
Towards a Unified Software Attack Model to

Assess Software Protections

Cataldo Basile

Politecnico di Torino, Torino, Italy

cataldo.basile@polito.it

Mariano Ceccato

Fondazione Bruno Kessler, Trento, Italy

ceccato@fbk.eu

Abstract—Attackers can tamper with programs to break usage
conditions. Different software protection techniques have been
proposed to limit the possibility of tampering. Some of them just
limit the possibility to understand the (binary) code, others react
more actively when a change attempt is detected. However, the
validation of the software protection techniques has been always
conducted without taking into consideration a unified process
adopted by attackers to tamper with programs.

In this paper we present an extension of the mini-cycle of
change, initially proposed to model the process of changing
program for maintenance, to describe the process faced by an
attacker to defeat software protections. This paper also shows
how this new model should support a developer when considering
what are the most appropriate protections to deploy.

Index Terms—Program comprehension, Software protection,
Software security.

I. INTRODUCTION

Encryption and firewalls are established solutions, largely

adopted to block remote attackers (also know as Man-In-The-

Middle attackers) who try to intercept and tamper with the

communication to steal sensitive data or to break into soft-

ware systems. However, these classic approaches do not help

defending software systems in a context where the attacker is

the end user itself, threat known as Man-At-The-End attack

(MATE) [1]. MATE regards those client applications that are

required to run under strict usage conditions, that could be

violated on tampered clients. For example, client applications

for media conditioned-access (e.g., pay-per-view digital TV)

could be tampered with to access the service in a way that was

not intended by the service provider (e.g., paying a reduced

fee), and on-line game providers should prevent cheating to

ensure a fair competition.

So far, many software protection techniques have been

proposed with the objective of defending code from Man-

At-The-End attacks, some of them are more passive while

others react actively to attacks. Examples of passive protection

techniques are code obfuscation [2] that prevents code com-

prehension by making code more hard to understand while

preserving semantics, and data hiding [3] that aims at hiding

sensitive data (e.g., cryptographic keys) within the program

code. More active protections that react when a modification is

detected are based on tamper-detection with self-checkers [4]

and protections update [5]. Remote attestation [6] is also an

active protection, it is used to detect and react to attacks by

disconnecting tampered clients. Proofs about program integrity

or other interesting properties are generated on the client and

sent a remote verifier. Other techniques, e.g., time bombs

or graceful degradation [7], can be used to make protected

programs unusable if modifications are detected or if programs

are used with no Internet connection for long periods. Program

splitting [8] is another approach to make a tampered program

useless, the original application is split into two parts so that

the sensitive portion is executed in a trusted environment (e.g.,

a remote server). Finally, Code replacement/update [9] is an

option to give the attacker a limited amount of time to succeed

before a new version of the client is released.

Current solutions for software protection are based on the

intuitive (sometimes implicit) assumption that, to be tampered

with, a program needs to be understood and changed. Even

if this intuition is correct, software protections miss a unified

view on the process adopted by attackers to hack around code.

In fact, every protection focuses on a single sub-goal towards

the attack, without paying attention to the overall process and

the collateral activities required to port an attack. For example,

code obfuscation may not be effective in those contexts where

understanding the whole program is not required, but a local

knowledge is sufficient to locate the point of the program to

change (e.g., the routine for license checking).

What is the new idea? With this paper we mean to raise the

awareness of the program understanding community on this

emerging problem, the need to study program understanding

in the context of attacks to software protections. Moreover,

we present the mini-cycle of attack, a preliminary version of a

model intended to describe the process adopted by an attacker

to elaborate an attack against software protection.

Why is this idea new? So far, research in program

understanding was mainly devoted to study the challenges

emerging from development, maintenance and (legitimate)

reverse engineering of programs, while, to the best of our

knowledge, topics related to the understanding of protected

programs for malicious tampering are quite overlooked.

In fact the evaluation of software protections was mainly

conducted by using code metrics [2], [10], [11], [12] or by

measuring how long a tool takes to automatically remove

a specific protection [13]. Theoretical validation could be

done only for a limited class of protections [14]. Empirical

validation involving human participants is a more reliable

measurement, but it is very expensive and it was adopted only

very seldom [15].



