different attack strategies, such as displaying
new windows with content controlled by the attacker, extract-
ing data from the current page or altering the content of the
current page.

Test cases are turned into attacks by appending the strings
taken from the attack library to input values. Injection is
performed with the following injection operators:

o The attack string is concatenated to input value;

e The attack string is inserted into an input value, at a
random position; and

o An input value is substituted with the attack string.

In order to build also a control group of safe test cases that
differs from the group used for training, a similar injection
procedure is repeated using a list of safe inputs. This list
is composed by 15 strings randomly taken from the English
vocabulary and 15 integer numbers selected in a random way.

These attacks and safe tests are the candidate assessment test
cases. They are run on the applications under test, to check if
they still cover the vulnerability slices. Those tests that do not
cover any vulnerability slice are removed from the assessment
test suite. After filtering, our candidate assessment test suite
consists of 26,170 tests.

To ensure a fair empirical validation, the test suite needs
to be balanced and, for each vulnerability slice, it should
contain the same number of safe tests and successful attacks.
However, among all the vulnerability slices detected by static
analysis, there are few for which the generation procedure
described above (based on string concatenation) fails to build
either successful attacks or safe tests. Thus, these slices are
discarded from the experiment. After the balancing filtering,
the final assessment test suite consists of 12,814 test cases.

The assessment test suite is eventually executed and out-
put pages are saved. Pages are then manually inspected, to

verify if injection has been correctly performed. To speed up
manual verification, we grouped identical output pages into
equivalence classes, and we checked only one representative
for each class (sometimes, altered input values did not cause
changes in the final web pages).

Then, we used the security oracle to classify the output of
assessment test cases and we compared the oracle classifica-
tion with the manual classification.

C. Empirical Results

Experimental results on the two cases study applications
are reported in Table II, left-hand side for Yapig and right-
hand side for PhpPlanner. The Table reports a row for each
vulnerability slice (vulnerability id in the first column, missing
ids are related to those slices for which no assessment tests
have been generated) considered in this experiment. The Table
shows how many assessment test cases has been generated
in the second column. Third and fourth columns summarize
the oracle performance in terms of precision and recall.
Eventually, the performance of the oracle in classifying test
cases is reported in details, True Positives (TP in the Tables)
are the correctly identified attacks, False Positives (FP) are the
safe tests detected as successful attacks. True Negatives (TN)
are the safe tests correctly identified and False Negatives (FN)
are the successful attacks identified as safe tests.

While many assessment test cases can be generated for
some slices (e.g., more than 1,000 tests for vulnerability
slices 4, 6 in Yapig, more than 700 tests for majority of the
candidate vulnerability slices in PhpPlanner), only few tests
are built for other slices (8 tests for vulnerability slice 8).
This is due to the presence of complex conditions that control
the execution of statements in some vulnerability slices. The
generation procedure, in fact, consumes a large portion of the
time budget attempting to satisfy these conditions, resulting in
few assessment tests created.

Analyzing the obtained results on Yapig (Table II left-hand
side), we notice that precision is around 50% or higher, with
peaks of 86%-88%, for all the candidate vulnerability slices,
while it reaches 100% in one case. As the oracle reported
no false negatives, the recall is always 100%, meaning that
no real attacks are missed by the classifier. This implies that
Circe has shown good performances in detecting attacks, with
a fair number of false positives.

Manual inspection revealed that safe tests classified as
attacks (false positives) are often due to malformed HTML
in the output pages. Since malformed pages do not satisfy the
safe model, they are classified as attacks. False positives in
vulnerability slice 5, for example, are caused by a program-
ming defect that makes the same web page contain two root
<html> tags. This is a structural difference with respect to
the safe model, that Circe classifies as an attack. Though we
manually classified these cases as false positives because they
are clearly not code injections, they still expose programming
defects that require a fix. A more exhaustive training that
would have also included malformed outputs in the training
test cases would have correctly classified these cases. It is

questionable, however, if a security oracle should model such
faulty behavior as safe execution.

