
Security Testing of the Communication among

Android Applications

Andrea Avancini and Mariano Ceccato

Fondazione Bruno Kessler

Trento, Italy

{anavancini,ceccato}@fbk.eu

Abstract—An important reason behind the popularity of
smartphones and tablets is the huge amount of available appli-
cations to download, to expand functionalities of the devices with
brand new features. In fact, official stores provide a plethora of
applications developed by third parties, for entertainment and
business, most of which for free. However, confidential data
(e.g., phone contacts, global GPS position, banking data and
emails) could be disclosed by vulnerable applications. Sensitive
applications should carefully validate exchanged data to avoid
security problems.

In this paper, we propose a novel testing approach to test com-
munication among applications on mobile devices. We present a
test case generation strategy and a testing adequacy criterion for
Android applications. Our approach has been assessed on three
widely used Android applications.

Index Terms—Testing, Security testing, Mobile applications.

I. INTRODUCTION

As illustrated by market studies [1], tablets and smartphones

meet bigger and bigger success, replacing desktops and laptops

for many daily activities. Android is recognized as the world’s

leading smartphone platform (59% of the market share in

2012 [2]) with 400 millions of Android devices activated [3]

at the beginning of the third quarter of 2012, with a rate of 1

million of new activations per day [4].

Hand-held devices are not only used for leisure, such as

real time updates on social networks, reading newspapers,

blogs, enjoying radio and TV programs, but also in business

to read emails while traveling, to access personal archives and

financial information. More and more banks, for example, are

providing their own home banking applications that run on

smartphones.

Given the popularity of smartphones, malicious applications

started to spread, attempting to steal sensitive information

and to threat the user privacy [5] (e.g. passwords, GPS

locations, contacts, browser history) or trying to directly attack

applications that involve paying services [6] or that contain

private data [7]. The underlying operating system faces the

challenge to keep the system secure and so a very restric-

tive isolation is imposed among applications. Communication

among applications is always mediated and controlled by the

operating system, so when accessing sensitive data sources

policies are accurately checked and enforced.

Despite all the mechanisms deployed to enforce security,

poorly designed applications may still contain defects that

may expose vulnerabilities. Inter-application messages are a

potential source of attacks to vulnerable code. An aggressor

application, in fact, may rely on faulty validation of input data

to take control of benign applications. Despite software testing

represents a valuable strategy to identify program faults, test-

ing the specificity of mobile software is still preliminary [8].

In this work, we propose a novel approach for testing mobile

software which aims to extensively test routines devoted to

validate input values coming from inter-application communi-

cation messages. In particular, the contributions of this paper

are manifold, we define (i) an adequacy criterion for testing

data validation routines, (ii) a test case generation strategy and

(iii) a procedure to validate if a test case reveals a potential

security problem.

The paper is structured as follows. Section II covers the

background of Android inter application communication. Sec-

tion III presents our threat model and our approach to testing

mobile applications. Then, Section IV describes our tool

implementation and Section V reports about the experimental

evaluation. After comparing this work with the state of the art

in Section VI, Section VII closes the paper.

II. BACKGROUND

A. Android Design

Android is a popular Linux-based software stack for smart-

phones and tablets. It includes the system kernel, device

drivers, middleware, libraries and system applications. An-

droid applications are written in Java and compiled in the DEX

bytecode format to run in the equipped Dalvik virtual machine.

New applications developed by third parties are available on

the official Android application store (called Google Play) to

extend the functionalities of a mobile device.

A fundamental part of an Android application is the manifest

XML file. This file contains all the informations the framework

needs to make the application interact with the other applica-

tions installed on the device, such as the list of the application

components, its special access permissions and the declaration

of services exposed to the other applications. Figure 1 shows

a fragment of the manifest file for a puzzle-game application,

which contains the definition of an application component (i.e.

an activity), the definition of a capability exposed by it (in the

intent filter) and two special permissions.