Change request

Change location

Change impact

analysis

Change implementation

Testing &

verification

Fig. 1. Mini-cycle of change.

Why is this idea relevant? The immediate benefits of a

unified model of the attack process are many. For instance,

software protections approaches are rarely used alone, often

different approaches are composed in the hope to guarantee a

higher level of protection. However, without a unified vision

on the attack process, the understanding on the interaction of

different protections can be just intuitive, and the composition

might be not effective. As a matter of fact, the trivial strategy

“the more protections, the more secure” fails when a poorly

designed composition is adopted, and a protection leaks the

weak points of the other protection.

Additionally, empirical investigation and user studies [15]

have been conducted to measure and compare the level of

protection offered by distinct approaches. Despite very in-

formative, these studies are very expensive to conduct. A

comprehensive model of what are the challenging tasks faced

by attackers is of fundamental importance to properly design

the most important experiments to conduct. Identifying the

crucial dimensions to investigate with higher priority would

help in reducing the time wasted in experimenting on marginal

aspects. For example, there is a huge number of potential

combination of protection techniques and it would be too

expensive to investigate all of them. A careful planning is

required in order for the research community to be successful.

What is the most relevant paper? This paper builds on

top of the mini-cycle of change, proposed by Rajlich [16]

to describe the process adopted by software developers to

perform maintenance tasks. The mini-cycle of change by

Rajlich is revised and adapted to describe malicious software

tampering, including the challenges faced by an attacker to

defeat potential software protection techniques.

What is the expected feedback from the forum? With this

paper we intend to initiate a discussion on the role of program

understanding for software tampering and on what are the

fundamental differences (and common aspects) with respect to

program understanding for software development. Moreover,

we expect comments, critics and suggestions on the mini-cycle

of attack, on how to extend it and improve it. We also mean

to discuss if the mini cycle of attack represents a valid support

to those programmers who need to design defense strategies

to protect against MATE attacks.

II. BACKGROUND: THE MINI-CYCLE OF CHANGE

The first intuition of the mini-cycle of change was proposed

in 1978 by Yau et al. [17] to model the process adopted by a

programmer to complete a change task. This cycle was based

on the assumption that a change often causes inconsistencies in

the rest of the application code. They are “ripple effects” that

make the application incompatible with the change, so they

need to be taken into account and fixed in an iterative way. This

first intuition was later refined and completed by Rajlic [16].

According to Rajlic, the software change corresponds to the

iterative process summarized in Figure 1. It consists of:

1) Change request: The reason for the code modification

initiates the change process. It may come from cus-

tomers who need a new functionality or from users who

report a defect;

2) Change location: The software is inspected (either

manually or using tools) to acquire the minimal amount

of information required to formulate a hypothesis on

where to apply the change;

3) Change impact analysis: Side effects of the main

change are identified throughout the application code

(the ripple effects) in order to have the complete picture

of the maintenance activity;

4) Change implementation: Once the change task is

known and understood by the developer, the actual

change can be performed;

5) Testing and verification: The changed program is tested

to check whether the implemented corrections satisfy the

initial change request.

If the verification highlights a problem, the mini-cycle is

reiterated. This problem becomes the new change request for

the subsequent iteration. The cycle is iterated until all the

problems are solved and the initial change request can be

considered fully satisfied. Possibly, when the change task is

over, software documentation is updated to record changes.

Differently from those models that consider complete soft-

ware life-cycle (e.g., the waterfall development model), the

mini-cycle is meant to model just modifications. It captures

the process initiated by the developer to respond as fast as

possible to requests for change.

III. THE MINI-CYCLE OF ATTACK

Although software maintenance and malicious software

tampering have fundamental different objectives, we claim that

they share very similar operations. In a software maintenance

scenario, the modification of the software is motivated by a

bug report or by a request for a new feature. While, in case

of attacks, the modification is due to the attacker’s intention

to misuse an application or to “steal” developer’s intellectual

property. However, even with different rationales, both of these

activities involve a cognitive intensive effort to map the change

goal to the code, to consider the side effects of this change

and to evaluate whether the change (or the attack) is successful

or if further actions must be planned. Therefore, our claim is

that maintenance changes and attacks can be described using

a similar model. The mini-cycle of change is a good starting

point to describe attacks to software, but it needs to be adapted

and take into account the specificity of an attack context.