Manual inspection revealed no false negatives, meaning
that no attack was erroneously classified as safe execution
by Circe. In particular, Circe has shown to be effective in
recognizing different attack patterns for the same page. In
case of vulnerability slice 13, for example, attack patterns
based both on <script> and on tags have been correctly
classified as successful attacks. This means that the oracle is
general enough to be independent from the kind of HTML
fragments that are injected. As in the case of vulnerability
5, the only false positive on vulnerability 13 was due to the
presence of two root <html> tags in the same page.

On PhpPlanner (Table II right-hand side), precision was
100% only in one case (vulnerability slice 22). In all the other
cases, precision was around 50% or higher, while the recall
was always 100%.

Circe scored true positives for all the slices (from 15
to 22). By manually inspecting the application source code
involved in these vulnerability slices, we noticed a recur-
ring vulnerable pattern involving the special PHP variable
$_SERVER[PHP_SELF], which is used to generate dynamic
forms. This special variable implements a sort of introspection,
as it contains the complete URL used by the incoming HTTP
request, which indicates the PHP page that is currently under
execution. As such, this string also contains all the input values
passed (by GET) to the current page. The application under
test uses the content of this variable, without proper validation,
to construct the value of parameter action in a form. This
causes any malicious code fragment present in the incoming
request to appear in the dynamic form. This alteration of
the regular structure of the resulting HTML page is correctly
recognized as an attack by the oracle.

The same pattern, however, (except for vulnerability 22
which is slightly different), has been recognized as an attack
by the oracle even on safe tests. In fact, when the introspection
variable is printed, the action parameter of the form contains
the novel values that, even if safe, are still not matching those
values observed during the learning phase.

Also for PhpPlanner, manual inspection revealed no false
negatives.

D. Discussion

Considering the purpose of a security oracle, recall can be
considered more important than precision. False alarms due
to non-perfect precision would require additional effort by
developers, who are supposed to manually analyze them. Non-
perfect recall, however, would represent a more dangerous case
of actual attacks that are overlooked, because classified as safe
executions. In this sense, Circe represents a satisfactory trade
off, as recall is always 100% and precision is still relatively
high.

A possible strategy to increase precision might be dedicated
to improve the training phase and adopt a larger set of training
test cases. A wider training test suite would make the safe
model more general, improving the performance in terms

— Id Tests | Precision Recall TP FP TN FN
Id Tests | Precision Recall TP FP TN FN
15 960 50% 100% | 480 471 9 0
4 2,420 50% 100% | 1,210 1,202 8 0
he o 16 374 91% 100% | 187 18 169 0
5 980 50% 100% 490 488 2 0
17 900 51% 100% | 450 433 17 0
6 2,366 50% 100% | 1,183 1,182 1 0
18 920 50% 100% | 460 454 6 0
7 20 100% 100% 10 0 10 0
19 1,108 51% 100% | 554 543 11 0
8 8 50% 100% 4 4 0 0
20 960 51% 100% | 480 460 20 0
12 38 86% 100% 19 3 16 0 o
13 14 387 100% 7 | 6 0 21 1,020 51% 100% | 510 494 16 0
- i ° 22 726 100% 100% | 363 0 363 0
(a) Yapig (b) PhpPlanner
TABLE II

EMPIRICAL DATA ON THE CLASSIFICATION PERFORMANCE OF CIRCE (A: YAPIG, B: PHPPLANNER).

of precision. On the other hand, a too abstract safe model,
however, would potentially cause too many false negatives
and decrease the performance in terms of recall. Conversely,
insufficient training guarantees perfect recall but at cost of
low precision, because the resulting safe model would be too
specific to the few training tests and any small deviation from
them would be classified as an attack, even if perfectly safe.
Then, an appropriate training is fundamental to reach an ade-
quate compromise between precision and recall. In our case,
appropriate training is guaranteed by the coverage criterion,
that is based on the result of static analysis. Alternative criteria
could be considered, such as branch coverage, def-use chain
coverage, and others.