An activity is a single window that interacts with the user

via the touchscreen. An application is composed by multiple

activities, one for each distinct page the application needs



<application android:icon="@drawable/game_logo" android:label="@string/app_name">

<activity android:name=".newGameImportActivity">

<intent-filter>

<action android:name="android.intent.action.VIEW"></action>

<category android:name="android.intent.category.BROWSABLE"></category>

<data android:scheme="http" android:host="*" android:pathPattern=".*\\.game" />

</intent-filter>

</activity>

</application>

<uses-permission android:name="android.permission.READ_CONTACTS" />

<uses-permission android:name="android.permission.INTERNET" />

Fig. 1. Example of Android manifest file.

to display. The example application in Figure 1 defines the

activity newGameImportActivity, devoted to import a new

puzzle definition file from the Internet. This activity can be

started by other applications by using Android inter process

communication mechanism.

B. Communication among Applications

Applications are provided by different developers with dif-

ferent levels of trust. The security model adopted by Android

is to sand-box and firewall applications. Sand-boxing applica-

tions means isolate them from system resources. In order to

access system resources, applications have to explicitly request

proper permissions, that the user evaluates and authorizes at

installation time. The application of Figure 1, for example,

intends to access the network and the phone contacts, so

INTERNET and READ CONTACTS permissions are requested

in the manifest. At install-time, the user is asked to review and

to decide whether to grant the requested permissions to install

the application.

Firewalling applications means separating them from each

other. Applications receive a distinct Unix user-id, so they

run in their own private space and private memory. Com-

munication among applications is possible only through the

mediation of the operating system by the so called Inter-

Process Communication mechanism (IPC). The framework is

designed such that applications can collaborate and provide

services each other. An application, in fact, can delegate

specific actions to other applications by exchanging messages

called intents. Intents contain the description of the operation

to be performed by the receiver application. An intent contains:

• Component name: The name of the component that

should receive the message. The field is optional.

• Action: A string containing the action to be performed

by the receiver, such as initiating a call, displaying data

for the user to edit or opening a file.

• Category: A string describing the kind of component

that should perform the requested action. For example,

an application component is in the category “browsable”

if it should be invoked by a browser to display the content

of a link (e.g. an image).

• Data: Information required to complete the action, for

example the URI of an image to display, a phone number

to call or an address of an email to compose.

• Extras: Key-value pairs of additional data.

• Flags: Various flags.

Intents can be sent in an explicit or an implicit way. In

explicit intents, the sender application specifies the receiver

name as part of the intent. Different Android users, however,

may have a wide diversity of installed applications, so a

specific application may not be available. To cope with the

heterogeneity of device configurations, application developers

rarely use explicit intents.

Implicit intents just specify the action to be performed,

without naming any target component. The system inspects the

intent content (limited to action, category and data) to decide

the most appropriate destination application(s). To achieve this

objective, the system compares the intent content with intent

filters, data structures defined by those components that can

potentially receive intents. The browser, for example, sends

implicit intents to ask the platform to render those files that is

not able to render. By inspecting intent filters, the framework

delivers each request to the most appropriate application, i.e.

to the application that declares the corresponding file type in

its intent filter.

C. Intent Filters

The manifest file defines what requests (intents) each ap-

plication component is able to handle, by specifying proper

intent filters. The framework relies on intent filters to dispatch

implicit intents. The intent filter of the activity newGameIm-

portActivity (Figure 1), for example, specifies that the activity

can handle intents coming from a web browser (BROWSABLE

category) to display (VIEW action) for the user the information

contained in a remote file accessible via the HTTP protocol,

whose name ends with “.game”.

In particular, an implicit intent is delivered to a component

(e.g. an activity) if the intent message satisfies the following

conditions of the intent filter: (1) The action in the intent

matches one of the actions in the filter; (2) Every category

in the intent matches one of the category in the intent filter;

(3) The data in the intent match the data element in the intent

filter. A data element is specified in terms of its MIME type

(not shown in the example) and in terms of the scheme, host,

port and pattern of the data URL.



In case an implicit intent satisfies multiple intent filters, the

user is prompted the list of compatible applications in order

to specify which one to activate.

III. TESTING

A. Threat Model

While an implicit intent is delivered to a component only

when it satisfies the conditions of an intent filter, explicit

intents already contain the name of the destination component,

so the framework delivers them immediately without verifying

any condition. Thus, on explicit intents, the validation of the

content of an intent is completely in charge of the receiving

application. There could be a difference, however, between

the validation defined in the filter (enforced by the framework

on implicit intents) and the validation implemented by the

target application (enforced by the application itself on explicit

intents). Mismatches may cause messages to be incorrectly

handled and may cause errors or application crashes.