Attack goal

Code understanding

Local impact analysis

Anticipate detection

techniques

Impact analysis

Attack implementation

Remote connection

Offline testing

Verification

Fig. 2. Mini-cycle of attack.

The objectives of the attacker are (i) to mount an attack as

fast as possible and (ii) to reduce or avoid the risk of being

detected by software protections. Thus, the original mini-cycle

of change, proposed for software maintenance, needs to be

refined (see Figure 2). It consists of the following phases:

1) Attack goal: This is the final goal of the attacker and

it depends on the asset that the software is supposed to

preserve (e.g., a secret key, a license checking routine);

2) Code understanding: The change location step is re-

named in code understanding, because the attacker is

not necessarily supposed to change the original code.

In fact, depending on the attack goal, a successful

attack may be limited to steal data or code from the

application (e.g., locate a function and use it out of

intended context). While change location (mini-cycle of

change) is performed on known/documented/commented

source code, code understanding (mini-cycle of attack) is

performed on reverse-engineered, probably obfuscated,

code. In any case, this step represents the cognitive

intensive activity, needed to plan the next steps.

3) Impact analysis: Impact analysis is split in two sub

steps to remark that an attacker must also consider active

protections (e.g., anti-tampering or remote attestation):

• Local impact analysis: This step includes the anal-

ysis of those side effects whose consequences are

just local. It is similar to the mini-cycle of change;

• Anticipating detection techniques: Other side ef-

fects could have consequences that are not meaning-

ful at the functional level. However, these changes

could be noticed by local protection techniques

or by a remote entity that may initiate defensive

strategies (e.g., disconnect the tampered client). In

order to defeat protection mechanisms, the attacker

should elaborate a change that is undetectable.

This step is more complex than the corresponding

change impact analysis (mini-cycle of change), because

of incomplete knowledge, e.g., the attackers does not

know what side effects are monitored to reveal tamper-

ing.

4) Attack implementation: The attack is applied as elab-

orated in the previous steps;

5) Verification: Verification is split in two sub-phases:

• Offline testing: Debugging and testing can be used

to verify that the attack is successful with respect to

local resources, i.e., without involving any remote

party;

• Remote connection: In this case, the tampered

application is required to interact with a remote

component, as in the case of on-line games.

The presence of a remote verifier is the main difference

with respect to the mini-cycle of change. In fact, the

remote verifier could black list detected attacks and

prevent the “trial and error” strategy.

Additional iterations might be required if the attack is not

successful after the first one. However, a second attempt might

be impossible, if tampering is detected by a remote verifier.

The mini-cycle of change fits only those cases when new

attacks need to be elaborated. This analysis does not fit

the cases of automatic attacks, e.g., when existing cracks or

patches allow the attacker to reach her/his goal automatically.

IV. ADOPTION OF THE MINI-CYCLE OF ATTACK

The mini-cycle of attack clearly identifies all the phases of

an attack. It represents a valid support for a software developer

when reasoning on which software protections to deploy and

when judging on the trade-off between protection costs (e.g.,

time, memory, performance overhead) and expected benefits.

The effect of software protection techniques can be analyzed

in the light of the mini-cycle of attack. Obfuscation, data hid-

ing, and execution in trusted environment are protections that

operate in the code understanding phase by making the code

more hard to understand. Some variants of obfuscation (e.g.,

control flow flattening) partly protect Local impact analysis.

Remote attestation and anti-tampering protect the anticipate

detective technique phase, because they force the attacker to

elaborate undetectable implementations. Code splitting, and

time bombs also block or limit the offline testing. Execution

in trusted environment and remote attestation are expected to

protect the remote connection phase.