Another key point is the correct abstraction function adopted
to build the safe model which is used by Circe. We decided to
drop non-essential tags (such as formatting tags), but to keep
all attributes and attribute values, and to represent recurring
structure using patterns. This approach is effective in all
those cases in which attribute values are defined statically
and never change. However, it could be less effective when
attributes are defined dynamically, using values that depend
on the application state. To address the problem, in a future
extension of the safe model, the characterization used for
dynamic elements should be abstract enough to avoid false
positives, while sufficiently generic not to miss any attack.

The adopted coverage criterion based on vulnerabilities
represents a limitation of our experimental validation. In fact,
those real vulnerabilities that are not reported by static analysis
are not considered in the assessment. Nonetheless, a safe
model should be able to completely describe the safe execution
of a web application. All the pages that deviate from this
model would be classified as potentially attacked, even in the
presence of unknown vulnerabilities.

VIII. RELATED WORK

A fundamental part of security testing is deciding about
successful attacks, i.e. when a test case is able to inject
malicious code. Initially, checking code injection was a manual
task delegated to programmers. For instance, in the work by
Tappenden et al. [21] security testing is approached with an
agile methodology using HTTP-unit, while verification of test
outcomes is left as manual task.

Other approaches provide a higher level of automation.
In [12], a library of documented attacks is used to generate
valid inputs for a web application. A symbolic data base

is implemented to propagate tainted status of input values
through the data base to the final attack sinks. First stage of the
oracle adopts dynamic taint analysis to verify if tainted data
are used in a sink, while second stage performs a comparison
of safe pages with pages generated by candidate attacks. This
check consists in verifying if pages differ with respect to
“script-inducing constructs”, i.e. new scripts or different href
attributes.

In other works [13], [9], [8], [11], the oracle consists in
checking if a response page contains the same <script> tag
passed as input. McAllister et al. [13] adopt a black-box
approach to detect XSS vulnerabilities. Data collected during
the interaction with real users are subject to fuzzing, so as to
increase test coverage. The oracle for XSS attacks checks if
the script passed as input is also present in the output page.
We adopt a similar approach to artificially multiply the limited
amount of test cases initially available, in order to make the
safe model more general.

In Huang et. al. [9] data-entry-points are identified in
web applications and attack patterns are used on them. The
oracle consists in checking that input data containing the
”<script>” substrings are sanitized before using them in output
construction.

The paper by Halfond et al. [8] presents a complete ap-
proach to identify XSS and SQLI vulnerabilities in Java web
applications. (1) Input vectors are identified as parameters read
by the page under analysis, together with their expected type
and domain. Flow analysis is resorted to group input vectors
and domains into input interfaces. Then, (2) attack patterns
are used to generate many attacks for these interfaces. Even-
tually, (3) page execution is monitored and HTTP response is
inspected to verify if attacks are successful, i.e. the executed
SQL statement is dangerous or new HTML scripts have been
injected. Also in this case, the oracle consists in detecting if
the response page contains a script tag injected by input data.

In [11], a scanner identifies input fields on forms which are
later used to mount attacks. The oracle consists in detecting
whether a script injected in a form appears in the response
page. As commented by the authors, this approach suffers false
negatives.

Limiting the check to injected script tags guarantees high
precision, but recall may be low, because attacks based on
other tags may not be detected by these oracles. While [13],
[9], [8], [11] verify the that the injected “<script>" tag is
present in the output page, we adopt a more general approach,

in fact we detect a larger class of injections, possibly involving
any HTML tag. We build a model of a safe execution that is
general enough to capture any form of code injection that does
not satisfy the model itself.