Consequences might even be more serious when the target

application is granted special permissions to access sensitive

phone information. A malicious application may exploit the in-

adequate validation of a vulnerable application to misuse spe-

cial permissions. In fact, if not adequately validated, malicious

data may reach protected API calls, and the confidentiality of

sensitive user data may be threatened.

Data validation must be carefully tested to avoid mismatches

between the intended validation (specified in the filter) and the

implemented one (specified in the code). A mismatch is found

when the application under test receives an intent I such that:

1) I violates the intent filter;

2) The application fails to validate the intent and does not

reject it. Thus, I is processed as a valid intent; and

3) While performing the action requested by the intent, the

application executes a protected API call that requires a

special permission (defined in the manifest).

The objective of IPC testing is to generate test cases that

satisfy testing conditions (1), (2) and (3).

B. Filter Violation

Condition (1) requires input data (intents) to violate the

intent filter. So, test case generation consists in systematizing

input data that do not satisfy the filter as specified in the

manifest file. To violate a filter, an intent just needs to violate

one among all the conditions defined in it. To maximize

the intent coverage, we adopt a criterion based on condition

coverage, i.e. we require that each condition in the intent filter

is violated by at least one test case.

Before starting the generation of test cases, the manifest

file is parsed to extract data about the intent filters defined in

it. Then, each intent filter is subject to test case generation.

The first test case to be generated is the prototype, a test case

that does satisfy all the conditions in the filter. To assess the

validity of the prototype, we deliver it as an implicit intent

and we check if the component under test is selected as one

of the potential destination by the Android framework.

New test cases are generated by cloning the prototype

and by mutating each clone such that it negates one of the

conditions in the filter. The mutation operators are:

• Change action: The action of the intent is changed into

a new action that is not present in the intent filter;

• Change category: The category of the intent is changed

into a new category that is not present in the intent filter;

• Change data: The data in the intent are changed such

that just one filter condition on data is not satisfied. Since

data are expressed in the format scheme://host:port/path,

this means to change any of the composing parts (i.e.,

MIME type, scheme, host name, port or path). The newly

created URL, of course, must be valid and it must refer

to an existing resource. To respect this constraint, we

generate only URLs for a domain we control, where the

new resources can be easily deployed.

After generating all the mutated intents, we verify whether

testing condition (1) holds for all of them, i.e. test intents

do not satisfy the intent filter. To assess this, we send test

intents as implicit intents, without specifying any destination.

The Android framework will rely on intent filters to decide the

proper destination. We keep only those messages that are not

delivered to the application under test, because they violate

the intent filter.

C. Dynamic Analysis

Intent messages generated so far need to be sent to the

application under test, to verify if they also satisfy testing

conditions (2) and (3), i.e. the application fails to reject

invalid intent messages and the execution triggers a privileged

protected API call. A way to achieve this is by comparing the

behavior of the application under test with dynamic analysis.

Dynamic analysis is able to detect whenever an invalid intent

is not only accepted as valid but also, as consequence of its

execution, whenever a privileged API call is triggered.

Dynamic analysis is performed by cloning the application

under test P into application P
′. Then, the privileges of the

clone are reduced by removing all the permissions from its

manifest. P and P
′ are instrumented to record their execution

in terms of method executions, exceptions and errors. We

log the execution of methods, exception handling blocks (the

Java catch statement) and exceptions that are not handled

(application crashes). Logs record an execution trace which

is direct manifestation of an incoming intent.

Each test intent is sent (as explicit intent) directly to P and

to P
′ and execution traces are compared. There could be three

cases:

1) No error: In case of equal traces with no errors, it means

that the execution of the given intent with and without

permissions does not pose any difference. So the intent is

either discarded by both P and P
′, or it is not discarded

but no protected API is called. Thus, according to our

threat model, no defect is found in the intent validation

routine;

2) Same errors: In case the two traces present the same

error, with and without permissions, it means that the



Fig. 2. Overview of the tool support.

malformed intent makes them fail in the same way, but

without triggering any privileged API call (otherwise

there would have been a difference in the traced errors).

So, even if the intent is not rejected, no sensitive actions

have been performed.