Moreover, the mini-cycle of attack can be used to design

protections with special emphasis on the combination of

elementary techniques. The conception of protections starts

from the identification of the assets to protect.

For instance, let’s assume that the defender needs to protect

the intellectual property of a very efficient implementation

of mathematical functions, because it required a significant

investments of resources and it represents a competitive advan-

tage over the competitors. The adoption of code obfuscation

could protect in the code understanding phase and possibly in

the local impact analysis phase by turning the (binary) code

very hard to understand and to reverse engineer. At this stage,

adding more protections to the same two steps could bring

limited advantages. It might be more appropriate to try and

protect other steps that are relevant to the defender goal, but

still not adequately protected, such as making impossible to do

offline testing. Additionally, the defender should limit the pos-

sibility for the attacker to extract a portion of code and reuse



it in a different context, such as in a product by a competitor.

This could be done by integrating software guards, an active

protection approach where runtime verification of selected

program properties makes the mathematic routine malfunction

(e.g., produce wrong results) when runtime verifications do not

pass. This could be easily achieved by including values coming

from the verification in the mathematical computation, at the

price of a slightly slower performance. If the residual risk

or the performance degradation is not acceptable, the most

sensitive parts of the code could be executed remotely in a

trusted environment. This in turn will also help protecting

from extensive offline testing or trial and error approaches.

The objective of protecting this particular example is to turn

the attack task so expensive that it becomes uneconomical for

the attacker to try and steal the software asset. Probably, an

attacker may give up and devote available resources to the

development of a brand new mathematical library.

The steps to focus on, of course, depend on the attack

that the defender means to prevent. Let’s assume that it is

of critical importance to protect a program against misuse,

for example an on-line game with a considerably large client-

side installation. In this context, the players community is

very important and may decide the success or the failure of

a new game, so cheating should be prevented to preserve the

game reputation. Since this asset is different, the protections

to deploy will be also different. In fact, the most important

attack step to block is probably the verification, in particular in

the remote connection sub-step, to be able to detect tampered

clients and disconnect them from the central game server.

This could be achieved with remote attestation techniques that

should detect tampering. These techniques are meant to make

hard for the attacker to circumvent remote controls during the

anticipate detective techniques phase. Of course, other steps

could be also protected with different protection strategies, but

protecting other parts of the mini-cycle of attack is important

as long as it is of help to discover tampered clients.

V. CONCLUSIONS AND WORK-IN-PROGRESS

In this paper we extended and adapted the mini-cycle of

change, to model the behavior of an attacker who intends to

defeat software protections and tamper with programs. We

proposed the mini-cycle of attack and we showed how it

can be used to support software developers in planning what

protection(s) to deploy and how to compose them.

This preliminary version of mini-cycle of attack needs to

be validated and refined, possibly by conducting a systematic

literature review on how software protection have been vali-

dated and measured (both theoretically and empirically). We

plan to map existing works to a common framework, i.e., the

mini-cycle of attack. This mapping will make it possible to

define a research agenda of the user studies to conduct, to

quantify and compare protection techniques.

Among our future works, we intend to rely on the mini-

cycle of attack to build a decision support system, a tool

to support software developers in identifying the connections

between protections and the assets to protect, and to guide

the evaluation of the trade-off between protection benefits and

protection costs (e.g., performance overhead). Moreover, we

will evaluate if the mini-cycle of attack can be used to perform

risk analysis and assessment, to quantify the security risk.

ACKNOWLEDGMENT

Authors would like to thank professor Yoram Ofek, who

recently passed away, for having inspired this paper.

REFERENCES

[1] P. Falcarin, C. Collberg, M. Atallah, and M. Jakubowski, “Guest editors’
introduction: Software protection,” IEEE Software, vol. 28, no. 2, pp.
24–27, March 2011.

[2] C. Collberg, C. Thomborson, and D. Low, “A taxonomy of obfuscating
transformations,” Dept. of Computer Science, The Univ. of Auckland,
Technical Report 148, 1997.