A different kind of security oracle is adopted in other works
on mutation testing [15], [16], [17]. Several mutation operators
are defined to expose SQL-injection vulnerabilities on JSP
applications [15], format string bugs on C [16] and XSS
vulnerabilities on PHP code [17]. While these works rely on
mutation to evaluate test case adequacy as the ability to kill
mutants, we take advantage of mutation to perturb existing test
cases and increase coverage.

A related work by Sprenkle et al. [19] compared 22 oracles
in terms of precision and recall in revealing seeded and real
faults on web applications. Even if related, their objective was
quite different. They were interested in general purpose bugs,
and not in security problems. In fact, their oracles ignore the
“programming elements” such as scripts, that are important
to consider when revealing injections attacks.

The work presented in this paper is built on top of pre-
vious papers [1], [2], where we presented our approach for
generating input values for the test cases, but the concept of
the security oracle was missing. In this work, we assume that
input values are available and we focus on evaluating response
pages, i.e. on classifying them as safe executions or successful
attacks. This paper extends a preliminary workshop paper [3]
that sketched the initial intuition of the security oracle, by
refining the concept of the security oracle and by conducting
the experimental assessment.

IX. CONCLUSION

In this paper we presented Circe, an approach for building
a security oracle for one of the most prominent class of code
injection vulnerabilities, i.e. Cross-site scripting. The oracle is
based on the safe model, a model of safe executions of the
application under test. The oracle classifies any execution that
violates this model as an attack. Circe complements existing
work on input value generation and represents a valuable
support for the maintenance activity devoted to fix security
bugs, by automating the decision on whether the system under
analysis passes security tests.

The proposed security oracle has been assessed on two open
source PHP applications, with good performances in terms of
precision and recall. As future work, we intend to investigate
the validity of Circe on case studies that are more and more
dynamic, to verify if the oracle is still able to accurately
distinguish between safe executions and attacks. Moreover, we
intend to study how to extend Circe to cope with Ajax 2.0 web
applications.

REFERENCES

[1] Avancini, A., Ceccato, M.: Towards security testing with taint analysis
and genetic algorithms. In: Proceedings of the 2010 ICSE Workshop on
Software Engineering for Secure Systems, pp. 65-71. ACM (2010)

[2] Avancini, A., Ceccato, M.: Security testing of web applications: A
search-based approach for cross-site scripting vulnerabilities. In: Source
Code Analysis and Manipulation (SCAM), 2011 11th IEEE International
Working Conference on, pp. 85-94. IEEE (2011)

[3]

[4]

[5]

[6]
[7]

[8]

[9]

[10]

[11]

[12]

[13]

(14]

[15]

(16]

[17]

[18]

[19]

[20]

[21]

(22]

Avancini, A., Ceccato, M.: Grammar based oracle for security testing
of web applications. In: Proceedings of 7th International Workshop on
Automation of Software Test (2012. To appear)

Bergroth, L., Hakonen, H., Raita, T.: A survey of longest common
subsequence algorithms. In: String Processing and Information Retrieval,
2000. SPIRE 2000. Proceedings. Seventh International Symposium on,
pp. 39 —48 (2000). DOI 10.1109/SPIRE.2000.878178

Christey, S., Martin, R.A.: Vulnerability type distributions in cve.
Tech. rep., The MITRE Corporation (2006). URL http://cwe.mitre.org/
documents/vuln-trends/index.html

Cordy, J.: The TXL source transformation language.
Computer Programming 61(3), 190-210 (2006)
Dutertre, B., de Moura, L.: A fast linear-arithmetic solver for dpll(t). In:
Computer Aided Verification, Lecture Notes in Computer Science, vol.
4144, pp. 81-94. Springer Berlin/Heidelberg (2006)

Halfond, W.G.J., Choudhary, S.R., Orso, A.: Improving penetration test-
ing through static and dynamic analysis. Software Testing, Verification
and Reliability 21(3), 195-214 (2011). DOI 10.1002/stvr.450