3) Different errors: Conversely, if the execution traces are

different, it means that in one case there has been

an error not occurred in the other case. As the only

difference between P and P
′ is in the permissions,

a diversity in the traces means that the intent made

the application P
′ trigger a privileged API call that

caused an error due to insufficient permissions. In this

case, the test could possibly expose a potential security

vulnerability, because the invalid intent is not rejected

and forces the application to perform a privileged action.

The latter case needs to be fixed by corrective maintenance.

IV. TOOL SUPPORT

The approach presented in the previous sections has been

implemented in a tool prototype. The prototype consists of

an Eclipse plug-in, integrated with the Android Development

Tools (ADT). It relies on static and dynamic analysis to

generate JUnit test cases in an automatic way. The overview

of the testing framework is shown in Figure 2.

A. Static Analysis

The manifest file of the application under test is copied into

the input folder of a test runner application by the Eclipse

plug-in. The test runner loads the manifest file, parses it and

populate a database with data to generate invalid intents that

satisfy the adequacy criterion.

B. Dynamic Analysis

The target application P is cloned into application P
′ with

reduced permissions and both the applications are instru-

mented to log their execution during testing.

The instrumentation records the execution of the application

under test, logging method calls, method executions and

exception handling catch blocks. The instrumentation also logs

all the errors that are not handled and that make the application

crash. Instrumentation is implemented by an aspect written in

AspectJ, the aspect-oriented extension of Java, and applied

at source code level. Traces are written in log files that are

extracted and inspected by the Eclipse plug-in.

C. Intent Generation

Intent generation is performed automatically by the test run-

ner application, which is deployed onto the Android emulator

together with P and P
′. The manifest database is accessed

and, for each intent filter, a valid intent is created, i.e. the

prototype. The test runner verifies that prototypes are valid

intents by using a query API in the Android libraries. Only if

P and P
′ are among the candidate destinations, the prototype

is classified as valid.

Each prototype is then mutated by the test runner (as de-

scribed in Section III) to generate a test suite of invalid intents.

To satisfy the adequacy criterion, an intent is constructed by

mutating one attribute of the prototype and this procedure is

repeated until each attribute is negated at least once. Mutation

operators described earlier reuse values from a list of possible

actions, categories, protocols, hosts and MIME types, while

file names are built from scratch by using the Xeger1 library,

which generates strings starting from a regular expression (i.e.

the file pattern specified in the intent filter). If needed, new

files are created on the secure digital (sd) card of the Android

emulator with a random content, or uploaded to a local web

server. At the end of the testing, all these files are deleted.

D. Test Case Generation

When the execution traces of applications P and P
′ are

available, they are compared by the Eclipse plug-in. Any

difference in terms of different errors or same error in a

different position is the manifestation of a mismatch in the

behavior of the application with and without permission. In

this case, a candidate defect that could lead to a security issue

is found and a new JUnit test case is automatically generated

to document this problem. This JUnit test case consists of a

preparation phase (setUp method) that fills the intent content

and any file is required to be accessed, the dispatching of the

intent and the monitoring of the application execution.

As testing condition (1) is satisfied by construction, the new

JUnit test case asserts conditions (2) and (3). The (explicit)

intent is sent to the application under test and its execution

is monitored. An AspectJ aspect traces the executed methods

and compares them with the failing trace that has been ob-

served during dynamic analysis. The test fails if the execution

flow triggered by the current test still reaches a permission-

privileged instruction.

Test cases generated by the tool prototype are intended to

help developers in fixing security bugs. A test case reports

all the relevant information to understand and replicate the

suspect fault:

• Values to be used to construct the invalid intent. The

intent fields are the Action requested to the receiver, the

Category of the intent and the Data to be loaded;

• An annotation of which of these fields violates the intent

filter;

• If required, the file to be deployed either in the Android

file system or in the local web server; and

1http://code.google.com/p/xeger/



TABLE I
SUBJECT ANDROID APPLICATIONS

Subject Version Popularity Classes LOC

AnkiDroid 2.0beta16 100.000+ 203 25884
Jamendo 1.0.3beta 100.000+ 132 4384

OpenSudoku 1.1.5 1.000.000+ 63 3749

• The list of methods in the execution trace that would

make the application execute a privilege-protected state-

ment when the invalid intent is received.