[3] W. Michiels and P. Gorissen, “Mechanism for software tamper resis-
tance: an application of white-box cryptography,” in Proceedings of the

2007 ACM workshop on Digital Rights Management, ser. DRM ’07.
New York, NY, USA: ACM, 2007, pp. 82–89.

[4] B. Horne, L. Matheson, C. Sheehan, and R. E. Tarjan, “Dynamic self-
checking techniques for improved tamper resistance,” in ACM Workshop

on Security and Privacy in Digital Rights Management. ACM, 2001.
[5] R. Scandariato, Y. Ofek, P. Falcarin, and M. Baldi, “Application-oriented

trust in distributed computing,” in Availability, Reliability and Security,

2008. ARES 08. Third International Conference on. IEEE, 2008, pp.
434–439.

[6] G. Coker, J. Guttman, P. Loscocco, A. Herzog, J. Millen, B. Hanlon,
J. Ramsdell, A. Segall, J. Sheehy, and B. Sniffen, “Principles of remote
attestation,” Int. J. Inf. Secur., vol. 10, no. 2, pp. 63–81, Jun. 2011.

[7] G. Tan, Y. Chen, and M. Jakubowski, “Delayed and controlled failures
in tamper-resistant software,” in Information Hiding, ser. Lecture Notes
in Computer Science. Springer Berlin Heidelberg, 2007, vol. 4437, pp.
216–231.

[8] M. Ceccato, M. Preda, J. Nagra, C. Collberg, and P. Tonella, “Trading-
off security and performance in barrier slicing for remote software
entrusting,” Automated Software Engineering, vol. 16, pp. 235–261,
2009.

[9] M. Ceccato, M. D. Preda, J. Nagra, C. Collberg, and P. Tonella,
“Barrier slicing for remote software trusting,” in Proc. of the Seventh

IEEE International Working Conference on Source Code Analysis and
Manipulation (SCAM 2007). IEEE Computer Society, Sept. 30 2007-
Oct. 1 2007, pp. 27–36.

[10] H. Goto, M. Mambo, K. Matsumura, and H. Shizuya, “An approach to
the objective and quantitative evaluation of tamper-resistant software,”
in Third Int. Workshop on Information Security (ISW2000). Springer,
2000, pp. 82–96.

[11] B. Anckaert, M. Madou, B. D. Sutter, B. D. Bus, K. D. Bosschere, and
B. Preneel, “Program obfuscation: a quantitative approach,” in QoP ’07:
Proc. of the 2007 ACM Workshop on Quality of protection. New York,
NY, USA: ACM, 2007, pp. 15–20.

[12] A. Capiluppi, P. Falcarin, and C. Boldyreff, “Code defactoring: Eval-
uating the effectiveness of java obfuscations,” in Reverse Engineering

(WCRE), 2012 19th Working Conference on, Oct., pp. 71–80.
[13] S. Udupa, S. Debray, and M. Madou, “Deobfuscation: reverse engineer-

ing obfuscated code,” Reverse Engineering, 12th Working Conference
on, Nov. 2005.

[14] B. Barak, O. Goldreich, R. Impagliazzo, S. Rudich, A. Sahai, S. Vadhan,
and K. Yang, “On the (im)possibility of obfuscating programs,” in
Advances in Cryptology (CRYPTO 2001), J. Kilian, Ed. Springer Berlin
Heidelberg, 2001, vol. 2139, pp. 1–18.

[15] M. Ceccato, M. Penta, P. Falcarin, F. Ricca, M. Torchiano, and
P. Tonella, “A family of experiments to assess the effectiveness and
efficiency of source code obfuscation techniques,” Empirical Software

Engineering, pp. 1–35, 2013.
[16] V. Rajlich, “Software change and evolution,” in SOFSEM99: Theory

and Practice of Informatics, ser. Lecture Notes in Computer Science,
J. Pavelka, G. Tel, and M. Bartoek, Eds. Springer Berlin Heidelberg,
1999, vol. 1725, pp. 189–202.

[17] S. S. Yau, J. S. Colofello, and T. MacGregor, “Ripple effect analysis of
software maintenance,” in Proc. COMPSAC. IEEE Computer Society
Press, 1978, pp. 60–65.