Huang, Y.W., Tsai, C.H., Lee, D., Kuo, S.Y.: Non-detrimental web
application security scanning. In: Software Reliability Engineering,
2004. ISSRE 2004. 15th International Symposium on, pp. 219 — 230
(2004). DOI 10.1109/ISSRE.2004.25

Jovanovic, N., Kruegel, C., Kirda, E.: Pixy: A static analysis tool for
detecting web application vulnerabilities (short paper). In: SP ’06:
Proceedings of the 2006 IEEE Symposium on Security and Privacy,
pp- 258-263. IEEE Computer Society, Washington, DC, USA (2006).
DOI http://dx.doi.org/10.1109/SP.2006.29

Kals, S., Kirda, E., Kruegel, C., Jovanovic, N.: Secubat: a web vulner-
ability scanner. In: Proceedings of the 15th international conference on
World Wide Web, WWW 06, pp. 247-256. ACM, New York, NY, USA
(2006)

Kieyzun, A., Guo, P., Jayaraman, K., Ernst, M.: Automatic creation of
sql injection and cross-site scripting attacks. In: Software Engineering,
2009. ICSE 2009. IEEE 31st International Conference on, pp. 199 —209
(2009). DOI 10.1109/ICSE.2009.5070521

McAllister, S., Kirda, E., Kruegel, C.: Leveraging user interactions
for in-depth testing of web applications. In: R. Lippmann, E. Kirda,
A. Trachtenberg (eds.) Recent Advances in Intrusion Detection, Lecture
Notes in Computer Science, vol. 5230, pp. 191-210. Springer Berlin /
Heidelberg (2008)

Sen, K., Marinov, D., Agha, G.: Cute: a concolic unit testing engine
for c. In: Proceedings of the 10th European software engineering
conference, pp. 263-272. ACM, New York, NY, USA (2005). DOI
http://doi.acm.org/10.1145/1081706.1081750

Shahriar, H., Zulkernine, M.: Music: Mutation-based sql injection vul-
nerability checking. In: Quality Software, 2008. QSIC ’08. The Eighth
International Conference on, pp. 77 —86 (2008). DOI 10.1109/QSIC.
2008.33

Shahriar, H., Zulkernine, M.: Mutation-based testing of format string
bugs. In: High Assurance Systems Engineering Symposium, 2008.
HASE 2008. 11th IEEE, pp. 229 -238 (2008). DOI 10.1109/HASE.
2008.8

Shahriar, H., Zulkernine, M.: Mutec: Mutation-based testing of cross
site scripting. In: Proceedings of the 2009 ICSE Workshop on Soft-
ware Engineering for Secure Systems, IWSESS °09, pp. 47-53. IEEE
Computer Society, Washington, DC, USA (2009)

Sharir, M., Pnueli, A.: Program Flow Analysis: Theory and Applications,
chap. Two approaches to interprocedural data flow analysis, pp. 189—
233. Prentice Hall (1981)

Sprenkle, S., Pollock, L., Esquivel, H., Hazelwood, B., Ecott, S.:
Automated oracle comparators for testingweb applications. In: Software
Reliability, 2007. ISSRE *07. The 18th IEEE International Symposium
on, pp. 117-126 (2007). DOI 10.1109/ISSRE.2007.26

Surribas, N.: Wapiti, web application vulnerability scanner/security
auditor (2006-2010). URL http://www.ict-romulus.eu/web/wapiti
Tappenden, A., Beatty, P, Miller, J., Geras, A., Smith, M.: Agile security
testing of web-based systems via httpunit. In: Agile Conference, 2005.
Proceedings, pp. 29 — 38 (2005). DOI 10.1109/ADC.2005.11
Wassermann, G., Su, Z.: Static detection of cross-site scripting vulnera-
bilities. In: ICSE ’08: Proceedings of the 30th international conference
on Software engineering, pp. 171-180. ACM, New York, NY, USA
(2008). DOI http://doi.acm.org/10.1145/1368088.1368112

Science of