The developer can use the test case to debug the application,

setting break-points and understanding how and why this

invalid intent is not rejected by the application. When the

problem in the data validation routine has been located and

fixed, a new run of the test case would confirm that the

maintenance task is completed.

V. EMPIRICAL EVALUATION

The goal of our empirical evaluation is to assess the

effectiveness of our testing approach in terms of discovering

inadequate validation of invalid intent messages that cause

calls to access-restricted APIs. The evaluation has been per-

formed by using the prototype tool described in Section IV on

three subject applications. Then, manual inspection has been

required to confirm the reported defects.

A. Test Subjects

We selected three real-world, open source Android applica-

tions, also available in the official Android application store,

called Google Play. The first, AnkiDroid2 2.0beta16 is the

mobile version of Anki, a spaced repetition flashcard program

which intends to help the user in remembering things easily.

The second, Jamendo3 1.0.3beta, is the Android porting of the

popular portal Jamendo, a music player, music catalog and

a website supporting a community of music authors for free

and legal music downloads under Creative Commons licenses.

The third application, OpenSudoku4 1.1.5, is an open source

Sudoku game that also offers the possibility to download extra

games and to create new games from scratch.

Table I lists, for each subject application, its version, the

popularity (expressed in the number of total downloads from

Google Play), the number of Java classes and the total lines

of code (LOC).

B. Testing Results

Experimental results are reported in Table V-B. For each

application under test (first column), the second column reports

the number of activities that are declared in the manifest file,

but only those with a specified intent filter (third column) are

subject to testing. The central part of Table V-B (columns 4-6)

deals with test case generation. Column Prototypes reports the

number of valid intents exposed to mutation to generate those

2play.google.com/store/apps/details\?id=com.ichi2.anki
3play.google.com/store/apps/details\?id=com.teleca.jamendo
4play.google.com/store/apps/details\?id=cz.romario.opensudoku

listed in column Test Intents. Among them, Invalid Intents are

those that violate intent filters and that have been concretely

used in the testing procedure. The last part of the Table

(columns 7-8) presents the results of testing. Column Failing

Tests shows how many test cases are classified as non-pass by

the tool so they should reveal a problem in message validation.

The same fault could be revealed by different tests, so a unique

sink, the point in the code where the fault manifests, can be

identified. Column Unique Sinks reports how many distinct

problems could be observed after manual inspection.

AnkiDroid declares 16 activities in its manifest file, but only

2 define filters and can receive intents. The tool generated 13

prototypes and, after mutation, 61 new distinct test intents.

After filtering, 50 invalid intents were still in the test suite

and have been used for the experiment. The tool generated 5

test cases out of 50 invalid intents, where receiving an invalid

intent caused an exception in P
′ due to restricted permissions

that was not observed in P , so the plug-in generated 5 new

JUnit test cases. Manual inspection revealed that all these

violations were due to the CardEditor activity that raised

the SQLiteCantOpenDatabaseException. An invalid intent was

processed as valid, so the application attempted to update a

card collection by accessing a database.

By parsing the manifest file of the second application,

Jamendo, we found 14 activities and all of them defined

intent filters. The test runner produced 46 prototypes and,

after mutation and filtering, 150 violating intents. The majority

of the invalid intents has been generated for the activity

IntentDistributorActivity, because it defines a quite complex

intent filter, as it acts as a sort of internal proxy for other

activities. We logged 51 differences among the execution

traces of the two versions of Jamendo caused by different

permissions. Whenever IntentDistributorActivity receives an

invalid intent that contains a media database entry that satisfies

the Jamendo format, the validation of the intent content results

incomplete and the application, as requested, tries to connect

the Jamendo server causing an UnknownHostException due to

the missing grant of INTERNET permission. Also in this case,

all the failing test cases reveal the same sink located in class

Caller, called on connections to remote hosts.

The third application under test, OpenSudoku, defines 10

activities, while 5 of them implement an intent filter. 48

intents have been generated starting from 15 prototypes, but

just 44 were actually invalid intents. The tool identified 11

cases of mismatch between executions traces, that lead to

two different sinks. The recorded exceptions are thrown after

calling activity FileImportActivity, when the received intent

requests to import a remote game-definition file. Also in

this case, the validation of the invalid intent is missing and

the execution is carried forward instead of being blocked.

Since the permission of accessing the network is not granted

to the cloned application, the import task fails, triggering

a Socket exception. By manually inspecting the code, we

discovered that OpenSudoku supports two game definition

formats on import, corresponding to the file suffixes .sdm

and .opensudoku. Import is then delegated to two different



TABLE II
EMPIRICAL DATA ON THE CASE STUDIES.

Subject Total Activities with Prototypes Test Invalid Failing Distinct
Activities Intent Filter Intents Intents Tests Sinks

AnkiDroid 16 2 13 61 50 5 1
Jamendo 14 14 46 188 150 51 1

OpenSudoku 10 5 15 48 44 11 2

classes according to the file type. When receiving an invalid

intent from the tool, activity FileImportActivity forwards it to

another activity, without implementing any validation policy.

The receiving activity delegates import of the remote file to

the more appropriate class, according to the type of the file.

At this point, either SdmImportTask or OpenSudokuImportTask

class is executed and, in the attempt to access the network to

download the game-definition file, they raise an exception due

to insufficient privileges.

testing condition for the automatic generation of test cases.

VI. RELATED WORKS

Potential threats to the security of mobile applications

due to inter-process communication have been studied with

respect to information flow [9], [10], [11]. Information flow

in mobile applications is analyzed either statically [9] or

dynamically [10], to detect disclosure of sensible information.

Tainted sources are system calls that access private data (e.g.,

global position, contacts and calendar entries), while sinks are

all the possible ways that make data leave the system (e.g.,

network transmissions). An issue is detected when privileged

information could potentially leave the application through one

of the sinks.

Another relevant threat for information flow is represented

by permission re-delegation [11], i.e. an application with

special permissions that exposes a service that does not require

the same permissions to be consumed. As a consequence,

the service could be used by a second application without

permissions to ask the former to act on its behalf and take

privileged actions. A vulnerability is detected whenever there

exists a path from a public entry point to a restricted API call.

ComDroid [12] is a tool intended to identify when inter-

application messaging is implemented in insecure way, ei-

ther because internal services are exposed to external calls

or because of messages with missing or weak permission

requirements.

Differently to us, the common objective of all these ap-

proaches is to list candidate vulnerable points, but none of

them provide test cases to support developers during corrective

maintenance. Given the fast time-to-market model of mobile

applications, it is important to provide few runnable examples

of problem manifestations, instead of large list of potential

problematic cases that can not be executed, to support with

some level of automation the corrective maintenance to fix

vulnerabilities.

The only work which analyzes inter-application messaging

with the objective of generating test cases is by Maji et al. [13],

where the communication is tested to spot application (or

system) crashes. The JarJarBinks tool has been implemented

to study when invalid intents (i.e. that violate intent filters)

make applications crash. Test cases, however, reveal generic

application crashes rather than focusing on security.

Automatic testing of peculiarities of Android applications

has been addressed from the point of view of the graphical

user interface [14], [15], [16], to detect events and event

sequences that make the application crash. Hu et al. [14]

presented an approach for testing Android applications’ GUI.

Random graphical events are generated and patterns are used

to detect bugs in the system log, such as application crashes,

type exceptions and violations in the activity state machine.

Amalfitano et al. developed AndroidRipper [15] and

A2T2 [16] (Android Automatic Testing Tool) to test Android

GUI. These tools dynamically analyze the applications to get

a list of fireable events in the GUI widgets, they then generate

sequences of graphical events and sensor events. Code is

instrumented to record crashes and to eventually translate event

sequences into JUnit test cases.

To the best of our knowledge, the only work on security

testing of Android applications is by Mahmood et al. [8]. The

authors resort on random graphical events and random input

values to generate test cases. Tests, however, are not directly

revealing vulnerabilities that could be potentially exploited by

attackers, but their objective is just to spot crashes due to

communication errors and violations of access permissions.

Our approach, conversely, generates test cases that expose

issues due to inadequate input validation, that could threat the

confidentiality of user data.

VII. CONCLUSION

Applications for mobile devices handle sensitive data, so

they need careful validation to avoid security problems. In

this paper, we present a novel approach to test Android

applications. Automatic test case generation is proposed to

spot mismatches between the intended behavior declared by

an application and the observed functionalities implemented

in its code. Our approach managed to detect mismatches in

three real world and largely used Android applications and to

automatically generate JUnit test cases to reproduce potential

bugs.

Currently, our approach focuses on inter-application com-

munication of those messages that are directed to activities. As

future work, we plan to broaden the approach to services and

broadcast receivers, other application’s components that can

receive intents. We also aim to extend the threat model and to



test new types of faults. Moreover, we intend to conduct a more

extensive assessment on all the major applications available in

the official application store.

REFERENCES

[1] E. Kahn, “Forrester research ereader forecast, 2010 to 2015 (us),”
Forrester research, Tech. Rep., 2010.

[2] “Android device database: Activations by vendor, handset model and
region q1 2012,” Signals and Systems Telecom, Tech. Rep., 2012.

[3] H. Barra, “Keynote speech,” in Google I/O Conference, 2012.
[4] M. Burns, “There are now 1.3 million android device activations per

day,” in http://techcrunch.com/2012/09/05/eric-schmidt-there-are-now-

1-3-million-android-device-activations-per-day/, 2012.
[5] Juniper Network, “2011 mobile threats report,”

http://www.juniper.net/us/en/security/, Tech. Rep., 2012.
[6] D. Shetty, “Demystifying the android malware,” Exploit database.

http://www.exploit-db.com/, Tech. Rep., 2011.
[7] G. Eisenhaur, M. N. Gagnon, T. Demir, and N. Daswani, “Mobile

malware madness, and how to cap the mad hatters: A preliminary look
at mitigating mobile malware,” in Black Hat 2011 conference, 2011.

[8] R. Mahmood, N. Esfahani, T. Kacem, N. Mirzaei, S. Malek, and
A. Stavrou, “A whitebox approach for automated security testing of an-
droid applications on the cloud,” in Proceedings of the 7th International

Workshop on Automation of Software Test (AST), 2012.
[9] C. Mann and A. Starostin, “A framework for static detection of privacy

leaks in android applications,” in 27th Symposium on Applied Computing

(SAC): Computer Security Track, 2012.

[10] W. Enck, P. Gilbert, B. gon Chun, L. P. Cox, J. Jung, P. McDaniel,
and A. N. Sheth, “Taintdroid: An information-flow tracking system for
realtime privacy monitoring on smartphones,” in 9th Usenix Symposium

on Operating Systems Design and Implementation, 2010.
[11] A. P. Felt, H. J. Wang, A. Moshchuk, S. Hanna, and E. Chin, “Per-

mission re-delegation: Attacks and defenses,” in 20th Usenix Security

Symposium, 2011.
[12] E. Chin, A. P. Felt, K. Greenwood, and D. Wagner, “Analyzing

inter-application communication in android,” in Proceedings of the 9th

international conference on Mobile systems, applications, and services,
ser. MobiSys ’11. New York, NY, USA: ACM, 2011, pp. 239–252.
[Online]. Available: http://doi.acm.org/10.1145/1999995.2000018

[13] A. Maji, F. Arshad, S. Bagchi, and J. Rellermeyer, “An empirical study
of the robustness of inter-component communication in android,” in
Dependable Systems and Networks (DSN), 2012 42nd Annual IEEE/IFIP
International Conference on, june 2012, pp. 1 –12.

[14] C. Hu and I. Neamtiu, “Automating gui testing for android applications,”
in Proceedings of the 6th International Workshop on Automation of

Software Test, ser. AST ’11. New York, NY, USA: ACM, 2011, pp. 77–
83. [Online]. Available: http://doi.acm.org/10.1145/1982595.1982612

[15] D. Amalfitano, A. R. Fasolino, P. Tramontana, S. De Carmine, and
A. M. Memon, “Using GUI ripping for automated testing of android
applications,” in Proceedings of the 27th IEEE/ACM International

Conference on Automated Software Engineering, ser. ASE 2012. New
York, NY, USA: ACM, 2012, pp. 258–261. [Online]. Available:
http://doi.acm.org/10.1145/2351676.2351717

[16] D. Amalfitano, A. Fasolino, and P. Tramontana, “A gui crawling-based
technique for android mobile application testing,” in Software Testing,

Verification and Validation Workshops (ICSTW), 2011 IEEE Fourth

International Conference on, march 2011, pp. 252 –261.


